Подключение нормально замкнутого реле: Страница не найдена – АвтоТоп

Содержание

Реле нормально замкнутое 12 вольт

Артикул: 75.3777-10/90.3747-10 , артикулы доп.: 75.3777-10, 90.3747-10

Код для заказа: 002827

Кто не знает, то реле устанавливаются в автомобилях как правило на всех потребителях (устройствах) с большим током. Зачем так делают, а это для того, чтобы развести силовую проводку, и молоточную, так как, иначе, пришлось бы в кабине вместо элегантных кнопочек, ставить промышленные рубильники.

Мне понадобилось реле для подключения противотуманных фар, пытаясь найти схему включения, я нашел множество, но все они имели отличия в номерах контактов, а описания на реле нет, кроме технических характеристик, чтобы разобраться и понять.

Для этого я вскрыл корпус, чтобы узнать из чего состоит реле и как оно работает, простым языком- это электромагнит с подпружиненным контактом в данном случае реле имеет 4-е контакта.

Пропуская малый ток через контакты 85,86 неважно в каком направлении, мы слышим щелчёк, срабатывает электромагнит и замыкает силовую часть контакты 87,30.

Эти контакты можно найти опытным путем, имея два провода и аккумулятор, подключив один провод к плюсу, а другой к минусу, подаем питание на разные выводы пока не услышим щелчёк – знак, что реле сработало. Подсоединив тестер к оставшимся выводам, с включенной прозвонкой или омметром можем проверить замкнулся ли при этом контакт или реле бракованное – вышедшее из строя.

Выше описанным способом, я проверил реле, собрав макетную схему подключения своих ПТФ, заодно убедился в её работоспособности, замечу, что эта схема универсальная и вместо фары может быль любой потребитель (устройство), главное, чтобы стоял соответствующий предохранитель, реле имело необходимую пропускную способность тока, а провода соответствующее сечение.

тумблер в исходном положении.

Надеюсь, что этот небольшой обзор помог вам узнать больше об этом изделии, способах проверки и подключении.

Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
Реле часто приходит на выручку во время установки дополнительного оборудования.

Примеры применения реле:

В качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.
Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.

Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.

Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.
Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».

Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.

Открытие багажника с брелока сигнализации.

Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.

Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.
Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
Это лишь немногие схемы подключения с использованием реле.

Машины год от года становятся все умнее – они уже самостоятельно вращают рулем, меняют жесткость подвески, делают водителю массаж пятой точки и многое другое… Однако конечный исполнительный механизм большинства электрических цепей автомобиля, скромная «рабочая лошадка» – это реле, практически не изменившее свою конструкцию аж с 1831 года, когда впервые было изобретено… Что обычному автовладельцу полезно знать о реле?

Как устроено и применяется реле

К ак известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.

Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.

Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.

В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.

Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.

Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:

Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.

Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.

К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…

Что нужно знать о работе реле?

Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…

Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.

Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».

Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.

Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.

Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.

В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.

Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.

Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.

Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.

Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.

Проверка реле

При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.

Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).

На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.

Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.

Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.

Описание внешних выводов — Реле блокировки R4

Устройство выпускается с текстовой или цветной маркировкой проводов.

МаркировкаРасшифровка
GNDМасса
BATПитание
IGNЗажигание
NOНормально разомкнутый контакт реле
NCНормально замкнутый контакт реле
COMОбщий контакт реле
UNLOCKОткрытие замка капота
LOCKЗакрытие замка капота
INPUTВход управления (однопроводный интерфейс)
OUTPUTВыход для подключения внешнего реле блокировки
EXTВход концевого выключателя капота

Провод IGN — вход подключения к зажиганию автомобиля. На проводе IGN должен быть потенциал +12 В во время включения зажигания и работы двигателя.

Провода NO, NC, COM подключаются к блокируемой цепи. Для осуществления блокировок можно использовать как нормально замкнутые (COM и NC), так и нормально разомкнутые (COM и NO) контакты.

При монтаже этой цепи необходимо следить за длиной и сечением проводов, используемых при коммутации, поскольку коммутируемый ток может быть значительным. Если ток в блокируемой цепи превышает 10 А, необходимо использовать дополнительное внешнее реле.


Провода UNLOCK, LOCK — силовые выходы управления электроприводом замка капота. Выходы построены по силовой схеме (максимальный выходной ток 12 А), поэтому для управления замками не требуются дополнительные силовые модули. При отпирании замка капота на проводе UNLOCK появляется импульс +12 В на 0,8 с. При запирании замка капота на проводе LOCK появлется импульс +12 В на 0,8 с.
Провод EXT — вход концевого выключателя капота. Подключается непосредственно к концевому выключателю капота автомобиля. Данное подключение необходимо для исключения запирания замка при открытом капоте.

Обязательно подключите концевой выключатель капота к охранному комплексу StarLine. Если при постановке на охрану капот будет открыт (сопровождается четырьмя сигналами сирены и световыми сигналами), то в течение 1-й минуты закройте капот, чтобы кодовое реле закрыло замок капота.
Если Вы закроете капот позднее 1-й минуты, то кодовое реле не закроет замок капота. В этом случае выключите охрану, закройте капот и снова поставьте на охрану, чтобы кодовое реле закрыло замок капота.

Провод INPUT — вход управления (однопроводный интерфейс). Подключается к выходу дополнительного канала охранного комплекса StarLine. Для выбора дополнительного канала запрограммируйте необходимую функцию на вариант 3 согласно таблице программирования охранных и сервисных функций охранного комплекса.

Провод OUTPUT – выход для подключения внешнего реле блокировки. При включении зажигании в режиме «В охране» на этом выходе появляется масса (корпус). Выход реализован по схеме открытого коллектора, максимально допустимый ток нагрузки 300 мА.

контактное, 12В, промежуточное, принцип работы и управление

На чтение 7 мин Просмотров 4.7к. Опубликовано Обновлено

Реле является системой выключателей, необходимых для переключения, разъединения и соединения электроцепей. Цель эксплуатации коммутационного устройства – создание конкретных условий работы техники. Подключить реле означает создать нагрузку на выключатель, управляющий прибором.

Механизмы реле

Основные элементы электромагнитного реле

Релейный прибор выполняется в виде катушки, обвитой большим количеством медной проволоки. Внутри нее расположен сердечник-стержень из металла, зафиксированный на ярме – Г-образной пластине. Поверх сердечника и катушки находится якорь – металлическая пластина, которая удерживается возвратная пружина. К якорю прикреплены подвижные контакты, а напротив них – неподвижные.

Узел из катушки и сердечника – электромагнит, а узел из сердечника, якоря и ярка – магнитопровод. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.

Принцип работы

Принцип действия электромагнитных реле

Принцип работы реле 4 контактного или 12-вольтной модели схож. Без подачи напряжения на устройство якорь при помощи возвратной пружины отдален от сердечника.

В момент, когда подается напряжение, по обмотке начинает двигаться ток, магнитное поле которого воздействует на сердечник. Намагниченный элемент посредством преодоления усилий возвратной пружины, притягивает якорь. Его активные контакты перемещаются, размыкаясь или замыкаясь с неподвижными.

После прекращения подачи напряжения ток обмотки пропадает, происходит размагничивание сердечника. Возвратная пружина приводит якорь и контакты в исходное состояние.

Разновидности реле

Реле контроля напряжения однофазное цифровое на DIN-рейку

Релейные устройства классифицируются по нескольким параметрам.

Количество фаз

Подразделяются на:

  • однофазные – предназначены для подачи напряжения в жилых помещениях;
  • трехфазные – подходят для применения в промышленных условиях.

Трехфазники отключают питание всего оборудования при скачках вольтажа на одной из линий.

Тип переключения

Можно приобрести модели:

  • максимальные – повышают параметр напряжения до определенной величины;
  • минимальные – понижают показатель до заданного значения.

Порог напряжения пользователем не устанавливается.

Тип активации воспринимающего элемента

Реле промежуточное РП-18-54 220В DC

Воспринимающий элемент, по включению которого будет работать прибор, – это электромагнит, магнитоэлектрический узел, индукционная или электродинамическая система. В зависимости от его вида существуют реле:

  • первичные с прямым подключением контактов в сеть;
  • вторичные – могут подключаться через измерительные индуктивные или емкостные трансформаторы;
  • промежуточные – усиливают или преобразуют сигналы первичных/вторичных моделей.

Функции воспринимающего элемента – преобразование напряжения в процесс движения якоря относительно ярма.

Тип управления нагрузкой

Для управления напряжением применяются модели:

  • прямого действия – нагрузка переключается контактами;
  • косвенного действия – нагрузку подключаются вторичные элементы.

Нагрузка подается и приостанавливается с определенными промежутками.

Тип поступления сигнала

Герконовое реле

В продаже можно найти следующие коммутационные устройства:

  • электронные – обеспечивают контроль напряжения в условиях высокой нагрузки. Управляют освещением и узлами автомобиля;
  • герконовые – небольшие модели в виде катушки. Предназначены для замыкания, переключения, размыкания сети. Чувствительны к механическим воздействиям и ультразвуку;
  • электротепловые – отключают и включают электрический ток по нагреву биметаллической пластины. Используются для электродвигателей на производстве, обустройства однофазной или трехфазной электросети;
  • временной выдержки – для создания кратковременных пауз применяются схемы замедления. Приборы работают в автомобилях, светофорах, елочных гирляндах;
  • таймеры света – позволяют программировать освещение теплиц, аквариумов, животноводческих комплексов. К ним подключаются нагреватели, вентиляторы;
  • электромагнитные – ток статистической обмотки активируется по воздействию магнитного поля. Приборы со средней нагрузкой до 320 А и напряжение до 1,6 кВт могут работать только в сети с постоянным током.

Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Некоторые модели исполняются в виде переходников и удлинителей.

Особенности контактов

Распространенные конфигурации контактных групп реле

По конструкции контактное промежуточное реле состоит из трех типов элементов.

Нормально разомкнутые

Находятся в разомкнутом состоянии до момента подачи питания на катушку. Реле активируется после подачи напряжения, и контакты приходят в замкнутое состояние. Электросеть замыкается.

Нормально замкнутые

Функционируют по обратному принципу, находясь в замкнутом состоянии на момент обесточивания реле. После появления напряжения происходит срабатывание реле, размыкание контактов и цепи.

Перекидные

При обесточивании катушки средний общий контакт якоря замкнут с неподвижным. После того как реле срабатывает, средний элемент вместе с якорем двигается в направлении стационарного контакта и замыкается с ним. Связь с первым стационарным контактом разрывается.

Модели с несколькими контактными группами обеспечивают управление несколькими цепями.

Электрическая схема реле

Принципиальная электросхема реле

Принципиальная схема реле наносится на крышку производителем. Само устройство имеет вид прямоугольника, помечается маркером К с цифрой. Для обозначения контактов без подачи нагрузки применяется буква К с двумя цифрами, разделенными точкой. Первая – это порядковый номер прибора, вторая – порядковый номер контактов.

Контактные группы рядом с катушкой маркируются штриховой линией. Под электросхемой также указывают параметры контактов, величину максимального коммутационного тока. Разновидность токов и напряжение в рабочих условиях наносятся на релейную катушку.

Схемы подключения

Модуль подключается к потребителям в зависимости от конструктивного исполнения и количества контактов.

С несколькими контактами

Схема подключения 4-х контактного реле

Схема активации и работы светового реле, состоящая из 4 контактов позволяет подключить противотуманки через предохранитель:

  1. Поиск дополнительного вольтажа посредством разрезания красного провода на предохранительном блоке и пайки дополнительного.
  2. Установка навесного предохранителя.
  3. Подключение силового реле по нумерации контактов. 30 – кабель после предохранителя, 87 – кабель к ПТФ напрямую, 86 – провод с зацепкой на болт около реле.
  4. Создание системы управления. Вытаскивается кнопка ПТФ без снятия колодки.
  5. Прозвонка провода мультиметром и присоединение его к кузову.
  6. Проверка фар и габаритов.
  7. Повторная прозвнока мультиметром и поиск цифры 12+.

Контакт 85 подкидывается только на провод, при касании к которому появилось 12+.

Схема подсоединения пятиконтактного реле

Схема подсоединения пятиконтактного реле подходит для создания сигнализации. Подключение выполняется так:

  1. Определение контактов. 85 и 86 отвечают за катушку, 30 – общий, 87-а – нормально-замкнутый, 87 – нормально разомкнутый.
  2. Питающий контакт 85 соединяется с сигнализационным проводом.
  3. На катушечный контакт 86 при включенном зажигании подается 12+ Вольт.
  4. Контакты 87-а и 30 подкидываются в разрыв заблокированной цепи.
  5. Инвертируется полярность. На катушечный контакт 85 и контакт 87 подается минус, на контакт 86 с концевиков – плюс. На 30-м остается плюс.

В качестве блокиратора может использоваться бензонасос, стартер, запитка форсунок, зажигание.

Для реле напряжения

Принципиальная схема домашней сети с использованием реле напряжения, УЗО и защитных автоматов

Схема подключения реле напряжения предусматривает монтаж прибора на дин-рейку в распредщитке. Для трехфазной сети выполняется следующее:

  1. Определяется кабель подключения – медный, с сечением 1,5-2,5 мм2.
  2. Подсоединяются контакты ввода через пускатель или контактор.
  3. Находится фаза по маркерам А, В, С и клемма нуля N.
  4. Проводники трех фаз подкидываются на соответствующие верхние клеммы устройства.
  5. Проводник клеммы № 1 подключается на выход катушки.
  6. Клемма № 3 подсоединяется на фазу в обход реле напряжения.
  7. Выход № 2 контакторной катушки нужно подключать к нулевому проводнику сети.
  8. Проводники нагрузки соединяются с клеммами пускателя на выходе.
  9. Нулевые проводники в распредкоробе подкидываются на общую нейтраль.

Для простоты соединения узлов руководствуйтесь схемой на корпусе реле.

Настройки реле

Схема для включения любого реле будет работать только в условиях правильной настройки. Пользователь может установить порог срабатывания по максимальному и минимальному значению, выбрать задержку активации и повторного включения после перезагрузки.

Определившись с типом реле переключения и разобравшись в его схеме, можно самостоятельно создать электроцепь. При работе следует учитывать тип контактов, разновидность устройства и принцип его функционирования.

Электромагнитное реле.

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное) Сопротивление обмотки (Ω ±10%) Номинальный ток (mA) Потребляемая мощность (mW)
3 25 120 360
5 70 72
6 100 60
9 225 40
12 400 30
24 1600 15
48 6400 7,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Реле

Реле — электромеханическое устройство (переключатель), предназначенное для коммутации электрических цепей.

SPDT реле: состоит из катушки (клеммы 85 и 86), 1 общий контакт (30), 1 нормально замкнутый контакт (87а), и один нормально разомкнутый контакт ( 87) (рис. 1). Когда катушка реле SPDT (рис. 1)  находится в состоянии покоя (без напряжения), общий контакт (30) и нормально замкнутый контакт (87а)

замкнуты между собой. Когда на катушку подано напряжением, общий контакт (30) и нормально разомкнутый контакт (87) замкнуты между собой . На (рис. 2)  показано, состояние контактов реле в состоянии покоя, без напряжения. на катушке. На (рис. 3) показано, состояние контактов реле в состоянии, когда на катушку подано напряжение.

Данное реле не имеет полярности и поэтому

все равно как подключено напряжение на контаты 85 и 86 (+) ( — ) или ( -)(+) соответственно, за исключением когда к катушке подключен диод

, тогда (+) подключается там где катод диода ( сторона с полоской на корпусе диода), а ( -) со стороны анода (рис. 4)

 

SPST реле: состоит из катушки (клеммы 85 и 86), 1 общий контакт (30), и два нормально открытый контакта (87 и 87в). Это реле может быть использован вместо SPDT реле на всех схемах показанных на этом сайте, где контакт 87а не используется.  SPST реле (рис. 5):  используется для питания двух контуров , как правило, изолированных друг от друга, такие как парковочные лампы на немецких автомобилях, включение левых и правых ламп поворотников одновременно и т.д.. На схеме(рис. 6) показано состояние контактов,  когда на катушке нет напряжения.На схеме (рис. 7) показано состояние контактов,  когда катушка под напряжением. Катушка электромагнита, которая вызывает переключение контактов, всегда связана с общим контактом (30)который, при подаче напряжения на катушку, соединяется с нормально открытыми контактами (87 и 87b).

Почему нужно использовать реле?

В любое время если Вы хотите подключить устройство, которое потребляет больше тока, чем обеспечивает выход коммутатора или компонента, придется использовать реле. Катушка SPDT или SPST реле, которое обычно используют, потребляет очень мало тока (менее 200 миллиампер) ,а величина тока, который можно передать через контакты реле: общий, нормально замкнутый и нормально разомкнутый, составляет до 30 или 40 ампер. Это позволяет переключать устройства, такие как фары, габаритные огни и т.д., используя управление с низким уровнем выходного  тока, такие как те, что на выходе охранной сигнализации. В некоторых случаях вам может понадобиться переключение нескольких цепей, используя один выход. Один выход, подключенный к нескольким реле позволит вам включать или отключать одновременно несколько электрических цепей. На сайте представлено ряд схем, где и как можно применять реле.

Подключение различных цепей — Установка автосигнализаций StarLine B62 Dialog Flex

Подключение цепей блокировки двигателя

Подключение внешней цепи блокировки двигателя с использованием обычных реле

Разорвите одну из штатных цепей обеспечения работы двигателя и в разрыв цепи подключите дополнительное реле. Тип контактов реле блокировки НР (нормально разомкнутые) или НЗ (нормально замкнутые) программируется (функция 10). Заводская установка — НЗ тип контактов реле. Пример подключения показан на рисунке:

Для нормально замкнутого (НЗ) режима работы

Для нормально разомкнутого (НР) режима работы

Подключение встроенной цепи блокировки двигателя автосигнализации Star Line B62 Dialog Flex

На плате центрального блока сигнализации установлено реле блокировки с одной группой переключающихся контактов (разъем «Х1»). Максимальный коммутируемый ток встроенного реле блокировки — 15А. Обязательно запрограммируйте необходимый режим работы реле — программируемая функция 10. Заводская настройка — НЗ блокировка. Разорвите одну из штатных цепей блокировки двигателя, например: питание бензонасоса или топливных форсунок. В разрыв блокируемой цепи подключите два из трех переключающихся контактов встроенного реле блокировки. Используйте синий и сине-белый провода из комплекта сигнализации.

Внимание: При подключении блокировки в разрыв цепи с индуктивной нагрузкой (блокирование силового провода бензонасоса)
следует помнить, что максимальный ток данной цепи во время коммутации может превышать допустимый ток реле, что приведет к его выходу из строя через некоторое время.

Подключение концевых выключателей

Концевые выключатели дверей

При монтаже автосигнализации можно подключать входы сигнализации непосредственно к концевым выключателям дверей или к плафону
освещения салона следующим образом:

Сине-черный провод 16-ти контактного разъема «X3» подключите к кнопочным выключателям дверей, замыкающимся на корпус при
открывании дверей.

Сине-красный провод 16-ти контактного разъема «X3» подключите к кнопочным выключателям дверей, замыкающимся на +12В при
открывании дверей.

В ряде современных автомобилей происходит опрос электрооборудования штатными системами и в этом случае необходимо использовать диодную развязку. При наличии в автомобиле вежливой подсветки салона также необходимо использовать диодную развязку.

Схема диодной развязки для отрицательной полярности

В качестве VD1–VD4 рекомендуем использовать диоды типа 1N4007 или подобные.

Диоды VD5–VD8 должны быть рассчитаны на соответствующий ток, который определяется количеством и мощностью ламп освещения салона.

Схема диодной развязки для положительной полярности

В качестве VD1–VD4 рекомендуем использовать диоды типа 1N4007 или подобные.

Диоды VD5–VD8 должны быть рассчитаны на соответствующий ток, который определяется количеством и мощностью ламп освещения салона.

Концевой выключатель капота

Оранжево-серый провод 16-ти контактного разъема «X3» подключите к концевому выключателю капота, замыкающегося на массу при
открывании капота. При отсутствии штатного концевого выключателя необходимо его установить (входит в комплект поставки).

Концевой выключатель багажника

Оранжево-белый провод 16-ти контактного разъема «X3» подключите к концевому выключателю багажника, замыкающегося на корпус при его открывании.

Подключение световой сигнализации

В автомобилях, у которых в штатном электрооборудовании автомобиля для указателей поворота используются только два провода, возможно
прямое подключение выходов автосигнализации:

Зелено-черный провод 16-ти контактного разъема «X3» подключите к лампам указателей поворота (один борт). Максимальный ток нагрузки
7,5 А.

Зелено-желтый провод 16-ти контактного разъема «X3» подключите к лампам указателей поворота (другой борт). Максимальный ток нагрузки
7,5 А.

Если в штатной проводке автомобиля для указателей поворота задействовано больше проводов (4 или 6), то необходимо использовать
диодную развязку:

Диоды VD1–VD6 должны быть рассчитаны на соответствующий ток, который определяется мощностью ламп указателей поворота (рекомендуется не менее 3 А, например 1N5401).

Подключение сирены

Для подключения сирены используется серый провод (16-контактный разъем «Х3»)— положительный выход управления сиреной. Максимальный ток нагрузки 2 А.

При подключении автономной сирены рекомендуем устанавливать дополнительный предохранитель (3 А) для защиты цепи питания автономной сирены.

Громкость коротких сигналов подтверждения выдаваемых сиреной может быть отрегулирована с помощью функции 6. Для уменьшения громкости сирены запрограммируйте вариант 2 или 3 функции 6. При выборе варианта 4 сигналы подтверждения будут отключены.

  • Данная функция НЕ может быть реализована при использовании автономной сирены.
  • Если при выборе вариантов 2 или 3 сирена звучать не будет, то установите дополнительный диод в цепь сирены как показано на рисунке:

При подключении повода массы сирены необходимо обеспечить надежный контакт.

Подключение к стояночному тормозу или педали тормоза

Оранжево-фиолетовый провод 16-контактного разъема «Х3» необходимо подключить к стояночному тормозу (при РКПП) или к педали тормоза (при АКПП).

При подключении к стояночному тормозу необходимо подключить диод в разрыв штатного провода стояночного тормоза и подсоединить вход автосигнализации между катодом диода и концевым выключателем.

Схема подключения к ручному тормозу на автомобилях с РКПП:

Схема подключения к педали тормоза на автомобилях с АКПП:

Подключение дополнительных каналов

Дополнительные каналы (выходы) могут быть использованы для расширения охранных и сервисных функций автосигнализации.

Некоторые типичные варианты использования дополнительных каналов приведены ниже.

При использовании дополнительных каналов следует помнить, что схемотехнически они используют схему включения типа «открытый
коллектор», и максимально допустимый ток составляет 200мА на каждый канал.

Дополнительный канал 1 — подключение к электроприводу отпирания багажника

Сигнализация имеет выход для дистанционного отпирания багажника (желто-черный провод). При подключении необходимо использовать
дополнительное реле. Пример схемы подключения показан на рисунке далее:

Дополнительный канал 2 — двухшаговое отпирание дверей

Для реализации двухшагового отпирания дверей необходимо подключить выход дополнительного канала 2 (желто-красный провод 16-контактного разъема «Х3») согласно схеме.

Дополнительный канал 3 — поддержка зажигания

Дополнительный канал 3 может быть использован для реализации функции охрана с работающим двигателем.

Схема поддержки +12В на замке зажигания при работе двигателя в режиме охраны с заведенным двигателем и в режиме турботаймера.

Дополнительный канал 4 — подключение к салонному освещению и реализация функции «световая дорожка»

Автосигнализация имеет выход, который может быть использован для подключения к салонному освещению и реализации функции «вежливой подсветки салона» (синий провод, 16-контактного разъема «Х3»). При подключении необходимо использовать дополнительное реле.

Диод VD1 должен быть рассчитан на соответствующий ток, который определяется мощностью ламп освещения салона.

Схема реализации функции «вежливая подсветка салона»:

Дополнительный канал 4 также может быть использован для подключения к ближнему свету фар и реализации функции «световая дорожка». При подключении необходимо использовать дополнительное реле. Пример схемы подключения для канала №4 (синий провод 16-контактного разъема «Х3»):

Схема реализации функции «световая дорожка»

Подключение датчика удара и дополнительных датчиков

Двухуровневый датчик удара, входящий в комплект поставки, подключается к 4-х контактному разъему «X9» центрального блока.

Дополнительный датчик подключается к 4-х контактному разъему «X7» центрального блока. После подключения дополнительного (ых) датчика (ов) необходимо запрограммировать функцию 12 таблицы программируемых функций согласно требуемому алгоритму обработки сигналов. В качестве дополнительного датчика можно использовать датчик наклона или микроволновый датчик.

Назначение контактов разъемов «Х7» и «Х9»:

Настройка датчика удара:

Для начала необходимо уменьшить чувствительность обоих уровней датчика, повернув регуляторы чувствительности против часовой стрелки до упора.

Первым настраивается предупредительный уровень. Для настройки необходимо открыть дверь автомобиля, включить режим охраны. Затем поочередно поворачивая регулировочный винт предупредительного уровня датчика по часовой стрелке и нанося легкие удары по кузову автомобиля (например на стыке рамок окон боковых дверей) добиться желаемого порога срабатывания. Затем необходимо настроить тревожный уровень датчика удара аналогичным образом.

Подключение сервисной кнопки

Подключите сервисную кнопку к 2-х контактному разъему «X6» центрального блока.

Подключение светодиода — индикатора состояния

Светодиод-индикатор необходимо подключить к 2-х контактному разъему «X5» центрального блока.

Подключение приемопередатчика (антенного модуля)

Модуль приемопередатчика с антенной подключается к 5-контактному разъему «X4» с помощью кабеля, входящего в комплект сигнализации.

Подключение дополнительного оборудования

Подключение охранно-поисковых модулей StarLine

GSM модули StarLine Space, StarLine Messenger М20 и StarLine Messenger GPS М30 подключаются к синему 3-х контактному разъему «Х8» центрального блока с помощью специального кабеля (входит в комплект поставки модулей).

Подключение радиореле R2

Всего в память сигнализации можно записать 2 цифровых радиореле блокировки двигателя StarLine R2.

Схема подключения цифровых радиореле блокировки двигателя приведена в инструкции по установке реле, входящей в его комплект.
Перед подключением цифрового радиореле блокировки двигателя StarLine R2 необходимо выбрать один из режимов работы радиореле
(определяется состоянием петли провода, выходящей из платы радиореле: целая петля — режим НЗ, разомкнутая — режим НР) После
подключения реле к цепям автомобиля его необходимо записать в память сигнализации в соответствии с алгоритмом, приведенным ниже:

1. Войдите в режим программирования охранных и сервисных функций в автосигнализации, и в зависимости от желаемого режима работы реле, выберите вариант 3 или 4 функции 10 соответственно. Выключите режим программирования функций.

2. Подключите черный провод c этикеткой «МАС» к корпусу автомобиля.

3. При выключенном зажигании нажмите сервисную кнопку 7 раз.

4. Включите зажигание. Прозвучат 7 сигналов сирены, подтверждая вход в режим записи радиореле.

5. В течение 5 секунд подключите черный провод радиореле с этикеткой «ЗАЖ» к цепи зажигания. В подтверждение успешной записи первого радиореле R2 в память сигнализации последует один длительный сигнал сирены.

6. Для выхода из режима записи радиореле выключите зажигание, или подождите 5 секунд, затем система выйдет автоматически. При необходимости, аналогичным образом запишите второе радиореле. В подтверждение успешной записи второго радиореле R2 в память сигнализации последуют 2 длительных сигнала сирены.

Если при попытке записать радиореле в ответ прозвучат 3 длительных сигнала сирены, то это означает, что радиореле уже записано в память
системы.

Реле StarLine R2, ранее записанное в один блок сигнализации невозможно записать в другой блок без предварительного сброса.

Для сброса проделайте следующие действия:

1. Перед подачей питания на реле замкнуть между собой две контактные площадки, как показано на рисунке:

2. Подать питание на реле на 10 секунд, отключить питание, разомкнуть контактные площадки — теперь его снова можно прописать в автосигнализацию.

Типовая схема подключения сигнализации StarLine B62 Dialog

StarLine

Установка автосигнализаций StarLine A2
Установка автосигнализаций StarLine A4
Установка автосигнализаций StarLine A6
Установка автосигнализаций StarLine A8
Установка автосигнализаций StarLine A9
Установка автосигнализаций StarLine B6
Установка автосигнализаций StarLine B6 Dialog
Установка автосигнализаций StarLine B6 Dialog CAN F5 V100
Установка автосигнализаций StarLine B6 Dialog CAN F5 V200
Установка автосигнализаций StarLine B62 Dialog Flex
Инструкция по установке (Технические характеристики и комплектация)
Рекомендации по монтажу, размещению и подключению
Подключение различных цепей
Программирование сервисных функций
Описание программируемых функций
Сброс настроек на заводские установки
Запись кодов брелков
Таблицы команд и элементы питания брелков
Инструкция по эксплуатации (Охранные и сервисные функции сигнализации)
Брелки управления автосигнализацией
Настройка функций брелка сигнализации
Программирование режимов работы курсорным способом
Включение режимов охраны сигнализации
Сигналы тревоги
Защищенность от отключения питания
Дополнительные датчики
Режим антиограбления
Режим паника
Режим иммобилайзера
Описание сервисных функций сигнализации
Режим турботаймера
Изменения в функциях сигнализации StarLine В62 Dialog, появившиеся в версии Flex (Дополнение к инструкции по установке)
Установка автосигнализаций StarLine B9
Установка автосигнализаций StarLine B9 Dialog
Установка автосигнализаций StarLine B9 Dialog CAN F5 V100
Установка автосигнализаций StarLine B9 Dialog CAN F5 V200
Установка автосигнализаций StarLine B92 Dialog Flex
Установка автосигнализаций StarLine B94 Dialog
Установка автосигнализаций StarLine С4
Установка автосигнализаций StarLine С6
Установка автосигнализаций StarLine С9
Установка автосигнализаций StarLine 24V
Установка мотосигнализации StarLine Moto V5, сигнализации для мотоциклов

Как подключить ИК датчик движения Астра-7 исполнение А (ИО409-15А)

Извещатель охранный объемный оптико-электронный Астра-7 исполнение А (ИО409-15А). Извещатель предназначен для обнаружения проникновения в охраняемое пространство закрытого помещения и формирования извещения о тревоге путем размыкания выходных контактов сигнального реле. Электропитание извещателя осуществляется от любого источника постоянного тока с номинальным напряжением 12В

Производитель: ЗАО «НТЦ «ТЕКО»

Особенности:

  • Четырехпроводное подключение. Это означает, что цепи питания датчика и цепь охранного шлейфа разделены
  • Установка на потолке
  • Угол обзора зоны обнаружения 360º

Выход: Нормально замкнутый контакт реле.

Схемы подключения

Если датчиков на одном шлейфе предполагается больше, чем три, то датчики добавляются в схему как тот, что левее (без резистора) по последней схеме.

На одном шлейфе всегда подключается не более одного резистора!

Для данного подключения используются стандартные (по умолчанию) пороги срабатывания зоны (25%-75%). Менять их не нужно.

Клеммы TMP (TAMPER) используются исключительно для большего удобства монтирования проводов, это позволяет не соединять провода, а просто зажимать их в клеммниках по одному. Две клеммы TAMPER таким образом используются как просто две клеммы замкнутые между собой. Обратите внимание, что эти клеммы действительно замкнуты только тогда, когда корпус датчика закрыт!

На рисунках приведены схемы подключения на один шлейф одного, двух и трех датчиков одновременно.

Схема подключения одного датчика Астра-7 исполнение А на один шлейф Кситал:

Схема подключения двух датчиков Астра-7 исполнение А на один шлейф Кситал:

Схема подключения трех датчиков Астра-7 исполнение А на один шлейф Кситал:

Эта информация была полезной?


Автор: Кситал    Дата: 27.07.2021    Просмотров: 698


, что позволяет выполнять так называемое «мгновенное» действие.

Кнопочные переключатели

Рисунок 9.2 Кнопочный переключатель

Кнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «не нажатое» положение для кратковременного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в своем «нажатом» или «нажатом» положении до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания.

Селекторные переключатели

Рисунок 9.3 Селекторный переключатель

Селекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы с пружинным возвратом для мгновенного срабатывания.

Джойстик-переключатели

Рисунок 9.4 Джойстик-переключатель

Переключатель джойстика приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения.Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в каком направлении нажимается рычаг, а иногда и от того, насколько далеко на нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом.

Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , потому что они часто используются для ограничения движения машины путем отключения исполнительной мощности компонента, если он перемещается слишком далеко.

Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей:

Концевые выключатели

Рисунок 9.5 Концевой выключатель рычажного привода

Эти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым частью машины.Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины.

Бесконтактные переключатели

Рисунок 9.6 Бесконтактный переключатель

Бесконтактные переключатели распознают приближение металлической части машины либо с помощью магнитного, либо высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлоискатель, запитывая катушку с проволокой током высокой частоты и электронным способом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Показанный здесь символ для бесконтактного переключателя относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Неэлектронный бесконтактный переключатель будет использовать тот же символ, что и концевой переключатель с рычагом.Другой формой бесконтактного переключателя является оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется по прерыванию или отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону.

Различные типы переключателей процесса

Во многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Существует много различных типов переключателей процесса.

Переключатели скоростей

Рисунок 9.7 Переключатель скорости.

Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо вида бесконтактного обнаружения движения вала, такого как оптическое или магнитное.

Реле давления

Рисунок 9.8 Реле давления

Давление газа или жидкости может быть использовано для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, который преобразует давление в механическую силу.

Реле температуры

Рисунок 9.9 Температурный выключатель

Недорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска из двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунный баллон, наполненный жидкостью или газом, с крошечной трубкой, соединяющей баллон с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое приводит в действие механизм переключения.

Реле уровня жидкости

Рисунок 9.10 Реле уровня жидкости.

Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость электропроводна, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем.Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический зубец в форме «камертона», вставляемый в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой.

Реле расхода жидкости

Рисунок 9.11 Реле расхода жидкости.

Установленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле потока сконструированы как реле перепада давления, измеряющие падение давления на дросселе, встроенном в трубу.

Ядерный датчик уровня

Рисунок 9.12 Ядерный переключатель уровня.

Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного исходного материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения в детекторе можно использовать для запуска релейного механизма для обеспечения переключающего контакта для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде.

Источник и детектор находятся вне судна, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала.

Все коммутаторы имеют несколько приложений

Как обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.

  • Переключатель — электрическое устройство, обычно электромеханическое, используемое для контроля непрерывности между двумя точками.
  • Ручные переключатели приводятся в действие от прикосновения человека.
  • Концевые выключатели приводятся в действие движением машины.
  • Переключатели процесса срабатывают при изменении какого-либо физического процесса (температуры, уровня, расхода и т. Д.).

Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так просто, как позволить двум медным проводам соприкасаться друг с другом движением рычага или путем непосредственного соприкосновения двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части в переключателе, используемом для включения и отключения электрического соединения, называются контактами , контактами . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления.Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную токонесущую способность и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие:

  • Тепло, выделяемое током через металлические контакты (в замкнутом состоянии).
  • Искра, возникающая при размыкании или замыкании контактов.
  • Напряжение на разомкнутых контактах переключателя (потенциал скачка тока через зазор).

Одним из основных недостатков стандартных переключающих контактов является воздействие на контакты окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятным является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие проблемы с окружающей средой, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и поэтому не имеют тех же проблем воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и разливом ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя, где бывают проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы:

Рисунок 9.13

Рисунок 9.14

Здесь тот же переключатель показан в закрытом положении. Гравитация теперь удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя непрактично строить в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичным контактом — это герконовый переключатель. Как и у ртутного переключателя, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, геркон представляет собой просто пару очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом посредством приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма.Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконовые переключатели обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, которая могла бы разбрызгиваться. Обычно номинальное напряжение и ток контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным током. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится при следующем пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный, непрерывный поток электронов, который имеет тенденцию гораздо лучше поддерживать дугу в воздушном зазоре.

Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, поскольку при размыкании цепи на контактах переключателя возникают очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например:

Рисунок 9.15

Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контактов, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это добавление к схеме помогает уменьшить возникновение контактной дуги, оно не лишено недостатков: основным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже если контакт открыт и ток не желателен.Риск этого отказа и серьезность возникающих последствий должны быть приняты во внимание с учетом повышенного износа контактов (и неизбежного выхода из строя контактов) без демпфирующей цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей уже много лет делают это в системах зажигания двигателей, сводя к минимуму искрение через «точки» контакта переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор.При всей этой дискуссии, касающейся уменьшения дугового разряда контактов переключателя, можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Однако есть приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу при использовании в такой слаботочной среде!

  • Части переключателя, отвечающие за включение и отключение электрической цепи, называются «контактами». Обычно они изготавливаются из коррозионно-стойкого металлического сплава, контакты соприкасаются друг с другом с помощью механизма, который помогает поддерживать правильное выравнивание и расстояние.
  • Ртутные выключатели используют в качестве подвижного контакта кусок жидкой металлической ртути. Ртутный контакт запечатан в стеклянной трубке и изолирован от внешней среды, что делает этот тип переключателя идеально подходящим для атмосфер, потенциально содержащих взрывоопасные пары.
  • Герконы — это еще один тип устройств с герметичным контактом, контакт осуществляется двумя тонкими металлическими «язычками» внутри стеклянной трубки, соединенными друг с другом под действием внешнего магнитного поля.
  • Переключающие контакты подвергаются большему давлению при переключении постоянного тока, чем переменного тока.Это в первую очередь связано с самозатуханием дуги переменного тока.
  • Сеть резистор-конденсатор, называемая «демпфер», может быть подключена параллельно переключающему контакту, чтобы уменьшить искрение контакта.
  • Смачивающий ток — это минимальная величина электрического тока, необходимая для контакта переключающего контакта, чтобы он мог самоочищаться. Обычно это значение намного ниже максимального номинального тока переключателя.

Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании.Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Поэтому контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ определить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения без установки.Вот несколько примеров «нормальных» условий переключения процесса:

  • Переключатель скорости : Вал не вращается
  • Реле давления : нулевое приложенное давление
  • Реле температуры : Температура окружающей (комнатной) температуры
  • Реле уровня : пустой бак или бункер
  • Реле расхода : нулевой расход жидкости

Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе.Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, что он находится на полке. Схематические символы переключателей различаются в зависимости от назначения и срабатывания переключателя. Нормально открытый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое к закрытию при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при срабатывании. Обратите внимание на следующие символы:

Рисунок 9.16 Кнопочный переключатель

Существует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально разомкнутые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей эти две линии. Сравните два:

Рисунок 9.17 Общее обозначение переключающего контакта

Переключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , чтобы его можно было спутать с символом конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом:

Рисунок 9.18 Конденсатор

В стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символах логики управления этот символ конденсатора используется для любого типа конденсатора , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов.

Рисунок 9.19

Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается от до происходит контакт со следующей позицией. Эта конфигурация называется «разрыв перед сборкой» . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно поворачивался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба пути цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Существуют приложения, в которых недопустимо полностью размыкать цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть сконструирована конструкция переключателя с выключателем , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4 в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкания переключателя между соседними позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение.Такой переключатель показан здесь: Рисунок 9.20.

Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений со стационарными контактами, эти положения иногда называют ходами . Количество подвижных контактов иногда называют полюсов . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если бы два идентичных однополюсных пятипозиционных переключателя были механически соединены вместе так, чтобы они приводились в действие одним и тем же механизмом, вся сборка была бы названа «двухполюсным пятипозиционным переключателем»:

Рисунок 9.21 год

Вот несколько распространенных конфигураций переключателей и их сокращенные обозначения:

Рисунок 9.22 Двухполюсный, одноходовой

Рисунок 9.23 Двухполюсный, двунаправленный

Рисунок 9.24 Четырехполюсный, одноходовой

  • Нормальное состояние переключателя — это состояние, в котором он не сработал. Для технологических коммутаторов это состояние, в котором они находятся на полке без установки.
  • Переключатель, который разомкнут, когда не сработал, называется нормально разомкнутым .Переключатель, который замкнут, когда не сработал, называется нормально замкнутым . Иногда термины «нормально открытый» и «нормально закрытый» обозначаются аббревиатурой N.O. и N.C. соответственно.
  • Многопозиционные переключатели могут быть либо размыкающими перед размыканием (наиболее распространенные), либо переключающими перед размыканием.
  • «Полюса» переключателя относятся к количеству подвижных контактов, в то время как «ходы» переключателя относятся к количеству неподвижных контактов на один подвижный контакт.

Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях:

Рисунок 9.25

Рисунок 9.26

Рисунок 9.27

Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с катушками индуктивности и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид .Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открытия дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть такое полезное устройство, которое заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо управлять большим током и / или напряжением с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять лишь доли ватта мощности, в то время как контакты, замыкаемые или размыкаемые этим магнитным полем, могут передавать нагрузке в сотни раз больше мощности.

Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный (SPST) контакт прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел обмотка реле / ​​якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае переключателей, «нормальным» состоянием контактов реле является то состояние, когда катушка обесточена, точно так же, как вы бы обнаружили реле на полке, не подключенным к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (примерно два дюйма в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции. Показанные здесь реле называются «восьмеричным», потому что они подключаются в соответствующие розетки, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле.Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются бинарными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того, чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток.Эта минимальная величина называется втягивающим током , и она аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако, когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется падающим током , и он аналогичен максимальному входному напряжению, при котором вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис или разница между токами включения и отключения приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи втягивания и отпускания (и напряжения) широко варьируются от реле к реле и указываются производителем.

  • Соленоид — это устройство, которое вызывает механическое движение за счет подачи питания на катушку электромагнита.Подвижная часть соленоида называется якорем .
  • Реле — это соленоид, настроенный для приведения в действие контактов переключателя, когда его катушка находится под напряжением.
  • Втягивающий ток — это минимальная величина тока катушки, необходимая для приведения в действие соленоида или реле из его «нормального» (обесточенного) положения.
  • Падение тока — это максимальный ток катушки, ниже которого включенное реле вернется в свое «нормальное» состояние.

Что такое реле с задержкой времени?

Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с задержкой по времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при включении катушки, отключении питания или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени.

Нормально открытый, закрытый по времени контакт

Во-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на — задержка:

Рисунок 9.28

Ниже представлена ​​временная диаграмма работы этого контакта реле:

Рисунок 9.29

Нормально открытый контакт с синхронизацией по времени

Далее у нас есть нормально открытый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизация происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка:

Рисунок 9.30

Ниже представлена ​​временная диаграмма работы этого контакта реле:

Рисунок 9.31

Нормально замкнутый, открытый по времени контакт

Далее у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта нормально замкнут, когда катушка обесточена (обесточена).Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на — задержка:

Рисунок 9.32

Ниже представлена ​​временная диаграмма работы этого контакта реле:

Рисунок 9.33

Нормально закрытый, закрытый по времени контакт

Наконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается подачей питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизирующее действие происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка:

Рисунок 9.34

Ниже представлена ​​временная диаграмма работы этого контакта реле:

Рисунок 9.35 Использование реле с выдержкой времени

в промышленных логических схемах управления

Реле с выдержкой времени

очень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:

  • Управление мигающим светом (время включения, время выключения): два реле задержки времени используются вместе друг с другом для обеспечения включения / выключения с постоянной частотой импульсов контактов для подачи прерывистой энергии на лампу.
  • Управление автоматическим запуском двигателя: Двигатели, которые используются для питания аварийных генераторов, часто оснащены элементами управления «автозапуском», которые позволяют автоматически запускать двигатель в случае отказа основного источника электроэнергии. Чтобы правильно запустить большой двигатель, сначала необходимо запустить некоторые вспомогательные устройства и дать им некоторое время для стабилизации (топливные насосы, масляные насосы предварительной смазки) перед подачей питания на стартер двигателя. Реле с выдержкой времени помогают упорядочить эти события для правильного запуска двигателя.
  • Управление безопасной продувкой печи: перед безопасным зажиганием печи внутреннего сгорания необходимо запустить воздушный вентилятор на определенное время для «продувки» топочной камеры от любых потенциально легковоспламеняющихся или взрывоопасных паров.Реле с выдержкой времени обеспечивает логику управления печью с этим необходимым элементом времени.
  • Управление задержкой плавного пуска двигателя: вместо пуска больших электродвигателей путем переключения полной мощности из состояния полной остановки можно переключить пониженное напряжение для более «мягкого» пуска и уменьшения пускового тока. После заданной задержки времени (обеспечиваемой реле задержки времени) подается полная мощность.
  • Задержка последовательности конвейерной ленты: когда несколько конвейерных лент расположены для транспортировки материала, конвейерные ленты должны запускаться в обратной последовательности (последняя первая и первая последняя), чтобы материал не складывался в стопу или медленно -подвижной конвейер.Чтобы разогнать большие ремни до полной скорости, может потребоваться некоторое время (особенно, если используются средства управления двигателем с плавным пуском). По этой причине на каждом конвейере обычно имеется схема задержки по времени, чтобы дать ему достаточно времени для достижения полной скорости ленты перед тем, как следующая конвейерная лента будет подавать его.

Расширенные функции таймера

В более старых механических реле с выдержкой времени использовались пневматические датчики или поршневые / цилиндровые устройства, заполненные жидкостью, для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в активный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала, пока входное соединение остается активирован) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно).

Рисунок 9.36

Рисунок 9.37

Рисунок 9.38 Реле «сторожевого таймера»

«Сторожевой» таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальная остановка выполнения программы из-за любого количества причин). Простой способ настроить такую ​​систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «рециркуляции»).Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в том или ином состоянии. Через некоторое время реле сторожевого таймера отключится и сигнализирует о проблеме.

  • Реле с выдержкой времени построены в следующих четырех основных режимах работы контактов:
  • 1: нормально открытый, закрытый по времени. Сокращенно «NOTC», эти реле открываются сразу после обесточивания катушки и замыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально разомкнутыми контактами и задержкой включения .
  • 2: нормально открытый, открытый по времени. Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называются реле нормально разомкнутые, реле задержки выключения .
  • 3: нормально закрытый, открытый по времени. Сокращенно «NCTO», эти реле замыкаются сразу после обесточивания катушки и размыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально замкнутыми контактами и задержкой включения .
  • 4: нормально закрытый, закрытый по времени. Сокращенно «NCTC», эти реле открываются сразу после подачи питания на катушку и закрываются после того, как катушка была обесточена на определенный период времени. Также называется реле нормально-замкнутые, реле задержки выключения .
  • Одноразовые таймеры обеспечивают одиночный контактный импульс заданной длительности для каждого включения катушки (переход от катушки от к катушке на ).
  • Таймеры Recycle обеспечивают повторяющуюся последовательность импульсов включения-выключения до тех пор, пока катушка находится под напряжением.
  • Сторожевые таймеры приводят в действие свои контакты только в том случае, если катушка не может непрерывно включаться и выключаться (включаться и выключаться) с минимальной частотой.

Рисунок 9.39

Рисунок 9.40

Рисунок 9.41

Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. В действительности схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все контакты переключателя и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут обозначены «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком соединении или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок цепи с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы, подсоединяемой ко многим различным устройствам.) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где расположена катушка реле внутри ступени, имеет значение , какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 случайно соприкоснулся с землей, причем изоляция этого провода была стерта, так что оголенный провод вступил в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получать питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что произойдет с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, в то время как выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному силовому проводу на лестничной диаграмме.

Рисунок 9.42

Рисунок 9.43

Рисунок 9.44
  • Лестничные диаграммы (иногда называемые «релейной логикой») представляют собой тип электрических обозначений и символов, часто используемых для иллюстрации того, как электромеханические переключатели и реле связаны между собой.
  • Две вертикальные линии называются «рельсами» и прикрепляются к противоположным полюсам источника питания, обычно 120 вольт переменного тока. L 1 обозначает «горячий» провод переменного тока, а L 2 — «нейтральный» (заземленный) провод.
  • Горизонтальные линии на лестничной диаграмме называются «ступенями», каждая из которых представляет уникальную ветвь параллельной цепи между полюсами источника питания.
  • Обычно провода в системах управления маркируются цифрами и / или буквами для идентификации.Согласно правилу, все постоянно подключенные (электрически общие) точки должны иметь одну и ту же этикетку.

Рисунок 9.45

Рисунок 9.46

Рисунок 9.47

Рисунок 9.48

Рисунок 9.49

Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».Если мы будем использовать стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или запитанного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится горит, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа активируется, только если одновременно срабатывают контакт A и контакт B .Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба переключающих контакта замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не срабатывает, а срабатывает, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет исследована более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет, только если оба контакта сработают одновременно. Точно так же, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логических вентилей:

  • Параллельные контакты эквивалентны логическому элементу ИЛИ.
  • Контакты серии
  • эквивалентны логическому элементу AND.
  • Нормально замкнутые контакты эквивалентны вентилю НЕ (инвертору).
Рисунок 9.50 Рисунок 9.51

Рисунок 9.52

Мы можем создавать функции комбинационной логики, также группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) эквивалентен комбинации нижнего элемента НЕ / И. Параллельное соединение между двумя звеньями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя либо звену 1 , либо звену 2 запитать лампу. Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на релейной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемых на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2» вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от такой сложной маркировки в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход любой логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим активировать нагрузку на основе инверсии, или НЕ, нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкается на , таким образом обесточивая лампу. От переключателя A к катушке CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей до катушки CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.

  • Параллельные контакты логически эквивалентны логическому элементу ИЛИ.
  • Контакты серии
  • логически эквивалентны логическому элементу И.
  • Нормально замкнутые (Н.З.) контакты логически эквивалентны вентилю НЕ.
  • Реле должно использоваться для инвертирования выхода функции логического элемента, в то время как простых нормально замкнутых контактов переключателя достаточно для представления инвертированных входов затвора .
Рисунок 9.53 Рисунок 9.54

Рисунок 9.55

Рис. 9.56.

. Практическое применение логики переключателя и реле в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топочных печей. Чтобы горелки в большой печи могли запускаться безопасно, система управления запрашивает «разрешение» у нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздушного вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим , и каждый разрешающий контакт переключателя подключается последовательно, так что, если любой из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все разрешающие условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы включено больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещались бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «в порядке», то есть все замкнуты. .Если какое-либо из разрешающих условий не выполняется, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии.Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к тому, что двигатель вращается в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 посылает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой , и это достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 находится под напряжением, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Аналогичным образом, включение M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы оснащены опцией механической блокировки : рычагом, соединяющим якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности все же можно использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.

  • Переключающие контакты, установленные в ступени релейной логики, предназначенные для прерывания цепи, если определенные физические условия не выполняются, называются разрешающими контактами , потому что для активации системе требуется разрешение от этих входов.
  • Переключающие контакты, предназначенные для предотвращения одновременного выполнения системой управления двух несовместимых действий (например, одновременное включение электродвигателя вперед и назад), называются блокировками .

Рабочее время отказов

Время дребезга для замыкающих контактов при подаче номинального напряжения на катушку при температуре катушки 23 ° C.

Release Bounce Time

Время дребезга для нормально замкнутых контактов при снятии номинального напряжения катушки при температуре катушки 23 ° C.

Частота переключения

Количество срабатываний реле в единицу времени.

Сопротивление изоляции

Сопротивление изолированных участков между контактами и катушками, токопроводящими клеммами и незаряженными металлическими частями (например, каркасом сердечника и сердечником) или между контактами.
Это значение дано для реле и не включает заземления на печатные платы.

(1) Между катушками и контактами:
Между выводами катушки и всеми контактными выводами
(2) Между контактами с разной полярностью:
Между контактными выводами разной полярности
(3) Между контактами с одинаковой полярностью:
Между контактными выводами с одинаковой полярности
(4) Между установочными катушками и катушками сброса:
Между установленными клеммами катушки и клеммами сброса

Диэлектрическая прочность

Максимальное значение перед повреждением изоляции, когда напряжение подается в течение одной минуты на изолированную металлическую часть (особенно заряженную металлическую часть).
Напряжение подается в том же месте, что и сопротивление изоляции.
Ток утечки (ток, используемый для обнаружения повреждения изоляции) обычно составляет 1 мА.
Однако иногда используется ток утечки 3 мА или 10 мА.

Выдерживаемое импульсное напряжение

Максимальное аномальное напряжение, которое реле может выдержать при кратковременных скачках напряжения из-за молнии, переключения индуктивной нагрузки и т. Д.
Форма волны скачка напряжения, если не указано иное, является стандартной формой волны импульсного напряжения в соответствии с JIS C5442,
i.е., 1,2 × 50 мкс.

Часть 68 FCC определяет 10 × 160 мкс ± 1500 В.

Вибрация

Категории

: Разрушение, которое количественно определяет характерные изменения или повреждение реле из-за очень сильных вибраций, которые могут возникнуть во время транспортировки или монтажа реле, а также долговечность при неисправности, которая количественно определяет неисправность реле из-за вибраций во время он в эксплуатации.

α = 0,002f 2 A × 9,8
α: Ускорение вибрации (м / с 2 )
f: Частота (Гц)
A: Двойная амплитуда (мм)

Меры предосторожности при использовании реле

| Средства автоматизации | Industrial Devices

Реле может подвергаться воздействию различных условий окружающей среды во время фактического использования, что может привести к неожиданному отказу. Следовательно, необходимы испытания в практическом диапазоне в реальных условиях эксплуатации. Соображения по применению должны быть рассмотрены и определены для правильного использования реле.

Чтобы использовать реле должным образом, характеристики выбранного реле должны быть хорошо известны, а условия использования реле должны быть исследованы, чтобы определить, подходят ли они к условиям окружающей среды, и в то же время катушка Условия, условия контакта и условия окружающей среды для фактически используемого реле должны быть заранее известны в достаточной степени.
В таблице ниже приведены основные моменты выбора реле.Его можно использовать в качестве справочного материала для исследования предметов и предупреждений.

Элемент спецификации Рекомендации по выбору
Катушка a) Номинальное значение
b) Напряжение срабатывания (ток)
c) Напряжение отпускания (ток)
d) Максимальное длительное подаваемое напряжение (ток)
e) Сопротивление катушки
f) Полное сопротивление
g) Повышение температуры
1) Выберите реле с учетом пульсации источника питания.
2) Уделите достаточно внимания температуре окружающей среды, повышению температуры змеевика и горячему запуску.
3) При использовании в сочетании с полупроводниками необходимо уделять особое внимание применению. Остерегайтесь падений напряжения при запуске.
Контакты a) Расположение контактов
b) Мощность контактов
c) Материал контактов
d) Срок службы
e) Сопротивление контакта
1) Желательно использовать стандартный продукт с количеством контактов больше необходимого.
2) Полезно, чтобы срок службы реле соответствовал сроку службы устройства, в котором оно используется.
3) Соответствует ли материал контактов типу нагрузки?
Особая осторожность необходима при низком уровне нагрузки.
4) Номинальный срок службы может сократиться при использовании при высоких температурах.
Срок службы следует проверять в реальной атмосфере.
5) В зависимости от схемы релейный привод может синхронизироваться с нагрузкой переменного тока.
Поскольку это приведет к резкому сокращению срока службы, необходимо проверить фактическую машину.
Время срабатывания a) Время срабатывания
b) Время отпускания
c) Время дребезга
d) Частота переключения
1) Для звуковых цепей и подобных приложений полезно уменьшить время дребезга.
Механические характеристики a) Вибростойкость
b) Ударопрочность
c) Температура окружающей среды
d) Срок службы
1) Учитывайте характеристики при вибрации и ударах в месте использования.
2) Реле, в котором используется изолированный медный провод с высокой термостойкостью, если оно будет использоваться в среде с особенно высокими температурами.
Прочие предметы a) Напряжение пробоя
b) Способ монтажа
c) Размер
d) Защитная конструкция
1) Можно выбрать способ подключения с помощью вставного типа, типа печатной платы, пайки, клеммных зажимов и типа винтового крепления.
2) Для использования в неблагоприятной атмосфере следует выбирать герметичную конструкцию.
3) При использовании в неблагоприятных условиях используйте герметичный тип. 4) Есть ли особые условия?

Основы работы с реле

  • Для сохранения исходных характеристик следует соблюдать осторожность, чтобы не уронить реле и не задеть его.
  • При нормальном использовании реле сконструировано таким образом, что корпус не отсоединяется. Для сохранения первоначальной производительности корпус снимать не следует. Характеристики реле не могут быть гарантированы при снятии корпуса.
  • Использование реле в атмосфере при стандартной температуре и влажности с минимальным количеством пыли, SO 2 , H 2 S или органические газы рекомендуется. Для установки в неблагоприятных условиях следует рассмотреть один из герметичных типов.
    Избегайте использования силиконовых смол рядом с реле, потому что это может привести к выходу из строя контакта. (Это также относится к реле с пластиковым уплотнением.)
  • При подключении катушек поляризованных реле проверьте полярность катушек (+, -) на внутренней схеме подключения (Схема).Если выполнено какое-либо неправильное соединение, это может вызвать неожиданную неисправность, например, чрезмерное нагревание, огонь и тд, и схемы не работают.
    Избегайте подачи напряжения на установленную катушку и катушку сброса одновременно.
  • Для правильного использования необходимо, чтобы на катушке подавалось номинальное напряжение. Используйте прямоугольные волны для катушек постоянного тока и синусоидальные волны для катушек переменного тока.
  • Убедитесь, что подаваемое напряжение катушки не превышает максимально допустимого напряжения.
  • Номинальная коммутируемая мощность и срок службы приведены только для справки.Физические явления в контактах и ​​срок службы контактов сильно различаются в зависимости от от типа нагрузки и условий эксплуатации. Поэтому обязательно внимательно проверяйте тип нагрузки и условия эксплуатации перед использованием.
  • Не превышайте допустимые значения температуры окружающей среды, указанные в каталоге.
  • Используйте флюсовый или герметичный тип, если будет использоваться автоматическая пайка.
  • Хотя реле экологически герметичного типа (пластиковое герметичное и т. Д.)) можно чистить, Избегайте погружения реле в холодную жидкость (например, в чистящий растворитель) сразу после пайки. Это может ухудшить герметичность.
    Реле клеммного типа для поверхностного монтажа является герметичным и может очищаться погружением. Используйте чистую воду или чистящий растворитель на спиртовой основе.
    Рекомендуется очистка методом кипячения (Температура очищающей жидкости должна быть 40 ° C или ниже). Избегайте ультразвуковой очистки реле. Использование ультразвуковой очистки может вызвать обрыв катушки или небольшое залипание контактов из-за ультразвуковой энергии.
  • Избегайте сгибания клемм, так как это может привести к неисправности.
  • В качестве ориентира используйте монтажное давление Faston от 40 до 70 Н {4 до 7 кгс} для реле с лепестковыми выводами.
  • Для правильного использования прочтите основной текст.

Применение номинального напряжения является основным требованием для точной работы реле. Хотя реле будет работать, если приложенное напряжение превышает напряжение срабатывания, требуется, чтобы на катушку подавалось только номинальное напряжение без учета изменений сопротивления катушки и т. Д., из-за различий в типе источника питания, колебаний напряжения и повышения температуры.
Также необходимо соблюдать осторожность, поскольку могут возникнуть такие проблемы, как короткое замыкание слоев и выгорание в катушке, если приложенное напряжение превышает максимальное значение, которое может применяться непрерывно. В следующем разделе содержатся меры предосторожности относительно входа катушки. Пожалуйста, обратитесь к нему, чтобы избежать проблем.

1. Основные меры предосторожности при обращении с катушкой

Тип работы переменного тока

Для работы реле переменного тока источником питания почти всегда является коммерческая частота (50 или 60 Гц) со стандартными напряжениями 6, 12, 24, 48, 100 и 200 В переменного тока.Из-за этого, когда напряжение отличается от стандартного, продукт является предметом особого заказа, и факторы цены, доставки и стабильности характеристик могут создавать неудобства. По возможности следует выбирать стандартные напряжения.
Кроме того, для типа переменного тока, потери сопротивления затеняющей катушки, потери на вихревые токи магнитной цепи и выход с гистерезисными потерями, и из-за более низкого КПД катушки обычно повышение температуры больше, чем для типа постоянного тока.
Кроме того, поскольку гудение возникает при напряжении ниже срабатывания и выше номинального напряжения, необходимо соблюдать осторожность в отношении колебаний напряжения источника питания.
Например, в случае запуска двигателя, если напряжение источника питания падает, и во время гудения реле, если оно возвращается в восстановленное состояние, контакты подвергаются ожогу и сварке с возникновением ложного срабатывания. самоподдерживающееся состояние.
Для типа переменного тока существует пусковой ток во время работы (для изолированного состояния якоря полное сопротивление низкое и протекает ток, превышающий номинальный; для закрепленного состояния якоря полное сопротивление высокое и номинальное значение протекающего тока), поэтому в случае использования нескольких реле при параллельном подключении необходимо учитывать потребляемую мощность.

Тип работы постоянного тока

Для работы реле постоянного тока существуют стандарты для напряжения и тока источника питания, при этом стандарты постоянного напряжения установлены на 5, 6, 12, 24, 48 и 100 В, но в отношении тока значения, выраженные в каталогах в миллиамперах пусковой ток.
Однако, поскольку это значение тока срабатывания является не более чем гарантией того, что якорь практически не перемещается, необходимо учитывать изменение напряжения питания и значений сопротивления, а также увеличение сопротивления катушки из-за повышения температуры. наихудшее состояние работы реле, заставляя считать текущее значение равным 1.В 5–2 раза больше тока срабатывания. Кроме того, из-за широкого использования реле в качестве ограничивающих устройств вместо счетчиков как напряжения, так и тока, а также из-за постепенного увеличения или уменьшения тока, подаваемого на катушку, вызывая возможную задержку движения контактов, существует вероятность того, что назначенная управляющая способность может не быть удовлетворена. При этом необходимо проявлять осторожность. Сопротивление обмотки реле постоянного тока изменяется в зависимости от температуры окружающей среды, а также от собственного тепловыделения примерно на 0.4% / ° C, и, соответственно, при повышении температуры из-за увеличения срабатывания и отпускания напряжения требуется осторожность. (Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.)

2.Источник питания для входа катушки

Напряжение питания катушки переменного тока

Для стабильной работы реле напряжение включения должно находиться в диапазоне +10% / — 15% от номинального напряжения. Однако необходимо, чтобы форма волны напряжения, приложенного к катушке, была синусоидальной.Нет проблем, если источником питания является коммерческий источник питания, но когда используется стабилизированный источник питания переменного тока, возникает искажение формы волны из-за этого оборудования, и существует возможность ненормального перегрева. С помощью затеняющей катушки для катушки переменного тока гудение прекращается, но с искаженной формой волны эта функция не отображается. На рисунке 1 ниже показан пример искажения формы сигнала.
Если источник питания для рабочей цепи реле подключен к той же линии, что и двигатели, соленоиды, трансформаторы и другие нагрузки, при работе этих нагрузок напряжение в сети падает, и из-за этого контакты реле подвергаются воздействию вибрации и последующие ожоги.В частности, если используется трансформатор небольшого типа и его мощность не имеет запаса прочности, при наличии длинной проводки или в случае использования в быту или небольшом магазине, где проводка тонкая, необходимо принять меры предосторожности, потому что нормальных колебаний напряжения в сочетании с другими факторами. При возникновении неисправности следует провести обследование ситуации с напряжением с помощью синхроскопа или аналогичных средств и принять необходимые контрмеры, и вместе с этим определить, следует ли использовать специальное реле с подходящими характеристиками возбуждения или выполнить аварийное отключение. изменение в цепи постоянного тока, как показано на рис.2, в который вставлен конденсатор для поглощения колебаний напряжения. В частности, когда используется магнитный переключатель, поскольку нагрузка становится подобной нагрузке двигателя, в зависимости от применения, следует попытаться разделить рабочую цепь и силовую цепь.

Источник питания для входа постоянного тока

Мы рекомендуем, чтобы напряжение, подаваемое на оба конца катушки в реле постоянного тока, находилось в пределах ± 5% от номинального напряжения катушки.
В качестве источника питания для реле постоянного тока используется батарея или схема полуволнового или двухполупериодного выпрямителя со сглаживающим конденсатором. Характеристики напряжения возбуждения реле будут изменяться в зависимости от типа источника питания, и поэтому для отображения стабильных характеристик наиболее желательным методом является идеальный постоянный ток.
В случае пульсации, включенной в источник питания постоянного тока, особенно в случае схемы полуволнового выпрямителя со сглаживающим конденсатором, если емкость конденсатора слишком мала из-за влияния пульсации, возникает гудение и неудовлетворительное состояние производится.
Для конкретной схемы, которая будет использоваться, абсолютно необходимо подтвердить характеристики.
Необходимо рассмотреть возможность использования источника питания постоянного тока с пульсацией менее 5%. Также обычно следует подумать о следующем.

  • 1. Для реле шарнирного типа нельзя использовать однополупериодный выпрямитель, если вы не используете сглаживающий конденсатор. Для правильного использования необходимо оценить пульсацию и характеристики.
  • 2.Для реле шарнирного типа существуют определенные приложения, которые могут или не могут использовать сам по себе двухполупериодный выпрямитель. Пожалуйста, уточняйте технические характеристики у оригинального производителя.
  • 3. Напряжение, приложенное к катушке, и падение напряжения
    Ниже показана схема, управляемая одним и тем же источником питания (аккумуляторной батареей и т. Д.) Как для катушки, так и для контакта.
    На электрическую долговечность влияет падение напряжения в катушке при включении нагрузки.
    Убедитесь, что на катушку подается фактическое напряжение при фактической нагрузке.

3. Максимально допустимое напряжение и превышение температуры

При правильном использовании необходимо, чтобы на катушке подавалось номинальное напряжение катушки. Однако обратите внимание, что если напряжение больше или равно максимальному продолжительному напряжению Давление на катушку может привести к возгоранию катушки или короткому замыканию ее слоев из-за повышения температуры.Кроме того, не превышайте допустимый диапазон температуры окружающей среды, указанный в каталоге.

Максимальное продолжительное напряжение

Помимо стабильности работы реле, максимальное непрерывное напряжение сжатой катушки является важным ограничением для предотвращения о таких проблемах, как термическое повреждение или деформация изоляционного материала, или возникновение опасности пожара.
При фактическом использовании с изоляцией E-типа при температуре окружающей среды 40 ° C, предел повышения температуры 80 ° C считается разумным в соответствии с методом сопротивления.Однако при соблюдении Закона о безопасности электроприборов и материалов эта температура становится 75 ° C.

Повышение температуры из-за импульсного напряжения

Когда используется импульсное напряжение со временем включения менее 2 минут, повышение температуры катушки никак не связано со временем включения. Это зависит от отношения времени включения к времени выключения, и по сравнению с протеканием постоянного тока она довольно мала.
В этом отношении различные реле по существу одинаковы.

Текущее время прохождения %
Для непрерывного прохода Значение превышения температуры составляет 100%
ВКЛ: ВЫКЛ = 3: 1 Около 80%
ВКЛ: ВЫКЛ = 1: 1 Около 50%
ВКЛ: ВЫКЛ = 1: 3 Около 35%
Изменение рабочего напряжения из-за повышения температуры катушки (горячий старт)

В реле постоянного тока, после непрерывного прохождения тока в катушке, если ток выключен, то сразу же снова включается, из-за повышения температуры в катушке рабочее напряжение станет несколько выше.Кроме того, это будет то же самое, что использовать его в атмосфере с более высокой температурой.
Соотношение сопротивления / температуры для медного провода составляет около 0,4% для 1 ° C, и с этим соотношением сопротивление катушки увеличивается. То есть, чтобы реле сработало, необходимо, чтобы напряжение было выше рабочего напряжения и рабочее напряжение повышается в соответствии с увеличением значения сопротивления. Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.

4.Приложенное напряжение катушки и время срабатывания

В случае работы на переменном токе время срабатывания сильно варьируется в зависимости от точки фазы, в которой переключатель включается для возбуждения катушки, и выражается как определенный диапазон, но для миниатюрных типов это в большинстве случаев. часть 1/2 цикла. Однако для реле довольно большого типа, где дребезг велик, время срабатывания составляет от 7 до 16 мс, с временем срабатывания порядка от 9 до 18 мсек. время быстрое, но если оно слишком быстрое, время дребезга контакта «Форма А» увеличивается.Имейте в виду, что условия нагрузки (в частности, когда пусковой ток большой или нагрузка близка к номинальной) могут привести к сокращению срока службы и незначительному свариванию.

5. лотковые цепи (байпасные цепи)

В случае построения схемы последовательности из-за байпасного потока или альтернативной маршрутизации необходимо следить за тем, чтобы не возникло ошибочной или ненормальной работы. Чтобы понять это условие при подготовке цепей последовательности, как показано на рис.4, где 2 строки записаны как линии источника питания, верхняя линия всегда (+), а нижняя линия (-) (когда цепь переменного тока, применяется то же самое). Соответственно, сторона (+) обязательно является стороной для контактных соединений (контакты для реле, таймеров, концевых выключателей и т. Д.), А сторона (-) — это сторона цепи нагрузки (катушка реле, катушка таймера, катушка магнита, соленоид. катушка, мотор, лампа и т. д.).
На рис. 5 показан пример паразитных цепей. На рис. 5 (a) с замкнутыми контактами A, B и C после срабатывания реле R 1 , R 2 и R 3 , если контакты B и C разомкнуты, имеется последовательная цепь через A, R 1 , R 2 и R 3 , и реле будут гудеть и иногда не переходят в состояние отключения.
Подключения, показанные на Рис. 5 (b), выполнены правильно. Кроме того, что касается цепи постоянного тока, поскольку она проста с помощью диода для предотвращения паразитных цепей, следует применять правильное применение.

6. Постепенное увеличение напряжения на катушке и цепь самоубийства

Когда напряжение, подаваемое на катушку, увеличивается медленно, операция переключения реле нестабильна, контактное давление падает, дребезг контактов увеличивается, и возникает нестабильное состояние контакта.Этот метод подачи напряжения на катушку использовать не следует, и следует рассмотреть способ подачи напряжения на катушку (использование схемы переключения). Кроме того, в случае реле с фиксацией, использующих контакты «собственной формы B», используется метод цепи собственной катушки для полного прерывания, но из-за возможности развития неисправности следует проявлять осторожность.
Схема, показанная на рис. 6, вызывает синхронизацию и последовательную работу с использованием реле герконового типа, но это не очень хороший пример со смесью постепенного увеличения приложенного напряжения для катушки и схемы самоубийства.В части синхронизации для реле R 1 , когда время ожидания истекло, возникает дребезжание, вызывающее проблемы. В первоначальном тесте (пробное производство) он показывает удовлетворительную работу, но по мере увеличения количества операций почернение контактов (карбонизация) плюс дребезжание реле создают нестабильность в работе.

7. синхронизация фаз при переключении нагрузки переменного тока

Если переключение контактов реле синхронизировано с фазой питания переменного тока, может произойти сокращение электрического срока службы, сварные контакты или явление блокировки (неполное размыкание) из-за переноса материала контакта.Поэтому проверяйте реле, пока оно работает в реальной системе. При управлении реле с таймерами, микрокомпьютерами и тиристорами и т. Д. Возможна синхронизация с фазой питания.

8. Ошибочная работа из-за индуктивных помех

Для длинных проводов, когда линия для цепи управления и линия для подачи электроэнергии используют один кабелепровод, индукционное напряжение, вызванное индукцией от линии питания, будет подаваться на рабочую катушку независимо от того, подается ли управляющий сигнал. выключенный.В этом случае реле и таймер не могут вернуться в исходное состояние. Поэтому, когда проводка проходит на большом расстоянии, помните, что наряду с индуктивными помехами отказ соединения может быть вызван проблемой с распределительной способностью, или устройство может выйти из строя из-за воздействия внешних скачков напряжения, например, вызванных молнией.

9. долгосрочный токонесущий

Цепь, которая будет непрерывно проводить ток в течение длительных периодов времени. без переключения реле.(цепи для аварийных ламп, сигнальных устройств и проверка ошибок, которая, например, восстанавливается только при неисправности и выводе предупреждений с контактами формы B)
Непрерывный, длительный ток, подаваемый на катушку, способствует ухудшению изоляции катушки. и характеристики за счет нагрева самого змеевика. Для таких схем, используйте реле с магнитной фиксацией. Если вам нужно использовать одно стабильное реле, используйте реле герметичного типа, на которое не так легко влияют условия окружающей среды, и обеспечивайте отказоустойчивость схемотехника, учитывающая возможность выхода из строя или размыкания контактов.

10.Использование при нечастом переключении

Пожалуйста, проводите периодические проверки контактной проводимости, если частота переключения составляет один или меньше раз в месяц.
Если переключение контактов не происходит в течение длительного времени, на контактных поверхностях может образоваться органическая мембрана, что приведет к нестабильности контакта.

11.О электролитической коррозии катушек

В случае схем катушек сравнительно высокого напряжения, когда такие реле используются в атмосфере с высокой температурой и высокой влажностью или при непрерывном прохождении тока, можно сказать, что коррозия является результатом возникновения электролитической коррозии.Из-за возможности возникновения обрыва цепи следует обратить внимание на следующие моменты.

  • 1. Сторона (+) источника питания должна быть подключена к шасси. (См. Рис. 8) (Общий для всех реле)
  • 2. В случае неизбежного заземления стороны (-) или в случае, когда заземление невозможно.
    (1) Вставьте контакты (или переключатель) в сторону (+) источника питания. (См. Рис. 9) (Общий для всех реле)
    (2) Если заземление не требуется, подключите клемму заземления к (+) стороне катушки.(См. Рис.10) (NF и NR с клеммой заземления)
  • 3. Когда (-) сторона источника питания заземлена, всегда избегайте перекрещивания контактов (и переключателей) на (-) стороне. (См. Рис.11) (Общий для всех реле)
  • 4. В случае реле с клеммой заземления, когда клемма заземления не считается эффективной, отсутствие подключения к земле играет важную роль в качестве метода предотвращения электролитической коррозии.

Примечание. Обозначение на чертеже указывает на вставку изоляции между железным сердечником и корпусом.В реле с клеммой заземления железный сердечник можно заземлить непосредственно на шасси, но с учетом электролитической коррозии более целесообразно не выполнять подключение.

КОНТАКТ

Контакты — важнейшие элементы конструкции реле. На характеристики контактов заметно влияют материал контакта, а также значения напряжения и тока, подаваемые на контакты (в частности, формы сигналов напряжения и тока во время включения и отключения), тип нагрузки, частота переключения, окружающая атмосфера, форма контакта. , скорость переключения контактов и дребезга.
Из-за переноса контактов, сварки, аномального износа, увеличения контактного сопротивления и различных других повреждений, которые приводят к неправильной работе, следующие пункты требуют тщательного изучения.

* Мы рекомендуем вам проверить в одном из наших офисов продаж.

1. Основные меры предосторожности при контакте

Напряжение

Когда в цепь включена индуктивность, в качестве напряжения контактной цепи генерируется довольно высокая противоэдс, и поскольку, в пределах значения этого напряжения, энергия, приложенная к контактам, вызывает повреждение с последующим износом контактов и переносом контактов, поэтому необходимо проявлять осторожность в отношении управляющей способности.В случае постоянного тока отсутствует точка нулевого тока, как в случае с переменным током, и, соответственно, после того, как возникла катодная дуга, поскольку ее трудно погасить, увеличенное время дуги является основной причиной. Кроме того, из-за фиксированного направления тока явление смещения контактов, как отдельно отмечено ниже, возникает в связи с износом контактов. Обычно приблизительная контрольная мощность указывается в каталогах или аналогичных технических паспортах, но одного этого недостаточно.Со специальными контактными цепями для каждого отдельного случая производитель либо оценивает на основе прошлого опыта, либо проводит испытания в каждом случае. Кроме того, в каталогах и аналогичных технических паспортах упомянутая управляющая способность ограничена резистивной нагрузкой, но для этого класса реле указано широкое значение, и обычно допустимую токовую нагрузку следует рассматривать как таковую для цепей 125 В переменного тока. .
Минимальные допустимые нагрузки указаны в каталоге; однако они приведены только в качестве ориентира для нижнего предела, который может переключать реле, и не являются гарантированными значениями.
Уровень надежности этих значений зависит от частоты коммутации, условий окружающей среды, изменения желаемого контактного сопротивления и абсолютного значения.
Используйте реле с контактами AgPd, когда требуется точный аналоговый контроль нагрузки или контактное сопротивление не более 100 мОм (для измерений, беспроводных приложений и т. Д.).

Текущий

Важное влияние оказывает ток как во время замыкания, так и во время размыкания контактной цепи.Например, когда нагрузкой является двигатель или лампа, в зависимости от пускового тока во время замыкания цепи, износ контактов и степень передачи контактов увеличиваются, а контактная сварка и перенос контактов делают разделение контактов невозможным.

2. Характеристики обычных контактных материалов

Характеристики материалов контактов приведены ниже. Обращайтесь к ним при выборе реле.

Материал контакта Ag
(серебристый)
Электропроводность и теплопроводность — самые высокие из всех металлов.Обладает низким контактным сопротивлением, недорогой и широко используется. Недостатком является то, что он легко образует сульфидную пленку в сульфидной атмосфере. Требуется осторожность при низком напряжении и низком уровне тока.
AgSnO 2
(серебро-олово)
Обладает превосходной сварочной стойкостью; однако, как и в случае с Ag, он легко образует сульфидную пленку в сульфидной атмосфере.
AgW
(серебро-вольфрам)
Высокая твердость и температура плавления, отличная устойчивость к дуге и высокая устойчивость к переносу материала.Однако требуется высокое контактное давление. Кроме того, контактное сопротивление относительно высокое, а устойчивость к коррозии оставляет желать лучшего. Также есть ограничения на обработку и установку на контактные пружины.
AgNi
(серебро-никель)
Соответствует электропроводности серебра. Отличное сопротивление дуге.
AgPd
(серебро-палладий)
Обладает высокой устойчивостью к коррозии и сульфидированию при комнатной температуре; однако в контурах низкого уровня он легко поглощает органические газы и образует полимеры.Следует использовать золотое покрытие или другие меры для предотвращения накопления такого полимера.
Поверхность Правовое покрытие
(родий)
Сочетает в себе отличную коррозионную стойкость и твердость. В качестве гальванических контактов используются при относительно небольших нагрузках. В атмосфере органического газа необходимо соблюдать осторожность, поскольку могут образовываться полимеры. Поэтому он используется в реле с герметичным уплотнением (герконовые реле и т. Д.).
Au плакированный
(плакированный золотом)
Au с его превосходной коррозионной стойкостью приваривается к основному металлу под давлением.Особые характеристики — равномерная толщина и отсутствие проколов. Очень эффективен, особенно при низких нагрузках в относительно неблагоприятных атмосферных условиях. Часто бывает трудно реализовать плакированные контакты в существующих реле из-за конструкции и установки.
Золотое покрытие
(позолота)
Эффект аналогичен алюминиевому покрытию. В зависимости от используемого процесса нанесения покрытия очень важен надзор, так как существует вероятность появления точечных отверстий и трещин. Относительно легко применить золочение в существующих реле.
Вспышка золотом
(тонкопленочное золотое покрытие)
0,1 — 0,5 мкм
Предназначен для защиты основного металла контактов при хранении выключателя или устройства со встроенным выключателем. Однако определенная степень устойчивости контактов может быть получена даже при переключении нагрузок.

3.Защита от прикосновения

Счетчик ЭДС

При коммутации индуктивных нагрузок с помощью реле постоянного тока, таких как цепи реле, двигатели постоянного тока, муфты постоянного тока и соленоиды постоянного тока, всегда важно поглощать скачки напряжения (например.г. с диодом) для защиты контактов.
При отключении этих индуктивных нагрузок возникает противоэдс от нескольких сотен до нескольких тысяч вольт, что может серьезно повредить контакты и значительно сократить срок службы. Если ток в этих нагрузках относительно мал и составляет около 1 А или меньше, противо-ЭДС вызовет зажигание тлеющего или дугового разряда. Разряд разлагает органические вещества, содержащиеся в воздухе, и вызывает образование черных отложений (оксидов, карбидов) на контактах. Это может привести к выходу из строя контакта.

Пример счетчика ЭДС и фактического измерения

На рис. 12 (a) противоэдс (e = -L di / dt) с крутой формой волны генерируется через катушку с полярностью, показанной на рис. 12 (b), в момент отключения индуктивной нагрузки. Счетчик ЭДС проходит по линии питания и достигает обоих контактов.
Обычно критическое напряжение пробоя диэлектрика при стандартной температуре и давлении воздуха составляет от 200 до 300 вольт.Следовательно, если противоэдс превышает это значение, на контактах возникает разряд для рассеивания энергии (1 / 2Li 2 )
, хранящейся в катушке. По этой причине желательно поглощать противоэдс до 200 В или меньше.

Явление переноса материала

Передача материала контактов происходит, когда один контакт плавится или закипает, и материал контакта переходит на другой контакт. По мере увеличения количества переключений появляются неровные контактные поверхности, такие как те, что показаны на рис.13. Через некоторое время неровные контакты замыкаются, как будто они были сварены вместе. Это часто происходит в цепях, где в момент замыкания контактов возникают искры, например, когда постоянный ток велик для индуктивных или емкостных нагрузок постоянного тока или когда большой пусковой ток (несколько ампер или несколько десятков ампер).
Цепи защиты контактов и контактные материалы, устойчивые к переносу материала, такие как AgSnO 2 , AgW или AgCu, используются в качестве контрмер. Обычно на катоде появляется вогнутое образование, а на аноде — выпуклое образование.Для емкостных нагрузок постоянного тока (от нескольких ампер до нескольких десятков ампер) всегда необходимо проводить фактические подтверждающие испытания.

Схема защиты контактов

Использование контактных защитных устройств или схем защиты может снизить противоэдс до низкого уровня. Однако учтите, что неправильное использование приведет к неблагоприятным последствиям. Типовые схемы защиты контактов приведены в таблице ниже.
(G: хорошо, NG: плохо, C: осторожно)

Избегайте использования схем защиты, показанных на рисунках справа. Хотя индуктивные нагрузки постоянного тока обычно труднее переключать, чем резистивные нагрузки, использование соответствующей схемы защиты повысит характеристики до уровня резистивных нагрузок.

Хотя чрезвычайно эффективен для гашения дуги при размыкании контактов, контакты подвержены свариванию, так как энергия накапливается в C, когда контакты размыкаются, и ток разряда течет из C, когда контакты замыкаются.

Хотя чрезвычайно эффективен для гашения дуги при размыкании контактов, контакты подвержены свариванию, поскольку при замыкании контактов зарядный ток течет к C.

Установка защитного устройства

В реальной схеме необходимо найти защитное устройство (диод, резистор, конденсатор, варистор и т. Д.).) в непосредственной близости от нагрузки или контакта. Если оно расположено слишком далеко, эффективность защитного устройства может снизиться. Ориентировочно расстояние должно быть в пределах 50 см.

Аномальная коррозия при высокочастотном переключении нагрузок постоянного тока (образование искры)

Если, например, клапан постоянного тока или сцепление включается с высокой частотой, может образоваться сине-зеленая ржавчина. Это происходит из-за реакции азота и кислорода в воздухе, когда во время переключения возникают искры (дуговые разряды).Следовательно, необходимо соблюдать осторожность в цепях, в которых искры возникают с высокой частотой.

4. Меры предосторожности при использовании контактов

Подключение нагрузки и контактов

Подключите нагрузку к одной стороне источника питания, как показано на рис. 14 (a). Подключите контакты к другой стороне. Это предотвращает образование высокого напряжения между контактами. Если контакты подключены к обеим сторонам источника питания, как показано на Рис. 14 (b), существует риск короткого замыкания источника питания при коротком замыкании относительно близких контактов.

Эквивалент резистора

Поскольку уровни напряжения на контактах, используемых в слаботочных цепях (сухих цепях), низкие, результатом часто является плохая проводимость. Одним из способов повышения надежности является добавление фиктивного резистора параллельно нагрузке, чтобы намеренно увеличить ток нагрузки, достигающий контактов.

Избегайте замыканий в цепях между контактами формы A и B
  • 1.Зазор между контактами формы A и B в компактных элементах управления небольшой. Следует учитывать возникновение короткого замыкания из-за дуги.
  • 2. Даже если три контакта Н.З., Н.О. и COM соединены так, что они закорачивают, цепь никогда не должна быть спроектирована так, чтобы допускать возможность возгорания или возникновения сверхтока.
  • 3. Запрещается проектировать цепь прямого и обратного вращения двигателя с переключением контактов формы A и B.
Плохой пример использования форм A и B
Короткое замыкание между разными электродами

Хотя существует тенденция к выбору миниатюрных компонентов управления из-за тенденции к миниатюризации электрических блоков управления, необходимо соблюдать осторожность при выборе типа реле в цепях, где между электродами в многополюсном реле прикладываются разные напряжения, особенно при переключении. две разные схемы питания.Это не проблема, которую можно определить по схемам последовательности. Необходимо проверить конструкцию самого элемента управления и обеспечить достаточный запас прочности, особенно в отношении утечки тока между электродами, расстояния между электродами, наличия барьера и т. Д.

Тип нагрузки и пусковой ток

Тип нагрузки и характеристики ее пускового тока, а также частота коммутации являются важными факторами, вызывающими контактную сварку.В частности, для нагрузок с пусковыми токами измерьте установившееся состояние и пусковой ток.
Затем выберите реле с достаточным запасом прочности. В таблице справа показано соотношение между типичными нагрузками и их пусковыми токами.
Также проверьте фактическую полярность, так как, в зависимости от реле, на срок службы электрической части влияет полярность COM и NO.

Тип нагрузки Пусковой ток
Резистивная нагрузка Устойчивый ток
Соленоид нагрузки От 10 до 20 раз больше установившегося тока
Нагрузка двигателя В 5-10 раз больше установившегося тока
Нагрузка лампы накаливания От 10 до 15 раз больше установившегося тока
Нагрузка ртутной лампы Прибл.В 3 раза больше установившегося тока
Нагрузка натриевой лампы От 1 до 3 раз больше установившегося тока
Емкостная нагрузка От 20 до 40 раз больше установившегося тока
Нагрузка трансформатора От 5 до 15 раз больше установившегося тока
Волна и время пускового тока нагрузки
(1) Нагрузка лампы накаливания

Пусковой ток / номинальный ток: i / i o ≒ 10-15 раз

(2) Нагрузка ртутной лампы i / i o ≒ 3 раза

Газоразрядная трубка, трансформатор, дроссельная катушка, конденсатор и т. Д., объединены в общие цепи газоразрядных ламп. Обратите внимание, что пусковой ток может быть от 20 до 40 раз, особенно если полное сопротивление источника питания низкое в типе с высоким коэффициентом мощности.

(3) Нагрузка люминесцентной лампы i / i o ≒ 5-10 раз
(4) Нагрузка двигателя i / i o ≒ 5-10 раз
  • Условия становятся более суровыми, если выполняется заглушка или толчкование, поскольку переходы между состояниями повторяются.
  • При использовании реле для управления двигателем постоянного тока и тормозом импульсный ток во включенном состоянии, нормальный ток и ток отключения во время торможения различаются в зависимости от того, является ли нагрузка на двигатель свободной или заблокированной. В частности, с неполяризованными реле, при использовании контакта «от b» или «от контакта» для тормоза двигателя постоянного тока, на механический срок службы может влиять ток тормоза. Поэтому, пожалуйста, проверьте ток при фактической нагрузке.
(5) Нагрузка на соленоид i / i o ≒ 10-20 раз

Обратите внимание, что, поскольку индуктивность велика, дуга длится дольше при отключении питания.Контакт может легко изнашиваться.

(6) Нагрузка на электромагнитный контакт i / i o ≒ от 3 до 10 раз
(7) Емкостная нагрузка i / i o ≒ от 20 до 40 раз
При использовании длинных проводов

Если в цепи контактов реле должны использоваться длинные провода (от 100 до 300 м), пусковой ток может стать проблемой из-за паразитной емкости, существующей между проводами.Добавьте резистор (примерно от 10 до 50 Ом) последовательно с контактами.

Электрическая долговечность при высоких температурах

Проверьте фактические условия использования, так как использование при высоких температурах может повлиять на электрическую долговечность.

  • Блокировочные реле поставляются с завода в состоянии сброса. Удар по реле во время транспортировки или установки может привести к его переходу в установленное состояние.Поэтому рекомендуется использовать реле в цепи, которая инициализирует реле в требуемое состояние (установка или сброс) при каждом включении питания.
  • Избегайте подачи напряжения на установленную катушку и катушку сброса одновременно.
  • Подключите диод, как показано, поскольку фиксация может быть нарушена при использовании реле в следующих цепях.
    Если установочные катушки или катушки сброса должны быть соединены вместе параллельно, подключите диод последовательно к каждой катушке. Рис.16 (а), (б)

Кроме того, если заданная катушка реле и катушка сброса другого реле подключены параллельно, подключите диод к катушкам последовательно.Рис.16 (c)

Если установленная катушка или катушка сброса должны быть подключены параллельно с индуктивной нагрузкой (например, другой катушкой электромагнитного реле, двигателем, трансформатором и т. Д.), Подключите диод к установленной катушке или катушке сброса последовательно. Рис.16 (d)

Используйте диод, имеющий достаточный запас прочности для повторяющихся приложений обратного постоянного напряжения и пикового обратного напряжения и имеющий средний выпрямленный ток, превышающий или равный току катушки.

  • Избегайте применений, в которых часто возникают скачки напряжения в электросети.
  • Избегайте использования следующей схемы, поскольку самовозбуждение на контактах будет препятствовать нормальному состоянию удержания.

Четырехконтактное фиксирующее реле

В схеме с двумя катушками с фиксацией, как показано ниже, одна клемма на одном конце установочной катушки и одна клемма на одном конце катушки сброса соединены совместно, и напряжения одинаковой полярности прикладываются к другой стороне для операций установки и сброса.В схеме этого типа закоротите 2 контакта реле, как указано в следующей таблице. Это помогает поддерживать высокую изоляцию между двумя обмотками.

Тип реле Терминалы №
DS 1c
2c 15 и 16
СТ *
SP 2 и 4
Реле Реле
* * ST сконструированы таким образом, что катушка настройки и катушка сброса разделены для обеспечения высокого сопротивления изоляции.
* DSP, TQ, S неприменимы из-за полярности.

Минимальная ширина импульса

В качестве ориентира задайте минимальную длительность импульса для установки или сброса фиксирующего реле. по крайней мере, в 5 раз превышающее установленное время или время сброса каждого продукта, и подайте номинальное напряжение прямоугольной формы. Также проверьте работу. Поинтересуйтесь, если вы не можете получить ширину импульса не менее 5 раз. установленное (сброс) время.Также обращайтесь по поводу конденсаторного привода.

Индукционное напряжение с двумя катушками-защелками

Каждая катушка в двухкатушечном реле-защелке намотана с установленной катушкой и катушкой сброса. на тех же железных сердечниках.
Соответственно, при подаче напряжения на обратной стороне катушки генерируется индукционное напряжение. и отключите каждую катушку.
Хотя величина индукционного напряжения примерно такая же, как номинальное напряжение реле, вы должны быть осторожны с обратным напряжением смещения при управлении транзисторами.

1. Температура и атмосфера окружающей среды

Убедитесь, что температура окружающей среды при установке не превышает значения, указанного в каталоге. Кроме того, для использования в атмосфере с пылью, сернистыми газами (SO 2 , H 2 S) или органическими газами следует рассмотреть возможность использования герметичного типа (герметичный пластиковый).

2. силиконовый

Когда источник силиконовых веществ (силиконовый каучук, силиконовое масло, силиконовые материалы для покрытия и силиконовые наполнители и т. д.) используется вокруг реле, может образовываться силиконовый газ (низкомолекулярный силоксан и т. д.). Этот силиконовый газ может проникнуть внутрь реле.
Когда реле остается и используется в этом состоянии, силиконовый компаунд может прилипнуть к контактам реле, что может вызвать выход из строя контакта.
Не используйте вокруг реле какие-либо источники силиконового газа (включая пластиковые уплотнения).

3. No поколения

Когда реле используется в атмосфере с высокой влажностью для переключения нагрузки который легко создает дугу, NOx, создаваемый дугой, и поглощенная вода извне реле объединяются для производства азотной кислоты.Это разъедает внутреннюю металлические детали и отрицательно сказываются на работе.
Избегайте использования при относительной влажности окружающей среды 85% или выше (при 20 ° C).
Если использование при высокой влажности неизбежно, обратитесь к нашему торговому представителю.

4. вибрация и удары

Если реле и магнитный переключатель установлены рядом друг с другом на одной пластине, контакты реле могут на мгновение отделиться от удара, производимого при срабатывании магнитного переключателя, и привести к неправильной работе.Меры противодействия включают установку их на отдельные пластины, использование резинового листа для поглощения удара и изменение направления удара на перпендикулярный угол. Кроме того, если реле будет постоянно подвергаться вибрации (поезда и т. Д.), Не используйте его с розеткой. Рекомендуем припаивать непосредственно к клеммам реле.

5.Влияние внешних магнитных полей

Если рядом расположен магнит или постоянный магнит в любом другом крупном реле, трансформаторе или динамике, характеристики реле могут измениться, что может привести к неправильной работе.Влияние зависит от силы магнитного поля, и его следует проверять при установке.

6. Условия использования, хранения и транспортировки

Во время использования, хранения или транспортировки избегайте мест, подверженных воздействию прямых солнечных лучей. и поддерживать нормальные условия температуры, влажности и давления.
Допустимые спецификации для сред, подходящих для использования, хранения и транспортировки приведены ниже.

Конденсация

Конденсация возникает при резком падении температуры окружающей среды. от высокой температуры и влажности, или реле и микроволновое устройство внезапно переключаются из-под низкой температуры окружающей среды к высокой температуре и влажности.Конденсация вызывает такие сбои, как ухудшение изоляции, отсоединение проводов, ржавчина и т. д.
Panasonic Corporation не гарантирует неисправности, вызванные конденсацией.
Теплопроводность оборудования может ускорить охлаждение самого устройства, и может произойти конденсация. Пожалуйста, проведите оценку продукта в наихудших условиях фактического использования. (Особое внимание следует обращать на близкие к устройству детали, нагревающиеся при высокой температуре. Также учтите, что внутри устройства может образоваться конденсат.)

Обледенение

Конденсат или другая влага может замерзнуть на реле. когда температура становится ниже 0 ° C.
Обледенение вызывает заедание подвижной части, задержка срабатывания и нарушение проводимости контакта и т. д.
Panasonic Corporation не гарантирует отказы, вызванные обледенением.
Теплопроводность оборудования может ускорить охлаждение самого реле. и может произойти обледенение.
Пожалуйста, проведите оценку продукта в наихудшем состоянии из фактического использования.

Низкая температура и низкая влажность

Пластик становится хрупким, если переключатель подвергается воздействию низких температур, среда с низкой влажностью в течение длительного времени.

Высокая температура и высокая влажность

Хранение в течение длительного времени (включая периоды транспортировки) при высокой температуре или высокой влажности или в атмосфере с органическими газами или сульфидные газы могут вызвать образование сульфидной или оксидной пленки на поверхностях контактов и / или это может помешать работе.
Проверьте атмосферу, в которой должны храниться и транспортироваться устройства.

Пакет

Что касается используемого формата упаковки, приложите все усилия, чтобы избежать воздействия влаги, органических газов и сульфидных газов до абсолютного минимума.

Требования к хранению

Так как клеммы для поверхностного монтажа чувствительны к влажности Он упакован в герметично закрывающуюся влагостойкую упаковку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *