Последовательное и параллельное подключение лампочек: Последовательное подключение лампочек: схемы соединения

Содержание

Параллельное и последовательное и соединение ламп в быту » сайт для электриков

Преимущества и недостатки параллельного подключения

Вид лампыПреимуществаНедостатки
Накаливания галогеновые, люминесцентныеВозможно подключить к сети любое количество светильников по щлейфной схеме

Перегорание отдельного элемента лучевой модели не влияет на работу остальных

Накал полный на всех лампочках

Можно подключить люстру с несколькими лампами

Немного соединительных контактов

Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодке

При щлейфной модели нарушение одного соединения мешает работе остальных

Светодиодная
Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питания

При перегорании отдельного источника остальные работают

Схема не работает, если диоды подсоединяются через один резистор

Конструкция громоздкая и дорогая из-за большого количества деталей

При выходе из строя отдельного элемента на остальных увеличивается нагрузка

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

Люстра с несколькими рожками

Для подключения многорожкового осветительного прибора с помощью двухклавишного переключателя понадобится трехжильный проводник. Одну жилу укорачивают так, чтобы провести ее в распредкоробку, а пара других жил должны доходить до переключателя.

На прерыватель направляют фазовый провод. Отходящие проводники закрепляют в клеммниках переключателя. В комплекте осветительного прибора имеется вывод из трех проводов: нулевой и два фазных. Ноль из распредкоробки направляют на нулевой контакт, а отходящие провода из выключателя соединяют с фазами многорожковой люстры.

Схема подключения люстры с пятью рожками изображена на рисунке ниже.

В результате создается подключение, где нажатие одной клавиши приводит к включению только пары ламп. Другая клавиша управляет тремя лампами. Если нужно включить все лампочки, следует нажать обе клавиши. В конечном счете такая схема обеспечивает выбор из трех вариантов интенсивности света: с двумя, тремя или пятью лампочками.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения — паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Задачи на Параллельное соединение проводников с решениями

Формулы, используемые на уроках «Задачи на Параллельное соединение проводников»

Задача № 1.
 Два проводника сопротивлением 200 Ом и 300 Ом соединены параллельно. Определить полное сопротивление участка цепи.

Задача № 2.
 Два резистора соединены параллельно. Сила тока в первом резисторе 0,5 А, во втором — 1 А. Сопротивление первого резистора 18 Ом. Определите силу тока на всем участке цепи и сопротивление второго резистора.

Задача № 3.
 Две лампы соединены параллельно. Напряжение на первой лампе 220 В, сила тока в ней 0,5 А. Сила тока в цепи 2,6 А. Определите силу тока во второй лампе и сопротивление каждой лампы.

Задача № 4.
 Определите показания амперметра и вольтметра, если по проводнику с сопротивлением R1 идёт ток силой 0,1 А. Сопротивлением амперметра и подводящих проводов пренебречь. Считать, что сопротивление вольтметра много больше сопротивлений рассматриваемых проводников.

Задача № 5.
 В цепи батареи параллельно включены три электрические лампы. Нарисуйте схему включения двух выключателей так, чтобы один управлял двумя лампами одновременно, а другой — одной третьей лампой.

Ответ: 

Задача № 6.
 Лампы и амперметр включены так, как показано на рисунке. Во сколько раз отличаются показания амперметра при разомкнутом и замкнутом ключе? Сопротивления ламп одинаковы. Напряжение поддерживается постоянным.

  

Задача № 7.
 Напряжение в сети 120 В. Сопротивление каждой из двух электрических ламп, включенных в эту сеть, равно 240 Ом. Определите силу тока в каждой лампе при последовательном и параллельном их включении.

Исследовательская работаПараллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Секция Физика

Номинация: Учебные проекты

Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Автор: Ивонин Глеб Игоревич 2 Г класс

Школа № 38 Октябрьского района ГО г. Уфы

Научный руководитель: Колегойда Е.А., учитель начальных классов

Школа № 38 Октябрьского района ГО г. Уфы

Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.

Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Именно «звездой» делают разводку по квартире при монтаже розеток.

Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Цель моей исследовательской работы : показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.

Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.

Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

Исследования:

1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.

2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.

Полученные результаты и их оценка:

Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.

Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии электрического поля) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.

Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы

Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.

Первая помощь при поражении электрическим током.

Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.

Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами. 

Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением. 


Вызови (самостоятельно или с помощью окружающих) «скорую помощь». 

Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.

При отсутствии признаков жизни проведи сердечно-легочную реанимацию.

При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение. 

Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца. 

 

Освобождение пострадавшего от тока.

Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Сопротивление тела человека. 
От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.

Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.

Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.

Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.

  • перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;

  • надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;

  • перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;

  • предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. 
    В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат. 

  • главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники . Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;

  • покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;

  • не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;

  • мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;

  • поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;

  • осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.

  • Заземление бытовых приборов. 
    Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки. 

  • Эксплуатация мощных потребителей. 
    Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода. 

  • Электробезопасность во влажных помещениях. 
    Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение. 

  • Использование инструмента и электроинструмента. 
    Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение. 

  • Общие советы по безопасности:
    Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.

Схема параллельного подключения ламп с фото

Вот вы въехали в новую квартиру либо же просто захотели поменять старые надоевшие светильники в своем жилище на более новые. Может быть, вы решили вместо одной маленькой люстры с одной лампой накаливания повесить большую люстру с четырьмя или пятью лампочками. При таких условиях нередко возникает надобность выполнить одновременное подключение нескольких источников света к одному единственному выключателю. Здесь, разумеется, пригодится параллельная схема подключения лампочек.

В целом – ничего сложного, такой принцип подключения многие помнят еще со школьных уроков по физике. Но если вы уже давно забыли школьный курс – не беда. Мы напомним вам, как выглядит такой способ монтажа и каким образом он осуществляется.

Советуем прочитать — Как правильно выбрать светодиодные лампы для дома

Особенности параллельного подключения ламп

По сути, параллельное соединение элементарно: у нас имеется одна фаза на входе, ноль и «земля». Каждый из перечисленных проводников подводится к каждому патрону лампочки и соответствующим образом подсоединяется. Демонстрируем наглядную схему подобного подключения:

Схема параллельного подключения светильников

На стандартной упрощенной электрической схеме такого рода соединение будет изображено следующим образом:


Преимущество именно такого метода подключения лампочек к электрической сети в том, что при выходе из строя одного элемента цепочки (допустим, у вас перегорела лишь одна лампа накаливания) все остальные элементы продолжают спокойно работать.

Здесь сразу же в противовес вспоминается принцип работы новогодней гирлянды, знакомый всем нам еще из детства – последовательное подключение элементов.

При таком способе подключения поломка одной лампочки ставит крест на работе всех остальных. Соответственно, не стоит прибегать к подобному альтернативному методу при монтаже освещения у себя дома. Ведь вследствие последовательного подключения вы весьма намучаетесь с поиском причины поломки при перегорании одной из ламп, так что никакого смысла в этом, разумеется, нет.

Понравилась статья? Поделиться с друзьями:

Урок для 8-го класса по теме «Последовательное соединение проводников»

Методические цели:

Предметные:

  • вызвать объективную необходимость изучения темы: законов, явлений, закономерностей;
  • организовать деятельность учащихся по изучению и первичному закреплению: фактов, понятий, правил, законов, способов действий;
  • организовать деятельность школьников по самостоятельному применению знаний в разнообразных ситуациях.

Ориентированные развитие творческой личности:

  • помочь учащимся осознать социальную, практическую и личностную значимость учебного материала;
  • содействовать развитию речи, мышления, познавательных умений, овладению методами научного исследования: анализа и синтеза;
  • помочь учащимся осознать ценность совместной деятельности;
  • создать условия для развития у школьников умений формулировать проблемы, предлагать пути их решения;
  • обеспечить развитие у школьников монологической и диалогической речи.

Тип урока: урок изучения нового материала.

Форма проведения: исследовательская работа.

Демонстрационный эксперимент:

Демонстрации: демонстрация последовательного соединения проводников.

Оборудование: 2 источника питания, 4 лампочки на подставках, 2 ключа, соединительные провода, 2 планшета из картона.

План занятия:

  1. Организационный этап
  2. Этап постановки целей и задач урока
  3. Этап актуализации опорных знаний
  4. Этап изучения новых знаний и способов деятельности
  5. Этап первичной проверки понимания изученного
  6. Этап закрепления нового материала
  7. Рефлексия
  8. Заключительный этап
1 мин.
2 мин.
6 мин.
8 мин.
5 мин.
5 мин.
2 мин.
1 мин.

Макроструктура учебного занятия:

ХОД УРОКА

I. Организационный этап

Учитель: Здравствуйте. Садитесь. Прекрасно! А теперь приступим к работе.

II. Этап постановки целей и задач урока

Проблемная ситуация

На столе собраны две электрические схемы включения двух лампочек:

последовательное соединение:

параллельное соединение:

Как, соединены между собой лампочки, учащиеся не видят (подставки и их соединения закрыты планшетами)

Вопрос 1: Почему накал лампочек не одинаков?

Вопрос 2: Как объяснить наблюдаемое явление с точки зрения физики?

Выслушиваются различные варианты ответов и пояснения к ним.

Учитель: Как видим, тех знаний, что вы усвоили на предыдущих уроках, не совсем достаточно для того, чтобы полно и  корректно ответить на поставленные вопросы.  Таким образом, мы сталкиваемся с необходимостью пополнения багажа наших знаний о постоянном токе и понятиях и законах, его описывающих. Для того чтобы мы могли полноценно работать, нам необходимо сформулировать цель нашего сегодняшнего занятия. Пожалуйста…

Ученик: Наша цель заключается в выявлении типов соединений проводников в электрической цепи, их качественном и количественном описании, а также в выяснении области применимости полученных знаний и умений на практике.

Учитель: Итак, цель намечена. Теперь необходимо нам остановиться на одном из этих соединений, т.е. последовательном, а параллельное, вы изучите позже.

Ученик: Выяснить, как ведут себя сила тока, напряжение и сопротивление в данном соединении. Определить область применимости полученных знаний и умений. Научиться их применять на практике.

III. Этап актуализации опорных знаний

Учитель: Прежде чем мы приступим к решению наших задач, необходимо восстановить в памяти знания, приобретенные на предыдущих уроках. Предлагаю это сделать в форме «Деловой корзины». Каждый желающий должен вынуть из «корзины» задание-вопрос и достаточно полно ответить на него, а также поучаствовать в эстафете по рядам, выигравший ряд заработает бонус, т.е. к любому ответу 1 балл.

«Деловая корзина»:

1. Электрический ток. Направленное движение заряженных частиц называют электрическим током.
2. Сила тока. Силой тока называется физическая величина, показывающая, какой заряд проходит через поперечное сечение проводника за единицу времени. , где I – сила тока (А), q – заряд, t – время (с).
3. Электрическое напряжение. Физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда, называется электрическим напряжением. , U – электрическое напряжение (В), A – работа электрического тока по перемещению заряда, q – заряд (Кл).
4. Электрическое сопротивление проводника. Физическая величина, характеризующая противодействие, оказываемое электрическому току, называется электрическим сопротивлением. Обозначается буквой R. Единица измерения сопротивления проводника – Ом.
5. Закон Ома. Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению. , где I – сила тока на участке цепи (А), U – напряжение на этом участке (В), R – сопротивление участка цепи (Ом).
6. Каким прибором измеряется сила тока в цепи? Как он включается в электрическую схему? Сила тока в цепи измеряется с помощью амперметра. Для включения амперметра в цепь ее размыкают и свободные концы проводов присоединяют к зажимам: зажим «+» к проводнику, идущему от положительного полюса источника питания, зажим «–» к проводнику, идущему от отрицательного  полюса источника питания.
7. Каким прибором измеряется напряжение в цепи? Как он включается в электрическую схему? Напряжение  в цепи измеряется с помощью вольтметра. Зажимы вольтметра присоединяют к тем точкам цепи, между которыми надо измерить напряжение: зажим «+» к проводнику, идущему от положительного полюса источника питания, зажим «–» к проводнику, идущему от отрицательного  полюса источника питания.

IV. Этап изучения новых знаний и способов деятельности

Учитель:  Теперь возвратимся к нашему опыту. Нам удалось выяснить, что различие в накале лампочек может быть при различном их соединении. Изобразите на доске, последовательное соединение лампочек.

Учащиеся изображают соединения.

(Слайд 2)

Исследуем параметры последовательного соединения. Для этого разделимся на две группы: одна получает задание исследовать силу тока при  последовательном соединение проводников, другая напряжение.
На столе у вас приборы, постарайтесь понять, к какой группе вы относитесь? Как это можно определить?

Группа 1. Исследование силы тока на различных участках цепи и общей силы тока в цепи.

Оборудование: Источник питания,  резистор, лампочка, ключ, амперметр, соединительные провода.

Ход выполнения работы:

  • соберите схему, состоящую из источника питания, ключа и последовательно соединенных резистора и лампочки.
  • измерьте с помощью амперметра силу тока на каждом участке цепи и общую силу тока в цепи.
  • сделайте соответствующий вывод о соотношении между общей силой тока в цепи и силой тока на различных участках.

Группа 2. Исследование общего напряжения и напряжения на различных участках  цепи.

Оборудование: Источник питания, резистор, ключ, лампочка, вольтметр,  соединительные провода.

Ход выполнения работы:

  • соберите схему, состоящую из источника питания, ключа и последовательно- соединенных резистора и лампочки;
  • измерьте с помощью вольтметра напряжение на каждом участке цепи и общее напряжение в цепи;
  • сделайте соответствующий вывод о соотношении между общим напряжением в цепи и напряжениям на каждом участке  

Физкультминутка

Руки на уровне груди, ладони прижимаем друг к другу. Ладони – это книга. Откройте книгу знаний и разверните её,  пусть информация уйдет в мир. Верните свою книгу знаний к себе и закройте. Вы готовы продолжить занятие, желаю удачи.

V. Этап первичной проверки понимания изученного

Учитель: Переходим к следующему этапу нашего занятия – научимся применять полученные знания для расчета сопротивления. Формула для сопротивления получается из того что, соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становиться больше сопротивления одного проводника и сопротивления складываются.

Преимущества и недостатки последовательного соединения проводников. (Слайд 5)

Применение знаний для расчета схем.

Схема №1.

Какую силу тока показывает амперметр, если показания вольтметра 3В?

Схема №2.

Каковы показания вольтметра, если сила тока в цепи равна 0,5А?

Схема №3.

Каковы показания вольтметров, если амперметр показывает 1,5 А?

VI. Этап закрепления нового материала

Учитель: Молодцы, вы успешно справились с этим заданием. И сейчас пришло время проверить ваше умение применять на практике ваши знания. Делимся 6 групп.

Группа №1

Общее сопротивление трех одинаковых последовательно соединенных ламп составляет 36 Ом. Чему равно сопротивление каждой лампы?

Группа№2

Три проводника сопротивлением 12 Ом, 9 Ом и 3 Ом соединены последовательно. Напряжение на концах цепи 120 В. Найти силу тока в цепи.

Группа №3

Гирлянда из 60 лампочек включена в сеть напряжением 210 В, сила тока в цепи равна 0,5 А. Определить сопротивление каждой лампы, если все они соединены последовательно.

Группа №4

Объясните, как осветить елку 5-вольтовыми лампочками, если напряжение в сети 220В?

Группа №5

В сеть напряжением 120В включены последовательно две электрические лампы сопротивлением по 200 Ом каждая. Определить ток идущий через лампы.

Группа №6

В сеть напряжением 220 В последовательно включены лампа накаливания сопротивлением 400 Ом и электрическая плитка 40 Ом. Определите силу тока в цепи.

У доски защита задач.

VII. Рефлексия

Учитель: Что ж, наш урок подходит к завершению. В той атмосфере и обстановке, в которой мы сегодня работали, каждый из вас чувствовал себя по-разному. И сейчас мне бы хотелось, чтобы вы оценили, насколько внутренне комфортно ощущал себя на этом уроке, каждый из вас, все вместе как класс, и понравилось ли вам то дело, которым мы с вами сегодня занимались. Когда, будете выходить из класса прикрепите стрелку, где считаете нужным.

VIII. Заключительный этап

Учитель: Мне очень понравилось с вами работать.
А теперь давайте вместе оценим вашу работу на сегодняшнем уроке. Каждый из вас во время урока находился в составе той или иной рабочей группы, и лучше вас никто не знает, какой вклад внес каждый в общее дело. Поэтому, я предлагаю вам оценить работу своих товарищей по группе. Для этого воспользуйтесь оценочными бланками, лежащими перед вами.

P.S. Я оставляю за собой право подкорректировать выставленные оценки, потому что я также следила за работой каждого из вас на уроке.

Домашнее задание:

Повторить § 8-20.
Подготовиться к уроку решения открытых задач.

Приложение

Как параллельно подключить лампы – Telegraph

Зайцева Полина Максимовна
Последовательное и параллельное соединение ламп ↗лампа лупа
Последовательное соединение ламп накаливания. … И как всегда по традиции ролик о последовательном и параллельном подключении ламп … А если, все-таки, подключить параллельно и использовать диммер, …

5 применений последовательного соединения ламп …
Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может …

Как параллельно подключить лампы


Как соединить светодиодные лампы последовательно или …Подключение лампы на один выключатель или на несколько. Как подключить лампу через выключатель? Главным нюансом при подключении является то, …

Параллельное и последовательное и соединение ламп в … ↗Параллельное соединение ламп используется всюду в быту. … включить свет и там и там, то эти лампы окажутся соединены между собой параллельно. … напряжение питания во всем помещении, и осуществить подключение.

Параллельное подключение лампочек
Параллельно соединенные лампочки. При таком способе обычно используется шлейфовое и лучевое подключение: Первый метод – это …

Параллельное подключение лампочек ↗Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает …

Последовательное подключение лампочек: схема …
Как лучше подключить лампочки последовательно или параллельно. Содержание статьи:.

Способы подключения ламп: последовательное … ↗Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается …

Схема параллельного подключения ламп — Сам электрик
При подключении света в доме и квартире иногда возникает ситуация, когда нужно несколько источников света подключить к одному …

Последовательное и параллельное соединение сопротивлений

Чтобы убедиться в том, что с увеличением ток в цепи уменьшается, можно проделать простой опыт: в карманном фонаре включить вместо одной лампочки Л1 две — Л1 и Л2, соединенные последовательно, то есть соединенные так, что электроны, двигаясь по цепи, проходят последовательно сначала одну, а затем и вторую лампочку (рис. 11).

Общее сопротивление при последовательном соединении равно сумме отдельных сопротивлений (листы 28, 30).

где R1 — сопротивление первой лампочки, R2 — сопротивление второй, а Rобщ — их общее сопротивление. Формула эта не требует особых пояснений: включить две лампочки последовательно равносильно тому, что включить одну, у которой нить вдвое длиннее. Если каждая из двух лампочек имеет нить с сопротивлением 75 ом, то их общее сопротивление равно 150 ом.

Подключив обе лампочки к батарейке, вы убедитесь, что ни одна из них не светится полным светом. Объясняется это тем, что с увеличением сопротивления цепи ток в ней уменьшился и энергии электронов уже не хватает, чтобы полностью накалить нить. Однако мы соединяли две лампочки не для того, чтобы доказывать эту и без того очевидную истину. Собранная цепь должна помочь нам познакомиться с таким важным понятием, как напряжение. Прежде чем начинать это знакомство, нам нужно рассмотреть еще один вопрос — о направлении тока в цепи.

Разбирая процессы в сложных электротехнических и радиоаппаратах, очень удобно следить за прохождением тока, пользуясь принципиальной схемой. При этом часто бывает необходимо знать, какой конец того или иного элемента (например, лампочки или мотора) соединен с «плюсом» источника тока, а какой — с «минусом». В случае простых цепей для решения этого вопроса достаточно взглянуть на схему — и сразу видно, где «плюс», где «минус». В сложных цепях очень часто подобный вопрос приходится решать косвенным путем, исходя из того, в какую сторону двигаются заряды.

Так, например, если известно, что через лампочку электроны двигаются сверху вниз (по схеме), то можно сразу же сделать вывод, что нижний (по схеме) провод, идущий от лампочки, подключен к «плюсу», а верхний — к «минусу». Вывод этот основан на том, что электроны всегда двигаются от «минуса» к «плюсу». К такому же выводу мы пришли бы, если было бы известно, что по лампочке снизу вверх двигаются положительные заряды, так как направление их движения — от «плюса» к «минусу».

Для того чтобы не создавать лишнюю путаницу, особенно при рассмотрении больших схем, оказывается удобным ввести понятие об условном направлении тока и учитывать при этом движение одних каких-нибудь зарядов. Исторически получилось так, что за основное направление принято направление движения положительных зарядов. Потому при рассмотрении схем мы условно считаем, что ток во всех цепях представляет собой упорядоченное движение только положительных зарядов, направляющихся от «плюса» к «минусу», то есть от места, где их слишком много, к месту, где положительных зарядов не хватает (рис. 12, 13).

Такая условность немного несправедлива, так как в большинстве случаев ток образуется электронами. Но от этой несправедливости никто не пострадает. Электроны будут по-прежнему двигаться своим путем, а все вопросы будут решаться с помощью условного тока, точно так же как они решались бы с учетом истинного направления движения электронов. Не все ли равно, как считать: что электроны в какой-нибудь цепи двигаются справа налево или что условный ток (то есть положительные заряды) двигается в этой цепи слева направо? Ведь и в том и в другом случае справа будет «минус», а слева «плюс»! А если при разборе какой-нибудь схемы в соответствии с правилом: ток течет от «плюса» к «минусу», вас начнут смущать двигающиеся в обратном направлении электроны, то условно замените их положительными зарядами — и все ваши сомнения моментально рассеются.

Последовательное соединение лампочек схема.  Параллельное соединение. Как подключить мощный светодиод

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

Использование закона Ома для расчета изменений напряжения в резисторах в сериях

Если подставить значения для отдельных напряжений, мы получим. Это означает, что общее сопротивление в серии равно сумме отдельных сопротивлений. Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а сопротивления последовательно просто складываются.

Последовательное соединение ламп в быту

Поскольку напряжение и сопротивление имеют обратную зависимость, отдельные резисторы последовательно не получают общее напряжение источника, а делят его. Это указывается в примере, когда две лампочки соединены вместе в последовательной цепи с батареей. Это было бы очевидно в яркости огней: каждая из двух лампочек, соединенных последовательно, была бы вдвое меньше, чем одна лампочка.

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Поэтому резисторы, соединенные последовательно, потребляют столько же энергии, сколько и один резистор, но эта энергия делится между резисторами в зависимости от их сопротивления. Полное сопротивление в параллельном контуре равно сумме инверсии каждого отдельного сопротивления.

Вычислить общее сопротивление в цепи с параллельно соединенными резисторами. Общее сопротивление в параллельной цепи меньше, чем наименьшее из индивидуальных сопротивлений. Каждый резистор параллельно имеет одинаковое напряжение источника, подаваемого на него. Сопротивление: противодействие прохождению электрического тока через этот элемент. параллельно. Параллельные резисторы не получают общий ток; они делят его. . Резисторы в цепи могут быть подключены последовательно или параллельно.


Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Резисторы параллельны, когда каждый резистор подключается непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, каждый резистор имеет полное напряжение источника, подаваемого на него. Резисторы параллельные: параллельное подключение резисторов.

Каждый резистор потребляет тот же ток, если бы он был единственным резистором, подключенным к источнику напряжения. Это касается схем в доме или квартире. Каждый выход, подключенный к прибору, может работать независимо, и ток не должен проходить через каждый прибор последовательно.


У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Закон Ома и параллельные резисторы

Каждый резистор в цепи имеет полное напряжение. Сохранение заряда подразумевает, что суммарный ток представляет собой сумму этих токов. Параллельные резисторы: три резистора, соединенные параллельно с батареей и эквивалентное одно — или параллельное сопротивление.

Как подключить точечные светильники параллельно

Подставляя выражения для отдельных токов, получаем. Это означает, что общее сопротивление в параллельной цепи равно сумме инверсии каждого отдельного сопротивления. Это соотношение приводит к полному сопротивлению, которое меньше наименьшего из индивидуальных сопротивлений. Когда резисторы соединены параллельно, больше тока течет от источника, чем поток для каждого из них по отдельности, поэтому общее сопротивление ниже.


Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Каждый резистор параллельно имеет одинаковое полное напряжение источника, применяемого к нему, но делит общий ток между ними. В последовательной схеме две лампочки были бы в два раза меньше при подключении к одному источнику батареи. Однако, если бы две лампочки были подключены параллельно, они были бы столь же яркими, как если бы они были подключены индивидуально к батарее. Поскольку одно и то же полное напряжение подается на обе лампочки, батарея также умрет быстрее, поскольку она по существу обеспечивает полную энергию для обеих лампочек.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.


В последовательной цепи батарея будет работать так же долго, как и с одной лампочкой, тогда только яркость будет разделена между лампами. Комбинированную схему можно разбить на аналогичные части, которые либо серийны, либо параллельны. Описать расположение резисторов в комбинированной схеме и ее практические последствия.

Более сложные соединения резисторов иногда представляют собой комбинацию из серии и параллельно. Различные части комбинированной схемы могут быть идентифицированы как последовательные или параллельные, сведены к их эквивалентам, а затем дополнительно уменьшены до тех пор, пока не останется одно сопротивление. Если сопротивление в проводах относительно велико, как в изношенном удлинителе, то эти потери могут быть значительными и влиять на мощность в приборах. Параллель: расположение электрических компонентов, так что ток течет по двум или более дорожкам. комбинированная схема: электрическая схема, содержащая несколько резисторов, которые соединены в комбинации как серийных, так и параллельных соединений. Сопротивление в проводах уменьшает ток и мощность, подаваемые на резистор. . Это обычно встречается, особенно если учитывать сопротивление провода.

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

В этом случае сопротивление провода находится последовательно с другими сопротивлениями, которые находятся параллельно. Комбинированную схему можно разбить на аналогичные части, которые являются либо серийными, либо параллельными, как показано на рисунке. На рисунке общее сопротивление можно рассчитать, связав три резистора друг с другом как последовательно, так и параллельно.

Резисторная сеть: в этой комбинированной схеме схема может быть разбита на последовательный компонент и параллельный компонент. Комбинированные схемы: два параллельных резистора последовательно с одним резистором. Для более сложных комбинационных схем различные части могут быть идентифицированы как последовательные или параллельные, сведены к их эквивалентам, а затем дополнительно уменьшены до тех пор, пока не останется единственное сопротивление, как показано на рисунке. На этом рисунке комбинация из семи резисторов была идентифицирована путем либо последовательно или параллельно.

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.


Видео о подключении ламп

На начальном изображении два окружных сечения показывают резисторы, которые находятся параллельно. Уменьшение комбинации: эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждый из них идентифицируется и сводится к эквивалентному сопротивлению, и они дополнительно уменьшаются до достижения единственного эквивалентного сопротивления.

В верхнем правом изображении мы видим, что круглая часть содержит два резистора последовательно. Следующий шаг показывает, что параллельные два резистора параллельны. Уменьшение этих основных моментов, что последние два последовательно, и, следовательно, может быть уменьшено до одного значения сопротивления для всей цепи. Одним из практических последствий комбинированной схемы является то, что сопротивление в проводах уменьшает ток и мощность, подаваемые на резистор. Комбинированная схема может быть преобразована в последовательную схему, основанную на понимании эквивалентного сопротивления параллельных ветвей схеме комбинирования.

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Целевую схему можно использовать для определения общего сопротивления цепи. По существу, сопротивление провода представляет собой серию резисторов. Это, таким образом, увеличивает общее сопротивление и уменьшает ток. Если сопротивление провода относительно велико, как в изношенном удлинителе, то эти потери могут быть значительными.

Когда источники напряжения соединены последовательно, их эдс и внутренние сопротивления являются аддитивными; параллельно они остаются неизменными. Сравните сопротивления и электродвижущие силы для источников напряжения, подключенных к одной и той же полярности, и последовательно и параллельно.


В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Когда используется более одного источника напряжения, их можно подключать последовательно или параллельно, аналогично резисторам в цепи. Эти типы источников напряжения распространены в фонарях, игрушках и других устройствах. Как правило, ячейки находятся последовательно, чтобы получить большую общую ЭДС. Фонарик и лампочка: последовательное подключение двух источников напряжения в одном направлении. Эта схема представляет собой фонарик с двумя ячейками и одной последовательной лампой.

Аккумулятор представляет собой множественное соединение вольтовых элементов. Однако недостатком последовательных соединений ячеек является то, что их внутренние сопротивления добавляют. Иногда это может быть проблематично. Например, если вы помещаете в свой автомобиль две 6-вольтовые батареи вместо обычной 12-вольтовой батареи, вы добавляете как эдс, так и внутренние сопротивления каждой батареи.


Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Недостатки последовательного подключения

Но, если ячейки противостоят друг другу, например, когда один помещается в устройство назад, общая э.д.с. меньше, так как это алгебраическая сумма отдельных ЭДС. Зарядное устройство: это два источника напряжения, соединенных последовательно с их противофазами. Ток течет в направлении большей э.д.с. и ограничен суммой внутренних сопротивлений. Примером такого подключения может служить зарядное устройство, подключенное к батарее. С. Чем батарея, для обратного тока через него. Соединены параллельно, а также подключены к сопротивлению нагрузки, общая э.д.с. такая же, как и отдельные ЭДС.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Но полное внутреннее сопротивление уменьшается, так как внутренние сопротивления параллельны. Таким образом, параллельное соединение может создавать больший ток. Параллельные комбинации часто используются для обеспечения большего тока. Выходное напряжение или напряжение на выходе источника напряжения, такого как аккумулятор, зависит от его электродвижущей силы и ее внутреннего сопротивления.

Выразите связь между электродвижущей силой и конечным напряжением в форме уравнения. Электродвижущая сила представляет собой разность потенциалов источника, когда ток не течет. Клеммное напряжение — это выход напряжения устройства, измеренный через его клеммы. Электродвижущая сила: — напряжение, создаваемое батареей или магнитной силой согласно закону Фарадея. Он измеряется в единицах вольт, а не ньютонов, и, таким образом, на самом деле не является силой. напряжение на клеммах: выходное напряжение устройства, измеренное через его клеммы. разность потенциалов: разность потенциальной энергии между двумя точками в электрическом поле; разность зарядов между двумя точками в электрической цепи; напряжение. Когда вы забыли выключить свет вашего автомобиля, они медленно тускнеют, когда батарея разряжается.


В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).


Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.


В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.


Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм 2 . Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем . По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.


В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Секция Физика

Номинация: Учебные проекты

Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Научный руководитель: Колегойда Е.А., учитель начальных классов

Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.

Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным .

Если подать напряжение питания 220В на концы L и N , то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Именно «звездой» делают разводку по квартире при монтаже розеток.

Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Цель моей исследовательской работы: показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.

Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.

Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

Исследования:

1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.

2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.

Полученные результаты и их оценка:

Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.

Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии ) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.

Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы

Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.

Первая помощь при поражении электрическим током.

Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.

Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами.

Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.


Вызови (самостоятельно или с помощью окружающих) «скорую помощь».

Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.

При отсутствии признаков жизни проведи сердечно-легочную реанимацию.

При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение.

Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца.

Освобождение пострадавшего от тока.

Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Сопротивление тела человека. От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.

Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.

Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.

Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.

    перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;

    надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;

    перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;

    предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат.

    главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники. Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;

    покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;

    не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;

    наиболее внимательно надо подойти к вопросу электробезопасности в помещениях, где обычно находятся дети;

    мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;

    поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;

    осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.

    Заземление бытовых приборов. Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки.

    Эксплуатация мощных потребителей.
    Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода.

    Электробезопасность во влажных помещениях. Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение.

    Использование инструмента и электроинструмента. Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение.

    Общие советы по безопасности:
    Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.

Что такое последовательное и параллельное соединение — [Простое руководство]

Последовательное соединение — это когда компоненты соединяются по единому пути. Параллельное соединение — это когда компоненты соединяются несколькими путями.

Существует три вида соединения электрической цепи или электронной схемы: последовательное соединение, параллельное соединение и последовательно-параллельное (комбинированная схема).

Два, которые встречаются чаще всего, самые простые: последовательное соединение, параллельное соединение.

Если мы возьмем, например, светодиодные фонари, их можно соединить как в параллельном, так и в последовательном соединении.

Последовательное соединение

Светодиоды, соединенные последовательно, соединены одним проводящим путем, поэтому один и тот же ток проходит через все компоненты, но напряжение теряется на каждом из светодиодов.

В последовательной цепи сумма напряжений, используемых каждым уникальным сопротивлением, эквивалентна напряжению источника.

При использовании источника питания с регулируемым током требуется последовательное соединение со светодиодной подсветкой.Например, 350 мА, 500 мА, 700 мА и 1050 мА.

Параллельное соединение

При параллельном подключении напряжение разделяется, и на каждый светодиод подается одинаковое напряжение.

Если вы используете схему, в которой последовательно соединены только светодиоды, это последовательное соединение, а если вы подключаете их параллельно, это называется параллельной схемой.

При использовании источника питания напряжения требуется параллельное соединение со светодиодной подсветкой.Например, 12В, 24В, 110В и 220В

Комбинированная цепь

Комбинированная схема использует комбинацию параллельных и последовательных соединений в одной и той же схеме.

Две лампы соединяются последовательным соединением, а две другие — параллельным соединением.

Последовательно-параллельный

Какое соединение использовать, зависит от того, какой источник питания вы используете.

Во избежание выхода светодиодов из строя необходимо использовать правильный тип подключения.

Давайте рассмотрим пример, чтобы упростить задачу.

Рассмотрим схему, состоящую из четырех светодиодных лампочек и 12-вольтовой батареи. Если провод ведет батарею к одной лампочке, к следующей лампочке, к следующей лампочке, к следующей лампочке, а затем обратно к батарее в одной непрерывной петле, говорят, что лампы соединены последовательно. Пример ниже.

Последовательное соединение

Но если каждая светодиодная лампа подключена к батарее в отдельной петле, говорят, что лампы подключены параллельно.

Параллельное соединение

Что произойдет, если один светодиод выйдет из строя при параллельном или последовательном подключении?

При параллельном подключении остальные светодиоды продолжают работать, даже если один из светодиодов перегорает. — Схема остается неизменной.

При последовательном соединении ток не может продолжаться, и светодиоды выключены.

Таким образом, если хотя бы один светодиод выходит из строя, цепь прерывается.Поврежденный светодиод больше не может проводить ток, поэтому все светодиоды в цепи выходят из строя.

Одна замечательная вещь в современных светодиодах заключается в том, что некоторые из них построены умно и защищены от этой проблемы, у них есть встроенный мост, который позволяет току течь через другие светодиоды, если один из них выходит из строя, поэтому ваши огни выиграли. не гаснет полностью при выходе из строя одного из светодиодов.

лампочек последовательно и параллельно — Научные проекты

Сбор информации:

Узнайте об электричестве, напряжении и токе.Прочтите книги, журналы или спросите профессионалов, которые могут знать, чтобы узнать, как соединительные цепи влияют на распределение электричества между различными устройствами. Следите за тем, откуда вы получили информацию. Ниже приведены образцы информации, которую вы можете найти:

Что такое электричество? Электричество — это поток электронов в проводнике, таком как медный провод. (Это почти как поток воды в трубе. Чтобы вода текла с одной стороны на другую, с одной стороны должно быть некоторое избыточное давление.

Что такое напряжение? Напряжение — это разница в давлении или концентрации электронов между двумя точками. Откройте водопроводный кран и попытайтесь остановить воду рукой. Вы увидите, что давление высокое. Это давление, которое заставляет воду выходить с высокой скоростью. Когда мы говорим об электричестве, это давление называется напряжением.

Что сейчас? Текущее количество электронов, текущих в секунду. Представьте себе широкую реку. Хотя вода движется медленно, каждую секунду мимо вас проходит большое количество воды.Теперь о шланге для воды, которым вы поливаете свой сад. Хотя вода внутри шланга движется очень быстро, общее количество воды, проходящей через одну точку шланга, невелико. Заполнение бассейна одним шлангом может занять несколько дней; в то время как медленный поток воды в большой реке может заполнить тот же бассейн за несколько секунд. Таким образом, поток воды в реке высокий, а в шланге — низкий.

Что такое нагрузка? Нагрузка или резистор — это все, что потребляет электричество.Например, лампа в электрической цепи — это нагрузка.

Что такое параллельная цепь? Параллельная схема имеет более одного резистора (все, что использует электричество для работы) и получила свое название от наличия нескольких (параллельных) путей для движения. Заряды могут перемещаться по любому из нескольких путей. Если один из элементов в цепи сломан, заряды не будут перемещаться по этому пути, но другие пути будут продолжать пропускать заряды через них. Параллельные цепи встречаются в большинстве бытовых электропроводок.Это сделано для того, чтобы свет не переставал работать только из-за того, что вы выключили телевизор.

Что такое последовательная цепь?

Цепи серии

иногда называют токовой или гирляндной связью. Ток, протекающий в последовательной цепи, должен проходить через каждый компонент в цепи. Следовательно, все компоненты в последовательном соединении проводят одинаковый ток.

Преимущества и недостатки различных схем расположения ламп в цепи

В сегодняшней статье о Electricity я объясню, как определить, расположены ли лампы последовательно или параллельно, прежде чем обсуждать их соответствующие преимущества и недостатки с помощью вопроса.

Читайте также

  1. Руководство по легкому решению вопросов, связанных с электрическими проводниками и изоляторами
  2. Применение концепций последовательной и параллельной цепей в игре
  3. Загорится ли лампочка: более пристальный взгляд на расположение проводов в лампочке

Ранее мы обсуждали расположение проводов в лампочке и ее эффекты.

Помимо понимания этой концепции, для учащихся также важно уметь определить различных расположений лампочек в электрической цепи — последовательно и параллельно.

После этого они должны понять, что расположение ламп в определенном порядке имеет свои преимущества и недостатки .

Вопрос

Схемы контура A и контура B

Из диаграмм видно, что и в цепи A, и в цепи B по 2 батареи и по 2 лампочки.

Единственное отличие (кроме количества переключателей) — положение лампочек в цепи.Когда в цепи две лампочки, они могут быть расположены последовательно или параллельно.

Тем не менее, многие студенты часто имеют неправильные представления об определении лампочек «последовательно» и «параллельно». Они имеют тенденцию связывать лампочки, расположенные последовательно, чтобы они были расположены рядом друг с другом, и лампочки, расположенные параллельно, чтобы одна лампочка располагалась сверху / снизу другой лампы, что неточно.

Когда лампочки в цепи расположены последовательно, существует только одного пути, по которому может проходить электричество.Когда лампочки расположены параллельно, в цепи имеется на больше, чем на один путь, по которому может проходить электричество.

Следовательно, чтобы правильно определить расположение лампочек в цепи, учащиеся должны определить путей , по которым может проходить электричество в цепи.

Контур A

На диаграмме выше я обрисовал красным, как электричество течет от одного конца к другому концу батареи для контура A.Мы видим, что есть только один путь, по которому электричество может проходить через лампочки в контуре A. Таким образом, лампочки в контуре A расположены последовательно.

Контур B

На двух диаграммах выше я обрисовал зеленым и желтым два возможных пути, по которым электричество может проходить от одного конца батареи к другому. Из этих диаграмм видно, что существует несколько возможных путей прохождения электричества через лампочки.Таким образом, лампы в контуре B расположены параллельно.

Ответ по части (а)

(a) В чем разница между расположением лампочек в контурах A и B?

Лампы в контуре A расположены последовательно, а лампы в контуре B — параллельно.

Преимущества и недостатки последовательного или параллельного расположения ламп

Теперь, когда мы получили лучшее понимание того, что означает установка лампочек последовательно и параллельно, давайте обсудим преимущества и недостатки этих двух схем.Есть четыре точки сравнения между последовательным и параллельным расположением лампочек:

  1. Яркость лампы
  2. Срок службы батарей
  3. Независимое управление лампочками
  4. Загораются ли по-прежнему другие лампы в цепи, когда одна лампа перегорает?

Сравнение 1: Яркость лампы

Количество батарей в цепи определяет количество электричества, протекающего по каждому пути.Кроме того, яркость лампочки соответствует количеству получаемого электричества. Имея в виду вышесказанное, давайте теперь вместе определим яркость лампочек. Примечание: 1 батарея соответствует 1 единице электроэнергии.

Серия

В схеме выше две батареи. Это означает, что по красному пути проходят 2 единицы электроэнергии. Поскольку электричество проходит через обе лампы A и B, две лампы поровну распределяют 2 единицы электричества.2 единицы электричества ÷ 2 лампочки → каждая лампочка получает 1 единицу электричества. Поскольку яркость лампочки соответствует количеству получаемого электричества, каждая лампочка в этой последовательной цепи имеет яркость 1 единицу.

Параллельный

Напомним, что количество батарей в цепи определяет количество электричества, протекающего через каждого пути ]

Сравнение яркости лампочек

Лампы в последовательной цепи имеют яркость 1 единицу, а лампы в параллельной цепи имеют яркость 2 единицы.

Таким образом, мы можем видеть, что если бы все другие переменные оставались постоянными, лампы, расположенные параллельно, ярче, чем лампы, расположенные последовательно.

Сравнение 2: Срок службы батарей

Серия

Каждая лампочка в приведенной выше схеме потребляет 1 единицу электроэнергии. Таким образом, в общей сложности батареи должны производить 2 единицы электроэнергии для последовательно расположенных лампочек.

Параллельный

Каждая лампочка в приведенной выше схеме потребляет 2 единицы электроэнергии.Таким образом, всего батареям необходимо производить 4 единицы электроэнергии для параллельно расположенных лампочек. Сравнение срока службы батарей Батареи в параллельной цепи должны производить больше единиц электроэнергии, чем батареи в последовательной цепи. Таким образом, мы можем сделать вывод, что батареи в цепи с параллельно расположенными лампочками будут разряжены быстрее и будут иметь меньший срок службы.

Сравнение 3: Независимое управление лампами

Серия

Когда переключатель 1 разомкнут, имеется обрыв цепи.Электричество не может проходить через обе лампы A и B, что не позволяет этим лампочкам загораться.

Параллельный

В зависимости от того, в какой части цепи установлены переключатели, лампочки могут управляться независимо.

В случае вышеупомянутой цепи, когда переключатель 2 разомкнут, имеется разрыв цепи с лампочкой C.

Электричество не проходит через лампочку C, поэтому лампочка C не загорается.Однако, поскольку переключатель 3 замкнут, остается замкнутая цепь с лампочкой D. Электричество может проходить через лампочку D, позволяя лампочке D загораться.

Сравнение степени контроля

Из вышесказанного видно, что лампочки, расположенные параллельно, могут управляться независимо друг от друга, тогда как последовательно включенные лампы всегда будут включаться или выключаться вместе.

Сравнение 4: загораются ли по-прежнему другие лампы в цепи, когда одна лампа перегорает

Позвольте мне вкратце рассказать, что означает перегорание лампы.

Нить накала — это часть лампы, которая светится, когда через нее проходит электричество, в результате чего лампа загорается. Когда слишком много электричества проходит через нить накала, она перегревается и плавится, что приводит к разрыву.

Если в лампах есть оплавленная нить, значит, они оплавились. Из-за разрыва нити накала электричество не может проходить через нити перегоревших лампочек, что не позволяет им загореться. Как одна лампа с предохранителем повлияет на другие лампы в цепях? Исход зависит от того, как в цепи расположены лампочки.

Серия

Когда лампочка А перегорает, возникает разрыв цепи. Электричество не сможет проходить через лампочку A и, следовательно, лампочку B. Таким образом, лампочка B не загорится.

Параллельный

Когда лампочка C перегорела, остается замкнутая цепь с лампочкой D. Электричество может проходить через лампочку D, позволяя лампочке D загораться.

Сравнение результата при перегорании одной из лампочек

Когда одна из ламп в параллельном соединении перегорает, другие лампочки в цепи все еще могут загореться.С другой стороны, когда одна из лампочек в последовательном соединении перегорает, другие лампочки в цепи не загораются. С учетом приведенного выше анализа, давайте теперь ответим на часть (b). Поскольку лампы в контуре B расположены параллельно, мы назовем преимущества и недостатки параллельного подключения лампочек.

Ответ по части (b)

(b) Назовите преимущества и недостатки использования контура B для подключения лампочек.
  1. Лампы, подключенные по контуру B, будут ярче, и лампочками можно будет управлять независимо.[Преимущество]
  2. Кроме того, когда одна лампочка перегорает, по-прежнему остается замкнутая цепь с другими лампами в цепи B. Электричество все еще может течь через другие лампы, позволяя им загореться. [Преимущество]
  3. Однако батареи в контуре B будут разряжены быстрее. [Недостаток]

Что мы узнали сегодня?

  1. Когда в цепи две или более лампочки, они могут быть расположены последовательно или параллельно.
  2. Когда лампочки расположены последовательно, есть только один путь, по которому электричество может проходить через лампочки.
  3. Когда лампочки расположены параллельно, существует более чем одного возможных путей, по которым электричество может проходить через лампочки.
  4. У каждой компоновки есть свои преимущества и недостатки.

В следующей статье я расскажу больше о проводниках и изоляторах электричества.

Последовательные и параллельные схемы

Последовательные и параллельные схемы

Схемы и резисторы

Прежде чем мы рассмотрим различия между параллельными и последовательными цепями, мы должны сначала узнать о сопротивлении из-за его различающей роли в двух типах цепей.

Сопротивление — это то, насколько объект сопротивляется движению электронов. Он измеряется в омах, представленных на электрических схемах как Ω. Все материалы обладают некоторым электрическим сопротивлением, поэтому они нагреваются, когда через них проходит ток. Думайте о резисторах как о трубах, которые замедляют поток воды, ограничивая количество воды, которое может проходить через них за один раз. Если труба посередине тоньше, то с другого конца будет вытекать меньше воды. Вот что делают резисторы и что такое сопротивление.Проходит меньше электронов.

Последовательные цепи

Итак, какую роль сопротивление играет в последовательных и параллельных цепях? Обычно, когда в цепи требуется резистор, которого либо нет, либо нет под рукой, электрик может использовать меньшие резисторы в комбинации. Последовательная схема — это конструкция, в которой резисторы выровнены встык; ток через все резисторы остается неизменным. Общее сопротивление цепи равно количеству резисторов в последовательной цепи.

Поскольку ток протекает по единственному пути, схема ограничена тем, сколько нагрузок она может эффективно питать. Например, одна лампочка в последовательной цепи будет ярко и красиво светить. Добавление второй лампочки уменьшает количество доступного тока, и свет в обеих лампах будет тускнеть. Третья загрузка заставит свет погаснуть еще больше.

Чем больше нагрузок в последовательной цепи, тем меньше ток для каждой нагрузки.

Параллельные схемы

Однако в параллельной цепи такой проблемы нет.Резисторы в параллельной цепи расположены бок о бок, их головы и хвосты обращены в одном направлении. Ток прерывается и проходит через другой резистор, снова подключаясь к другому концу цепи. В параллельной цепи напряжение остается прежним.

Общее сопротивление в параллельной цепи можно найти, сложив обратные величины отдельных резисторов, а затем перевернув общее сопротивление.

Чтобы узнать больше о последовательных и параллельных цепях, прочтите эту информативную публикацию

Опубликовано в блоге | Tagged цепь, параллельная цепь, резистор, последовательная цепь

Что такое последовательные и параллельные схемы?

Светильники можно подключать последовательно или параллельно.Все светильники, соединенные последовательно, используют одну и ту же цепь, в то время как огни, соединенные параллельно, имеют свою собственную схему.


Краткий обзор самой важной информации:


  • последовательная цепь: все светильники подключены к одной цепи
  • тандемная последовательная цепь: тип последовательной цепи, в которой два фонаря подключены к одному балласту
  • параллельная цепь: каждый свет имеет свою собственную цепь
  • двойная параллельная цепь: тип параллельной цепи, при которой два источника света соединены параллельно (один индуктивный и один емкостный).


Вверху: последовательная схема с двумя резисторами;
Внизу: параллельная цепь с двумя резисторами

По Saure — Собственная работа, CC0, Ссылка

Что такое последовательная цепь?

В последовательной цепи все компоненты подключены к одной и той же единой цепи.Это означает, что через все подключенные компоненты протекает один и тот же ток, и они разделяют ток. Вы можете подключить столько компонентов, сколько позволяет блок питания.

Очень распространенный пример последовательной цепи — гирлянда огней. Если, например, вы подключите цепочку из десяти ламп к розетке на 230 В, каждая лампочка получит 23 вольта. Напряжение равномерно распределяется между всеми компонентами. Если загорится одна лампочка, не загорится вся цепочка огней.

Цепь серии

для газоразрядных ламп

Если газоразрядные лампы имеют одинаковую номинальную схему, их можно включать последовательно.Убедитесь, что используете правильный балласт, чтобы не было превышено ограничение по току.

Схема серии

для ламп накаливания

Номинальная схема для ламп накаливания также должна быть идентична для их последовательного соединения.

Что такое тандемный контур?

Тандемная цепь — это тип последовательной цепи. К одному балласту подключаются два источника света, например люминесцентные лампы. Однако для каждой трубки по-прежнему нужен свой стартер.Стартер должен быть пригоден для использования в тандемной цепи. Подходящие стартеры содержат в названии продукта обозначение «серия» или аббревиатуру SER.

Некоторые из имеющихся у нас пускателей, которые подходят для последовательных / тандемных цепей, включают:

Одиночные пускатели

не подходят для использования с последовательными / тандемными цепями, потому что они не работают с общим сетевым напряжением.

Тандемная схема для светодиодов

Если вы хотите перейти от люминесцентных ламп к светодиодным лампам с тандемными цепями, необходимо изменить подключение.Проконсультируйтесь по этому поводу со специалистом.

Что такое параллельная цепь?

Параллельная цепь соединяет два или более биполярных компонента. Важно соединять друг с другом только одинаковые полюса.

Каждый свет в параллельной цепи имеет свою собственную цепь. Отдельные токи складываются в общий ток. Напряжение для каждого светильника одинаковое. В отличие от последовательной цепи, если одна лампа не работает в параллельной цепи, другая лампа все равно загорается.

Параллельный контур для газоразрядных ламп

Газоразрядные лампы можно подключать параллельно только косвенно. Требуемый балласт можно подключить последовательно. Затем лампу и балласт можно соединить параллельно.

Что такое Duo Circuit?

Двойная цепь соединяет две ветви люминесцентной лампы. Одна ветвь индуктивная и состоит из обычного балласта и трубки. Другая ветвь является емкостной и также состоит из обычного балласта и трубки, а также дополнительного конденсатора для коррекции коэффициента мощности.Конденсатор включен последовательно с балластом. Используя двойную схему, можно избежать чрезмерных токов.

Определение: что такое конденсатор?

Конденсатор — это электронный компонент, который может накапливать энергию. Поэтому свет может гореть некоторое время даже после выключения.

Освещение от Any-Lamp

Any-Lamp предлагает широкий ассортимент светодиодного освещения от различных высококачественных брендов.Благодаря энергоэффективному светодиодному освещению вы можете сэкономить до 70% затрат на электроэнергию .

Ознакомьтесь с нашими продуктами для светодиодного освещения

Каковы преимущества и недостатки последовательного и параллельного подключения?

Параллельный : Преимущества заключаются в том, что, если бы электрические лампочки были устройствами вывода, соединенными в параллельном , если бы одна лампочка сломалась, другие продолжали бы работать. Кроме того, яркость лампочек была бы больше, чем яркость лампочек серии . Недостатки заключаются в том, что в некоторых случаях может быть опасность пожара.

Нажмите, чтобы увидеть полный ответ


В этом плане каковы преимущества параллельного подключения?

Постоянное напряжение. Одно из преимуществ параллельных цепей заключается в том, что они гарантируют, что все компоненты в цепи будут иметь такое же напряжение, что и источник. Например, все лампочки в гирлянде имеют одинаковую яркость.

Можно также спросить, каковы плюсы и минусы последовательных и параллельных схем? Преимущества и недостатки ПОСЛЕДОВАТЕЛЬНОЙ и ПАРАЛЛЕЛЬНОЙ схемы

  • Ток в.цепь увеличивается, если больше.
  • Ячейки в серии нет. длиться долго.
  • Все компоненты схемы. контролируются одним.
  • Если еще лампочки есть. добавлено сопротивление.
  • Если одна из лампочек есть. сгорели, остальные лампочки.
  • Напряжения нет. увеличить или уменьшить.
  • Последние параллельные ячейки. дольше.
  • Электрический ток в.

Впоследствии еще можно спросить, в чем недостатки последовательного соединения?

Первый недостаток заключается в том, что если один из компонентов в цепи серии выходит из строя, то все компоненты в цепи выходят из строя из-за разрыва цепи.Второй недостаток заключается в том, что чем больше компонентов в цепи серии , тем больше сопротивление цепи *.

В чем преимущество последовательного соединения ячеек?

Преимущества из ячеек серии . I. Ячейки , соединенные в серию , дают большее результирующее напряжение, чем отдельные ячейки . Напряжение увеличивается, если количество ячеек увеличивается.

Разница между последовательной и параллельной цепями (со сравнительной таблицей)

Решающее различие между последовательной и параллельной цепью существует на основе ориентации компонентов в цепи.В последовательной схеме несколько компонентов соединяются каскадом, т.е. хвост одного компонента соединяется с головкой другого.

В параллельной схеме несколько компонентов соединены в ориентации голова к голове и хвост к хвосту.

Содержание: серия против параллельной цепи

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение


Таблица сравнения

Основа для сравнения Последовательная цепь Параллельная цепь
Ориентация компонентов Компоненты соединяются друг за другом. Здесь компоненты соединены голова к голове и хвост к хвосту.
Ток Одинаковый ток течет через все компоненты в цепи. Через каждый компонент цепи протекает разный ток.
Напряжение На каждом компоненте существует разная разность потенциалов (напряжение). Разность потенциалов (напряжение), существующая на различных компонентах цепи, одинакова.
Количество путей Один Несколько (зависит от количества компонентов).
Неисправность Неисправность в одном из компонентов цепи приводит к нарушению работы всей цепи. Неисправность отдельного компонента не мешает работе остальной части цепи.
Устранение неисправностей Сложно. Довольно просто.
Эквивалентное сопротивление Эквивалентное сопротивление всегда больше, чем максимальное значение сопротивления в последовательном соединении. Эквивалентное сопротивление всегда меньше, чем у любого из отдельных резисторов, подключенных параллельно.

Определение последовательной цепи

В последовательной цепи компоненты в цепи подключаются один за другим или, можно сказать, каскадно. Более конкретно, мы можем сказать, что последовательная схема позволяет соединение таким образом, что хвост одного компонента напрямую соединяется с головкой другого и так далее, что соответствует двум концам батареи.

На рисунке ниже показано последовательное соединение 4 резисторов в цепи:

Как мы можем ясно видеть, что компоненты соединены каскадом в одну линию, таким образом, одинаковый ток, я буду течь через все резисторы в последовательной сети. Между тем между различными резисторами схемы существует разная разность потенциалов.

Это можно понять таким образом, что если одинаковый ток течет между всеми резисторами, то падение на каждом резисторе будет зависеть от сопротивления, предлагаемого каждым резистором в цепи.Таким образом, можно сказать, что в последовательной цепи из-за наличия единственного пути один и тот же ток течет через все компоненты. Таким образом, возникает различная разность потенциалов (напряжение) на каждом компоненте.

Определение параллельной цепи

В параллельной схеме компоненты расположены таким образом, что головки каждого компонента соединены вместе с общей точкой. Пока хвосты соединены между собой еще одной общей точкой. Тем самым образуя несколько параллельных ветвей в цепи.На рисунке показано параллельное соединение 4 резисторов в цепи:

Как мы видим здесь, параллельная схема имеет 4 ветви, и через каждую ветвь протекает разный ток. Но поскольку ветви имеют общие точки, таким образом, одинаковый потенциал существует в двух точках по отношению к двум концам потенциала батареи.

Это также можно понять, если на каждом резисторе схемы существует одинаковая разность потенциалов.Тогда фактический ток, протекающий через каждую ветвь, будет автоматически зависеть от сопротивления каждого резистора в цепи.

Таким образом, мы можем сказать, что из-за наличия нескольких ветвей в цепи общий ток от источника питания делится на несколько ветвей, поскольку напряжение на точках одинаково.

Ключевые различия между последовательной и параллельной схемами

  1. Компоненты в последовательной цепи расположены по единственному пути от одного конца источника питания к другому.Однако несколько компонентов в параллельной схеме расположены в множественных трактах по отношению к двум концевым выводам батареи.
  2. В последовательной цепи общий ток протекает через все компоненты цепи. В параллельной цепи через каждую параллельную ветвь цепи протекает разное количество тока.
  3. В последовательной цепи на каждом компоненте цепи присутствует различное напряжение . В то время как в параллельной цепи одинаковое напряжение присутствует на нескольких компонентах в цепи.
  4. Ошибка в одном из компонентов последовательной цепи вызывает помехи в работе всей цепи. В отличие от неисправности одного компонента в параллельной сети, не мешает функционированию другой части схемы.
  5. Обнаружение неисправности в случае последовательной цепи сложно, но довольно легко в параллельной цепи.
  6. Эквивалентное сопротивление в случае последовательной цепи всегда больше, чем максимальное значение сопротивления в последовательном соединении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *