Подключение эл двигателя с конденсатором: Подключение электродвигателя через конденсатор | Полезные статьи

Содержание

Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

Именно на примере этой работы я и расскажу, как всё происходило

Содержание статьи

Что необходимо для подключения трёхфазного двигателя на 220 В

Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

Для работы потребуется:

  1. Непосредственно сам электромотор.
  2. Два конденсатора (пусковой и рабочий).
  3. Магнитный пускатель соответствующего номинала.
  4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
  5. Провода соответствующего сечения.
  6. Кнопочный пост на 2 точки управления.
  7. Плоскогубцы, отвёртки, ключи.

Подготовив всё необходимое, приступаем к работе.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Несколько слов о магнитном пускателе

Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Этапы подключения пускателя для второго конденсатора

Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

Устанавливаем перемычку между контактами второго пускателя

Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

Подключение провода для подачи питания на второй пускатель

Катушка второго магнитного пускателя

Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

Подключаем пусковой конденсатор: второй провод

Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

Подключение свободного провода пускового конденсатора

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Окончательные этапы сборки схемы подключения электродвигателя

Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

Почему всё так сложно

Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая

ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

Следующая

ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Как подключить электродвигатель 380 на 220 Вольт с конденсатором | Строительный журнал САМаСТРОЙКА

Содержание статьи:

  • Как подключить электродвигатель 380 на 220 Вольт с конденсатором
  • Схема подключения трехфазного электродвигателя

Очень часто под рукой оказывается двигатель, рассчитанный на работу в трехфазной сети, который нужно подключить к 220 Вольт. Сразу же нужно оговориться и сказать о том, что падение мощности трехфазного двигателя подключённого в однофазную сеть, неизбежно. Однако его можно компенсировать рабочим конденсатором подходящей емкости, который устанавливается вместо третьей фазы (выхода обмотки).

Наиболее предпочтительный вариант подключения электродвигателя к бытовой сети, это подключение трёх обмоток по схеме треугольника. В таком случае можно добиться максимальной выходной мощности электродвигателя, но, как правило, не более 70%, чем при трехфазном подключении.

Как именно подключить трехфазный двигатель к однофазной сети, читайте в этой статье строительного журнала samastroyka.ru

Как подключить электродвигатель 380 на 220 Вольт с конденсатором

Итак, подключать трехфазный двигатель к однофазной сети лучше всего по схеме «Треугольник». В таком случае электродвигатель будет работать на 70% от своей мощности. Есть еще схема подключения «Звезда». Однако в таком случае электродвигатель еще большое потеряет в мощности и будет работать не более чем на 50%.

При подключении трехфазного электродвигателя к однофазной сети, к двум выводам обмотки подсоединяется фаза и ноль. К третьему выводу необходимо подсоединить рабочий конденсатор нужной емкости. Такое подключение компенсирует все недостатки и дает возможность меньше всего потерять в мощности электродвигателя при переходе на однофазную сеть.

Важно! Именно подключение третьего вывода через конденсатор (к фазе или к нулю) задаёт направление вращение ротора электродвигателя. При этом частота вращения останется такой же самой, как и при работе электродвигателя в трехфазном режиме.

Схема подключения трехфазного электродвигателя

Электродвигатели небольшой мощности, до 1,5 кВт, можно подключать только через рабочий конденсатор. То есть, пусковой конденсатор для подключения трехфазного электродвигателя в данном случае не нужен.

Схему подключения трехфазного электродвигателя вы можете посмотреть ниже. Здесь, как и было сказано выше, один конец обмотки подключён к фазе, а другой к нулю. К третьему выводу обмотки подсоединён рабочий конденсатор, через ноль. Чтобы изменить направление движения двигателя, достаточно переподсоединить конденсатор через фазу.

В том случае, когда мощность электродвигателя более 1,5 кВт или же, когда двигатель запускается под нагрузкой, для подключения понадобится еще и пусковой конденсатор, который подключается параллельной рабочему конденсатору.

Важно знать, что пусковой конденсатор в отличие от рабочего, задействуется лишь на несколько секунд при включении электродвигателя. Расчет пускового и рабочего конденсатора для подключения электродвигателей производится по специальной формуле, о чем будет рассказано в следующем выпуске строительного журнала «САМаСТРОЙКА».

Читайте также:

Как подключить электродвигатель в сеть 220В

Как подключить электродвигатель

Приобрели электродвигатель и не знаете, как его подключить? Сейчас такой проблемы не существует, все моторы подключаются довольно легко, в клеммной коробке для этого все предусмотрено. Но если вы желаете разобраться или у вас электродвигатель старого образца эта инструкция научит вас, как правильно установить агрегат, измерить характеристики мощности и числа оборотов системы, и использовать полученные показатели.

Как подключается электродвигатель

Для электродвигателей однофазных

Вариант пусковой обмотки

1) Купите кнопку ПНВС. Вещь пригодится для объединения контактов и при их последующем перенаправлении.

2)  Определите, какой вид у каждой отдельной обмотки. Виды обмоток: пусковая, рабочая. Найдите 3-4 провода от вывода двигателя.

3) Общий выход характеризуется наибольшим сопротивлением, у пусковой обмотки показатели заметно ниже, то, что осталось – и есть рабочая обмотка.

• Перед началом работы убедитесь в исправности каждого элемента рабочей системы.

• Измерьте резистентность каждой пары обмотки.

Это вариант для 3-х проводов. «Комплект» из 4-х и более проводов проверяется попарно. В этом случае соедините рабочий и пусковой провод, затем выведите общий. Получается ситуация с 3 проводами.

4) Остались провода, с которыми нужно продолжить работу. Пусковой провод соответствует среднему контакту, остальные распределяются произвольно. На этом этапе используйте кнопку, в которой также есть 3 контакта. Крайние выходные кабели остаются для подключения силового кабеля, рабочий – для среднего контакта.

Как подключить электродвигатель с 2-мя фазами. Вариант с конденсаторным типом двигателя.

Для данного типа систем характерно, что без конденсаторов двигатель шумит, но не запускается (если использовать метод подключения пускового электродвигателя). Есть три варианта работы с конденсаторами, которые представлены ниже.

• На пусковой конденсатор – специализированный вариант для устройств тяжелого пуска.

• На рабочий конденсатор – способ для достижения максимальной результативности с использованием конденсаторов.

• На два конденсатора – самый «популярный» способ. Вспомогательная обмотка идет к конденсатору, всего 2 подключенных обмотки.

Начните работу с соединения контактов «треугольником» или «звездой». Ориентируйтесь на схему запуска с конденсаторами даже в том случае, если ваш электродвигатель с 2-мя фазами работает через одну фазу.

Как подключить трехфазный электродвигатель через однофазную сеть

Не забывайте, что подключая трехфазный двигатель к однофазной сети потеря в мощности составит порядка 30%.

Прибор с 3-мя фазами можно подключить и через одну фазу, и через конденсатор. Последовательность действий при подключении такого прибора включает более простые элементы, которые уже были описаны в случае 1-фазного, 2-фазного двигателя. Система подключается по схемам «звезда», «треугольник»; используется пусковое реле.

Как проверить электродвигатель на работоспособность

Для пользователя существует несколько вариантов, как проверить двигатель на работоспособность.

• Анализ внешнего состояния прибора. Перегрев системы связывают с потемнением краски на двигателе в средней части.

• Сверьтесь с заявленными производителем характеристиками, указанными на маркировке прибора. Не ожидайте, что двигатель выдаст большие мощности и RPM (число оборотов), чем это написано на маркировке.

• Измерьте показания с помощью мультиметра.

• Устройте прибору аппаратную диагностику.

Проверка мощности электродвигателя.

Электродвигатель сталкивается с большой нагрузкой в ходе работы отдельной или комплексной системы. Опытный пользователь знает, что любое, даже самая надежное устройство со временем дает сбой. Поэтому важно снимать показания электрической машины до нескольких раз после установки, как мощность электродвигателя, так и другие значения.

• Мощность можно определить по счетчику.

• Параметр мощности считается исходя из таблиц (понадобятся данные, например, диаметр D вала, S см/м до оси, длина мотора).

• Данные о габаритах двигателя также служат вспомогательным материалом для вычисления мощности двигателя.

• Непосредственно мощность определяют исходя из значений скорости вращения вала. Частоту умножают на k 6.28, силу и радиус системы (узнается с помощью штангенциркуля).


 Электродвигатель 220В характеристики
Тип

Электродвигатели однофазные АИРЕ 220В — электрические параметры

Масса, кг
Р, кВт U, B КПД, % cos Мп/Мн Мmax/Mн Iп/In С, мкф Uнc, B
3000 об/мин
АИРЕ56А2 0,12 220 62 0,92 0,4 1.7 3,2 6,3 450 3,7
АИРЕ56В2 0,18 220 65 0,95 0,4 1,7 2,8 8,0 450 4,0
АИРЕ56С2 0,25 220 63 0,92 0,4 1,7 3,5 12,5 450 4,3
АИРЕ63В2
0,37
220 66 0,92 0,4 1,7 4,0 20,0 450 6,3
АИРЕ71А2 0,55 220 67 0,92 0,4 1,7 4,3 16,0 250 8,9
АИРЕ71В2 0,75 220 67 0,92 0,4 1,7 4,0 20,0 450 9,6
АИРЕ71С2 1,10 220 68 0,95 0,4 1,7 4,0 30,0 450
10,5
АИРЕ80В2 1,50 220 69 0,95 0,4 1,7 4,5 35,0 450 15,1
АИРЕ80С2 2,20 220 73 0,95 0,3 1,7 4,5 60,0
450
15,9
1500 об/мин
АИРЕ56А4 0,12 220 50 0,88 0,4 1,7 2,0 8,0 450 3,8
АИРЕ56В4 0,18 220 55 0,90 0,4 1,7 2,2
10,0
450 4,4
АИРЕ63В4 0,25 220 60 0,80 0,4 1,7 2,6 10,0 450 6,2
АИРЕ71А4 0,37 220 64 0,90 0,4 1,7 3,0
14,0
450 8,3
АИРЕ71В4 0,55 220 64 0,92 0,4 1,7 3,5 16,0 450 9,6
АИРЕ71С4 0,75 220 66 0,92 0,4 1,7 3,5 25,0 450 10,3
АИРЕ80В4 1,10 220 71 0,95

0,32

1,7 4,0 30,0 450 14,1
АИРЕ80С4 1,50 220 72 0,95 0,32
1,7
4,5 45,0 450 15,1
AИPE100S4 2,20 220 75 0,95 0,4 1,9 3,2 60,0 450 24,4

Тип двигателя

Электродвигатели однофазные АИСЕ 220В — электрические параметры


Масса, кг
Р, кВт Номинальная частота
вращения, об/мин
КПД, % cos φ Мп/Мн Мmax/Mн Iн, А Конденсатор,
мкФ/В
АИСЕ56А2 0,09 2740 54 0,91 0,69 1,8 0,80
4/450
2,8
АИСЕ56В2 0,12 2760 60 0,93 0,69 1,8 0,90 6/450 3,05
АИСЕ56С2 0,18 2760 60 0,93 0,69 1,8 1,40 8/450
3,5
АИСЕ63А2 0,18 2760 62 0,93 0,55 1,8 1,40 8/450 4,1
АИСЕ63В2 0,25 2780 66 0,93 0,55 1,8 1,70 10/450 4,5
АИСЕ63С2 0,37 2780 67 0,93 0,45 1,65 2,50 12/450 5,25
АИСЕ71А2 0,37 2780 67 0,93 0,50 1,65 2,60 12/450 5,6
АИСЕ71В2 0,55 2790 73 0,95 0,50 1,8 3,50 16/450 6,95
АИСЕ71С2 0,75 2810 74 0,97 0,48 1,8 4,50 25/450 8,15
АИСЕ80А2 0,75 2810 74 0,98 0,40 1,8 4,40 25/450 8,5
АИСЕ80В2 1,1 2810 75 0,98 0,40 1,8 6,30 35/450 11,0
АИСЕ80С2 1,5 2810 77 0,98 0,33 1,8 8,50 40/450 12,75
АИСЕ90S2 1,5 2820 77 0,98 0,33 1,72 8,40 45/450 13,7
АИСЕ90L2 2,2 2850 78 0,98 0,29 1,8 12,10 60/450 16,7
АИСЕ100L2 3,0 2860 79 0,99 0,28 1,8 16,50 80/450 23,1
АИСЕ56А4 0,06 1370 48 0,92 0,73 1,75 0,60 4/450 3,3
АИСЕ56В4 0,09 1370 50 0,92 0,60 1,75 0,80 6/450 3,6
АИСЕ63А4 0,12 1370 52 0,92 0,60 1,75 1,30 8/450 4,45
АИСЕ63В4 0,18 1370 54 0,94 0,60 1,6 1,50 12/450 5,05
АИСЕ63С4 0,25 1370 58 0,95 0,60 1,6 2,00 14/450 5,4
АИСЕ71А4 0,25 1390 61 0,96 0,50 1,6 1,80 14/450 5,8
АИСЕ71В4 0,37 1390 62 0,96 0,50 1,6 2,70 16/450 6,9
АИСЕ71С4 0,55 1390 64 0,97 0,48 1,7 3,70 20/450 8,25
АИСЕ80А4 0,55 1410 64 0,98 0,37 1,8 3,50 25/450 9,55
АИСЕ80В4 0,75 1410 68 0,98 0,37 1,65 4,70 30/450 10,45
АИСЕ90S4 1,1 1410 71 0,98 0,35 1,75 6,30 40/450 13,1
АИСЕ90L4 1,5 1420 73 0,96 0,33 1,8 8,50 45/450 16,45
АИСЕ100LА4 2,2 1440 77 0,96 0,32 1,8 12,90 80/450 22,8
АИСЕ100LB4 3,0 1440 78 0,99 0,30 1,7 16,20 100/450 29,2
АИСЕ63А6 0,09 900 46 0,97 0,45 1,5 0,92 8/450 4,2
АИСЕ63В6 0,12 900 46 0,98 0,45 1,5 1,16 10/450 5,6
АИСЕ71А6 0,18 920 57 0,92 0,45 1,5 1,49 16/450 6,3
АИСЕ71В6 0,25 920 59 0,92 0,45 1,5 2,00 20/450 7,6
АИСЕ80А6 0,37 920 63 0,92 0,35 1,6 2,78 20/450 9
АИСЕ80В6 0,55 920 66 0,93 0,35 1,6 3,90 25/450 11,6
АИСЕ90S6 0,75 920 68 0,95 0,35 1,6 5,05 35/450 13,5
АИСЕ90L6 1,1 920 69 0,95 0,35 1,6 7,30 50/450 16,2

Как подключить двигатель 380

Как подключить двигатель 380

Опубликовано в рубрике Электромонтажные работы

Дома, в гараже, или на производстве иногда возникает необходимость подключения двигателя 380 В к стационарной сети 220 В. Очень часто можно встретить двигатели, которые рассчитаны на питание электросети и на 380 В., и на 220 В. Для подключения двигателя можно либо воспользоваться услугами электрика, либо попытаться подключить самостоятельно. Если в качестве примера рассмотреть асинхронный двигатель на 1,0кВт. То для его подключения лучше воспользоваться схемой «треугольник» и применить конденсатор исходя из расчета 7-10 мкФ на каждые 100 Вт двигателя.

Как подключить асинхронный двигатель 380 на 220

Максимальной мощности двигателя на 380 В в сети 220 В можно добиться при использовании соединения в треугольник. Основным моментам, на который необходимо уделить внимание является выбор конденсаторов. Первое что необходимо знать это то, что они не должны быть полярными. Всем нам знакомы конденсаторы советской эпохи, которые хорошо используются и в настоящее время. Вторым моментом является то, что если на валу двигателя будет нагрузка, или мощность двигателя больше 1,5 кВт, то необходимо предусмотреть конденсаторы для запуска. Это значит, что они будут использоваться только для запуска двигателя, поле чего их необходимо отключить. Обычно используют либо кнопку, либо переключатель. Емкость пускового конденсатора берется исходя из мощности рабочего в 2-3 раза большего номинала.

Подключение двигателя 380В в сеть 220В

На фото ниже представлено подключение двигателя 380 на 220. Для того чтобы сильно не углубляться в суть, нам просто необходимо:

  1. На крайние контакты клемной колодки подать питание 220В.
  2. Подключить конденсатор одним концом на свободный контакт, а вторым на фазу, либо ноль. (В зависимости от необходимого направления двигателя)

Для того чтобы предусмотреть реверс можно использовать переключатель, где на центральный контакт подается вывод от конденсатора, а на крайние выводы от «фазы» и «нуля».

Комментарии и размещение обратных ссылок в настоящее время закрыты. Конденсаторный двигатель

— обзор

Испытания конденсаторов двигателя

Помимо содержания конденсаторов в чистоте, они практически не требуют профилактического обслуживания. Не допускать попадания пыли, грязи, жира, масла. или любые металлические частицы, собирающиеся между выводами. Это может привести к пробою изоляции между выводами и возникновению дуги. Содержите корпуса в чистоте, чтобы тепло, выделяемое конденсаторами, могло передаваться в окружающий воздух. Большинство конденсаторов двигателей имеют срок службы около 60 000 часов при непрерывной работе при номинальном напряжении и температурах не выше 70 ° C.

Конденсаторы необходимо время от времени наблюдать и проверять в рамках программы планового технического обслуживания. Помните, что конденсатор может сохранять свой заряд даже после отключения питания от цепи. Перед работой с конденсаторами обязательно разряжайте конденсаторы заземляющим стержнем.

Обратите внимание на работу двигателя. Если двигатель набирает обороты, развивает нормальный крутящий момент и работает на скорости, конденсатор, вероятно, в порядке. В противном случае указывается дальнейшая проверка состояния конденсатора.

Осмотрите конденсатор на предмет вздутия корпуса или утечки электролита. Если существует какая-либо из этих проблем, замените конденсатор.

Проверьте конденсатор на короткое замыкание с помощью омметра. Перед подключением измерителя убедитесь, что конденсатор разряжен. Конденсатор может хранить достаточно энергии, чтобы разрушить счетчик.

Установите омметр на максимальное значение. Подключите провода к конденсатору. На обычном конденсаторе измеритель будет отклоняться вверх по шкале и быстро вернется к очень большому оммическому значению.Если конденсатор показывает ноль Ом или очень низкое значение сопротивления, это плохо. Замени это. Полномасштабное показание стандартного омметра составляет 0 Ом (рисунок 10-49).

РИСУНОК 10-49. Проверка конденсатора на короткое замыкание и обрыв с помощью омметра.

Если конденсатор не может отклоняться вверх по шкале, когда омметр установлен на высокий множитель, вероятно, конденсатор открыт. Замени это. С очень маленькими конденсаторами [пикофарады (пФ)] вы можете не получить прогиб. Это нормально. Однако все конденсаторы, используемые с двигателями, намного больше.Если вы повторите тест из-за того, что не наблюдаете за измерителем внимательно, обязательно разрядите конденсатор. Он будет заряжаться до потенциала напряжения батареи счетчика.

Ни один из этих тестов не является абсолютным из-за низкого напряжения, подаваемого омметром. Короткий тест может показать, что конденсатор исправен, но при подаче сетевого напряжения переменного тока происходит большая утечка тока. Кроме того, тест омметром не скажет вам, изменилось ли значение конденсатора.

На рынке есть коммерческие тестеры конденсаторов Эти тестеры позволяют проводить испытания конденсатора номинальным напряжением при измерении его утечки тока.Кроме того, в этих приборах используется конденсаторная мостовая схема, которая позволяет определять значение конденсатора в фарадах. Когда этот тип устройства станет доступен, научитесь его использовать. В большинстве случаев у вас не будет средства проверки конденсаторов, поэтому необходим другой метод.

Настройте схему, как показано на Рисунке 10-50. Рекомендуется установить предохранитель в цепи в случае, если максимальное сопротивление в цепи отсутствует, когда она находится под напряжением, и конденсатор находится в закороченном состоянии.

РИСУНОК 10-50. Схема проверки конденсаторов.

Во время проверки отключите конденсатор от цепи двигателя. Большинство производителей двигателей используют коричневые изолированные проводники для подключения конденсатора к цепи. Один из коричневых проводов может иметь индикаторный цвет по всей длине. Перед подачей питания установите реостат так, чтобы в цепи было максимальное сопротивление.

Если ток, протекающий через конденсатор, и напряжение на нем известны, значение емкости в микрофарадах можно рассчитать по формуле

C = IK / V

K — константа, равная

K = 1 / (2πF × 10−6) = 1 000 0006.28 × 60

Для 60 герц K равно 2650. Эта константа выводится из формулы емкостного реактивного сопротивления. Значение K будет меняться с изменением частоты.

Предполагая 120 В переменного тока на конденсаторе и ток 2 ампера, как показано на рисунке 10-50, значение конденсатора будет равно

C = (2 A × 2650) / 120 В = 44,16 мкФ

Большинство конденсаторов двигателя иметь допуск 20%. Если экспериментальное значение конденсатора в фарадах не находится в пределах 20% от его номинального значения, замените конденсатор.Допустимый диапазон емкости конденсатора в этом примере составляет плюс-минус 9 мкФ или от 36 до 54 мкФ.

Почему конденсатор подключен к двигателю постоянного тока? Разъяснил


Вы можете заметить, небольшая емкость керамических конденсаторов подключена в параллельно с небольшими двигателями постоянного тока, но почему? В двигателях переменного тока конденсаторы используются для улучшить коэффициент мощности, но почему конденсатор используется в двигателе постоянного тока? Сегодня едем чтобы обсудить это.

Там Вот некоторые важные причины, по которым конденсатор используется в двигателях постоянного тока, которые объяснено ниже. (1) Первая и основная причина — уменьшить помехи и шум. Когда мотор находится в рабочем состоянии, очень часто происходит подключение и отключение между щеткой и коммутатором. Таким образом, обмотка якоря двигателя также соединяет и отключите от источника питания частоты. Это подключение и отключение происходят слишком быстро. По этой причине изменения тока двигателя также происходят слишком быстро, что создает магнитные помехи и нарушает работу находящиеся поблизости радиоустройства, такие как приемники FM, AM.Так чтобы уменьшить эти помехи, к двигателю подключен конденсатор. терминалы. Конденсатор уменьшает скачки тока двигателя и уменьшает магнитные помехи. (2) Когда двигатели постоянного тока приводятся в действие цифровыми сигналами, тогда индуктор или конденсатор всегда используется с двигателем постоянного тока. Например, когда двигатель постоянного тока приводится в действие с ШИМ (широтно-импульсной модуляцией). сигналы, то питание двигателя часто меняется. Так что ток двигателя также изменяется, что вызывает шум и помехи.В этом случае, также конденсатор используется для уменьшения шума и помех. (3) Конденсатор сглаживает вращение двигателя при частых изменениях нагрузка на двигатель. Когда происходит частое изменение нагрузки двигателя, двигатель потребляет часто изменяющийся ток от источника питания. Здесь конденсатор помогает поддерживать постоянный ток двигателя и сглаживать скорость двигателя. (4) Конденсатор поглощает задний ЭДС двигателя и сохраняет здоровым питание схема.Когда блок питания внезапно отключается, двигатель не останавливается немедленно, в этом случае двигатель действует как генератор и производит Обратное напряжение. В большом двигателе диод или индуктор свободного хода используется для сопротивляться обратному напряжению, но в небольших двигателях постоянного тока используется конденсатор.
Спасибо вас за посещение сайта. продолжайте посещать для получения дополнительных обновлений.

Что такое мотор PSC

Двигатель с постоянным разделенным конденсатором (PSC) — это однофазный двигатель переменного тока; более конкретно, тип асинхронного двигателя с расщепленной фазой, в котором конденсатор подключен постоянно (а не только при запуске).

Двигатели

переменного тока можно разделить на одно- и трехфазные двигатели в зависимости от того, приводятся ли они в действие от одного источника питания * 1 или трехфазного * 2 .
Однофазные асинхронные двигатели имеют ряд различных типов. Один из них включает использование конденсатора * 3 для создания магнитного поля таким образом, чтобы он имитировал вторую фазу источника питания, тем самым создавая крутящий момент, необходимый для запуска двигателя * 4 . Такие двигатели называются «двигателями с конденсаторным запуском», чтобы отразить использование конденсатора для этой цели.В эту категорию также входят двигатели, в которых конденсатор остается подключенным все время (а не только при запуске), и они называются «двигателями с конденсаторными двигателями» или «двигателями с постоянными конденсаторами».

  • * 1

    Однофазный: Тип источника питания, используемый в жилых домах.

  • * 2

    Трехфазный: Тип источника питания, вырабатываемого на электростанциях и подаваемого на фабрики и другие промышленные нагрузки.

  • * 3

    Конденсатор: электронное устройство, способное накапливать и разряжать электрическую энергию, также исторически известное как конденсатор.Альтернативной конструкцией однофазного асинхронного двигателя, в котором не используется конденсатор, является двигатель с экранированными полюсами.

  • * 4

    Помимо двигателей с конденсаторным пуском, двумя другими конструкциями однофазных асинхронных двигателей, не требующими конденсатора для создания пускового момента, являются асинхронный двигатель с расщепленной фазой и двигатель с экранированными полюсами.

Как работают двигатели PSC

Чтобы использовать однофазный источник питания, доступный в жилых домах, для привода двигателя, необходим механизм, запускающий двигатель.В двигателе PSC это достигается за счет отдельных основных и вторичных обмоток (как показано на схеме), при этом основная обмотка подключается непосредственно к источнику питания, а вторичные обмотки подключаются через конденсатор.

При включении источника питания ток течет сначала в основной обмотке, а затем с небольшой задержкой из-за конденсатора во вторичной обмотке. Эта разница в токах основной и вторичной обмоток принимает форму разности фаз (это означает, что их формы сигналов смещены друг от друга по оси времени), вызывая чередование пикового магнитного поля между двумя обмотками и, таким образом, генерируя крутящий момент, который запускает вращение двигателя.

Предпосылки разработки двигателей PSC

Один из принципов однофазного асинхронного двигателя (двигатель PSC) — это явление «вращения Араго», обнаруженное Франсуа Араго в 1824 году. Его открытие заключалось в том, что когда магнит вращается рядом с диском из немагнитного материала (металл, такой как медь или алюминий, который не притягивается магнитом), диск также начинает вращаться вместе с магнитом.

В конце 19 века Никола Тесла, признанный одним из основных сторонников системы электроснабжения переменного тока (AC), изобрел первый практический асинхронный двигатель и установил соответствующие технологии, что привело к широкому распространению двигателей переменного тока в промышленности. .Последующее появление простых и недорогих однофазных асинхронных двигателей, которые отличались простотой использования и компактностью, привело к еще более широкому использованию этих двигателей для питания бытовой техники и другого оборудования в различных условиях, включая дома и малые / средние предприятия. заводы.

Однако в настоящее время двигатели с электронной коммутацией (ЕС) стали обычным явлением в широком диапазоне областей, будучи более эффективными и простыми в использовании, чем однофазные асинхронные двигатели. Эти ЕС-двигатели широко известны как бесщеточные двигатели постоянного тока (BLDC).

Сравнение двигателей PSC и EC

В то время как конденсаторные двигатели практичны и просты в использовании, двигатели с электронным управлением стали широко использоваться в самых разных областях применения благодаря преимуществам, которые включают превосходную энергоэффективность и более простое управление скоростью и другими аспектами характеристик двигателя.
В следующей таблице перечислены преимущества и недостатки двух типов двигателей.

Применения для двигателей PSC и двигателей EC

В то время как способность двигателей PSC работать от привычной однофазной энергии привела к их широкому использованию в таких областях, как обычное домашнее хозяйство, небольшие фабрики и сельское хозяйство, использование двигателей с электронным управлением расширилось в последние годы.

Применения для двигателей ЕС включают следующее.

  • Кондиционер
  • Бытовая техника
  • Водонагреватели и горелочные устройства
  • Экологическое оборудование
  • Товары для ванной
  • Торговые автоматы
  • Витрины морозильные и холодильные
  • Банкоматы, автоматы по обмену купюр, обменные аппараты, автоматы по продаже билетов
  • Чистые помещения
  • Оптическая продукция
  • Принтеры
  • Копировальные аппараты
  • Медицинское оборудование
  • Торговое оборудование

7.2 Почему у некоторых однофазных двигателей есть два конденсатора? | 7. Однофазные двигатели | Часто задаваемые вопросы

В этих однофазных двигателях используется пусковой конденсатор двигателя и рабочий конденсатор (рабочий конденсатор) для создания вращающегося магнитного поля во время нормальной работы.

Однофазный двигатель

В катушках должно быть создано как минимум два переменных напряжения, не совпадающих по фазе друг с другом. Когда вы используете однофазный двигатель, у вас не три фазы, а только одна фаза, из которой берется ток.Это означает, что необходимо создать так называемую вспомогательную фазу. Одна из двух обмоток статора питается от однофазной сети; Поскольку напряжение, создаваемое во второй обмотке, должно быть не в фазе с первым выводом на 90 °, конденсатор подключается последовательно со второй обмоткой. Это даст сдвиг фазы на второй обмотке. Создаваемого таким образом вращающегося магнитного поля было бы достаточно для перемещения ротора, но оно зависит от нагрузки и создает низкий крутящий момент. Следовательно, конденсаторные двигатели должны запускаться до номинальной скорости с минимально возможной нагрузкой.Пусковой крутящий момент может быть заметно улучшен путем периодического подключения так называемого пускового конденсатора в 2–3 раза большего размера последовательно с другим конденсатором, который запитывается только во время пуска с высоким крутящим моментом. Здесь необходимо учитывать, что двигателю требуется пусковой ток, во много раз превышающий рабочий ток при номинальной скорости. Точнее говоря, размер конденсатора можно оптимизировать только для одного варианта нагрузки. При оптимальном размере конденсатора прибл.65% механической мощности может быть достигнуто по сравнению с асинхронным двигателем аналогичной конструкции с трехфазным питанием. Обычно для фазовращателя используются качественные конденсаторы, то есть пусковой конденсатор. Емкость обычно составляет 20 мкФ на кВт мощности двигателя. При тяжелом пуске емкость может достигать прибл. 50 мкФ / кВт.

Однофазный конденсаторный пуск и конденсаторный запуск Управление электродвигателем — базовая технология управления промышленной автоматизацией практическое руководство

В то время как трех (3) асинхронные двигатели переменного тока имеют практическое преимущество для промышленных применений с двигателями большой мощности, одно (1) фазные двигатели переменного тока попадают в категорию двигателей малого размера, наиболее подходящих для небольших приложений.Однофазные двигатели переменного тока с конденсаторным запуском и конденсаторным питанием представляют собой вращающиеся устройства с электрическим приводом, которые наиболее популярны, чем аналогичные двигатели переменного тока с расщепленной фазой, из-за его благоприятного преимущества, заключающегося в обеспечении высокого пускового момента для приложений, в которых приводимая пусковая нагрузка относительно выше, чем обычная нагрузка.

Электродвигатели переменного тока с конденсаторным пуском и работой от конденсатора в основном используются в некоторых промышленных приложениях, таких как малоразмерные электродвигатели в погружных водяных насосах, но так же, как и в промышленных приложениях, одно (1) фазные конденсаторные электродвигатели с дробной мощностью также используются в быту. бытовые приборы, такие как компрессоры холодильников, компрессоров кондиционеров и стиральные машины, и это лишь некоторые из них.

Наиболее примечательной особенностью конденсаторного двигателя является его физическая конструкция, которая, очевидно, как следует из названия, оснащена конденсаторным блоком, прикрепленным к корпусу самого двигателя. Это можно отличить по наличию цилиндрического горба или дугообразного закругленного контейнера, прикрепленного к внешней стороне корпуса двигателя, где находится конденсатор.

Очевидно, что конденсаторный пусковой двигатель будет иметь только один цилиндрический выступ, тогда как конденсаторный пусковой двигатель и конденсаторный двигатель будут иметь два таких цилиндрических контейнера, выступающих на корпусе двигателя, предназначенного для размещения двух конденсаторов.

Цепь запуска однофазного конденсаторного двигателя
На электрической принципиальной схеме справа показан конденсаторный пусковой двигатель. L1 и L2 обозначены как две точки соединения, представляющие два пути прохождения электричества, присущие однофазным цепям, где однофазное напряжение питания подается на внутреннюю цепь двигателя.

Электроэнергия первоначально подается на L1 и L2 как на пусковую, так и на пусковую обмотки катушки, включая пусковой конденсатор, во время пускового хода двигателя из состояния покоя.Когда двигатель набирает достаточную скорость вращения, пусковая катушка и пусковой конденсатор выключаются путем размыкания контакта центробежного переключателя, который приводится в действие механически за счет создания центробежной силы от скорости вращения вращающегося вала двигателя, тем самым помещая двигатель находится в рабочем состоянии, при этом только катушка хода воздействует на вращение ротора.

Центробежный переключатель обеспечивает функцию электрического переключения с пружинным действием, которое приводит в действие механические контакты, которые включаются и выключаются в результате движущей силы скорости вращения от центра вращающегося вала двигателя.

Когда двигатель выключается путем отключения питания от L1 и L2, центробежный переключатель также возвращается в свое нормальное закрытое состояние, поскольку двигатель замедляется до тех пор, пока его скорость вращения постепенно не снизится, пока, наконец, не остановится. Когда центробежный переключатель возвращается в нормальное закрытое состояние, пусковой конденсатор снова подключается к цепи двигателя, чтобы подготовить его к следующей последовательности запуска.

Помимо небольшого конденсаторного пускового двигателя, другой разновидностью этого типа, используемой с двигателями большей мощности для управления более тяжелыми нагрузками, является конденсаторный пусковой двигатель и конденсаторный пусковой двигатель.Он имеет такую ​​же возможность более высокого пускового момента, оснащенную пусковым конденсатором, но с другим конденсатором, добавленным для обеспечения лучшей производительности и достижения требуемой емкости для нагрузки, которая должна приводиться в действие.

Цепь электродвигателя пуска и работы с однофазным конденсатором
Электрическая схема справа показывает иллюстрацию однофазного (1) конденсаторного пускового двигателя и конденсаторного двигателя.L1 и L2 предназначены для соединения двух токовых цепей однофазного напряжения питания.

Двигатель изначально работает с пусковым конденсатором, подключенным через замыкающий контакт центробежного переключателя. Как только двигатель достигает достаточной рабочей скорости, замыкающий контакт центробежного переключателя механически размыкается за счет вращающей силы, исходящей из центра приводного вала двигателя, которая вступает в силу, когда двигатель постепенно набирает скорость.

Когда центробежный выключатель разомкнут, пусковой конденсатор отключается от напряжения питания, в то время как только рабочая катушка, вспомогательная катушка и рабочий конденсатор остаются под напряжением.

Когда двигатель выключается путем отключения питания от L1 и L2, центробежный переключатель также возвращается в свое нормальное закрытое состояние, поскольку двигатель замедляется, пока его скорость вращения постепенно не снизится, пока он, наконец, не остановится. Когда центробежный переключатель возвращается в нормальное закрытое состояние, пусковой конденсатор снова подключается к цепи двигателя, чтобы подготовить его к следующей последовательности запуска.

Узнайте также о конфигурации проводки для двойного напряжения и реверсирования вращения однофазного конденсаторного пускового двигателя .

Как заменить конденсатор в потолочном вентиляторе? 3 способа

Как установить и подключить конденсатор в потолочный вентилятор?

Если вы когда-либо сталкивались с проблемой с потолочным вентилятором, такой как гудение, низкая скорость, не работает вентилятор или вентилятор работает, но вентилятор остановлен даже при правильном источнике питания, тогда вы подходящий форум. из наиболее частых причин — неисправный или перегоревший конденсатор вместо неисправных внутренних обмоток, отказ источника питания или заклинивание подшипников.Вы можете проверить и протестировать конденсатор 6 методами, если он неисправен или находится в хорошем состоянии.

Попросту говоря, в потолочном вентиляторе есть однофазный (асинхронный двигатель с расщепленной фазой), где нам нужен пусковой конденсатор, чтобы разделить фазовый угол между пусковой и рабочей обмотками для создания магнитного поля. Конденсатор просто делает это, поскольку он обеспечивает сдвиг опережающей фазы на 90 ° (поскольку через начальную обмотку течет некоторый ток). Таким образом, напряжение на пусковой и бегущей обмотках имеет разность фаз, которая обеспечивает вращающееся магнитное поле, приводящее к вращению ротора двигателя.

Как упомянуто выше и показано на рисунке ниже, в двигателе потолочного вентилятора есть две обмотки, которые известны как основная (рабочая) и вспомогательная (пусковая) обмотки. Нам нужно подключить конденсатор к пусковой обмотке (вспомогательной) последовательно. Нейтраль должна быть соединена с нейтралью. Не забудьте подключить заземляющий провод к правильному заземлению.

Примечание: Цвета проводки в этом руководстве предназначены только для иллюстрации и пояснения i.е. эти цвета, используемые в данном руководстве, предназначены только для ознакомления и не обязательно отражают региональные различия. См. Нижние примечания для цветовых кодов проводки в США и ЕС (NEC и IEC). Кроме того, некоторые производители могут использовать провода разных цветов, при этом следуйте региональной цветовой кодировке или обратитесь к руководству пользователя, чтобы получить четкое объяснение. Если вы все еще не уверены, обратитесь к лицензированному электрику для правильной установки.

Заявление об ограничении ответственности: Эти диаграммы должны использоваться только в качестве руководства. Ответственность за использование этого руководства несет установщик.Компания Electric Technology и автор этого руководства не несут ответственности за травмы, убытки или ущерб, возникшие в результате использования этого руководства. Для правильной установки вы можете обратиться к лицензированному электрику. Внимательно прочтите меры предосторожности в конце этого руководства.

Теперь, если у нас неисправный конденсатор, мы можем заменить его тремя разными способами, как показано ниже.

  • Замена вышедшего из строя конденсатора в потолочном вентиляторе.
  • Подключение пускового конденсатора к потолочному вентилятору.
  • Подключение конденсатора 3-в-1 с потолочным вентилятором, переключателем реверса и натяжной цепью.

Связанное сообщение: Как определить размер и количество потолочных вентиляторов в комнате?

Замена неисправного конденсатора в потолочном вентиляторе

Предположим, что простой вентилятор без комплекта освещения необходимо заменить новым рабочим конденсатором того же номинала, следуйте инструкциям ниже:

  • Прежде всего, выключите выключите главный автоматический выключатель в домашнем распределительном щите, чтобы отключить электропитание.
  • Теперь удалите неисправный конденсатор, отрезав точные провода, подключенные к неисправному конденсатору.
  • Замените конденсатор новым, подключив красный (под напряжением) провод (от потолочного вентилятора) к первой клемме конденсатора и подключив синий провод ко второй клемме конденсатора.
  • Подключите красный и синий провод, наденьте гайку для провода и электрический ответвитель и вставьте его в соединитель проводов, как показано на рисунке ниже.
  • Подсоедините черный (нейтральный) провод потолочного вентилятора ко второму разъему проводного разъема.
  • Теперь подключите фазу и нейтраль к источнику питания. Включите главный автоматический выключатель, чтобы проверить потолочный вентилятор.

Полезно знать: Не подключайте конденсатор к нейтральному проводу, т.е. подключайте конденсатор только красный и черный (или синий и черный, в зависимости от производителя и руководства пользователя), в противном случае, вместо анти-часов В правильном направлении вентилятор начнет вращаться в обратном направлении, то есть в обратном направлении (по часовой стрелке).

Связанное сообщение:

Подключение пускового конденсатора к потолочному вентилятору

Если у вас возникла проблема с пусковым конденсатором потолочного вентилятора, выполните следующие действия, чтобы установить и подключить новый конденсатор.

  • Отключите основное питание, отключив автоматический выключатель в DB.
  • Снимите перегоревший / неисправный конденсатор с вентилятора, отрезав соответствующие провода.
  • Подключите красный провод к первой клемме нового конденсатора, а вторая клемма должна быть соединена с синим проводом с помощью гайки (не забудьте также использовать электрический кран) и подключите к первому слоту соединителя проводов, как показано на рис.
  • Теперь подключите красный (под напряжением) провод от соединителя к регулятору скорости вращения вентилятора или переключателю диммера вентилятора и к SPST (однополюсному однопроходному или одностороннему переключателю) последовательно.
  • Подсоедините провод заземления и нейтраль от вентилятора к заземляющему и нейтральному проводу от главного распределительного щита.
  • Включите главный выключатель, чтобы проверить, работает ли вентилятор должным образом.

Связанные сообщения:

Подключение 3-в-1 Потолочный вентилятор Конденсатор с реверсивным переключателем и цепью

Этот метод немного сложен из-за разных проводов в 3-дюймовом -1, и необходимо соблюдать цветовую кодировку проводки, используемую на схеме подключения (цветовые коды проводки NEC и IEC приведены ниже).Чтобы заменить конденсатор «три в одном» на потолочный вентилятор со встроенным комплектом освещения и переключателем реверса, следуйте приведенным ниже инструкциям.

  • Прежде всего, выключите главный выключатель в бытовой электросети, чтобы отключить основное питание.
  • Подключите зелено-желтый провод заземления к бытовой системе заземления.
  • Теперь удалите ранее установленный конденсатор в потолочном вентиляторе, отрезав красный и серый провода.
  • Проделайте то же самое для выключателя с тяговой цепью, т. Е.отсоедините (серый, коричневый, пурпурный и черный) провода от конденсатора к переключателю тяговой цепи и переключателю реверса потолочного вентилятора.
  • Теперь подключите новый конденсатор 3-в-1, подключив серый провод к слоту 1 в переключателе тянущей цепи, второй серый провод от конденсатора к среднему выводу переключателя реверса.
  • Подсоедините коричневый и фиолетовый провод к гнездам 2 и 3 соответственно в переключателе тянущей цепи.
  • Подсоедините оранжевый и розовый провода от вентилятора к гнездам переключателя заднего хода 1 и 3, как показано на рис.
  • Подключите белый провод в качестве нейтрали от основной платы к вентилятору, среднему разъему переключателя заднего хода и световому комплекту.
  • Подключите черный провод, находящийся под напряжением (фаза или линия), к пазу L переключателя тяговой цепи. Дополнительное соединение через гайку провода к синему проводу от вентилятора к встроенному световому комплекту, как показано на рис.
  • Теперь включите главный распределительный щит, чтобы проверить потолочный вентилятор с помощью переключателя реверса (который используется для изменения направления вращения вентилятора), потяните цепной переключатель для различных скоростей и управления ВКЛ / ВЫКЛ.

Сообщение по теме: Как управлять одной лампой с двух или трех мест?

Цветовые коды проводки NEC и IEC:

Мы использовали красный для Live или фазы , черный для нейтральный и зеленый / желтый для заземления. Вы можете использовать коды конкретных регионов, например I EC — Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электротехнический кодекс [США и Канада], где:

NEC:

Однофазный 120 В Переменный ток:

  • Черный = Фаза или Линия
  • Белый = Нейтраль
  • Зеленый / Желтый = Заземляющий провод
  • Однофазный 230 В переменного тока:

    • Коричневый = Фаза или Линия
    • Синий = Нейтраль
    • Зеленый = Провод заземления
    • 927
    9102 Как подключить автоматический и ручной переключатель / переключатель (1 и 3 фазы)

    Общие меры безопасности 9 0003
    • Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда не упустят его.Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
    • Отключите источник питания перед обслуживанием, ремонтом или установкой электрооборудования.
    • Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа).
    • Никогда не пытайтесь работать с электричеством без надлежащего руководства и ухода.
    • Работать с электричеством только в присутствии лиц, обладающих хорошими знаниями и практической работой и опытом, знающих, как обращаться с электричеством.
    • Прочтите все инструкции и предупреждения и строго следуйте им.
    • Самостоятельное выполнение электромонтажных работ опасно, а в некоторых регионах является незаконным. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
    • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Так пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

    В приведенном выше руководстве по замене конденсатора потолочного вентилятора мы показали три метода замены неисправного конденсатора потолочного вентилятора и добавим дополнительные руководства по подключению в будущем. Если вы знаете конкретный способ сделать это, сообщите нам об этом в поле для комментариев ниже.

    Похожие сообщения:

    Конденсатор пусковой конденсатор Запуск двигателя

    Конденсаторный двигатель

    A также является асинхронным двигателем с расщепленной фазой. Пусковая обмотка имеет последовательно включенный конденсатор. Это улучшенная форма двигателя с расщепленной фазой.Этот тип двигателя был разработан на более позднем этапе. Эти двигатели имеют более высокий пусковой и рабочий крутящий момент. Это главное преимущество конденсаторных двигателей перед двигателями с расщепленной фазой.

    Вначале двигатель с расщепленной фазой был разработан с учетом разницы между сопротивлением и реактивным сопротивлением (индуктивным) в основной и пусковой обмотках. Таким образом, термин «расщепленная фаза» стал использоваться для обозначения машины с индуктивно расщепленной фазой и во избежание путаницы не используется для обозначения конденсаторных асинхронных двигателей.

    Использование конденсатора имеет много преимуществ. Потоки в двух обмотках, в основной обмотке, а также в пусковой обмотке можно сделать разницей в 90 o , чтобы двигатель стал двухфазным. Поскольку пусковой крутящий момент пропорционален синусу угла между двумя токами, создаваемыми основной обмоткой, а также пусковой обмоткой. Пусковой момент намного выше, чем у обычного двигателя с расщепленной фазой.

    Пусковой ток в линии снижен из-за последовательного включения конденсатора с пусковой обмоткой.Коэффициент мощности двигателя улучшается. Это может быть сделано очень близко к единице в конденсаторном двигателе, где конденсатор постоянно закреплен в обмотке и не отключается. Есть три типа конденсаторных двигателей:

    1. Конденсаторный пуск двигателя.
    2. Конденсаторный двигатель.
    3. Конденсатор пусковой конденсаторный двигатель.

    Конденсаторный пусковой двигатель

    В конденсаторе пускового двигателя конденсатор С имеет большое значение, так что двигатель будет обеспечивать высокий пусковой крутящий момент.Используемый конденсатор рассчитан на кратковременную нагрузку. Конденсатор электролитического типа. Электролитический конденсатор C включен последовательно с пусковой обмоткой вместе с центробежным переключателем S , как показано на схеме.

    Когда двигатель достигает скорости около 75% от синхронной скорости, пусковая обмотка отключается. Конструкция двигателя и обмотки аналогична конструкции обычного двигателя с расщепленной фазой.

    Конденсаторный пусковой двигатель используется там, где требуется высокий пусковой момент, например, в холодильниках.

    Характеристики конденсаторного пускового двигателя

    • Скорость постоянна в пределах 5% скольжения.
    • Конденсаторный пусковой двигатель развивает высокий пусковой крутящий момент, примерно в 4–5 раз превышающий крутящий момент полной нагрузки, и снижает пусковой ток.
    • Направление вращения можно изменить, поменяв местами подключения питания к любой из обмоток.

    Рабочий двигатель конденсатора работает

    Схема подключения конденсаторного электродвигателя такая же, как и конденсаторного электродвигателя запуска, за исключением отсутствия центробежного переключателя S .

    Конденсатор бумажный. Конденсатор постоянно подключен к пусковой обмотке. В случае бумажного конденсатора значение емкости невелико, поскольку изготовление бумажного конденсатора более высокой стоимости становится трудным и становится неэкономичным.

    Электролитический конденсатор использовать нельзя, так как этот тип конденсатора используется только в течение короткого времени и, следовательно, не может быть постоянно подключен к обмотке. Обмотка как основная, так и пусковая имеют одинаковую мощность

    Характеристики конденсаторного двигателя

    • Пусковой крутящий момент ниже примерно на 50% крутящего момента при полной нагрузке.Коэффициент мощности улучшен. Возможно, дело в единстве. КПД повышается примерно до 75%.
    • В случае конденсаторного запуска двигателя направление вращения может быть изменено, как написано.
    • Конденсаторный двигатель используется в вентиляторах, комнатных охладителях, портативных инструментах и ​​других бытовых и коммерческих электроприборах.


    Два конденсатора используются в двигателе запуска конденсатора пускового конденсатора или двигателе конденсатора двух значений, один для запуска, а другой для работы.Пусковой конденсатор электролитического типа отключается от источника питания при достижении двигателем 75% синхронной скорости с помощью центробежного переключателя S , включенного последовательно с C s . Емкость двух конденсаторов разная. Пусковой конденсатор С s электролитического типа имеет высокую стоимость.

    Характеристики конденсаторного пускового конденсаторного двигателя

    • Конденсаторный пусковой конденсаторный двигатель обеспечивает наилучшие рабочие и пусковые условия.Такие двигатели работают как двухфазные двигатели, обеспечивая наилучшую производительность.
    • Пусковой крутящий момент высокий, пусковой ток снижен, что дает более высокий КПД и лучшую коэффициент мощности. Единственный минус — дороговизна.
    • Направление можно изменить, поменяв местами подключения питания к основной или пусковой обмотке.


    Спасибо за то, что прочитали о конденсаторном пусковом электродвигателе.

    Однофазные двигатели | Все сообщения

    © https: // yourelectricalguide.com / конденсатор пусковой конденсатор запускает двигатель.

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *