Альтернативные источники энергии: почему они нужны всем
МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива.
Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба.
К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.
САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ
Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.
Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность.
Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год.
Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.
Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства.
Что такое валютные войны и зачем их ведут
Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника.
КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ
В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты.
Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы.
В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей.
Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба.
Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.
Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС.
Зарабатываем и делимся: популярно о дивидендах
АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ
На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт.
Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.
Альтернативные источники энергии: альтернативы нет — Энергетика и промышленность России — № 7 (11) июль 2001 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 7 (11) июль 2001 года
Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.Основные причины, указывающие на важность скорейшего перехода к АИЭ:
* Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI века.
* Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;
* Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче.
* Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, — всё это увеличивает социальную напряженность.
* Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.
Источники энергии
Сегодня суммарное потребление тепловой энергии в мире составляет >200 млрд. кВт/ч в год, (эквивалентно 36 млрд. т усл. топлива). В России сегодня общее потребление топлива составляет около 5 % мирового энергобаланса.
Геологические запасы органического топлива в мире более 80 % приходится на долю угля, который становится все менее популярным. А известные запасы топливных ресурсов к 2100 г. будут исчерпаны. По данным экспертов, в начале XXI в. добыча нефти и природного газа начнет сокращаться: их доля в топливно-энергетическом балансе снизится к 2020 г. с 66,6 % до 20 %. На долю гидроэнергетики приходится всего 1,5 % общего производства энергии в мире, и она может играть только вспомогательную роль. Таким образом, ни органическое топливо, ни гидроэнергия не могут решить проблемы энергетики в перспективе.
Что касается ядерной энергии, все известные запасы урана, пригодного для реакторов, действующих на тепловых нейтронах, будут исчерпаны в первом десятилетии XXI в. Создание и эксплуатация АЭС на реакторах-размножителях значительно дороже и не менее безопасны, чем на тепловых нейтронах. От населения до сих пор скрывают не только реальную опасность атомной энергетики, но и ее реальную стоимость. Учитывая все затраты на добычу топлива, нейтрализацию, утилизацию и захоронение отходов, консервацию отработавших реакторов (а их ресурс не более 30 лет), расходы на социальные, природоохранные нужды, то стоимость энергии АЭС многократно превысит любой экономически допустимый уровень. По оценкам специалистов, только затраты на вывоз, захоронение и нейтрализацию накопившихся на российских предприятиях отходов ядерной энергетики составят около 400 млрд. долл. Затраты на обеспечение необходимого уровня технологической безопасности составят 25 млрд. долл. С увеличением числа реакторов повышается вероятность аварий: по прогнозам МАГАТЭ, из-за увеличения количества реакторов в 2000 г. вероятность крупной аварии повысится до одной в 10 лет. В районах расположения АЭС, уранодобывающих и производящих предприятий постоянно растет уровень заболеваемости, особенно детской. АЭС служит одним из основных «нагревателей» атмосферы: в процессе деления 1 кг урана выделяется 18,8 млрд. ккал. Таким образом, тезис о безопасности и дешевизне атомной энергии — пустой и опасный миф, а атомная энергетика по причине огромной потенциальной опасности и низкой рентабельности не имеет долгосрочной перспективы.
Что касается электростанций на основе термоядерного синтеза, то, по оценкам специалистов, в ближайшие 50 лет они вряд ли будут технологически освоены, а пагубное тепловое влияние на климат планеты будет не меньшим, чем от ТЭС и АЭС.
К так называемым нетрадиционным источникам энергии относятся: тепло Земли (геотермальная энергия), Солнца (в том числе энергия ветра, морских волн, тепла морей и океанов), а также «малая» гидроэнергетика: морские приливы и отливы, биогазовые, теплонасосные установки и другие преобразователи энергии.
Но только возобновляемые источники энергии, могут представлять реальную альтернативу традиционным технологиям сегодня и в перспективе.
Солнечная энергия
Общее количество солнечной энергии, достигающее поверхности Земли в, 6,7 раза больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Севере технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.
Ветровая энергия
В России валовой потенциал ветровой энергии — 80 трлн. кВт/ч в год, а на Северном Кавказе — 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива.
Таким образом, потенциала солнечной радиации и ветровой энергии в принципе достаточно для нужд энергопотребления как страны, так и регионов. К недостаткам этих видов энергии можно отнести нестабильность, цикличность и неравномерность распределения по территории; поэтому использование солнечной и ветровой энергии требует, как правило, аккумулирования тепловой, электрической или химической. Однако возможно создание комплекса электростанций, которые отдавали бы энергию непосредственно в единую энергетическую систему, что дало бы огромные резервы для непрерывного энергопотребления.
Наиболее стабильным источником может служить геотермальная энергия. Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.
Таким образом, альтернативные возобновляемые источники энергии позволяют долгосрочно обеспечить всю страну.
Состояние АПЭ в мире
По прогнозу Мирового энергетического конгресса. в 2020 году на долю альтернативных преобразователей энергии (АПЭ) придется 5,8 % общего энергопотребления. При этом в развитых странах (США, Великобритании и др.) планируется довести долю АПЭ до 20 % (20 % энергобаланса США — это примерно все сегодняшнее энергопотребление в России). В странах Европы планируется к 2020 г. обеспечить экологически чистое теплоснабжение 70 % жилищного фонда. Сегодня в мире действует 233 геотермальные электростанции (ГеоТЭС) суммарной мощностью 5136 мВт, строятся 117 ГеоТЭС мощностью 2017 мВт. Ведущее место в мире по ГеоТЭС занимают США (более 40 % действующих мощностей в мире). Там работает 8 крупных солнечных ЭС модульного типа общей мощностью около 450 мВт, энергия поступает в общую энергосистему страны. Выпуск солнечных фотоэлектрических преобразователей (СФАП) достиг в мире 300 мВт в год, из них 40 % приходится на долю США. В настоящее время в мире работает более 2 млн. гелиоустановок горячего водоснабжения. Площадь солнечных (тепловых) коллекторов в США составляет 10, а в Японии — 8 млн. м2. В США и в Японии работает более 5 млн. тепловых насосов. За последние 15 лет в мире построено свыше 100 тыс. ветроустановок суммарной мощностью 70000 мВт (10 % энергобаланса США). В большинстве стран приняты законы, создающие льготные условия как для производителей, так и для потребителей альтернативной энергии, что является определяющим фактором успешного внедрения.
Состояние АПЭ в России
В 1990 году на долю АПЭ приходилось приблизительно 0,05 % общего энергобаланса, в 1995 году — 0,14%, на 2005 год планируется около 0,5-0,6% энергобаланса страны (т.е. приблизительно в 30 раз меньше, чем в США, а если учесть соотношение энергобалансов, то у нас «запланировано» отставание примерно в 150 раз). Всего в России 1 ГеоТЭС (Паужекская, 11 мВт), и то технологически крайне неудачная, 1 приливная ЭС (Кислогубская, 400 кВт), 1500 ветроустановок (от 0,1 до 16 кВт), 50 микроГЭС (от 1,5 до 10 кВт), 300 малых ГЭС (2 млрд. 2, 3000 тепловых насосов (от 10 кВт до 8 мВт).
Итак, по всем видам АПЭ Россия находится на одном из последних мест в мире. В нашей стране отсутствует правовая база для внедрения АПЭ, нет никаких стимулов для развития этого направления. В стране отсутствует отрасль, объединяющая все разрозненные разработки в единый стратегический замысел. В концепции Минтопэнерго АПЭ отводится третьестепенная, вспомогательная роль. В концепциях РАН РФ, ведущих институтов, отраженных в программе «Экологически чистая энергетика» (1993 г.), практически отсутствует стратегия полномасштабного перехода к альтернативной энергетике и по-прежнему делается ставка на малую, автономную энергетику, причем в весьма отдаленном будущем. Что, конечно, скажется на экономическом отставании страны, а также на экологической обстановке как в стране, так и в мире в целом.
Альтернативные источники энергии — Энергетика и промышленность России — № 3 (31) март 2003 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 3 (31) март 2003 года
На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов — угля, нефти и газа, научился использовать энергию рек, освоил «мирный атом», но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии. По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти — 300 миллиардов тонн, газа — 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти — 137 миллиардов тонн, газа — 142 триллионов кубометров.
В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобнавляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию «биоэнергетики», например, энергии парного молока для обогрева коровников.
Но существуют и «традиционные» виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом «бесплатной» неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы Cолнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .
Солнце — неисчерпаемый источник энергии — ежесекундно дает Земле 80 тысяч миллиардов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет — самая близкая к Солнцу часть нашей планеты — по праву считает солнечную энергию своим богатством. На-сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.
Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании «Боинг». Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.
Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой — из арсенаида галлия. Он поглощает излучение видимой части спектра. Нижний слой — из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.
Компактная передвижная электростанция сконструирована германским инженером Хербертом Бойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства — ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй — автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.
Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, «Южнокалифорнийская компания Эдисон» планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Ожидается, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его «солнцеобильностью».
На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может «работать» зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс. Природа не создала «месторождения» ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда «размазана» по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее «надежным», чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «ловить» кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144, см. рис) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!
В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 г. британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения «морского» электричества по сравнению с другими его источниками, в частности — атомными.
В мая 1988 г. в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа (T. Thorpe), который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 КВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена «морской» электроэнергии с 1987 г. снизилась вдесятеро.
Наиболее совершенен проект «Кивающая утка», предложенный конструктором С. Солтером (S. Salter; Эдинбургский университет, Шотландия). Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВтч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это — 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВтч).
Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.
Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест его, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют (см. фото 3). Этот двухметровый агрегат есть не что иное, как бесплотинная ГЭС мощностью в 0,5 КВт. В комплекте с аккумулятором она обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую. .. Была бы поблизости речушка!
Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную «лыжу» и тросами закрепляется с двух берегов. Остальное — дело техники: мультипликатор вращает автомобильный генератор постоянного тока напряжением 14 вольт, и энергия аккумулируется.
Бесплотинная мини-ГЭС успешно зарекомендовала себя на речках Горного Алтая, доработана до уровня опытного образца.
Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное объем закрытых свалок сократился на 78%.
Разлагаясь на свалках, мусор выделяет газ, 50-55 % которого приходится на метан, а 45-50% — на углекислый газ и около одного процента — на другие соединения. Если раньше выделяемый газ просто отравлял воздух, то теперь в США его начинают использовать в качестве горючего в двигателях внутреннего сгорания с целью выработки электроэнергии. Только в мая 1993 года 114 электростанций, работающих на газе от свалок, произвели 344 мегаджоуля электроэнергии. Самая крупная из них, в городе Уиттиер, производит за год 50 мегаджоулей. Станция мощностью 12 мегаватт способна удовлетворить потребность в электроэнергии жителей 20 тысяч домов. По подсчетам специалистов, газа на свалках США хватит для работы небольших станций на 30-50 лет. Не стоит ли и нам задуматься над проблемой вторичного использования мусора? При наличии эффективной технологии мы могли бы сократить количество мусорных «курганов», а заодно значительно пополнить и восполнить запасы энергии, благо «дефицита сырья» для ее производства не предвидится.
Казалось бы, что может быть неприятнее навоза? Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их старению.
Известно, что теплоцентрали — активные загрязнители окружающей среды, свинофермы и коровники — тоже. Однако из этих двух зол можно составить нечто хорошее. Именно это произошло в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы — для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 киловатт.
Кроме замены традиционных источников энергии альтернативными, существуют проекты по созданию экологически чистых и сбалансированных городов и деревень будущего. Основой для их создания будут служить применение экономичных материалов, а также оптимальный режим использования энергии, который смогут поддерживать с помощью компьютерных программ.
Хранителем домашнего очага и незримым существом в доме, по старинным поверьям, служит теплый домовой. Техническую помощь ему в скандинавских странах, в первую очередь в Швеции, оказывает теперь программно управляемая бытовая теплоцентраль «Аквае 47 ОД». Разработанная шведской фирмой «Электро стандард», эта установка довольствуется скромным местом, скажем, площадью кухни.
Тепловые насосы и узел нагрева воды вмонтированы в нее еще на заводе-изготовителе. Принцип экономного вторичного обогрева таков: из использованного воздуха ванной комнаты, кухни и подсобок тепловая энергия возвращается в систему отопления традиционного типа и утилизируется водогрейным котлом. Дополнительные калории от внешних источников газа или жидкого топлива отбираются на эти цели лишь по мере необходимости. Особые клапаны в наружных стенах, снабженные противопылевым фильтром и входящие в комплект установки, обеспечивают подвод чистого воздуха и равномерную безвытяжную смену его в доме. Это достижение компьютерной теплотехники предназначено прежде всего для односемейных домов, например, для загородных коттеджей; оно сокращает наполовину обычный расход энергии.
В испанском поселке Сант-Джосеп на острове Ивиса сооружается первая в мире экологическая деревня будущего, где поселятся четыреста человек. В проекте участвуют специалисты из всех стран Европы. Чтобы оптимально использовать солнечный свет, «умные» дома сами станут регулировать внутреннюю температуру. Это позволяет как новая технология, так и сами материалы — каркас из алюминия и поликарбоната с огромными застекленными поверхностями, где циркулирует прозрачная жидкость. Получится своеобразный щит, впускающий солнечный свет, но удерживающий тепло. Температура зимой и летом будет одинаковая — 20-22 градуса. Избыток энергии поступит в термический теплонакопитель. Электроэнергию там станут вырабатывать также ветряные мельницы и солнечные батареи, избыток ее опять же сберегут огромные аккумуляторы. Биоочистная установка превратит органические отходы — мусор и сточные воды, в метан, преобразуемый затем в электричество. Структура здания гарантирует сохранность свыше 85 процентов энергии. На гигантской биоферме будут выращивать скот, рыбу, а так же овощи, фрукты и злаки.
Возможно, такие проекты пока невозможно реализовать в значительных масштабах. До серийного производства «умных» экологически чистых домов еще далеко, но уже сейчас реализация некоторых проектов (постройка мини-ГЭС, солнечных, ветровых, мусорных электростанции) вполне реальна.
Как встретишь Новый год, так его и проведешь! Перефразируя это изречение, можно сказать, что как встретишь новую эру, так ее и проведешь. Как же встретит человечество ХХI век: в дыму труб теплостанций или в шелесте «ветряков» на фоне солнечных зеркал? Будет ли оно использовать традиционные ресурсы или перейдет на источники, пополнять которые сможет сама Природа? Ответ не за горами. В любом случае человек должен помнить: какие бы природные ресурсы он ни использовал, делать это надо бережно, помня о тех, кто идет следом.
Альтернативные источники энергии. Овощи и фрукты
- Участник: Сытенко Мария Александровна
- Руководитель: Жеребцова Анна Ивановна
Цель данной работы — исследование электрических свойств овощей и фруктов.
I. Введение
Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.
Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии
Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве.1
Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.
Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.
Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.
Цель моей работы – исследование электрических свойств овощей и фруктов.
Задачи:
- Экспериментально измерить и проанализировать силу тока и напряжение таких батарей.
- Провести исследования с гальванических элементов, изменяя ширину пластин, глубину их погружений, и расстояний между электродами.
- Испытайте разные комбинации последовательно соединённых продуктов и проанализируйте полученные результаты.
- Собрать цепь, состоящую из нескольких таких батареек и постараться зажечь лампочку, запустить часы.
- Изготовить прибор гальванометр для определения напряжения.
- Исследовать электропроводность овощей и фруктов, разных сроков хранения, используя свой прибор.
Объект исследования: фрукты и овощи.
Предмет исследования: свойства овощных и фруктовых источников тока.
Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.
Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.
II. Основная часть
2.1 История создания батарейки
Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым ЛуиджиГальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки.
Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное2 истолкование. Опыты Гальвани стали основой исследований другого итальянского ученого — Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение. Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами3.
2.2 Создание фруктовой батарейки
а) с использованием одного элемента
Для создания фруктовой батареи мы попробовали взять лимоны, яблоки, огурцы свежие и соленые, помидоры, картофель сырой и вареный. Положительным полюсом определили несколько блестящих медных пластин. Для создания отрицательного полюса решили использовать оцинкованные пластины. Конечно же, понадобились провода, с зажимами на концах. Ножом сделала в фруктах небольшие надрезы, куда вставила пластины (электроды). После соединения всех частей воедино у меня получилась фруктовая или овощная батарейка (рис. 1).
Рисунок 1
Название |
Напряжение, В |
Сила тока, А |
Лимон |
0,81 |
0,18 |
Яблоко |
0,84 |
0,12 |
Огурец (свежий) |
0,8 |
0,11 |
Огурец (соленый) |
0,9 |
0,2 |
Картофель (сырой) |
0,5 |
0,25 |
Картофель (вареный) |
0,75 |
0,5 |
Вывод: Исследования показали, что наибольшее значение силы тока наблюдается у соленого огурца, сырого картофеля и лимона. Значения напряжения и силы тока в варёном картофеле в два раза больше, чем в сыром.
б) разные комбинации последовательного соединения элементов
Исследовала разные комбинации последовательного соединения элементов, фруктов и овощей (рис. 2).
Рисунок 2
Название |
Напряжение, В |
Сила тока, А |
Лимон + огурец |
1,68 |
0.7 |
Два лимона |
1,4 |
0,5 |
Две картошки |
1,62 |
0,5 |
Три картошки |
2,2 |
0,5 |
2 огурца |
1,01 |
0. |
Вывод: соединяя последовательно объекты исследования, выяснила, что вареный картофель, лимон-огурец, дают наибольшую разность потенциалов.
2.3. Исследования электропроводности овощей и фруктов во время хранения
Название |
Ноябрь |
Январь |
картофель |
50-45 /150 |
40-36/150 |
свекла |
33-25 /208 |
23-20 /208 |
Давно известно, что все плоды растений представляют собой открытые системы биологического происхождения сложного физико-химического состава с характерными особенностями функционирования в течение всего их развития и хранения, а преобладающим компонентом является вода.
Следовательно в процессе хранения овощи и фрукты «усыхают», т.е. количество жидкости в них уменьшается, а содержание газов увеличивается, в результате чего электpопpоводность их тоже должна уменьшаться, в чем я убедилась проверяя в январе этого года. Считаю, что используя такие данные, легко отличить плоды нового урожая текущего года от плодов и овощей прошлого.
Вывод: Экспериментально было выявлено, что постепенно сила тока и напряжение уменьшаются. Оказалось, что величины силы тока и напряжения связаны с кислотностью продукта.
2.4. Возможность практического применения электрических свойств овощей
а) источник тока для часов
В ходе измерений попытались оценить возможность практического применения электрических свойств овощей.
От четырех последовательно соединенных вареных картофелин стали работать часы маленькие (рис. 3) и большие (рис. 4).
|
|
Рисунок 3 |
Рисунок 4 |
б) освещение
Зажглась лампочка (рис. 5).
Рисунок 5
в) зарядка телефона
Разряженный телефон я подключила к пяти, последовательно соединенным вареным картофелинам, телефон заработал (рис. 6).
Рисунок 6
г) подключение калькулятора
Вытаскивая медную и цинковую пластины из овощей и фруктов, мы обратили внимание на то, что они сильно окислились. Это значит, что кислота вступала в реакцию с цинком и медью. За счет этой химической реакции и протекал очень слабый электрический ток.
III. Создание прибора для определения свежести фруктов и овощей
а) самодельный гальванометр
Кусочек картона, обмотала 30 витками медного провода и расположила его таким образом, чтобы стрелка компаса находилась под витками, была им параллельна — это нулевое положение прибора. К концам проволоки я припаяла медную и цинковую пластину, их я буду погружать в исследуемый фрукт или овощ. Если к ним подсоединить источник тока, то вокруг витков проволоки, по которым пойдет ток, возникнет магнитное поле, взаимодействующее с полем магнитной стрелки, в результате чего она будет отклонятся от своего положения. Поворот стрелки пропорционален силе тока. Затем, шкалу этого прибора я проградуировала и в единицах напряжения, так как сила тока прямо пропорциональна напряжению, приложенному к выводам этого прибора. Поэтому для градуировки нашего прибора подсоединила новую батарейку с ЭДС = 1.5 В, стрелка отклонилась на 80 град, на 8 делений нашего компаса, одному делению компаса соответствует напряжение 0,188 В (рис. 7)
Рисунок 7
б) использование самодельного прибора
С помощью прибора я дважды проверяла картофель, свеклу и лук в погребе.
Показания моего прибора уменьшились.
Разные сорта картофеля показали различные изменения. Прибор можно использовать для определения качества овощей и фруктов. Возможно на рынке (рис. 8).
Рисунок 8
IV. Об использовании фруктов и овощей для получения электричества
Недавно израильские ученые изобрели новый источник экологически чистого электричества. В качестве источника энергии необычной батарейки исследователи предложили использовать вареный картофель, так как мощность устройства в этом случае по сравнению с сырым картофелем увеличится в 10 раз. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.
Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек. В Индии создали батарейку на пасте из фруктов и овощей. В Австралии в 2003 году запущена электросиловая установка на ореховой скорлупе.4
Советы любознательным
Как добыть электричество из картошки?
У вас на даче нет электричества, но есть мешок картофеля. Из клубней картошки можно получить электричество бесплатно, все что нам понадобится, это соль, зубная паста, провода и картофелина.
Разрежьте её пополам ножом, через одну половинку проведите провода, в то время как в другой сделайте по центру углубление в форме ложки, после чего наполните её зубной пастой, смешанной с солью.
Соедините половинки картошки (к примеру зубочистками ), причем провода должны контачить с зубной пастой, а их самих лучше зачистить. Все! Теперь вы можете при помощи вашего генератора электричества устраивать пытки, зажигать костры от электрической искры и зажигать импровизированные лампочки с обугленными волокнами бамбука вместо нитей накаливания.
Как добыть электричество из фруктов?
Апельсины, лимоны и т.д., все это идеальный электролит для выработки электричества на халяву бесплатно, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро, доведя напряжение вашего электричества аж до целых 2 Вольт.
Если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам Эдиссон.
V. Выводы
Подводя итоги нашей работы можно с уверенностью сказать, что проведя эксперименты, мы, с одной стороны, убедились в том, что даже привычные нам предметы питания могут выступать в необычной роли. С другой стороны, мы убедились в выполнении законов физики.
- Фрукты и овощи могут служить источниками тока, если ввести в них медный и цинковый электроды.
- Экспериментально установлено, что величина тока в фрукте или овоще не зависит от его размера, а определяется наличием в нем растворов минеральных солей, видом электродов.
- Величины силы тока и напряжения связаны с кислотностью продукта и с разными комбинациями последовательно соединённых продуктов.
- В процессе хранения овощи и фрукты «усыхают», т. е. количество жидкости в них уменьшается, а содержание газов увеличивается, в результате чего электpопpоводность их тоже уменьшается.
- Фруктовые и овощные батарейки могут заменять карманные батарейки для освещения холодильника, погреба (банка с огурцами и электроды), а также в экстремальных ситуациях (отключение электричества).
1http://ru.euronews.com/2013/04/29/heats-shoots-and-leaves-electricity-from-living-plants
2Кириллова И.Г. Книга для чтения по физике. 6–7 кл. – М.: Просвещение, 1978, с. 198
3ru.wikipedia.org›Гальванический элемент
4http://energetiku.jimdo.com/
Альтернативная энергия для полного обеспечения частного дома
Год реализации: 2016 годЗеленая энергетика в Украине набирает все большей популярности и в данном материале мы покажем вам экономическую выгоду такого решения. Альтернативное отопление частного дома может быть на базе разного оборудования: фотомодулей, ветрогенераторов, солнечных коллекторов, тепловых насосов.
Альтернативные источники отопления для обеспечения жизнедеятельности частного дома площадью 350 м², который расположен в селе Рожны в Киевской области. Особенности данного помещения таковы, что дом не подсоединён к центральной системе газификации и энергоснабжения. То есть, проектируя инженерную сеть данного здания, необходимо было обеспечить выработку энергии с помощью альтернативных источников, её эффективное использование и перераспределение для достижения максимальной мощности.
Альтернативные и возобновляемые источники энергии на данном объекте это: фотомодули и солнечный коллектор, ветрогенератор. Также используются твердотопливный котел, системы кондиционирования и вентиляции. Реализация инженерных решений в рассматриваемом доме отлично показывает, чем хороши автономные источники энергии для дома и их преимущества среди традиционных и более дорогих источников.
Выработка электрической энергии
1. Фотомодули
Для выработки электрической энергии из солнечной энергии на участке крыши над электрощитовой установлена система из 12 солнечных фотомодулей YabangSolar 240W/24V номинальной мощностью 240 Вт каждый. Данная система демонстрирует производительность в 300-400 кВт/ч в месяц в период с марта по сентябрь (наивысшая солнечная активность) и приблизительно 150 кВт/ч в месяц в остальное время.
Место расположения поля фотомодулей и угол наклона был выбран исходя из расчётов, для получения максимальной отдачи, также предусмотрена возможность регулировки угла наклона солнечных батарей.
Все фотомодули подключены к инверторной системе XANTREX XW 7048 E (новое поколение солнечных инверторов выпускается под названием Schneider Electric Conext XW+ 7048 E) 6 кВт через зарядное устройство на 12 фотомодулей.
Для накопления вырабатываемой электрической энергии установлено 40 аккумуляторов типа SUNLIGHT PzS ёмкостью 92 ампера/час, 48В, которые размещены под землей на глубине 3 м.
Стоит отметить, что эффективность работы системы зависит от выбора «солнечного инвертора» и контроллера заряда аккумуляторов, не менее чем от правильности расположения панелей фотомодулей. Показатель КПД выбранной модели инвертора считается одним из самых высоких в своём классе, что касается контроллера заряда аккумуляторов, то к нему предъявлялись особые требования. Характер источника энергии (генерация не является стабильной в условиях переменной облачности) предполагает необходимость съёма максимальной мощности, помимо эффективного контроля заряда АКБ. Для солнечных систем электроснабжения важно минимизировать потери электроэнергии на всех этапах.
Отопление дома альтернатива
2. Ветрогенератор
Для преобразования энергии ветра в электричество на территории дома установлен ветрогенератор FLAMINGO AERO 4-6,7/1000 мощностью в 5 кВт и диаметром ветротурбины – 6,7 м. Ветрогенератор установлен на ферменную мачту FLAMINGO AERO высотой 26 метров.В наиболее благоприятный период (с сентября по март), ветрогенератор характеризуется производительностью 450-600 кВт/ч в месяц, а в летний период времени (умеренная активность ветра) – 200 кВт/ч в месяц.
Без ветрогенератора обеспечить электроэнергией дом в период с сентября по март в Украине (только с помощью поля фотомодулей) не просто проблематично, а экономически не целесообразно.
Итог по выработке электроэнергии
Автономное отопление дома на базе фотомодулей и ветрогенератора позволяет получить в общей сложности приблизительно 700 кВт/ч, чего с лихвой хватает для обеспечения жизнедеятельности частного дома площадью 350 м².С Марта по Сентябрь – 300-400 кВт/ч в месяц от фотомодулей + 200 кВт/ч в месяц от ветрогенератора.
С Сентября по Март – 450-600 кВт/ч в месяц от ветрогенератора + 150 кВт/ч в месяц от фотомодулей.
Почему стоит заказывать у нас?
100% соответствие проектированию
Полная гарантия соответствия работы к документам – выполняем все работы, прописанные в договоре, качественно, в полном объёме и вовремя.
Подбор оборудования по бюджету
Широкий диапазон бюджета на проектирование позволит каждому клиенту грамотно обустроить систему вентиляции, исходя из его финансовых возможностей.
Индивидуальная концепция
Мы не работаем по шаблону, а разрабатываем персональную концепцию под каждого клиента и объект, поэтому все наши проекты уникальны.
10 лет опыта
Наш опыт в проектировании вентиляционных систем более 10 лет, что является залогом правильной и экспертной разработки проекта и реализации систем любой сложности.
Выработка тепловой энергии
1. Твердотопливный котел
Для производства тепловой энергии установлен твердотопливный пиролизный котел Viessmann Vitoligno 100-S мощностью 60 кВт, который обеспечивает высокую эффективность сжигания древесного топлива и нуждается в загрузке только 1 раз в сутки при работе в номинальном режиме.
Мощности данного котла не только хватает на отопление дома в 350 м², он может также обеспечивать теплом дополнительное помещение площадью в 120 м² (например, баня или гостевой домик).Выбор твердотопливного котла обусловлен меньшей стоимостью топлива, а так же отсутствием проблем с хранением, эксплуатацией и обслуживанием газовых баллонов. Ведь в данном случае речь идёт о доме для которого подведение газопровода не целесообразно.
КОМПАНИЯ АЛЬТЕР ЭЙР ПРЕДЛАГАЕТ РАЗНЫЕ ВАРИАНТЫ РЕШЕНИЙ
2. Солнечный коллектор
Еще один источник отопления, который используется на данном объекте для преобразования солнечной энергии в тепловую — солнечный коллектор Atmosfera CBK-A на 40 вакуумных трубок (24 мм). Данное альтернативное отопление дома способно обеспечить 300 литров горячей воды в день. Вырабатываемая тепловая энергия сбрасывается в буферную ёмкость либо подогревает горячую воду в бойлере.Вполне естественно, что летом, в период максимальной солнечной активности, происходит переизбыток тепловой энергии, выработанной солнечным коллектором. Когда температура воды в 400 литровом бойлере достигает 60°С, контроллер с помощью трехходового клапана направляет избыточную тепловую энергию в буферную ёмкость объемом 2000 л. Данная ёмкость имеет 45-кВатный встроенный теплообменник и 2 ТЭНа, мощность каждого по 2 кВт.
В летний период времени тепловая энергия с буферной ёмкости используется только для обогрева полов в санузлах и ванных комнатах.
Выбор солнечных коллекторов вакуумного типа обусловлен большим КПД и возможностью эффективной работы зимой в условиях рассеянного света (пасмурная погода).
Внедренные решения
Отопление дома
Для отопления дома используется твердотопливный котел, специальные радиаторы, а так же осуществлен монтаж теплого пола, для нагрева которого применяется тепло от альтернативных источников энергии. Трубопроводы немецкого бренда Rehau установлены в стяжке. Буферная ёмкость объёмом 2000 л имеет 45-кВатный встроенный теплообменник и 2 ТЭНа, мощность каждого по 2 кВт.
Подготовка горячей воды
Для обеспечения горячего водоснабжения в доме установлен нержавеющий бойлер, объём которого 300 литров, с двумя теплообменниками для нагрева воды от твердотопливного котла и от солнечного коллектора.
Система кондиционирования
Для создания системы кондиционирования дома использовалось оборудование японского бренда Daikin, который является абсолютным лидером в данной отрасли. VRV система кондиционирования состоит из наружного блока Daikin RXYSQ6P8V1 и внутренних канальных блоков Daikin FDXS25F, Daikin FDXS35F.Таким образом, все 9 комнат дома обслуживаются автономно, с возможностью выставления индивидуальной температуры в каждой из них. Существенным плюсом данной системы является подмес свежего воздуха.Оборудование для кондиционирования дома подобранное таким образом, чтобы на каждый киловатт затраченной энергии вырабатывалось четыре киловатта холода или тепла.
Наши опытные инженеры, которые работали над этим объектом
Руководитель проектов с более чем 15-летним стажем работы. Обладает большим опытом работы в отрасли строительства. На его счету свыше 1000 успешных проектов разной сложности.
- Дмитрий
- Бурахович
Инженер с 12-тилетним опытом в проектировании. Грамотно координирует работу проектировщиков, быстро находит решения сложных задач.
Инженер в области проектирования систем вентиляции и кондиционирования. Мастер в грамотном и индивидуальном подборе оборудования.
- Владислав
- Лысак
Квалифицированный специалист в области отопления, водоснабжения, водоочистки и канализации. Разрабатывает индивидуальные решения для каждого клиента.
Система вентиляции
Для вытяжной вентиляции санузлов, ванных комнат и гардеробной используется оборудование немецкой компании Maico. Настенные вентиляторы Maico ECA 100 ipro KVZC обеспечивают эффективное удаление влажности, устранение неприятных запахов и характеризуются максимальной бесшумностью. Вентиляторы оснащены таймером и датчиком влажности, что не только значительно упрощает их эксплуатацию, но и делает их весьма экономичными.
Если вас интересует реализация вентиляции кухни, то мы так же занимаемся подобными работами, о чём подробно описано на сайте — применяемое оборудование, представлены схемы и планы вентиляции кухни.Взаимодействие систем
Альтернативные источники электроэнергии для дома имеют некоторые особенности работы. Например, когда светит солнце или дует ветер, соответствующие контроллеры заряжают аккумуляторы до напряжения 56 В. Если аккумуляторы уже заряжены, но выработка энергии продолжается (то есть еще светит солнце или дует ветер), то контроллеры отправляют вырабатываемую электроэнергию напрямую на ТЭНы, встроенные в буферную емкость, до разрядки аккумуляторов до 54В.Мощность этих ТЭНов 4 кВт выбрана исходя из того что солнце и ветер совместно могут дать не более 4 кВт электоэнергии в час. Таким образом, ТЭНы нагревают воду в буферной емкости, которая, обладая большой теплоемкостью, может вместить большое количество теплоты и обеспечить непрерывное использование вырабатываемой энергии и максимальную эффективность установленного оборудования для производства электрической энергии.
Накопленная в буферной емкости теплота используется для производства горячей воды и поддержки системы комфортного теплого пола.
Все системы, потребляющие электроэнергию (система освещения, система кондиционирования и бытовые приборы в доме), берут ее из аккумуляторов, разряжая их. Напряжение 220 В на входе в дом обеспечивается инвертором.
При разрядке аккумуляторов ниже 54 В вся вырабатываемая электроэнергия снова автоматически начинает подаваться на аккумуляторы для их зарядки. При достижении напряжения в них 56 В цикл повторяется.Когда светит солнце (преимущественно в теплый период года) система солнечных коллекторов преобразует солнечную энергию в тепловую. Вырабатываемая тепловая энергия нагревает бойлер. Если температура воды в бойлере достигла 60°С, а тепловая энергия еще вырабатывается, то контролер солнечной системы перенаправляет подачу вырабатываемого тепла с бойлера на теплообменник буферной ёмкости, нагревая ее.
Пиролизный котел обеспечивает подогрев воды для радиаторного отопления и теплого пола. Также он нагревает воду в бойлере, если тепла, вырабатываемого солнечными коллекторами, не достаточно.
Таким образом любой избыток выработанной энергии будет аккумулироваться в том или ином виде, что в конечном счёте ускоряет окупаемость проекта, а сама система будет защищена от преждевременного износа (особенно это касается аккумуляторных батарей).
Итог
На примере данного объекта мы можем убедиться, что альтернативные источники энергии для дома в украинских реалиях экономически оправданы, вовсе не являясь некой модной тенденцией.
За счёт применения энергосберегающих технологий при строительстве дома, обустройстве системы вентиляции и кондиционирования снижаются расходы на отопление в зимний период и охлаждение в летний. В отличии от традиционных систем комфорт обеспечивается с минимальными эксплуатационными затратами.
Дополнение системы отопления альтернативными источниками энергии в виде гелиотермальной системы позволяет уменьшить потребление топлива в системе отопления в зимний период и практически полностью перейти на солнечную энергию для горячего водоснабжения в летнее время. Помимо этого, «солнечное отопление» простое в эксплуатации, автоматизируемое и полностью безопасное.
Альтернативное отопление для частного дома на базе фотомодулей и ветрогенераторов может как обеспечить полную автономность вашего дома, так и существенно ускорить сроки её окупаемости за счёт продажи избытка генерируемой электроэнергии. Второй вариант предполагает использование сетевого инвертора и оформления «Зелёного тарифа», который действует на территории Украины.
Наши последние работы
Альтернативные источники электроэнергии для загородного дома —
В настоящее время в качестве основных используются следующие источники электрической энергии: атомные электростанции, работающие на ядерном топливе, тепловые электростанции, работающие на угле или газе и гидроэлектростанции. В ближайшие 50-60 лет запасы природного газа, угля, нефти будут исчерпаны практически полностью и возникнет энергетический кризис, поэтому уже сейчас в большинстве стран мира ведутся разработки энергосберегающих технологий, поиск альтернативных и недорогих источников энергии.
Электроснабжение частного дома можно осуществить различными способами. Так, например, если рядом с домом или на небольшом расстоянии от него проходит линия электропередач 0,4 кВ, то самым недорогим вариантом подключения будет вариант заказа в электромонтажной организации работ по подключению дома к электрическим сетям общего пользования. Если же подключение к электрическим сетям общего пользования связано с большими финансовыми затратами, то актуальным становится вопрос выбора альтернативного источника электроснабжения.
Существует несколько эффективных альтернативных источников электроэнергии. Основными из них являются работающие на энергии солнца и ветра. Выбор альтернативного источника довольно сложный и трудоемкий процесс. Прежде всего, необходимо рассчитать потребляемую электрическую мощность всех потребителей дома с учетом коэффициента загрузки и коэффициента одновременности, затем на основании полученных результатов выбрать мощность и тип источника электроснабжения, руководствуясь стоимостью оборудования, электромонтажных работ и кВт*ч электроэнергии.
Для электроснабжения среднестатистического загородного дома, расположенного в Подмосковье, использующего нагрузку, состоящую из холодильника, освещения, телевизора, кондиционера и стиральной машины, необходим источник электроэнергии мощностью 6 кВт. Среднесуточное потребление составит порядка 16 кВт*ч. Выбор альтернативного источника электроэнергии необходимо производить с учетом возможного увеличения потребляемой мощности:
Ветрогенератор
Стоимость ветроустановки в сборе мощностью 7 кВт составит порядка 24000 долларов. В состав комплекта, помимо самого вертогенератора и мачты для его установки, войдёт контроллер заряда аккумуляторов, инвертор 48/220 В, 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы электрооборудования дома во время штиля или низкой скорости ветра.
Солнечная батарея
Электроустановка на основе солнечных модулей мощностью 7 кВт будет стоить ориентировочно 30000 долларов. Комплект будет состоять из 45 монокристаллических солнечных панелей мощностью 270 Вт, контроллера заряда, инвертора 48/220 в и 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы в ночное время. Необходимо учесть, что помимо стоимости самой установки по выработке электрической энергии необходимо будет оплатить стоимость электромонтажных работ, составляющих порядка 20% стоимости оборудования.
Альтернативные источники электроэнергии имеют свои недостатки. Так, например, ветрогенератор начинает вырабатывать электроэнергию при скорости ветра от 3 м/с, а на номинальную мощность выходит при скорости ветра от 6 до 12 м/с в зависимости от модели и производителя. Солнечные элементы также зависят от погодных условий, в пасмурную погоду выработка электроэнергии у них снижается в разы.
В CLIMAG.RU всегда помогут произвести грамотный выбор оборудования для альтернативного источника электроэнергии, его установку и электромонтажные работы.
Популярность альтернативных источников энергии растет :: Экономика :: РБК
Нефтяное «ралли», наблюдаемое на мировых рынках на протяжении последних нескольких месяцев, уже негативно отразилось на прибыли большинства компаний и на состоянии экономик развитых и развивающихся стран, передает Reuters.
Единственная отрасль, которой выгодно столь стремительное удорожание топлива – сектор альтернативных источников энергии. Эксперты отмечают, что на фоне резкого роста цен на нефть и газ объем добываемого черного золота может вскоре начать снижаться, и на планете начнется «эра возобновляемых источников энергии».
«Очень скоро наступит время, когда альтернативная энергия будет пользоваться огромным спросом. Если цены на нефть останутся на столь высоких отметках, спрос начнет снижаться, что хорошо скажется на всех компаниях – производителях альтернативных источников энергии», — отмечает глава британской компании Solar Century Джереми Леггетт. После того, как цены на нефть с легкостью взяли новую отметку – 135 долл./барр., мировые рынки опустились до месячного минимума, поскольку, по мнению аналитиков, дорогое топливо и рост производственных расходов нанесет урон многим компаниям.
Стоит отметить, что лишь за последние 3,5 недели баррель нефти подорожал на 20%. За этот же период индекс MSCI, в расчет которого входят акции крупнейших в мире компаний, вырос на 1,5%. Для сравнения: индекс акций компаний, производящих альтернативные источники энергии ABN AMRO взлетел на 9,5%. Правда, некоторые эксперты отмечают, что августовский кредитный кризис все-таки не может не повлиять на этот сектор. Но, с другой стороны, пока возобновляемые источники энергии все равно оказываются дешевле, чем нефть и газ. «Учитывая все факторы, которые влияют сейчас на мировой рынок нефти, можно предположить, что рост цен на черное золото продолжится. Соответственно, спрос на альтернативную энергию будет расти быстрее, чем можно предположить», — уверяет представитель Merrill Lynch Абид Кармали.
Тем не менее, по мнению некоторых участников рынка, стремительное удорожание нефти совсем не означает, что спрос вырастет на все альтернативные источники энергии. Так, ведущий экономист Международного энергетического агентства (МЭА) Фати Бироль отмечает, что, например, солнечные батареи пока неконкурентоспособны из-за их дороговизны. «Если производители сумеют урезать производственные расходы и снизить цены, спрос на них начнет расти очень быстрыми темпами», — добавляет специалист.
Эксперты также отмечают, что сейчас лидерами этого рынка являются компании, производящие ветряную энергетику. По мнению Ф.Бироля, уже сейчас эта энергия окупает себя. «По сравнению с газом, ветряная энергетика действительно становится все более выгодной. Если придерживаться распространенного мнения, что цены на нефть продолжат расти, вскоре можно ждать резкого роста спроса на энергию ветра», — уверяет эксперт.
15.2: Источники переменного тока — Physics LibreTexts
Цели обучения
К концу раздела вы сможете:
- Объясните разницу между постоянным током (dc) и переменным током (ac)
- Определение характеристик переменного тока и напряжения, например амплитуды или пика и частоты
Большинство примеров, рассмотренных до сих пор в этой книге, особенно с использованием батарей, имеют источники постоянного напряжения.Таким образом, как только ток установлен, он становится постоянным. Постоянный ток (dc) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения.
Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (ac) — это поток электрического заряда, который периодически меняет направление. Переменный ток создается переменной ЭДС, которая генерируется на электростанции, как описано в разделе «Индуцированные электрические поля».Если источник переменного тока периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей.
Напряжение и частота переменного тока, обычно используемые на предприятиях и дома, различаются по всему миру. В обычном доме разность потенциалов между двумя сторонами электрической розетки изменяется синусоидально с частотой 60 или 50 Гц и амплитудой 170 или 311 В, в зависимости от того, живете ли вы в США или Европе соответственно.Большинство людей знают, что разность потенциалов для электрических розеток составляет 120 В или 220 В в США или Европе, но, как объясняется далее в этой главе, эти напряжения не являются пиковыми значениями, приведенными здесь, а скорее связаны с обычными напряжениями, которые мы видим в наших электрические розетки. На рисунке \ (\ PageIndex {1} \) показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока в США.
Рисунок \ (\ PageIndex {1} \): (a) Напряжение и ток постоянного тока постоянны во времени после установления тока.(б) Напряжение и ток в зависимости от времени сильно различаются для переменного тока. В этом примере, который показывает мощность переменного тока 60 Гц и время t в миллисекундах, напряжение и ток синусоидальны и находятся в фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.Предположим, мы подключаем резистор к источнику переменного напряжения и определяем, как напряжение и ток изменяются во времени на резисторе. На рисунке \ (\ PageIndex {2} \) показана схема простой схемы с источником переменного напряжения.Напряжение синусоидально колеблется во времени с фиксированной частотой, как показано, либо на клеммах батареи, либо на резисторе. Следовательно, переменное напряжение , или «напряжение на вилке», может быть выражено как
.\ [v (t) = V_0 \, \ sin \, \ omega t, \]
где
- \ (v \) — напряжение в момент времени \ (t \),
- \ (V_0 \) — пиковое напряжение, а
- \ (\ omega \) — угловая частота в радианах в секунду.
Для типичного дома в США \ (V_0 = 156 \, V \) и \ (\ omega = 120 \ pi \, рад / с \), тогда как в Европе \ (V_0 = 311 \, V \) и \ (\ omega = 100 \ pi \, рад / с \).
Рисунок \ (\ PageIndex {2} \): Разность потенциалов В, между выводами источника переменного напряжения колеблется, поэтому источник и резистор имеют синусоидальные волны переменного тока друг над другом. Математическое выражение для v дается как \ (v = V_0 \, sin \, \ omega t \).Для этой простой цепи сопротивления \ (I = V / R \), поэтому переменный ток , то есть ток, который синусоидально колеблется во времени с фиксированной частотой, равен
\ [i (t) = I_0 \, \ sin \, \ omega t, \]
где
- \ (i (t) \) — текущий момент времени \ (t \) и
- \ (I_0 \) — пиковый ток, равный \ (V_0 / R \).
В этом примере говорят, что напряжение и ток находятся в фазе, что означает, что их синусоидальные функциональные формы имеют пики, впадины и узлы в одном и том же месте. Они колеблются синхронно друг с другом, как показано на рисунке \ (\ PageIndex {1b} \). В этих уравнениях и на протяжении всей главы мы используем строчные буквы (такие как \ (i \)) для обозначения мгновенных значений и заглавные буквы (такие как \ (I \)) для обозначения максимальных или пиковых значений.
Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку \ (I = V / R \).Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и гаснет 120 раз в секунду по мере того, как ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект переменного тока.
Упражнение \ (\ PageIndex {1} \)
Если рассматривать европейский источник переменного напряжения, какова разница во времени между переходами через ноль на графике зависимости переменного напряжения от времени?
Решение
10 мс
Авторы и авторство
Сэмюэл Дж.Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).
12.1 Источники переменного тока — Введение в электричество, магнетизм и электрические цепи
ЦЕЛИ ОБУЧЕНИЯ
По окончании раздела вы сможете:
- Объясните разницу между постоянным током (dc) и переменным током (ac)
- Определение характеристик переменного тока и напряжения, например амплитуды или пика и частоты
Большинство примеров, рассмотренных до сих пор в этой книге, особенно с использованием батарей, имеют источники постоянного напряжения.Таким образом, как только ток установлен, он становится постоянным. Постоянный ток (dc) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения.
Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (ac) — это поток электрического заряда, который периодически меняет направление. Переменный ток создается переменной ЭДС, которая генерируется на электростанции, как описано в разделе «Индуцированные электрические поля».Если источник переменного тока периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей.
Напряжение и частота переменного тока, обычно используемые на предприятиях и дома, различаются по всему миру. В обычном доме разность потенциалов между двумя сторонами электрической розетки изменяется синусоидально с частотой или и амплитудой или в зависимости от того, живете вы в Северной Америке или Европе, соответственно.Большинство людей знают, что разность потенциалов для электрических розеток равна либо в Северной Америке, либо в Европе, но, как объясняется далее в этой главе, эти напряжения не являются пиковыми значениями, приведенными здесь, а скорее связаны с обычными напряжениями, которые мы видим в наших электрических розетках. На рисунке 12.1.1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока в Северной Америке.
(рисунок 12.1.1)
Рисунок 12.1.1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока.(б) Напряжение и ток в зависимости от времени сильно различаются для переменного тока. В этом примере, который показывает мощность переменного тока 60 Гц и время t в секундах, напряжение и ток синусоидальны и находятся в фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.Предположим, мы подключаем резистор к источнику переменного напряжения и определяем, как напряжение и ток изменяются во времени на резисторе. На рисунке 12.1.2 показана схема простой схемы с источником переменного напряжения.Напряжение синусоидально колеблется во времени с фиксированной частотой, как показано, либо на клеммах батареи, либо на резисторе. Следовательно, переменное напряжение , или «напряжение на вилке», может быть выражено как
.(12.1.1)
где — напряжение в момент времени, — пиковое напряжение, а — угловая частота в радианах в секунду. Для типичного дома в Северной Америке и тогда как в Европе
Для этой простой цепи сопротивления, поэтому переменный ток , то есть ток, который синусоидально колеблется во времени с фиксированной частотой, равен
(12.1.2)
, где — текущий момент, а — пиковый ток, равный. В этом примере напряжение и ток считаются синфазными, что означает, что их синусоидальные функциональные формы имеют пики, впадины и узлы в одном и том же месте. Они колеблются синхронно друг с другом, как показано на рисунке 12.1.1 (b). В этих уравнениях и на протяжении всей главы мы используем строчные буквы (например,) для обозначения мгновенных значений и прописные буквы (например,) для обозначения максимальных или пиковых значений.
(рисунок 12.1.2)
Рисунок 12.1.2 Разность потенциалов между выводами источника переменного напряжения колеблется, поэтому источник и резистор имеют синусоидальные волны переменного тока, расположенные друг над другом. Математическое выражение для дается формулойТок в резисторе чередуется взад и вперед, как управляющее напряжение, поскольку, например, если резистор представляет собой люминесцентную лампочку, он становится ярче и гаснет раз в секунду, когда ток постоянно проходит через ноль.Мерцание слишком быстрое, чтобы его могли заметить глаза, но если вы помашите рукой взад и вперед между лицом и флуоресцентным светом, вы увидите стробоскопический эффект переменного тока.
ПРОВЕРЬТЕ ПОНИМАНИЕ 12.1
Если рассматривать европейский источник переменного напряжения, какова разница во времени между переходами через ноль на графике зависимости переменного напряжения от времени?
Кандела Цитаты
Лицензионный контент CC, особая атрибуция
- Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution
Что такое переменный ток (AC)? | Базовая теория переменного тока
Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением с постоянной полярностью.
DC — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.
Переменный ток против постоянного
Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.
Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):
Постоянный и переменный ток
В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.
Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер.Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.
В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток, чтобы произвести желаемое тепло (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.
Чтобы объяснить, почему это так, необходимы некоторые базовые знания об AC.
Генераторы переменного тока
Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.
Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже
Работа генератора
Обратите внимание на то, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.
При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.
Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.
В генераторе постоянного тока катушка с проводом установлена на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.
Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:
Работа генератора постоянного тока
Генератор, показанный выше, будет производить два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, которые периодически контактируют со щетками.
Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.
Проблемы, связанные с замыканием и размыканием электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.
Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.
Двигатели переменного тока
Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.
В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).
Трансформаторы
Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.
Существует эффект электромагнетизма, известный как взаимной индукции , при котором две или более катушек провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании как таковое это устройство известно как трансформатор :
.Трансформатор «преобразует» переменное напряжение и ток.
Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.
Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на отношение первичных и вторичных витков. Это соотношение имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:
Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.
Если передаточное отношение обмотки изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:
Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.
Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.
При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.
Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.
Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистемы для чего-либо, кроме использования на близком расстоянии (в пределах нескольких миль максимум).
Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности зависит от изменения магнитных полей , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.
Конечно, постоянный ток может прерываться (генерироваться импульсами) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.
Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.
ОБЗОР:
- DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
- AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно. Электромеханические генераторы переменного тока
- , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока. Конструкция двигателей
- переменного и постоянного тока очень точно соответствует принципам конструкции соответствующих генераторов.
- Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
- Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
- Вторичный ток = первичный ток (первичные витки / вторичные витки)
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
ОСНОВНЫЕ ЗНАНИЯ — ПЕРЕМЕННЫЙ ТОК Что такое переменный ток?
Автор / Редактор: Люк Джеймс / Erika Granath
Переменный ток (AC) — это электрический ток, который периодически меняет свое направление, в отличие от постоянного (DC), который течет только в одном направлении, которое не может меняться спорадически.
Связанные компании
Переменный ток (AC) — это электрический ток, который периодически меняет направление, в отличие от постоянного тока (DC), который течет только в одном направлении.Большинство студентов, изучающих электротехнику и смежные предметы, начинают свое обучение с изучения постоянного тока (DC). Это потому, что большая часть цифровой электроники, которую построят эти студенты, будет использовать постоянный ток. Тем не менее, важно понимать переменные токи (AC) и их концепции, потому что он имеет множество полезных свойств и вариантов использования.
Как вырабатывается переменный ток
Переменный ток (зеленая кривая). Горизонтальная ось измеряет время; по вертикали, току или напряжению.
(Источник: Public Domain)
Хотя постоянный ток, однонаправленный поток электрического заряда, возможно, является одной из простейших концепций электротехники, это не единственный «тип» используемого электричества. И переменный, и постоянный ток описывают типы тока, протекающего в цепи. Многие источники электричества, в первую очередь электромеханические генераторы, вырабатывают переменный ток с переменными по полярности напряжениями, меняющими полярность с положительной на отрицательную с течением времени.Генератор также может использоваться для преднамеренной генерации переменного тока.
В генераторе переменного тока проволочная петля быстро раскручивается внутри магнитного поля. Это создает электрический ток по проводу. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Этот ток может периодически менять направление, и напряжение в цепи переменного тока также периодически меняется на противоположное, потому что ток меняет направление.
Переменный ток бывает нескольких форм, если напряжение и ток переменные.Если цепь переменного тока подключена к осциллографу и ее напряжение отображается в зависимости от времени, вы, вероятно, увидите несколько различных форм сигналов, таких как синусоидальный, квадратный и треугольный — синусоидальный сигнал является наиболее распространенной формой сигнала, а переменный ток в большинстве зданий, подключенных к электросети. имеют колебательное напряжение в форме синусоиды.
Применение переменного тока
Переменный ток чаще всего встречается в зданиях, подключенных к электросети, таких как дома и офисы. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно легко.При высоком напряжении более 110 кВ при передаче энергии теряется меньше энергии. При более высоких напряжениях генерируются более низкие токи, а более низкие токи выделяют меньше тепла в линии электропередачи из-за более низкого уровня сопротивления. Следовательно, это означает меньшие потери энергии в виде тепла. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.
Переменный ток можно легко преобразовать в высокое напряжение и из него с помощью трансформаторов.
(Источник: Science ABC)
Переменный ток также отлично подходит для использования в электродвигателях, потому что двигатели и генераторы — это одно и то же устройство.Единственная разница между генератором и двигателем заключается в том, что двигатель преобразует электрическую энергию в механическую. Эти двигатели используются во всех видах бытовой техники, например, в холодильниках, стиральных и посудомоечных машинах. Хотя генераторы и двигатели великолепны, наиболее полезное применение переменного тока — это, пожалуй, трансформаторы.
Эффект электромагнетизма (известный как «взаимная индукция»), когда две или более катушки провода размещаются так, что изменяющееся магнитное поле в одной катушке индуцирует напряжение в другой, можно использовать для создания устройства, называемого трансформатором. .Если есть две взаимно индуктивные катушки и одна питается переменным током, переменное напряжение будет создано в другой катушке.
Вот где переменный ток становится очень полезным.
Основное применение трансформатора — это повышение или понижение напряжения с катушки с питанием на катушку без питания. Это обеспечивает переменному току преимущество перед постоянным током в области распределения мощности, потому что, как упоминалось выше, передача электроэнергии на большие расстояния намного эффективнее при более высоких повышенных напряжениях и меньших пониженных токах.Прежде чем попасть в розетки, напряжение снова понижается, а ток снова повышается.
Этот тип трансформаторной техники сделал распределение электроэнергии на большие расстояния эффективным и практичным. Без трансформаторов было бы слишком дорого строить энергосистемы в их нынешнем виде на большие расстояния. А поскольку взаимная индуктивность зависит от изменения магнитных полей, трансформаторы работают только с переменным током.
(ID: 46380228)
Переменный ток (AC) vs.Постоянный ток (DC)
Электрический ток — это количество электрических зарядов, проходящих через провод по отношению ко времени. Когда батарея подключается через проводник, электроны перемещаются от отрицательной клеммы к положительной клемме батареи. Они движутся с очень высокой скоростью (превышающей скорость света) и, таким образом, производят некоторое количество тепловой энергии. Благодаря этому светятся лампочки.
Электрический ток подразделяется на два типа: переменного тока, (переменного тока) и постоянного тока, (постоянного тока).Разница в том, что постоянный ток течет в одном направлении, а переменный ток быстро меняет свое направление. И переменный, и постоянный ток имеют свое собственное применение, но переменный ток является более распространенным типом тока, который мы сегодня используем дома, в офисе и т. Д.
Никола Тесла и Томас Эдисон изобрели переменный и постоянный ток соответственно. Они боролись за стандартизацию нынешних обозначений. В конце концов, AC выиграл битву, когда запустил France Fair и, наконец, появился на свет.
Переменный ток (AC)
Электрический ток — это ток, который меняет направление много раз в секунду с регулярными интервалами.Обычно используется в источниках питания. Количество раз, когда ток меняет свое направление за одну секунду, можно определить как частоту переменного тока. 50 Гц. частота означает, что она изменяется 50 раз в секунду. Частота в США 60 Гц. в то время как в Индии это 50 Гц.
переменного тока генерируется устройствами, называемыми генераторами переменного тока. Генератор — это машина, преобразующая механическую энергию в переменный ток. Он работает по принципу закона электромагнитной индукции Фарадея. Здесь механические источники механической энергии включают паровые турбины, двигатели внутреннего сгорания и водяные турбины.Сегодня генератор обеспечивает почти всю мощность электрических сетей.
Форма волны переменного тока
AC может быть представлен множеством форм сигналов, таких как треугольная волна, прямоугольная волна, но наиболее распространенным представителем является синусоидальная волна. Он представлен амплитудой и временем. Амплитуда — это пиковое значение тока.
Форма сигнала переменного тока
Применение AC:
AC широко используется в отраслях транспорта и производства электроэнергии. Практически каждый дом питается от сети переменного тока.Переменный ток также используется для питания электродвигателей. Постоянный ток не используется для электростанций из-за высокого риска затрат и преобразования напряжений.
Преимущества AC:
- AC легче генерировать, чем DC.
- Это дешевле.
- Потери энергии при передаче незначительны.
- AC можно легко преобразовать в постоянный ток.
- Легко передать.
- В переменном токе сопротивление больше постоянного.
Недостатки АС:
- При высоком напряжении опасно работать с переменным током, поскольку удар переменного тока привлекателен, но удар постоянного тока имеет отталкивающий характер.
- AC неэффективен и требует управления коэффициентом мощности для повышения эффективности.
- Большинство устройств не работают напрямую от сети переменного тока.
Постоянный ток (DC)
Под постоянным током понимаются электрические заряды, протекающие в одном направлении. Этот тип тока чаще всего вырабатывается батареями.
Форма сигнала постоянного тока
Цепи постоянного тока имеют однонаправленный поток тока и, как и переменный ток, он не меняет направление периодически.
Форма сигнала постоянного тока представляет собой чистую синусоидальную волну.Как видите, напряжение постоянно во времени.
Форма сигнала постоянного тока
Приложения постоянного тока:
Электропитание постоянного тока широко применяется в низковольтных устройствах, таких как зарядка аккумуляторов, автомобильных и авиационных приложениях, а также почти во всех электронных устройствах, таких как мобильный телефон, музыкальные плееры и т. Д.
Преобразование переменного тока в постоянный:
Получаем DC от следующих вещей:
- Батареи, в которых происходят химические реакции, а затем эта химическая энергия преобразуется в электрическую.
- Преобразование переменного тока в постоянный через выпрямитель. Выпрямитель — это электронная схема, преобразующая переменный ток в постоянный. Эти выпрямители можно увидеть в наших мобильных зарядных устройствах, аккумуляторных батареях и т. Д. Большинство устройств питаются или заряжаются косвенно от переменного тока, а затем этот переменный ток преобразуется в постоянный ток.
Источники переменного и постоянного тока:
Источники переменного и постоянного тока могут быть обозначены этими символами.
Обозначения источников напряжения постоянного и переменного тока
Направление тока изменяется с регулярным интервалом времени в источнике переменного тока, в то время как в источнике постоянного тока изменение направления является постоянным.Вы можете увидеть разницу на рисунке ниже:
Направление тока
Преимущества DC:
- Он может питать большинство электронных устройств.
- Хранить DC легко.
- DC менее опасен, чем переменный ток, потому что подушка постоянного тока отталкивает.
Недостатки ДЦ:
- Дороже в производстве.
- Трудно транспортировать.
- Трудно генерировать постоянный ток по сравнению с переменным током.
Зависимость переменного тока (AC) от постоянного (DC)
Томас Эдисон предложил сеть электростанций, вырабатывающих энергию постоянного тока, которые могли бы обеспечивать электроэнергией дома ближе к 1 миле от этой электростанции. DC очень сложно перевезти из одного места в другое. Итак, Тесла придумал источник переменного тока, но Эдисон считал этот тип тока чрезвычайно опасным. Затем Westinghouse работал над системой распределения электроэнергии, используя патенты Tesla. Переменный ток можно легко транспортировать из одного места в другое с помощью трансформатора.Это может обеспечить электроэнергией дома, расположенные за много миль от электростанций, и, таким образом, охватить большее количество людей. AC наконец появился, когда он успешно работал на выставке France Fair.
Разница между переменным током (AC) и постоянным током (DC)
Основное различие между переменным и постоянным током — это их направления. Переменный ток меняет свое направление через равные промежутки времени, в то время как постоянный ток является однонаправленным потоком. Благодаря множеству преимуществ переменного тока, он используется для питания наших домов и офисов, в то время как постоянный ток используется для питания маломощных устройств.Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике.
Сводка
Таким образом, переменный и постоянный ток — это два типа электрического тока. У обоих есть свои преимущества и недостатки. Переменный ток более широко используется для питания зданий и офисов, в то время как постоянный ток более широко используется для питания электронных устройств. Наш образ жизни зависит от них обоих.
Мощность постоянного тока (DC): определение и применение
Мощность постоянного тока (DC) относится к однонаправленному потоку электронов и представляет собой форму энергии, которая чаще всего вырабатывается такими источниками, как солнечные элементы и батареи.Что такое мощность?
Мощность можно определить как уровень энергии, потребляемой в единицу времени. Единицей измерения мощности является ватт, в честь известного ученого восемнадцатого века Джеймса Ватта , который изобрел паровой двигатель. В механических системах мощность известна как механическая сила и представляет собой комбинацию сил и движения. В электрических системах электрическая мощность — это скорость потока электрической энергии через заданную точку в замкнутой цепи. Для наших приложений мы будем рассматривать только , электрическую мощность .Переменный и постоянный ток
Электроэнергия может быть классифицирована как AC Power или DC Power в зависимости от направления потока энергии. Здесь AC означает переменный ток, а DC — постоянный ток. Мощность, возникающая в результате протекания тока в переменном направлении, называется мощностью переменного тока, а мощность, возникающая в результате протекания тока только в одном направлении, называется мощностью постоянного тока.Форма кривой постоянного тока
В цепях постоянного тока (постоянного тока) поток электрического заряда (или, другими словами, электронов) является однонаправленным и, в отличие от переменного тока, он периодически не меняет свое направление.Типичная форма волны переменного тока представляет собой чистую синусоидальную волну, как показано на рисунке ниже.Постоянный ток (красная кривая). Горизонтальная ось измеряет время; по вертикали, току или напряжению. Источник: Wikipedia.org
Какие распространенные приложения DC?
Этот вид энергии чаще всего вырабатывается такими источниками, как солнечные элементы, батареи и термопары. Электропитание постоянного тока широко используется в низковольтных устройствах , таких как зарядные батареи, автомобильные, авиационные и другие низковольтные и слаботочные приложения.В настоящее время все солнечные панели вырабатывают постоянный ток. Распространенными приложениями с питанием постоянного тока в фотоэлектрической промышленности являются портативные солнечные системы , и другие автономные устройства. Отсутствие солнечного инвертора для преобразования постоянного тока в переменный сократит расходы на такие системы.Преимущества и недостатки Постоянный ток
В настоящее время для распределения электроэнергии в основном используется переменный ток, так как он имеет существенные преимущества перед постоянным током при передаче и преобразовании. Одним из самых больших преимуществ питания постоянного тока является возможность использования в специальных приложениях .Когда передача электроэнергии переменного тока практически невозможна или невозможна на большие расстояния, используется мощность постоянного тока. Одним из таких приложений являются подводные высоковольтные линии передачи постоянного тока . Здесь электричество производится в форме переменного тока, преобразуется в постоянный ток на коммутационной / оконечной станции, передается по подводной кабельной сети, повторно преобразуется в переменный ток другой оконечной станцией и, наконец, доставляется потребителям.Кабель постоянного тока Norned между Норвегией и Нидерландами Источник: Википедия
Подводные линии передачи постоянного тока
Многие из таких линий работают на сегодняшний день.Некоторые известные примеры:- Baltic Cable Link
- Между Швецией и Германией
- Длина: 250 км
- NorNed Cable Link
- Между Норвегией и Нидерландами
- Длина: 580 км
- Basslink
- Между материковой частью Австралии и Тасманией
- Длина: 290 км
Программируемый источник постоянного тока, модель 121
Модель 121 имеет характеристики
- Выходной ток 7 декад, выбираемый из 13 шагов
- Программируемый токовый выход, от 100 нА до 100 мА
- Выход с низким уровнем шума
- Большой трехзначный светодиодный дисплей
- Простой пользовательский интерфейс
- Ток функция разворота
- Интерфейс USB обеспечивает интеграцию с автоматизированными испытательными системами
- Корпус для монтажа на панели DIN
- Съемный выходной клеммный блок
- Сертификат CE
Обзор
Программируемый источник постоянного тока модели 121 представляет собой прецизионный прибор, подходящий для настольного или панельного использования в лабораториях, испытательных центрах и производственных средах.Он обеспечивает малошумный, высокостабильный источник тока до 100 мА, с удобным ручным выбором через 13 предустановленных уровней выходного сигнала, каждый из которых представляет десятикратное изменение мощности при подключении к резистивной нагрузке. «Пользовательская» настройка позволяет определять токовый выход в любом месте рабочего диапазона. блока от 100 нА до 100 мА.
Программируемое управление также возможно через компьютерный интерфейс USB прибора, через который модели 121 можно дать команду на вывод любого желаемого тока в любое время.Таким образом, испытательные токи, зависящие от приложения, могут подаваться от внешнего источника. ПК.
Прибор работает при 5 В постоянного тока, а питание подается от внешнего настенного источника переменного тока, входящего в комплект стандартной модели 121. Источник автоматически соответствует любому напряжению сети переменного тока в диапазоне от 100 до 240 В переменного тока, 50 или 60 Гц.
Ищете прецизионный малошумящий источник постоянного и переменного тока и источник напряжения? Оцените MeasureReady ™ 155 с технологией сенсорного экрана TiltView |
Приложения
Источник тока модели 121 идеально подходит для тестирования, измерения и эксплуатации резистивных и полупроводниковых устройств, таких как:
- Lake Shore Cernox ™ датчики
- Другие датчики температуры сопротивления (RTD), такие как платиновые датчики
- Диодные датчики температуры, включая Lake Shore DT-670s
- Светодиодные устройства
- Датчики Холла, используемые для измерения магнитного поля
Точный и стабильный источник тока ключ к обеспечению стабильной работы этих устройств, где падение напряжения на устройстве может зависеть от температуры, магнитного поля и других параметров.Широкий выходной диапазон инструмента имеет большое значение при использовании с датчиками типа RTD, сопротивление которых может изменяться в зависимости от температуры на целых 6 порядков.