Акб устройство: Устройство аккумуляторной батареи | Интернет-магазин аккумуляторов в Петербурге АКБ Энерго

Содержание

Устройство автомобильного аккумулятора. Характеристики и принцип работы.

Стандартный автомобильный аккумулятор состоит из шести 2-вольтовых элементов, что дает на выходе 12 вольт. Каждый элемент состоит из свинцовых решетчатых пластин, покрытых активным веществом и погруженных в электролит. Отрицательные пластины покрыты мелкопористым свинцом, а положительные двуокисью свинца.

Когда к АКБ подключают нагрузку, активное вещество вступает в химическую реакцию с сернокислотным электролитом, вырабатывая электрический ток. На пластинах при этом осаждается сульфат свинца, и электролит, соответственно, истощается. При зарядке эта реакция проходит в обратном направлении, и способность аккумулятора давать ток восстанавливается. То есть принцип работы аккумуляторных батарей основывается на химических реакциях между свинцом и диоксидом свинца в сернокислотной среде, в результате которых вырабатывается электричество.

Показатели АКБ

Наиболее существенными у автомобильных аккумуляторов являются четыре следующих показателя:

  1. Емкость, выраженная в ампер-часах.
    Она характеризует способность АКБ давать определенный ток в течение некоторого времени. Например, ёмкость 40 ампер-час означает, что аккумулятор может давать ток в 1 ампер в течение 40 часов (или в 2 ампера в течение 20 часов и т.д.).
  2. Характеристики стартовых токов, что наиболее востребовано у европейских марок автомобилей и позволяет завести машину при любых погодных условиях (высокие показатели тока холодной прокрутки).
  3. Резервная емкость. Этот параметр показывает интервал времени (в минутах), в течение которого аккумулятор способен давать ток 25 А (т.е. в течение какого времени он сможет подменять собой вышедший из строя генератор).
  4. Габаритные размеры, полярность. Для определения полярности на выводных клеммах аккумулятора проставляют знаки «+» и «-». При установке аккумуляторной батареи на автомобиль отрицательную клемму присоединяют к «массе», а положительную — в цепь.

Свинцово-кислотный аккумулятор, кроме видимой части, а это корпус аккумулятора, крышка, клеммы, индикатор заряда, имеет сложную внутреннюю конструкцию. Внутри аккумулятора находятся электроды (положительные и отрицательные), представляющие собой свинцовые решётки, и разделенные изоляторами (сепараторами), которые погружены в электролит.

Сепараторы предохраняют пластины (решётки) от соприкосновения друг с другом. Если будет соприкосновение разноименных пластин, произойдет короткое замыкание и аккумулятор не будет действовать. Сепараторы, не допуская короткого замыкания, в тоже время должны пропускать ток через электролит. Материалом для сепараторов служит, как правило, микропористая пластмасса.

Электроды погружены в химическое вещество электролит, состоящий из разбавленной дистиллированной водой серной кислоты (h3SO4). При разряжении аккумулятора активно расходуется серная кислота, в результате чего образуется вода. С образованием воды, общая плотность электролита снижается.

При зарядке аккумуляторной батареи, все происходит в обратном порядке. Вода «используется» на создание серной кислоты, соответственно общая плотность электролита повышается. Срок службы автомобильного аккумулятора и его характеристики напрямую зависят от качества серной кислоты и воды, входящих в состав электролита.

Электроды или решетки, изготавливаются из свинцовых сплавов. Эти сплавы содержат в себе такие компоненты, как сурьма, кальций, олово, наделяющие сплав определенными свойствами, и защищающие свинец от коррозии. Состав сплава свинца, а также форма решетки электрода, значительно влияют на характеристику батареи, например, мощность кислотно-свинцового аккумулятора или пусковой ток аккумулятора. Решетка заполнена активной пастой, которую изготавливают из свинцово-оксидного порошка. Состав свинцово-оксидного порошка и свойства пасты влияют на свойства аккумулятора

Корпус аккумулятора обычно изготавливают из ударопрочного, термостойкого пропилена.

Автомобильный аккумулятор (АКБ). Общее устройство аккумулятора

Неотъемлемой частью каждого автомобиля является аккумуляторная батарея, которая предназначена для питания электрических цепей управления и сервиса бортовой сети, когда двигатель автомобиля не работает. Но самое главное,- приводить в действие стартер, во время заводки авто. Аккумуляторная батарея включается в буфер с автомобильным генератором и во время движения, или просто работы двигателя, является нагрузкой для генератора. Но как только вся совокупная электрическая нагрузка превысит мощность выдаваемую генератором, в действие «вступает» аккумулятор и поддерживает напряжение бортовой сети на уровне 12 вольт.

Обычно для автомобилей применяются кислотно-свинцовые аккумуляторы, которые имеют напряжение 12 вольт и различаются только по емкости заряда. Автомобильный аккумулятор должен обладать несколькими важными параметрами.

  1. Иметь малое внутренне падение напряжения
  2. Иметь небольшой саморазряд во время эксплуатации
  3. Иметь способность выдавать большие токи
  4. Иметь небольшие габариты и минимальное обслуживание.

Всем этим параметрам и соответствует кислотно-свинцовый аккумулятор, об устройстве которого поговорим ниже.

 

Устройство аккумулятора автомобиля

Аккумулятор, с номинальным напряжением в 12 вольт состоит из (обычно 6) независимых друг от друга аккумуляторов (банок) меньшего напряжения (2 вольта), собранных в одном корпусе и соединенных последовательно между собой.

  1. Банка аккумулятора представляет собой набор разно полюсных пластин, которые изолированы друг от друга кислотоупорными сепараторами.
  2. Корпус аккумулятора изготавливается из кислотоупорных пластмасс или эбонита. В корпусе имеется отсеки для установки банок аккумулятора.
  3. Полюсная пластина изготавливается из свинца и имеет вид решетки, в ячейки решетки впрессовывается специальный состав (активное вещество) пористой структуры, для увеличения площади соприкосновения с электролитом. Активное вещество изготавливается из свинцового порошка, с добавлением серной кислоты. В отрицательные пластины добавляется еще сернокислый барий. Во время формирования аккумулятора пластины заряжаются, и активное вещество в плюсовых пластинах превращается в диоксид свинца, а в отрицательных – в губчатый свинец.
  4. Электролит заливается в банки аккумулятора и служит для движения заряженных частиц от полюса к полюсу. Изготавливается из серной кислоты и очищенной воды (дистиллированной).

 

Принцип работы аккумуляторной батареи

 

Физика процесса работы аккумулятора очень проста, при подключении нагрузки, в аккумуляторе начинается движение заряженных частиц, что приводит к появлению тока. В условиях заряда от генератора или зарядного устройства, напряжение заряда превышает номинальное значение напряжения аккумулятора, и движение частиц происходит в обратном направлении.

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

устройство, разновидности, назначение, принцип работы

Аккумулятор представляет собой устройство, которое накапливает энергию в химической форме при подключении к источнику постоянного тока, а затем отдает ее, преобразуя в электричество. Его используют многократно за счет способности к восстановлению и обратимости химических реакций. Разряжается – снова заряжают. Применяются аккумуляторы в качестве автономных и резервных источников питания для электротехнического оборудования и различных устройств.

Устройство аккумулятора

В автомобилях обычно применяют свинцово-кислотные аккумуляторы. Рассмотрим их устройство.

Все элементы располагаются в корпусе, который изготавливают из полипропилена. Корпус состоит из емкости, разделенной на шесть ячеек, и крышки, оснащенной дренажной системой для стравливания давления и отвода газа. На крышку выводится два полюса (клеммы) – положительный и отрицательный.

Содержимое каждой ячейки представляет собой пакет из 16 свинцовых пластин, полярность которых чередуется. Восемь положительных пластин, объединенных бареткой, являются плюсовым электродом (катодом), восемь отрицательных – минусовым (анодом). Каждый электрод выводится к соответствующей клемме аккумулятора.

Пакеты пластин в ячейках погружены в электролит – раствор серной кислоты и воды плотностью 1,28 г/см3.

Между пластинами электродов, для предотвращения замыкания, вставлены сепараторы – пористые пластины, которые не препятствуют циркуляции электролита и не взаимодействуют с ним.

Отдельная пластина электрода – это решетка из металлического свинца, в которую впрессован (намазан) реагент. Активная масса катода – диоксид свинца (PbO2), анода – губчатый свинец.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит.

Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.

Из видео Вы сможете более подробно узнать, как работает аккумулятор:

Читайте также, как правильно выбрать аккумулятор по емкости, особенности литий-ионных и никиль-кадмиевых аккмуляторов

Устройство аккумуляторов | Эко Технологии

Устройство стартерных аккумуляторов


О стартерных аккумуляторах

Стартерные аккумуляторные батареи представляют собой вторичный источник электроэнергии. Поэтому купить стартерные аккумуляторы означает получить батареи, способные полностью восстанавливаться после нового электрического заряда. Как правило, заказать стартерные аккумуляторы автолюбители стремятся для использования главной функции данных аппаратов – обеспечение запуска двигателей. Однако подобрать стартерный аккумулятор можно и для  реализации его второй функции: это прекрасный аварийный источник питания при выходе из строя генератора. Современная промышленность позволяет купить стартерные аккумуляторы, которые работают по принципу превращения при заряде электрической энергии в химическую и при разряде обратного превращения – из химической энергии в электрическую. В результате, можно заказать стартерные аккумуляторы, в которых активная масса как отрицательного, так и положительного электродов преобразуется в сульфат свинца. При этом сегодня потребитель имеет возможность подобрать стартерные аккумуляторы емкостью от 36 до 225 А/ч.

Конструкция аккумулятора

Аккумулятор — химический источник тока, который преобразует химическую энергию в электрическую и накапливает ее. Стандартная 12-вольтовая автомобильная аккумуляторная батарея выполнена из шести последовательно соединенных между собой блоков разноименно заряженных пластин, каждый из которых и представляет собой простейший аккумулятор с выходным напряжением около 2 вольт. Положительно заряженная пластина (электрод) представляет собой свинцовую решетку с активной массой из двуокиси свинца (PbO2), а электрод со знаком минус — решетку с активной массой из губчатого свинца (Pb). Полублоки разноименно заряженных пластин вставляются друг в друга. Во избежание возникновения короткого замыкания между пластинами, их разделяют пористыми сепараторами из изоляционного материала. Собранные блоки помещаются в корпус и заливаются электролитом (раствором серной кислоты плотностью 1.27-1.29 г/см3). Полюса (баретки) крайних элементов соединяются с расположенными снаружи корпуса контактными выводами — борнами.

Аккумулятор состоит из следующих основных частей:
  • Моноблок  — это корпус аккумулятора, служащий резервуаром для электролита. Современные аккумуляторы и аккумуляторные батареи имеют полипропиленовые или эбонитовые корпуса.  Эбонитовый корпус характерен для аккумуляторов российского производства. Внутри моноблок любой аккумуляторной батареи разделен на ячейки (три или шесть, в зависимости от напряжения батареи- 6 В либо 12 В) для отдельных блоков пластин.
  • Крышка — закрывает межэлементные соединения аккумулятора и приваривается к корпусу. В обслуживаемых и малообслуживаемых аккумуляторах в крышке могут располагаться индикатор уровня плотности электролита (косвенно свидетельствующий о степени заряженности того аккумулятора, в банке которого индикатор установлен) и отверстия для контроля уровня и доливки электролита, закрываемые пробками. Для того, чтобы избежать повышения давления внутри закрытого корпуса в крышке (или в пробках) выполнены специальные газоотводные каналы. В современных аккумуляторах газоотводные каналы имеют форму лабиринта, позволяющего задержать внутри корпуса капли электролита, уносимые газом, и возвратить их в электролит. Тем самым с одной стороны устраняется выход во внешнюю среду вредных кислотных испарений, а с другой — предотвращается потеря электролита. В аккумуляторах с эбонитовыми корпусами общая крышка отсутствует, ее роль выполняет мастика, которой заливаются межэлементные перемычки.
  • Пластины —  представляют собой свинцовые решетки с нанесенной на них активной массой. Химическая реакция между активной массой и электролитом аккумулятора происходит на поверхности частиц активной массы, поэтому ее делают пористой, чтобы материал хорошо пропитывался электролитом, и в реакции участвовал его максимальный объем.
  • Сепараторы – диэлектрическая прослойка в аккумуляторе, необходимая для предотвращения короткого замыкания между разноименно заряженными пластинами. Современные сепараторы изготавливают из микропористой пластмассы (мипласта) в виде конверта.
    Преимущества конверт-сепаратора
    • повышает надежность аккумуляторных батарей, так как стекающая активная масса  остается внутри конверта;
    • небольшие габаритные размеры, так как пластины установлены на дне моноблока.
  • Соединительные выводы (борны) – выходящие наружу аккумулятора электрические контакты, сделанные из свинца и имеющие стандартные размеры.
По технологии изготовления аккумуляторы бывают:
  • Малосурьмянистые (Pb) аккумуляторы – электролит жидкий.
  • Кальцивые – в положительные и отрицательные пластины добавляется кальций, электролит жидкий.
  • Кальцево-серебряные (Са/Аg9) – в пластины добавляют серебро и кальций, электролит жидкий.
  • AGM (гелевые) – аккумуляторные пластины находятся не в жидком электролите, в загустевшем электролите — геле.
Стандарты производителей
  • Европейский стандарт аккумуляторов  DIN(EN) —  обычные клеммы – А или плоские клеммы – D.
  • Азиатский стандарт аккумуляторов JIS — обычные клеммы расположены на крышке – А или тонкие клеммы – В.
  • Американский стандарт аккумуляторов ССА —  клеммы вкручивающиеся – G.
Основные типы конструкций аккумуляторных батарей

Обслуживаемые аккумуляторы –  из-за добавления в пластины таких аккумуляторов сурьмы, происходит разложение электролита при низком напряжении, вода испаряется и возникает необходимость ее доливать. Долив воды в аккумулятор осуществляется в отверстия на крышке, закрытые пробками. Малообслуживаемые аккумуляторы – в пластины аккумуляторов вместо сурьмы добавляется кальций, что снижает газовыделение в аккумуляторах, а следовательно и скорость выкипания воды. Необслуживаемые аккумуляторы – конструктивно сделаны так, чтобы срок выкипания воды превышал срок службы самой батареи. В результате, необслуживаемым аккумуляторам не требуется контроль уровня электролита, что делает ее самой легкой в эксплуатации.

Устройство аккумуляторной батареи

 На легковых машинах в качестве стартерных используются свинцово-кислотные автомобильные аккумуляторы. Строение аккумуляторных батарей постоянно меняется и становится лучше.

 Схема аккумуляторной батареи

 Строение каждого аккумулятора состоит из 6 последовательно соединенных аккумуляторов, объединенных в едином корпусе. Сам корпус делают из пропилена, который является стойким к кислоте и абсолютно не проводит ток. Отдельный аккумулятор объединяет чередующиеся электроды со знаками плюс и минус, покрытые слоем активной массы. Пластмассовый сепаратор изолирует пластины противоположной полярности.

 Электроды производят из свинцового сплава. В нынешних аккумуляторных батареях электроды «+» и «-«производятся из свинцово-кальциевого сплава. У такого типа АКБ низкий уровень саморазряда, и самый небольшой расход воды (1 г/Ач). Это дает возможность совсем не добавлять воду за время использования – это необслуживаемый аккумулятор.

 Редко можно встретить более недорогую конструкцию, так называемую гибридную аккумуляторную батарею. В ней  электроды со знаком»+» свинцово-сурмяные, а со знаком «-» – свинцово-кальциевые. В таких акб расходуется воды в 1,5-2 раза больше кальциевой батареи, но им также не нужно обслуживание.

 Чтобы увеличить стойкость электродов не подвергаться ржавчине в свинцово-кальциевый сплав может добавляться серебро и олово.

 Электроды выглядят в виде решетки. Технологии производства  электродов с разными полюсами различны. Решетка отрицательных электродов по технологии Expanded metal изготавливается путем просечки свинцового листа со следующей растяжкой.

 При изготовлении положительных электродов могут применять несколько технологий. Самая лучшая технология Power Frame. Каждый электрод Power Frame имеет специальную опорную раму и внутренние жилки особой направленности, в итоге получается высокая жесткость и самое малое линейное расширение. Самые несложные электроды, произведенные по технологии Power Pass и Chess Plate.

 Электроды помещены в специальный электролит, в качестве которого применяют раствор серной кислоты. У электролита особую плотность, которая меняется в зависимости от того насколько заряжен АКБ. В зависимости от физического состояния электролита разделяют два вида акб: с жидким электролитом и с пропитавшим специальный материал электролитом. На сегодняшний день, самые известные аккумуляторы используют с жидким электролитом. Новые системы автомобиля, такие как система стоп-старт, система особого рекуперативного торможения, предъявляют самые высокие требования к аккумулятору- повышенный пусковой ток, стойкость к значительному разряду, значительный срок службы. Этим требованиям отвечают аккумуляторы AGM (Absorbed Glass Material), в которых электролит остается в  материале с микропорами. Материал способен впитывать электролит. Данная технология повышает эффективность активной массы за счет улучшенного поглощения кислоты.

 В будущем аккумуляторы типа AGM и EFB на 100% заменят свинцово-кальциевые батареи с жидким электролитом. На данный момент они считаются дорогими АКБ.

 Зарядка аккумулятора сопровождается газообразованием. Отвод газов от АКБ проводится через систему вентиляции. Центральная система вентиляции объединяет каждый отдельно взятый аккумулятор в составе батареи с атмосферой. Герметичной она считается из-за предохранительных клапанов. Клапан устанавливается в пробке акб и начинает работать при определенном лишним давлении. Система названа Valve Regulated Lead Acid Battery или VRLA батарея. Кислород и водород, которые образуются при заряде, не выходят с аккумулятора, а работают между собой с образованием воды. Выходят они только при значительном напряжении заряда.

 Подключение аккумулятора к электрической сети производится через два свинцовых вывода. Вывод «+» всегда толще «-«, что исключает ошибку при включении батареи. Полярность (расположение) выводов делят на прямой или обратный. При прямой полярности плюсовой вывод батареи можно найти слева, при обратной полярности справа.

 Автомобильные аккумуляторы оборудуются специальным индикатором заряженности батареи, некоторым «глазком». Плотность электролита можно оценить по цвету «глазка» («зеленый» –заряженная батарея, «черный» – неполный заряд, «желтый» – невысокий уровень электролита).

 На автомобиле АКБ прочно закрепляются через специальное крепление, которая предупреждает повреждения и разлив электролита. Крепление бывает верхним и нижним. Для батарей в основной части или багажнике автомобиля предусматривается особый аварийный размыкатель автомобильной батареи.

 АКБ и зарядное устройство для него можно купить в магазинах «Интерком», заказать товар с доставкой можно в нашем интернет магазине. Приезжайте в наши магазины, делайте заявки и получайте товары с заводской гарантией.

Как устроен автомобильный аккумулятор — типы современных АКБ, принцип их работы, конструктивные особенности

  1. Все статьи
  2. Как устроен автомобильный аккумулятор — типы современных АКБ, принцип их работы, конструктивные особенности

Автомобильный аккумулятор выполняет три функции. Основанная функция АКБ – это запуск двигателя. Также, батарея питает бортовые электрические устройства – при неработающем двигателе. Вторая важная функция – возможность аварийного питания, источником которого аккумулятор выступает в случае поломки генератора. Третья функция – это достижение баланса напряжения, которое поступает от  генератора. Эта функция характерна для инжекторных двигателей.

Устройство аккумулятора автомобиля существенно не меняется уже много десятилетий. Хотя развитие технологий и появление новых материалов более высокого качества способствует более надежной конструкции и работе АКБ.

Основу работы аккумулятора составляет принцип возникновения разности потенциалов – то есть, напряжения. Оно возникает между пластинами, которые погружены в раствор электролита.

АКБ – устройство, которое, в зависимости от типа и производителя, имеет определенные  конструктивно-технологические различия. Но общий принцип – одинаков: все аккумуляторные батареи содержат электроды, разделенные сепараторами, и помещенные в пространство, заполненное электролитом.

Корпус

Корпус аккумулятора состоит из двух частей: основной глубокой емкости и закрывающей крышки. Она может быть оснащена горловинами с пробками или системой, при помощи которой стабилизируется давление внутри батареи, и отводится образующийся газ. Конструкция корпуса зависит от типа АКБ.

Сам корпус изготовлен из материала, к которому предъявляются большие требования прочности и безопасности. Он должен быть устойчив к воздействию агрессивных химических реагентов, переносить колебания температуры и сильную вибрацию. В большинстве современных аккумуляторов корпус сделан из полипропилена.

Внутренние отсеки

Стандартное устройство аккумуляторной батареи представляет собой контейнер, состоящий из шести секций (или, как их называют, «банок»). Каждая секция – это отдельный источник питания. Она вырабатывает порядка 2 – 2,1 В. Стандартная АКБ рассчитана на 12 В.

В каждой из ячеек находится набор (или пакет) из отдельных пластин с чередующейся полярностью. То есть, одна пластина положительная, другая отрицательная. Причем, пластины отделены друг от друга. Пластины сделаны из свинца и имеют решетчатую структуру в виде прямоугольных сот. Это облегчает нанесение них активной массы – основного рабочего реагента.

Пластины

Для увеличения прочности пластин в них добавляют сурьму. У этой технологии есть и свои недостатки: присутствие сурьмы способствует выкипанию воды из электролита. Это – основная причина, по которой практически во все типы АКБ необходимо доливать воду. Но технологии не стоят на месте. Устройство автомобильных аккумуляторов совершенствуется. Количество сурьмы в свинцовых пластинах значительно уменьшилось, благодаря чему появились малообслуживаемые и гибридные аккумуляторы.

На положительный электрод наносится двуокись свинца, на отрицательный – губчатый свинец. Внутрь заливается электролит, который является водным раствором серной кислоты.

Каждая чередующаяся пластина является электродом, имеющим противоположную полярность. Таким образом, с целью предотвращения замыкания, между каждой парой пластин располагается сепаратор. Он изготовлен из пористого пластика и не создает препятствий для циркуляции электролита внутри ячейки.

Пластин с отрицательной полярностью больше на 1 единицу, так как каждая пластина с положительным зарядом помещена между двумя отрицательными (минусовыми).

Пакет с пластинами надежно фиксируется, чтобы предотвратить смещение и деформацию. Фиксация осуществляется при помощи специального бандажа. Токовыводы пластин (плюсовые и минусовые) объединены в пары. Концентрация энергии происходит при помощи токосборников – на выводные борны аккумулятора. К ним  токоприемные клеммы.

Устройство АКБ обеспечивает максимальную надежность. Современные аккумуляторы – это качественные устройства, выступающие источниками питания даже для самых мощных автомобилей.

Виды современных аккумуляторов

Современные АКБ подразделяются на два основных вида: классические и необслуживаемые. Классические существуют уже больше ста лет и описаны выше. Необслуживаемые аккумуляторные батареи были созданы всего несколько десятилетий назад. Они эффективно работают в любом, даже перевернутом, положении. Вместо жидкого электролита в них применяется гелиевый, или адсорбированный сепараторами. Устройство автомобильного аккумулятора, который является необслуживаемым, подразумевает максимальную герметичность. Для отвода газов, которые выделяются при заряде и разряде, предусмотрен специальный клапан.

Главное различие необслуживаемых АКБ от классических – в более низких разрядных и зарядных токах.  Причина – в конструкции необслуживаемых батарей. При больших токах классическая АКБ активно выделяет газ и «закипает». У необслуживаемых и герметизированных батарей этого нет.

Google

 

SKAT-UTTV: фото, характеристики, сертификаты

1 Напряжение питающей сети, В 170…250
2 Напряжение заряда АКБ, В, не более 14,7
3 Максимальный ток заряда АКБ, А 12
4 Минимальный шаг автоматической регулировки тока заряда АКБ, А 0,1
5 Максимальный ток разряда АКБ
(в режиме «ТРЕНИРОВКА»), А
5
6 Минимальный шаг автоматической регулировки тока
разряда АКБ, А
0,1
7 Шаг ввода значения ёмкости АКБ до 10 Ач 0,1
от 10 до 120 Ач 1
8 Максимальное количество циклов в режиме «ТРЕНИРОВКА» 5
9 Диапазон пороговых значений напряжения в режиме «ТРЕНИРОВКА», В 10,5…12,6
10 Шаг ввода порогового значения напряжения в режиме
«ТРЕНИРОВКА», В
0,1
11 Максимальная длительность режима «ЗАРЯД», час 18
12 Максимальная длительность режима «БЫСТРЫЙ заряд», час 12
13 Длительность процесса оценки технического состояния АКБ (при наличии и отсутствии сетевого питания), сек, не более 20
14 Тип аккумуляторов: свинцово-кислотные с номинальным напряжением 12 В
15 Габаритные размеры ШхВхГ, мм, не более 235х217х92
16 Масса нетто (брутто), кг, не более 1,9 (2,2)

Какие типы аккумуляторов подходят для ваших IoT-устройств? | Saft аккумуляторы

Выбор подходящего аккумулятора для вашего смарт-устройства — непростая задача, которая зависит от многих параметров.

Батарея не только должна быть легкой и малогабаритной, чтобы соответствовать миниатюрным размерам, но и оставаться безопасной в течение длительного срока службы (благодаря хорошему удержанию заряда). Еще одним важным моментом для аккумулятора является способность работать в широком диапазоне температур (как для внутреннего, так и для наружного использования), обеспечивая при этом стабильное выходное напряжение на протяжении всего срока службы устройства.

Прежде чем углубляться в то, какие параметры следует рассматривать, давайте вернемся к основам: какие различные батареи доступны нам и каковы их особенности?

Какие батареи доступны предпринимателям в области Интернета вещей и каковы их особенности?

Есть два типа батарей: одноразовые первичные и перезаряжаемые вторичные.

Оба генерируют электричество посредством электрохимических реакций между двумя полюсами, положительным (+) и отрицательным (-), а также благодаря электролиту (раствору).Используя различные материалы для полюсов и различный состав электролита, мы можем изготавливать огромное количество батарей с разными свойствами и напряжениями. Например, щелочные батареи широко распространены в магазинах и используются в потребительских товарах, литиевые батареи, воздушно-цинковые батареи, батареи из оксида серебра или смесь этих химических элементов являются примерами батарей, доступных на рынке.

Объекты, подключенные к беспроводной сети, требуют легких и компактных батарей с очень высокой плотностью энергии и высоким напряжением.По этой причине лучше всего подходят литиевые батареи.

Действительно, литиевые батареи обладают высокой производительностью и надежностью, имеют высокое напряжение благодаря использованию лития в качестве анода и выделяют количество энергии на единицу объема, которое может быть в десять раз больше, чем у цинкоксидных батарей. Его электролит не содержит воды, что позволяет использовать его при низких температурах, а некоторые продукты со специальными электролитами могут выдерживать высокие и даже очень высокие температуры.

Литиевые батареи

бывают разных форм и размеров.

Литиевые батареи Saft для Интернета вещей

Результат более чем столетних исследований и инноваций в области накопления энергии, наша линейка миниатюрных литиевых батарей была специально разработана для приложений с подключенными объектами (IoT).

Мы предлагаем 3 основных линейки аккумуляторов для устройств IoT:

LS, LSH и LSP цилиндрические первичные литиевые элементы — 3,6 В

Линейки цилиндрических первичных литиевых элементов LS, LSH и LSP Saft основаны на химическом составе литий-тионилхлорида (Li-SOCl2), , который демонстрирует наивысшее номинальное напряжение среди химического состава первичных батарей (3.6 В).

Батареи

LS, LSH и LSP также имеют наивысшую плотность энергии и могут восстанавливать ее до 20 лет. Они очень прочные и выдерживают очень высокие температуры и сильные вибрации.

Доступны два типа литий-тионилхлоридных элементов: катушечная и спиральная .

Бобинная конструкция серии LS делает этих ячеек особенно подходящими для приложений, требующих очень низких постоянных или умеренных импульсных токов, таких как измерительные устройства или датчики парковки.

Их способность противостоять широким колебаниям давления, температуры (от — 60 ° C до + 150 ° C) и жестким механическим условиям делают ячейки LS идеальными для использования в удаленных местах и ​​экстремальных условиях, таких как трекеры . В сочетании с поддержкой импульсов, такой как конденсатор, суперконденсатор, EDLC (электрохимический двухслойный конденсатор) или гибридный конденсатор, они могут даже выдерживать более высокие импульсы и температуры и сочетать в себе «лучшее из обоих миров».

Вот почему Saft’s представила новую линейку первичных решений — LSP — которая сочетает в себе надежную технологию Li-SOCl2-элемента с низким саморазрядом и современный и тщательно подобранный LiC (литий-ионный конденсатор).

LiC, выбранный Saft, демонстрирует наименьшего саморазряда и ESR (эквивалентное последовательное сопротивление) при большинстве температур и одно из наивысших измеренных значений емкости во время импульса, гарантируя, что диапазон LSP будет соответствовать сроку службы 10 лет и более требуется для нового поколения подключенных устройств . Короче говоря, линейка LSP предлагает лучший компромисс между способностью выдерживать импульс, диапазоном рабочих температур и стабильностью характеристик в течение всего срока службы .

Линия LSH имеет спиральную конструкцию. Ячейки предназначены для приложений, требующих очень высоких импульсов. Некоторые конкретные диапазоны могут работать при очень высоких температурах, например, в нефтегазовой отрасли.

Цилиндрические первичные литиевые элементы LM / M — 3 В

Цилиндрические первичные литиевые элементы Saft LM / M основаны на химии лития-диоксида марганца (Li-MnO2) — 3V.

Элементы

LM / M имеют спиральную внутреннюю конструкцию, как и ячейки LSH, но имеют более низкое номинальное напряжение, равное 3.0 В против 3,6 В. Если электронная конструкция приложения допускает напряжение отключения ниже 2,5 В, этот диапазон, вероятно, является одним из наиболее экономичных вариантов с хорошим компромиссом между энергией и мощностью. Серия LM / M оснащена спиральными электродами с большой площадью поверхности для максимальной импульсной способности по току и составом электролита для оптимальной работы при температуре от — 40 ° C до + 85 ° C.

Их хорошая импульсная способность делает их подходящими для интеллектуальных приборов учета, требующих высоких импульсов, а также для датчиков парковки и приложений для интеллектуального сельского хозяйства.

Среднепризматические аккумуляторные элементы MP и цилиндрические малые VL — 3,6 В — 3,75 В

Перезаряжаемые элементы Saft среднего призматического типа MP и цилиндрического малого VL основаны на нашей уникальной литий-ионной технологии. Эти батареи можно заряжать и использовать снова и снова после разряда, что делает их очень удобными для устройств, которые часто используются. Батареи Saft MP и VL могут похвастаться очень длительным сроком службы в суровых условиях, поскольку их можно заряжать и разряжать в широком диапазоне температур.Наши литий-ионные батареи оснащены особыми функциями безопасности — схемой электронной защиты, встроенным автоматическим выключателем на случай отказа зарядного устройства, отключающим сепаратором и предохранительным клапаном — что делает их более дорогими, чем у большинства других батарей, но высокой количество циклов (до 2 800 раз с потерей всего 30% мощности) и низкие эксплуатационные расходы снижают стоимость цикла по сравнению со многими другими химическими процессами. Кроме того, индикаторы состояния заряда (SOC) и состояния здоровья (SOH) могут быть выбраны в качестве параметров для мониторинга вашего приложения.Литий-ионные технологии Saft обеспечивают уникальные характеристики в нерегулируемых наружных условиях или в экстремальных условиях, как горячих, так и холодных. Поэтому они идеально подходят для требовательных приложений в промышленных и критических средах.

Ниже приведена таблица диапазонов наших батарей и приложений, для которых они могут использоваться:

Итак… Короче говоря! Какая батарея подходит для моего IoT-приложения?

Как вы уже поняли, на этот вопрос нет простого ответа.

Вот параметры, которые необходимо учитывать при перечислении всех вариантов для вашего варианта использования:

  • Номинальное напряжение и напряжение отключения вашей электроники : существуют разные технологии и химические составы, имеющие разное выходное напряжение. Вы должны выбрать тот, который будет гарантировать, что ваше устройство будет работать выше предельного напряжения на протяжении всего срока службы.
  • Температура окружающей среды : Вам следует подумать о том, где будет развернуто ваше IoT-устройство, чтобы обеспечить оптимальное и непрерывное электроснабжение вашего объекта.
  • Профиль потребления, максимальный импульсный ток и частота : Li-SOCl 2 бобинная технология более подходит для использования при ограниченных значениях импульса и для длительного срока службы, тогда как Li-SOCl 2 спираль, Li-SOCl 2 бобина + устройство поддержки импульсов и Li-MnO 2 особенно подходят для приложений с высокими импульсами.

Все еще не знаете, как двигаться дальше со своим выбором? Почему бы вам не отправить профиль потребления вашего варианта использования нашим разработчикам приложений для получения персональной рекомендации?

Аккумуляторы

— максимальная производительность — Apple

Общие советы по производительности

Обновите программное обеспечение до последней версии.
Обновления программного обеспечения

Apple часто включают передовые технологии энергосбережения, поэтому всегда убедитесь, что на вашем устройстве используется последняя версия iOS, macOS или watchOS.

Избегайте экстремальных температур окружающей среды.

Устройство разработано для работы в широком диапазоне температур окружающей среды, от 62 ° до 72 ° F (от 16 ° до 22 ° C) в качестве идеальной зоны комфорта. Особенно важно не подвергать устройство воздействию температуры окружающей среды выше 35 ° C (95 ° F), так как это может привести к необратимому повреждению емкости аккумулятора.То есть ваша батарея не будет питать ваше устройство до тех пор, пока не будет заряжаться. Зарядка устройства при высоких температурах окружающей среды может привести к его дальнейшему повреждению. Программное обеспечение может ограничить зарядку выше 80% при превышении рекомендованной температуры батареи. Даже хранение аккумулятора в горячей окружающей среде может необратимо повредить его. При использовании устройства в очень холодной среде вы можете заметить уменьшение срока службы батареи, но это временное состояние. Как только температура аккумулятора вернется в нормальный рабочий диапазон, его рабочие характеристики также вернутся в норму.

iPhone, iPad, iPod и Apple Watch Comfort Zone

Слишком холодно Комнатная температура Очень жарко, слишком жарко

IPhone, iPad, iPod и Apple Watch

лучше всего работают при температуре окружающей среды от 32 ° до 95 ° F (от 0 ° до 35 ° C). Температура хранения: от -4 ° до 113 ° F (от -20 ° до 45 ° C).

Зона комфорта MacBook

Слишком холодно Комнатная температура Очень жарко, слишком жарко

MacBook

лучше всего работает при температуре окружающей среды от 50 ° до 95 ° F (от 10 ° до 35 ° C).Температура хранения: от -4 ° до 113 ° F (от -20 ° до 45 ° C).

Снимите некоторые футляры во время зарядки.

Зарядка устройства в чехлах определенных типов может привести к перегреву, что может повлиять на емкость аккумулятора. Если вы заметили, что ваше устройство нагревается при зарядке, сначала выньте его из футляра. Для моделей Apple Watch Edition убедитесь, что крышка магнитного зарядного футляра снята.

При длительном хранении храните его наполовину заряженным.

Если вы хотите хранить устройство в течение длительного времени, на общее состояние аккумулятора будут влиять два ключевых фактора: температура окружающей среды и процент заряда аккумулятора, когда он выключен для хранения. Поэтому мы рекомендуем:

  • Не заряжайте и не разряжайте аккумулятор устройства полностью — зарядите его примерно до 50%. Если вы храните устройство, когда его батарея полностью разряжена, батарея может перейти в состояние глубокого разряда, что сделает его неспособным удерживать заряд.И наоборот, если вы храните его полностью заряженным в течение длительного периода времени, аккумулятор может потерять некоторую емкость, что приведет к сокращению срока службы аккумулятора.
  • Выключите устройство, чтобы избежать дополнительной разрядки аккумулятора.
  • Поместите устройство в прохладную, сухую среду с температурой менее 32 ° C (90 ° F).
  • Если вы планируете хранить устройство более шести месяцев, заряжайте его до 50% каждые шесть месяцев.

В зависимости от того, как долго вы храните свое устройство, при извлечении его из режима длительного хранения оно может быть разряжено.После того, как он будет удален из хранилища, ему может потребоваться 20 минут зарядки с помощью оригинального адаптера, прежде чем вы сможете его использовать.

Лучшие портативные зарядные устройства и аккумуляторы на 2021 год

Какие функции вам нужны в Power Bank?

Наблюдать, как в вашем телефоне или планшете постоянно разряжается аккумулятор, когда вы не находитесь рядом с розеткой, — это стресс. К счастью, нет недостатка в резервных батареях сторонних производителей, и они бывают любого размера, емкости и ценового диапазона, чтобы ваше устройство продолжало работать, когда значок батареи начинает опускаться в красный цвет.И это еще не все. Некоторые блоки питания оснащены такими функциями, как быстрая зарядка, беспроводная зарядка, встроенные кабели, адаптеры переменного тока, светодиодные фонарики и даже возможность запуска двигателя от внешнего источника.

При таком большом количестве вариантов на выбор, как узнать, какой блок питания подходит именно вам? Продолжайте читать, чтобы учесть самые важные моменты.

Размер и емкость

Вообще говоря, чем больше батарея, тем больше емкость и количество портов. Банки питания, которые удобно помещаются в вашем кармане, обычно подходят для полной или двух зарядки телефона, в то время как для всего, что поможет вам в течение всего дня, потребуется сумка или кошелек.

На передней панели, удобной для карманного использования, большинство небольших аккумуляторов, которые обеспечивают максимальную портативность, имеют емкость 5000 мАч и меньше, что дает вам ровно столько заряда, чтобы зарядить большинство телефонов один раз.

При превышении 5000 мАч емкость аккумулятора увеличивается до такой степени, что он с меньшей вероятностью поместится в джинсы скинни, но его все равно можно будет положить в карман куртки. Есть даже батареи, которые позволяют заряжать ноутбуки и имеют достаточно заряда для 10-кратной зарядки обычного телефона. Конечно, они одни из самых больших и тяжелых, и их обязательно нужно носить в сумке.

Порты ввода и вывода

Тип порта (или портов) аккумулятора определяет не только его совместимость с устройствами, которые вы хотите заряжать, но и скорость зарядки. Как минимум, большинство аккумуляторных блоков будет иметь стандартный порт USB-A как для зарядки аккумулятора (вход питания), так и для отправки сока на ваше устройство (выходная мощность). Но в большинстве телефонов, планшетов и ноутбуков, использующих стандарт USB-C, вы часто найдете порт USB-C в дополнение к USB-A.

Порты USB-C обычно поддерживают некоторые, но не все, протоколы быстрой зарядки для смартфонов и планшетов.Чаще всего вы обнаружите, что порт USB-C используется как для подачи питания, так и для вывода мощности, но вам следует внимательно проверить, поскольку некоторые менее дорогие аккумуляторные блоки могут использовать только USB-C для ввода питания.

Lightning — это запатентованная технология Apple, и раньше было трудно найти блоки питания с кабелем Lightning или портом для зарядки. К счастью, те дни прошли, и есть десятки отличных аккумуляторов, созданных для пользователей iPhone. Если вы взяли в руки телефон серии iPhone 12 и были удивлены отсутствием зарядного устройства, ознакомьтесь с нашей статьей о зарядке iPhone 12.

Быстрая зарядка

Еще один фактор, который следует учитывать, — это то, как быстро блок питания может зарядить ваш телефон. Выходная мощность батареи измеряется напряжением и силой тока. Сила тока — это количество электричества, протекающего от батареи к подключенному устройству, а напряжение — это количество потенциальной энергии. Умножение вольт на амперы дает вам общую мощность в ваттах. Чтобы ускорить зарядку устройства, большинство производителей либо изменяют напряжение, либо увеличивают силу тока, чтобы увеличить общую мощность.Для наиболее быстрой зарядки вам нужно увеличивать или динамически изменять напряжение.

По сути, для любой быстрой зарядки вам понадобятся три вещи: телефон или другое устройство со схемой зарядки, способной использовать один из стандартов быстрой зарядки, а также аккумулятор и кабель, поддерживающие тот же стандарт. Если что-то из этих трех отсутствует, вы не будете заряжаться так быстро, как сможете.

Два основных стандарта быстрой зарядки, с которыми вы, вероятно, столкнетесь, — это USB Power Delivery и Quick Charge от Qualcomm.Power Delivery (PD) — это новый протокол, в котором два совместимых устройства согласовывают самый быстрый из доступных вариантов зарядки. Это также позволяет силе течь в обе стороны.

Quick Charge, с другой стороны, работает за счет увеличения напряжения, а не силы тока. Этот стандарт позволяет заряжать поддерживаемые телефоны до 50 процентов емкости за 30 минут, что особенно полезно, когда вам нужна энергия в крайнем случае.

Имейте в виду, что ваш телефон потребляет столько энергии, сколько рассчитана на его схему зарядки, поэтому, даже если вы подключили его к батарее 5 В / 2 А, если он способен выдерживать только 5 В / 1 А, это норма. он будет заряжаться в.

Подробнее читайте в нашем подробном руководстве по быстрой зарядке.

Сквозная и беспроводная зарядка

Перед выбором резервного аккумулятора следует учесть еще несколько аспектов. Сквозная зарядка позволяет заряжать устройства, подключенные к аккумулятору, в то время как сам аккумулятор также заряжается. Если и ваш телефон, и резервный аккумулятор разряжены, это очень полезная функция.

Беспроводная зарядка также стала очень популярной, поскольку она позволяет заряжать совместимые устройства без кабеля, а просто кладя их на аккумулятор.Qi — это доминирующий стандарт, который вы найдете в совместимых телефонах Apple и Samsung, и есть несколько аккумуляторных блоков, которые его поддерживают.

Стоит ли покупать батарейный отсек?

Если вы обнаружите, что часто забываете носить с собой резервную батарею, когда она вам больше всего нужна, вы можете подумать об использовании вместо нее специального батарейного отсека. Он сочетает в себе портативность и защиту корпуса со встроенным аккумулятором, чтобы ваш телефон всегда был заряжен. Обратной стороной является то, что они часто имеют меньшую емкость зарядки, чем специальные батареи, и вы действительно не можете заряжать что-либо еще с ними.

Теперь, имея в виду все это, мы собрали некоторые из наших любимых аккумуляторов питания, которые вы можете купить прямо сейчас. Вы не ошибетесь ни с одним из них, поэтому выберите тот, который соответствует вашему бюджету и потребностям.

Совместимость с: телефонами, планшетами

Если вы хотите свести к минимуму технический беспорядок в доме, Anker PowerCore Fusion 5000 — отличный вариант. Этот небольшой адаптер работает как адаптер для зарядки нескольких устройств, так и как внешний аккумулятор емкостью 5000 мАч.

Благодаря двум портам USB-A и дополнительному слоту Micro USB вы можете легко заряжать три устройства одновременно.А поскольку PowerCore Fusion 5000 поддерживает сквозную зарядку, вы можете подключить его в конце дня, подключить устройства и просыпаться от полностью заряженного аккумулятора для утренних поездок на работу.

Aukey 10000mAh Power Bank с подачей питания

Работает с: телефонами, планшетами

Блок питания Aukey емкостью 10000 мАч с функцией подачи питания (29,99 долларов США) оснащен аккумулятором емкостью 10 000 мАч, портом USB-C с PD, портом USB-A с быстрой зарядкой 3.0 и традиционным 5V Порт USB-A.Впечатляюще для такой большой батареи, ее зарядка занимает всего четыре часа через USB-C с адаптером для зарядки 18 Вт.

Aukey 8000mAh Sprint беспроводной зарядный блок питания

Работает с: телефонами, планшетами

Беспроводной зарядный банк Aukey 8000mAh Sprint ($ 29,99) — недорогой способ быстрой зарядки телефона и планшета. Этот компактный внешний аккумулятор поддерживает беспроводную зарядку по стандарту Qi и имеет порт USB-C с PD 2.0, а также порт USB-A с PD 3.0. Есть даже порт USB-A мощностью 5 Вт с адаптивной зарядкой для устройств с низким энергопотреблением, таких как наушники Bluetooth и носимые устройства.

Совместимость с: телефонами, планшетами

Новейший аккумулятор Belkin Boost Up Power Bank был создан для геймеров со смартфонами. Этот удобный аккумулятор емкостью 5000 мАч оснащен встроенной подставкой для смартфона, которая удерживает ваш телефон в портретном или ландшафтном положении во время зарядки.

Belkin утверждает, что вы получите около 17 дополнительных часов игрового процесса с этой портативной подставкой для зарядки, которая достаточно мощная, чтобы полностью зарядить практически любой аккумулятор смартфона хотя бы один раз.А если вы просто хотите дополнить свое устройство, на боковой стороне блока питания есть порты зарядки USB-A и USB-C для нескольких вариантов быстрой зарядки.

Работает с: телефонами, планшетами

Нужен тонкий, но мощный внешний аккумулятор для вашего iPhone? Belkin Boost Up Power Bank 10K имеет аккумулятор емкостью 10 000 мАч, который может добавить до 70 часов автономной работы вашему iPhone или почти 20 часов для iPad.

Два порта USB-A мощностью 12 Вт и 5 Вт достаточно мощны, чтобы заряжать два устройства одновременно.Дополнительный порт Lightning позволяет быстро перезарядить внешний аккумулятор с помощью обычной зарядки iPhone или док-станции. Как и большинство продуктов Belkin, Boost Up Charge Power Bank 10K поставляется с двухлетней гарантией, которая распространяется не только на устройство, но и на все подключенные к нему устройства, поврежденные электрическим разрядом.

Совместимость с: телефонами

Moshi IonSlim 5K — это идеальный аккумулятор для мобильной команды PCMag. Этот тонкий аккумуляторный блок оснащен аккумулятором емкостью 5,00 мАч, а также портами для зарядки USB-A и USB-C.

Это не самый быстрый и дешевый аккумулятор в нашем списке, но он невероятно компактен и долговечен. Корпус из авиационного алюминия легко выдерживает удары, и на каждый продукт Moshi предоставляется двухлетняя гарантия; если вы покупаете напрямую на веб-сайте Moshi, вы автоматически получаете 10 лет гарантии.

Работает с: телефонами, планшетами

Помимо батареи емкостью 12 000 мАч, Native Union Jump + (99,99 долл. США) поддерживает беспроводную зарядку до 5 Вт с Qi-совместимыми устройствами.Он также имеет порт USB-A для быстрой зарядки 3.0 и порт USB-C, поддерживающий PD 3.0.

Работает с: ноутбуками, телефонами, планшетами

3-дневный комплект для быстрой зарядки Nimble Premium Fast Charge (99,95 долларов США) — один из самых дорогих аккумуляторов в этом списке, но он и один из самых универсальных. Аккумулятор емкостью 10 000 мАч имеет порт USB-C с PD 3.0, а также два порта USB-A мощностью 5 Вт. В комплект также входит кабель USB-C – Lightning для быстрой зарядки iPhone и iPad, кабель USB-C – USB-C и настенное зарядное устройство USB-C 18 Вт для PD.

Портативное зарядное устройство RavPower USB-C 20100 Power Bank с QC 3.0

Работает с: ноутбуками, телефонами, планшетами

Портативное зарядное устройство RavPower USB-C 20100 Power Bank с QC 3.0 (59,99 долларов США) вмещает массивную батарею емкостью 20,1000 мАч в относительно небольшом корпусе, поэтому с его помощью можно легко зарядить ваш телефон несколькими способами. раз и даже дать вашему ноутбуку приличный прирост мощности. Он оснащен портом USB-A с быстрой зарядкой 3.0, традиционным портом USB-A на 2,4 В и портом USB-C на 3 А для ноутбуков.

Совместимость с: телефонами, планшетами

Tumi известен прежде всего своим высококачественным багажом, но компания также предлагает великолепную линейку аксессуаров для путешествий. Tumi X mophie Powerstation Plus 10K — это надежный внешний аккумулятор с мягкой кожаной отделкой и большой мощностью.

Powerstation Plus оснащен аккумулятором емкостью 10 000 мАч, который может легко несколько раз зарядить разряженный аккумулятор смартфона. На боковой стороне аккумуляторного блока есть один порт для зарядки USB-A, а также порт Micro USB для подзарядки аккумулятора.Зарядный кабель USB-A – Micro USB входит в комплект вместе с разъемом Lightning для вашего iPhone.

Лучшие беспроводные зарядные устройства

Зачем возиться с зарядным кабелем, если вы можете просто положить свой телефон на подставку для беспроводной зарядки? Независимо от того, пользуетесь ли вы Android или iPhone, у нас есть лучшие беспроводные зарядные устройства, которые помогут вам обрезать шнур.

Управление батареями | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить файлы cookie

Новое носимое устройство превращает ваше тело в биологическую батарею

Термоэлектрический генератор в форме кольца. Предоставлено: Xiao Lab

.

Исследователи из CU Boulder разработали новое недорогое носимое устройство, которое превращает человеческое тело в биологический аккумулятор.

Устройство, описанное в журнале Science Advances , достаточно эластично, поэтому его можно носить как кольцо, браслет или любой другой аксессуар, который касается вашей кожи. Он также использует естественное тепло человека, используя термоэлектрические генераторы для преобразования внутренней температуры тела в электричество.

«В будущем мы хотим иметь возможность питать вашу носимую электронику без необходимости включать батарею», — сказал Цзянлян Сяо, старший автор новой статьи и доцент Университета Пола М.Ради Департамент машиностроения в CU Boulder.

Эта концепция может звучать как что-то из серии фильмов The Matrix , в которых раса роботов поработила людей, чтобы собрать их драгоценную органическую энергию. Сяо и его коллеги не столь амбициозны: их устройства могут генерировать около 1 вольт энергии на каждый квадратный сантиметр кожного пространства — меньшее напряжение на площадь, чем у большинства существующих батарей, но все же достаточно для питания электроники, такой как часы или фитнес-трекеры.

Ученые ранее экспериментировали с аналогичными термоэлектрическими носимыми устройствами, но устройство Xiao эластичное, может самовосстанавливаться при повреждении и полностью пригодно для вторичной переработки, что делает его более чистой альтернативой традиционной электронике.

«Каждый раз, когда вы используете батарею, вы ее разряжаете, и, в конце концов, вам придется ее заменить», — сказал Сяо. «Наше термоэлектрическое устройство хорошо то, что его можно носить, и оно обеспечивает постоянную мощность.”

Высокотехнологичные шорты

Проект — не первая попытка Сяо объединить человека и робота. Он и его коллеги ранее экспериментировали с разработкой «электронной кожи», носимых устройств, которые выглядят и ведут себя так же, как настоящая человеческая кожа. Однако для работы этот эпидермис андроида должен быть подключен к внешнему источнику питания.

До сих пор. Последняя инновация группы начинается с основы, сделанной из эластичного материала под названием полиимин. Затем ученые вставляют серию тонких термоэлектрических чипов в это основание, соединяя их все жидкими металлическими проводами.Конечный продукт выглядит как нечто среднее между пластиковым браслетом и миниатюрной материнской платой компьютера или, может быть, технологичным бриллиантовым кольцом.

«Наша конструкция делает всю систему растягиваемой, не вызывая больших нагрузок на термоэлектрический материал, который может быть действительно хрупким», — сказал Сяо.

Просто представьте, что вы на пробежку. Во время упражнений ваше тело нагревается, и это тепло будет излучаться в прохладный воздух вокруг вас. Устройство Сяо улавливает этот поток энергии, а не тратит его зря.

«Термоэлектрические генераторы находятся в тесном контакте с человеческим телом и могут использовать тепло, которое обычно рассеивается в окружающую среду», — сказал он.

Лего блоки

Он добавил, что вы можете легко увеличить эту мощность, добавив больше блоков генераторов. В этом смысле он сравнивает свой дизайн с популярной детской игрушкой.

«Что я могу сделать, так это объединить эти меньшие единицы, чтобы получить более крупную единицу», — сказал он. «Это все равно, что собрать кучу маленьких деталей Lego в большую конструкцию.Это дает вам множество возможностей для настройки ».

Сяо и его коллеги подсчитали, например, что человек, совершающий быструю прогулку, может использовать устройство размером с обычный спортивный браслет, чтобы генерировать около 5 вольт электричества — это больше, чем могут собрать батарейки для многих часов.

Как и электронная кожа Сяо, новые устройства обладают такой же устойчивостью, как и биологическая ткань. Например, если ваше устройство порвется, вы можете сжать сломанные концы вместе, и они снова закроются через несколько минут.А когда вы закончите работу с устройством, вы можете окунуть его в специальный раствор, который разделит электронные компоненты и растворяет полииминовую основу — каждый из этих ингредиентов может быть использован повторно.

«Мы стараемся сделать наши устройства как можно более дешевыми и надежными, при этом они будут иметь минимальное воздействие на окружающую среду», — сказал Сяо.

Несмотря на то, что в дизайне все еще есть недостатки, он считает, что устройства его группы могут появиться на рынке через пять-десять лет.Только не говори роботам. Мы не хотим, чтобы у них возникали какие-либо идеи.

Ссылка: «Высокопроизводительный носимый термоэлектрический генератор с возможностями самовосстановления, утилизации и реконфигурации в стиле Lego» Вэй Рен, Янь Сунь, Дунлян Чжао, Аблимит Айли, Шунь Чжан, Чуаньцян Ши, Цзялунь Чжан, Хуйюань Гэн, Цзе. Чжан, Лися Чжан, Цзянлян Сяо и Жунгуи Ян, 10 февраля 2021 г., Science Advances .
DOI: 10.1126 / sciadv.abe0586

Соавторы новой статьи — исследователи из Харбинского технологического института Китая, Юго-восточного университета, Чжэцзянского университета, Университета Тунцзи и Университета науки и технологий Хуачжун.

Как мы доберемся до следующего большого прорыва в области аккумуляторных батарей — Quartz

Вы читаете эксклюзивную статью Quartz, доступную для всех читателей в течение ограниченного времени. Чтобы разблокировать доступ ко всем Quartz, станьте участником.

Электрические самолеты могут быть будущим авиации. Теоретически они будут намного тише, дешевле и чище, чем те самолеты, которые есть у нас сегодня. Электрические самолеты с дальностью полета 1000 км (620 миль) на одной зарядке могут использоваться сегодня для половины всех рейсов коммерческих самолетов, сокращая глобальные выбросы углерода в авиации примерно на 15%.

То же самое и с электромобилями. Электромобиль — это не просто более чистая версия своего кузена, извергающего загрязнение. По сути, это лучший автомобиль: его электродвигатель мало шумит и молниеносно реагирует на решения водителя. Зарядка электромобиля обходится намного дешевле, чем оплата эквивалентного количества бензина. Электромобили могут быть построены с небольшим количеством движущихся частей, что удешевляет их обслуживание.

Так почему же электромобили уже не повсюду? Это связано с тем, что батареи дороги, поэтому первоначальная стоимость электромобиля намного выше, чем у аналогичной модели с бензиновым двигателем.И если вы не водите много, экономия на бензине не всегда компенсирует более высокие первоначальные затраты. Короче говоря, электромобили по-прежнему не экономичны.

Точно так же современные батареи не обладают достаточной энергией по весу или объему для питания пассажирских самолетов. Нам все еще нужны фундаментальные прорывы в аккумуляторных технологиях, прежде чем это станет реальностью.

Портативные устройства с батарейным питанием изменили нашу жизнь. Но есть еще много вещей, которые могут вывести из строя батареи, если бы только более безопасные, более мощные и энергоемкие батареи могли быть сделаны дешево.Никакой закон физики не исключает их существования.

И все же, несмотря на более чем два столетия тщательного изучения с момента изобретения первой батареи в 1799 году, ученые до сих пор не до конца понимают многие основы того, что именно происходит внутри этих устройств. Что мы действительно знаем, так это то, что, по сути, есть три проблемы, которые необходимо решить, чтобы батареи действительно снова изменили нашу жизнь: мощность, энергия и безопасность.

Не существует универсальной литий-ионной батареи

Каждая батарея имеет два электрода: катод и анод.Большинство анодов литий-ионных батарей изготовлено из графита, но катоды изготавливаются из различных материалов, в зависимости от того, для чего будет использоваться батарея. Ниже вы можете увидеть, как различные материалы катода меняют работу типов батарей по шести параметрам.

Проблема питания

В просторечии люди используют термины «энергия» и «мощность» как синонимы, но при разговоре об аккумуляторах важно различать их. Мощность — это скорость, с которой может высвобождаться энергия.

Батарея, достаточно сильная, чтобы запустить и удерживать в воздухе коммерческий самолет на расстояние 1000 км, требует большого количества энергии, чтобы высвободиться за очень короткое время, особенно во время взлета. Так что дело не только в накоплении большого количества энергии, но и в способности очень быстро извлекать эту энергию.

Решение проблемы энергоснабжения требует от нас заглянуть в черный ящик коммерческих аккумуляторов. Будет немного занудно, но терпи меня. Новые аккумуляторные технологии часто преувеличиваются, потому что большинство людей не уделяют должного внимания деталям.

Самая современная химия батарей, которая у нас есть, — это литий-ионные. Большинство экспертов сходятся во мнении, что никакая другая химия не сможет подорвать ионно-литиевый сплав еще по крайней мере еще десять или более лет. Литий-ионный аккумулятор имеет два электрода (катод и анод) с сепаратором (материал, который проводит ионы, но не электроны, предназначен для предотвращения короткого замыкания) в середине и электролит (обычно жидкий) для обеспечения обратного потока ионов лития и вперед между электродами. Когда батарея заряжается, ионы перемещаются от катода к аноду; когда батарея питает что-то, ионы движутся в противоположном направлении.

Представьте себе две буханки нарезанного хлеба. Каждая буханка — это электрод: левый — катод, а правый — анод. Предположим, что катод состоит из пластин никеля, марганца и кобальта (NMC) — одного из лучших в своем классе — и что анод состоит из графита, который по сути представляет собой слоистые листы или пластинки атомов углерода. .

В разряженном состоянии, то есть после того, как энергия была истощена, в буханке NMC между каждым ломтиком находятся ионы лития. Когда батарея заряжается, каждый ион лития извлекается из промежутков между пластинами и вынужден проходить через жидкий электролит.Сепаратор действует как контрольно-пропускной пункт, гарантирующий, что только ионы лития проходят через графитовую буханку. При полной зарядке в катодной буханке батареи не останется ионов лития; все они будут аккуратно зажаты между ломтиками графитового хлеба. По мере того, как энергия батареи расходуется, ионы лития возвращаются к катоду, пока на аноде не останется ни одного. Вот тогда аккумулятор нужно зарядить снова.

Емкость аккумулятора в основном определяется скоростью этого процесса.Но не так-то просто увеличить скорость. Слишком быстрое извлечение ионов лития из катодной буханки может привести к появлению дефектов на ломтиках и, в конечном итоге, к их разрушению. Это одна из причин, почему чем дольше мы пользуемся смартфоном, ноутбуком или электромобилем, тем хуже время автономной работы. Каждая зарядка и разрядка заставляют буханку немного ослабевать.

Над решением проблемы работают разные компании. Одна из идей — заменить слоистые электроды чем-то более прочным.Например, 100-летняя швейцарская компания по производству аккумуляторов Leclanché работает над технологией, в которой используется фосфат лития-железа (LFP), имеющий структуру «оливина», в качестве катода, и оксид титаната лития (LTO), который имеет Структура «шпинель», как анод. Эти структуры лучше справляются с потоком ионов лития в материал и из него.

Leclanché в настоящее время использует свои аккумуляторные элементы в автономных складских вилочных погрузчиках, которые можно полностью зарядить за девять минут. Для сравнения: лучший нагнетатель Tesla может зарядить автомобильный аккумулятор Tesla примерно до 50% за 10 минут.Leclanché также внедряет свои батареи в Великобритании для быстрой зарядки электромобилей. Эти батареи находятся на зарядной станции, медленно потребляя небольшое количество энергии в течение длительного периода времени из сети, пока они не будут полностью заряжены. Затем, когда автомобиль стыкуется, аккумуляторы док-станции быстро заряжают аккумулятор автомобиля. Когда машина уезжает, аккумулятор станции снова начинает заряжаться.

Такие попытки, как шоу Лекланше, можно изменить с химическим составом батарей, чтобы увеличить их мощность. Тем не менее, никто еще не построил аккумулятор, достаточно мощный, чтобы быстро доставить энергию, необходимую коммерческому самолету для преодоления гравитации.Стартапы стремятся строить самолеты меньшего размера (вмещающие до 12 человек), которые могли бы летать на относительно менее энергоемких батареях, или электрические гибридные самолеты, где реактивное топливо выполняет тяжелую работу, а батареи — накатом.

Но на самом деле в этой сфере нет ни одной компании, которая могла бы даже приблизиться к коммерциализации. Кроме того, технический скачок, необходимый для полностью электрического коммерческого самолета, вероятно, займет десятилетия, — говорит Венкат Вишванатан, эксперт по аккумуляторным батареям в Университете Карнеги-Меллона.

Reuters / Alister Doyle

Двухместный электрический самолет, сделанный словенской фирмой Pipistrel, стоит у ангара в аэропорту Осло, Норвегия.

Энергетическая проблема

Tesla Model 3, самая доступная модель компании, стоит от 35 000 долларов. Он работает от батареи на 50 кВтч, что стоит примерно 8750 долларов, или 25% от общей стоимости автомобиля.

Это все еще удивительно доступно по сравнению с тем, что было не так давно. По данным Bloomberg New Energy Finance, средняя мировая стоимость литий-ионных аккумуляторов в 2018 году составляла около 175 долларов за киловатт-час, что ниже почти 1200 долларов за киловатт-час в 2010 году.

Министерство энергетики США подсчитало, что как только стоимость батарей упадет ниже 125 долларов за кВтч, владение и эксплуатация электромобиля будет дешевле, чем газовый автомобиль в большинстве частей мира. Это не означает, что электромобили победят автомобили с бензиновым двигателем во всех нишах и сферах — например, для грузовиков дальнего следования еще нет электрического решения. Но это переломный момент, когда люди начнут отдавать предпочтение электромобилям просто потому, что в большинстве случаев они будут иметь более экономичный смысл.

Один из способов добиться этого — увеличить удельную энергию батарей — втиснуть больше кВтч в батарейный блок, не снижая его цены. Теоретически это может сделать специалист по производству аккумуляторов, увеличив удельную энергию катода или анода, либо того и другого.

Катод с наибольшей энергоемкостью на пути к коммерческой доступности — это NMC 811 (каждая цифра в номере представляет собой соотношение никеля, марганца и кобальта, соответственно, в смеси). Это еще не идеально. Самая большая проблема заключается в том, что он может выдержать только относительно небольшое количество жизненных циклов заряда-разряда, прежде чем он перестанет работать.Но эксперты прогнозируют, что отраслевые исследования и разработки должны решить проблемы NMC 811 в течение следующих пяти лет. Когда это произойдет, батареи, использующие NMC 811, будут иметь более высокую плотность энергии на 10% или более.

Однако увеличение на 10% — это не так уж и много в общей картине.
И хотя ряд инноваций за последние несколько десятилетий поднял плотность энергии катодов еще выше, аноды — это то, где открываются самые большие возможности в области плотности энергии.

Графит был и остается доминирующим анодным материалом.Он дешевый, надежный и относительно энергоемкий, особенно по сравнению с современными катодными материалами. Но он довольно слаб, если сравнивать его с другими потенциальными анодными материалами, такими как кремний и литий.

Кремний, например, теоретически намного лучше поглощает ионы лития в виде графита. Вот почему ряд производителей аккумуляторов пытаются добавить кремний вместе с графитом в свои конструкции анодов; Генеральный директор Tesla Илон Маск сказал, что его компания уже делает это в своих литий-ионных батареях.

Большим шагом была бы разработка коммерчески жизнеспособного анода, полностью сделанного из кремния. Но у этого элемента есть черты, которые затрудняют это. Когда графит поглощает ионы лития, его объем не сильно меняется. Однако кремниевый анод по тому же сценарию набухает в четыре раза по сравнению с исходным объемом.

К сожалению, вы не можете просто увеличить корпус, чтобы приспособиться к этому набуханию, потому что расширение разрушает так называемую «межфазную фазу твердого электролита», или SEI, кремниевого анода.

SEI можно рассматривать как своего рода защитный слой, который анод создает для себя, подобно тому, как железо образует ржавчину, также известную как оксид железа, для защиты от элементов: когда вы оставляете кусок недавно кованое железо снаружи, оно медленно вступает в реакцию с кислородом воздуха, образуя ржавчину. Под слоем ржавчины остальная часть железа не постигает та же участь и, таким образом, сохраняет структурную целостность.

В конце первого заряда батареи электрод образует собственный слой «ржавчины» — SEI, отделяющий неэродированную часть электрода от электролита.SEI предотвращает потребление электрода дополнительными химическими реакциями, гарантируя, что ионы лития могут течь как можно более плавно.

Но с кремниевым анодом SEI ломается каждый раз, когда батарея используется для питания чего-либо, и восстанавливается каждый раз, когда батарея заряжается. И во время каждого цикла зарядки расходуется немного кремния. В конце концов, кремний рассеивается до такой степени, что батарея перестает работать.

За последнее десятилетие несколько стартапов Кремниевой долины работали над решением этой проблемы.Например, подход Sila Nano состоит в том, чтобы заключить атомы кремния в наноразмерную оболочку с большим количеством пустого места внутри. Таким образом, SEI формируется снаружи оболочки, и расширение атомов кремния происходит внутри нее, не разрушая SEI после каждого цикла заряда-разряда. Компания, оцениваемая в 350 миллионов долларов, заявляет, что ее технология будет использоваться в устройствах уже в 2020 году.

Enovix, с другой стороны, применяет особую технологию производства, чтобы подвергнуть 100% кремний анод огромному физическому давлению, заставляя его поглощать меньше ион лития и, таким образом, ограничивает расширение анода и предотвращает разрушение SEI.У компании есть инвестиции от Intel и Qualcomm, и она также ожидает, что к 2020 году ее батареи будут в устройствах.

Эти компромиссы означают, что кремниевый анод не может достичь своей теоретической высокой плотности энергии. Однако обе компании заявляют, что их аноды работают лучше, чем графитовые. Третьи стороны в настоящее время тестируют аккумуляторы обеих фирм.

Tesla

В 2020 году новый Tesla Roadster должен стать первым электромобилем, который может проехать 1000 км (620 миль) без подзарядки.

Проблема безопасности

Все молекулярные переделки, предпринятые для накопления большего количества энергии в батареях, могут происходить за счет безопасности. С момента своего изобретения литий-ионный аккумулятор вызывает головные боли из-за того, как часто он воспламеняется. Например, в 1990-х годах канадская компания Moli Energy начала продавать литий-металлические батареи для использования в телефонах. Но в реальном мире его батареи начали воспламеняться, и Moli был вынужден отозвать свой заказ и, в конечном итоге, объявить о банкротстве. (Некоторые из его активов были куплены тайваньской компанией, и она до сих пор продает литий-ионные батареи под торговой маркой E-One Moli Energy.) Совсем недавно смартфоны Samsung Galaxy Note 7, которые были сделаны на современных литий-ионных батареях, начали взрываться в карманах людей. В результате отзыв продукции в 2016 году обошелся южнокорейскому гиганту в 5,3 миллиарда долларов.

Современные литий-ионные батареи по-прежнему сопряжены с определенными рисками, поскольку в них почти всегда используются легковоспламеняющиеся жидкости в качестве электролита. Одна из прискорбных (для нас, людей) причуд природы заключается в том, что жидкости, способные легко переносить ионы, также имеют более низкий порог воспламенения.Одно из решений — использовать твердые электролиты. Но это означает другие компромиссы. Конструкция батареи может легко включать жидкий электролит, который контактирует с каждым битом электродов, что позволяет эффективно переносить ионы. С твердыми телами намного сложнее. Представьте, что вы бросаете пару кубиков в чашку с водой. А теперь представьте, что те же самые кости бросают в чашку с песком. Очевидно, что вода будет касаться гораздо большей площади поверхности игральных костей, чем песок.

До сих пор коммерческое использование литий-ионных батарей с твердыми электролитами ограничивалось приложениями с низким энергопотреблением, такими как датчики, подключенные к Интернету.Усилия по увеличению масштабов твердотельных батарей, то есть не содержащих жидкий электролит, можно в общих чертах разделить на две категории: твердые полимеры при высоких температурах и керамика при комнатной температуре.

Твердые полимеры при высоких температурах

Полимеры представляют собой длинные цепочки молекул, связанных вместе. Они очень распространены в повседневном использовании — например, одноразовые полиэтиленовые пакеты делают из полимеров. Когда некоторые типы полимеров нагреваются, они ведут себя как жидкости, но без воспламеняемости жидких электролитов, используемых в большинстве батарей.Другими словами, они обладают высокой ионной проводимостью, как жидкий электролит, без каких-либо рисков.

Но у них есть ограничения. Они могут работать только при температуре выше 105 ° C (220 ° F), что означает, что они не подходят, например, для смартфонов. Но их можно использовать, например, для хранения энергии от сети в домашних батареях. По крайней мере, две компании — SEEO (США) и Bolloré (Франция) — разрабатывают твердотельные батареи, в которых в качестве электролита используются высокотемпературные полимеры.

Керамика при комнатной температуре

За последнее десятилетие два класса керамики — LLZO (оксид лития, лантана и циркония) и LGPS (литий, германий, сульфид фосфора) — показали почти такие же хорошие проводящие ионы при комнатной температуре. как жидкости.

Toyota, а также стартап из Кремниевой долины QuantumScape (который в прошлом году привлек 100 миллионов долларов от Volkswagen) работают над внедрением керамики в литий-ионные батареи. Включение крупных игроков в пространство указывает на то, что прорыв может быть ближе, чем многие думают.

«Мы очень близки к тому, чтобы увидеть что-то реальное [с использованием керамики] через два или три года», — говорит Вишванатан из Карнеги-Меллона.

Закон о балансе

Аккумуляторы — это уже большой бизнес, и их рынок продолжает расти.Все эти деньги привлекают множество предпринимателей с еще большим количеством идей. Но стартап с аккумуляторными батареями — сложная ставка — они терпят неудачу даже чаще, чем компании-разработчики программного обеспечения, которые известны своим высоким уровнем отказов. Это потому, что инновации в области материаловедения — это сложно.

На данный момент химики, занимающиеся аккумуляторными батареями, обнаружили, что, когда они пытаются улучшить одну характеристику (скажем, плотность энергии), им приходится идти на компромисс в отношении другой характеристики (например, безопасности). Такой баланс означает, что прогресс на каждом фронте был медленным и чреват проблемами.

Но если внимательнее присмотреться к проблеме — Йет-Мин Чан из Массачусетского технологического института считает, что сегодня в США в три раза больше ученых, занимающихся аккумуляторными батареями, чем всего 10 лет назад, — шансы на успех возрастут. Потенциал аккумуляторов остается огромным, но, учитывая предстоящие проблемы, лучше относиться к каждому заявлению о новых аккумуляторах с хорошей долей скептицизма.

Новое носимое устройство превращает тело в аккумулятор | CU Boulder сегодня

Исследователи из CU Boulder разработали новое недорогое носимое устройство, которое превращает человеческое тело в биологический аккумулятор.

Устройство, описанное сегодня в журнале Science Advances , достаточно эластично, чтобы его можно было носить как кольцо, браслет или любой другой аксессуар, который касается вашей кожи. Он также использует естественное тепло человека, используя термоэлектрические генераторы для преобразования внутренней температуры тела в электричество.

«В будущем мы хотим иметь возможность питать вашу носимую электронику без необходимости включать батарею», — сказал Цзянлян Сяо, старший автор новой статьи и доцент Университета Пола М.Ради Департамент машиностроения в CU Boulder.

Эта концепция может звучать как что-то из серии фильмов The Matrix , в которых раса роботов поработила людей, чтобы собрать их драгоценную органическую энергию. Сяо и его коллеги не столь амбициозны: их устройства могут генерировать около 1 вольт энергии на каждый квадратный сантиметр кожного пространства — меньшее напряжение на площадь, чем у большинства существующих батарей, но все же достаточно для питания электроники, такой как часы или фитнес-трекеры.

Ученые ранее экспериментировали с аналогичными термоэлектрическими носимыми устройствами, но устройство Xiao эластичное, может самовосстанавливаться при повреждении и полностью пригодно для вторичной переработки, что делает его более чистой альтернативой традиционной электронике.

«Каждый раз, когда вы используете батарею, вы ее разряжаете, и, в конце концов, вам придется ее заменить», — сказал Сяо. «Наше термоэлектрическое устройство хорошо то, что вы можете носить его, и оно обеспечивает вам постоянную мощность».

Высокотехнологичные шорты

Проект — не первая попытка Сяо объединить человека и робота.Он и его коллеги ранее экспериментировали с разработкой «электронной кожи», носимых устройств, которые выглядят и ведут себя так же, как настоящая человеческая кожа. Однако для работы этот эпидермис андроида должен быть подключен к внешнему источнику питания.

До сих пор. Последняя инновация группы начинается с основы, сделанной из эластичного материала под названием полиимин. Затем ученые вставляют серию тонких термоэлектрических чипов в это основание, соединяя их все жидкими металлическими проводами. Конечный продукт выглядит как нечто среднее между пластиковым браслетом и миниатюрной материнской платой компьютера или, может быть, технологичным бриллиантовым кольцом.

«Наша конструкция делает всю систему растягиваемой, не вызывая больших нагрузок на термоэлектрический материал, который может быть действительно хрупким», — сказал Сяо.

Просто представьте, что вы на пробежку. Во время упражнений ваше тело нагревается, и это тепло будет излучаться в прохладный воздух вокруг вас. Устройство Сяо улавливает этот поток энергии, а не тратит его зря.

«Термоэлектрические генераторы находятся в тесном контакте с человеческим телом и могут использовать тепло, которое обычно рассеивается в окружающую среду», — сказал он.

Лего блоки

Он добавил, что вы можете легко увеличить эту мощность, добавив больше блоков генераторов. В этом смысле он сравнивает свой дизайн с популярной детской игрушкой.

«Что я могу сделать, так это объединить эти меньшие единицы, чтобы получить более крупную единицу», — сказал он. «Это все равно, что собрать кучу маленьких деталей Lego в большую конструкцию. Это дает вам множество возможностей для настройки ».

Сяо и его коллеги подсчитали, например, что человек, совершающий быструю прогулку, может использовать устройство размером с обычный спортивный браслет, чтобы генерировать около 5 вольт электричества — это больше, чем могут собрать батарейки для многих часов.

Как и электронная кожа Сяо, новые устройства обладают такой же устойчивостью, как и биологическая ткань. Например, если ваше устройство порвется, вы можете сжать сломанные концы вместе, и они снова закроются через несколько минут. А когда вы закончите работу с устройством, вы можете окунуть его в специальный раствор, который разделит электронные компоненты и растворяет полииминовую основу — каждый из этих ингредиентов может быть использован повторно.

«Мы стараемся сделать наши устройства как можно более дешевыми и надежными, при этом они будут иметь минимальное воздействие на окружающую среду», — сказал Сяо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *