База транзистора: Биполярные транзисторы. For dummies / Хабр

Содержание

Биполярные транзисторы. For dummies / Хабр

Предисловие


Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история


Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики



Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом,

произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется

граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора


Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером


Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой


Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором


Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах


Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов


Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка


Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .

Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Схема, принцип работы, характеристики биполярных транзисторов

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Особенности устройства биполярного транзистора

Биполярный транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Принцип работы биполярного транзистора

Этот тип транзистора имеет два перехода:

  • электронно-дырочный между эмиттером и базой – эмиттерный;
  • между коллектором и базой – коллекторный.

Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.

Режимы работы биполярных транзисторов

Режим отсечки

Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.

Активный инверсный режим

Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.

Режим насыщения

Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».

Схемы включения биполярных транзисторов

В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Схема включения биполярных транзисторов

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Схема включения биполярных транзисторов

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Что такое транзисторы и как они работают

Рубрика: Статьи про радиодетали Опубликовано 09.06.2020   ·   Комментарии: 0   ·   На чтение: 7 мин   ·   Просмотры:

Post Views: 101

Транзисторы – это основа всей цифровой электроники 21 века. Они выполняют самые разнообразные функции. Это правопреемники и наследники радиоламп, так называемых вакуумных триодов. В этой статье мы на простом примере рассмотрим концепцию, принцип работы и применение транзисторов в электронике.

Концепция транзисторов

Что такое концепция? Это общее представление об объекте или процессе. Например, концепция автомобиля – это четыре колеса, руль, корпус, двигатель и коробка передач. Концепция одна, а выпускаются автомобили с разной конструкцией, устройством и предназначением.

У транзисторов, как и у вакуумных триодов, очень простая концепция и принцип работы.

Триод – это та деталь, у которой три контакта.

Давайте представим бак с водой, в центре которого установлена задвижка.

Что мы можем сделать с потоком воды? Мы можем управлять им за счет задвижки.

Например, если в баке течет вода, и задвижки нет в нем, то вода проходит без препятствия.

В тоже время, если мы полностью перекроем путь задвижкой, то и вода не будет поступать во вторую условную часть бака и поток прекратится.

А еще мы можем полностью управлять потоком воды при помощи регулировки задвижки.

Получается, что при помощи небольшой задвижки можно контролировать огромный поток воды.
Небольшие колебания (перемещения) задвижки позволяют с такой же частотой пропускать большой поток воды.

И именно в этом суть транзисторов и вакуумных триодов. С их помощью можно управлять электрическим током больших значений применяя небольшие усилия.

Но в тоже время, транзисторы могут быть по разному устроены.

Полевые транзисторы

Описанный выше пример – это полевой транзистор. У самого простого полевого транзистора есть сток, исток и затвор.

Транзисторы изготавливаются из полупроводниковых материалов. Поэтому, у них есть второе название — полупроводниковые триоды.

При помощи полупроводников можно изготовить p-n переход.

Любой транзистор состоит из p-n переходов, которые пропускают электрический ток в одном направлении. И этот переход позволят управлять электрическим током как задвижкой.

Полевые транзисторы управляются при помощи напряжения, которое подается на затвор.

Так выглядит состав полевого транзистора с каналом p – типа.

А вот так с n – типом.

Канал транзистора – это область между истоком и стоком.

Почему транзисторы бывают разными по проводимости? Транзистор с n типом управляется при помощи положительного потенциала, а с p типом наоборот, отрицательным потенциалом. Это позволяет усиливать сигналы с разными потенциалами.

Затворов у полевых транзисторов на самом деле два, но их выводы объединены в один, так как функция у них одинакова. Зачем нужно два затвора? Так транзистором проще управлять.

Подавая напряжение на затвор, мы можем регулировать электрический ток проходящий от истока к стоку.

А самое главное не это. Самое главное, что мы можем таким образом не просто включить или выключить электрический ток по цепи, но и управлять его движением.

Например, можно подать на затвор полевого транзистора переменный сигнал 5 мкВ. И он будет модулировать электрический ток, который проходит через исток и сток транзистора. Так можно получить усиленный сигнал.

Также полевые транзисторы имеют разные схемы включения, которые позволяют согласовывать сопротивления и регулировать усилительные функции.

Обозначение (УГО) полевого транзистора с каналом n типа на принципиальных схемах:

Биполярные транзисторы

Это другой тип транзисторов. Такие транзисторы управляются при помощи электрического тока. И они состоят из чередующихся p-n переходов.

Как и у полевого транзистора, у биполярного тоже три контакта. Это эмиттер, база и коллектор. База всегда по типу противоположна эмиттеру и коллектору.

А также размеры базы транзистора намного меньше, чем у коллектора или эмиттера. База только открывает транзистор. И так как через нее протекает ток, она не должна быть большой, чтобы на нее не тратилось много энергии.

Эмиттер — это большой источник основных носителей заряда. А коллектор — это самый большой контакт из этой троицы. С коллектора снимается усиленный сигнал в классической схеме, чтобы получить максимальную мощность. В транзисторах большой мощности коллектор припаян напрямую к корпусу, чтобы рассеивать тепло.

Бывают биполярные транзисторы n-p-n типа.

и p-n-p типа.

Обозначение (УГО) биполярного n-p-n транзистора на принципиальных схемах:

Отличие биполярных транзисторов от полевых

Полевые транзисторы управляются при помощи электрического поля и благодаря этому они очень энергоэффективны. Именно по этой причине они используются при производстве процессоров.

С другой стороны, у полевых транзисторов есть слабое место. Это их тонкий p-n переход. Он очень чувствителен к статическому электричеству. Кстати, именно из-за статического электричества перестают работать флешки и карты памяти, если вы их вытащили из устройства во время работы.

Схемы защиты от статического электричества не успевают сработать, и статика разрушает полевые транзисторы.

А вот биполярные транзисторы наоборот, лучше переносят статику. Но в тоже время, они потребляют больше мощности, так как для их открытия нужен электрический ток.

Схемы включения

Так как у транзисторов три контакта, то можно чередовать вход и выход. Что это даст? У каждого контакта свои особенности. Например, если мы подадим сигнал на базу и эмиттер биполярного транзистора, а снимать итоговый сигнал будем с эмиттера и коллектора, то такая схема будет называются с общим эмиттером.

Этот тип включения позволяет передать максимум мощности в нагрузку.

Прочитать подробнее про работу схемы с общим эмиттером можно в этой статье.

Аналогичным образом можно подключить схему с общим коллектором и с общей базой. По сути, общий контакт — это такой контакт, который работает и на входе и на выходе одновременно с разными контактами.

Все тоже самое справедливо и для полевых транзисторов. Есть схемы с общим стоком, истоком и затвором.

Другие типы транзисторов

А еще бывают однопереходные, комплементарные и КМОП, МДП (MOSFET) и множество других транзисторов. Они разные по своим характеристикам, выполняют разные задачи и предназначены для конкретных целей. Но в целом, принцип работы у всех одинаков. Это управление электрическим током.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

  • Коэффициент усиления по току;
  • Коэффициент усиления по напряжению;
  • Коэффициент усиления по току;
  • Коэффициент обратной связи;
  • Коэффициент передачи по току;
  • Входное сопротивление;
  • Выходное сопротивление;
  • Время включения;
  • Максимально допустимый ток и др.

У биполярных:

  • Обратный ток коллектор-эмиттер;
  • Частота коэффициента передачи тока базы;
  • Обратный ток коллектора;
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером и др.

Режимы работы

В целом, можно выделить несколько режимов работы:

  • Номинальный режим;
  • Инверсный;
  • Насыщения;
  • Отсечка;
  • Барьерный.

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Чем транзисторы уступают лампам

Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:

  • Устойчивость к высоким электромагнитным наводкам и помехам. Это не значит, что полупроводниковая техника может выйти из строя от любых помех. Но если случится сильнейшая магнитная буря от Солнца (или мощный ЭМИ удар от ядерных бомб), то все p-n переходы в полупроводниковой технике могут выйти из строя из-за высоких токов наводки. Вакуумная техниках намного устойчивее к таким помехам.
  • Ламповая техника намного лучше и стабильнее работает на высоких частотах. И это уже особенности конструкции. Так как в транзисторах есть p-n переходы, то у них тоже есть своя емкость. А паразитная емкость на высоких частотах негативно влияет на усиление сигнала. Появляются нелинейные искажения. А в вакуумной технике есть такие лампы, у которых по несколько экранирующих сеток, которые позволяют снизить эффект паразитных емкостей. Пример радиолампы — это клистрон.

Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.

Post Views: 101

Как проверить транзистор мультиметром

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.

1

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

2

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

3

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

4

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

5

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

6

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

7

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

8

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

9

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».

10

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

11

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Биполярный транзистор — Википедия

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство

Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Принцип работы

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.

Режимы работы

Напряжения
на эмиттере,
базе,
коллекторе
( U E , U B , U C {\displaystyle U_{E},U_{B},U_{C}} )
Смещение
перехода
база-эмиттер
для типа n-p-n
Смещение
перехода
база-коллектор
для типа n-p-n
Режим
для типа n-p-n
U E < U B < U C {\displaystyle U_{E}<U_{B}<U_{C}}прямоеобратноенормальный
активный режим
U E < U B > U C {\displaystyle U_{E}<U_{B}>U_{C}}прямоепрямоережим насыщения
U E > U B < U C {\displaystyle U_{E}>U_{B}<U_{C}}обратноеобратноережим отсечки
U E > U B > U C {\displaystyle U_{E}>U_{B}>U_{C}}обратноепрямоеинверсный
активный режим
Напряжения
на эмиттере,
базе,
коллекторе
( U E , U B , U C {\displaystyle U_{E},U_{B},U_{C}} )
Смещение
перехода
база-эмиттер
для типа p-n-p
Смещение
перехода
база-коллектор
для типа p-n-p
Режим
для типа p-n-p
U E < U B < U C {\displaystyle U_{E}<U_{B}<U_{C}}обратноепрямоеинверсный
активный режим
U E < U B > U C {\displaystyle U_{E}<U_{B}>U_{C}}обратноеобратноережим отсечки
U E > U B < U C {\displaystyle U_{E}>U_{B}<U_{C}}прямоепрямоережим насыщения
U E > U B > U C {\displaystyle U_{E}>U_{B}>U_{C}}прямоеобратноенормальный
активный режим

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току Iвых/Iвх.
  • Входное сопротивление Rвх = Uвх/Iвх.

Схема включения с общей базой

Схема включения с общей базой.
  • Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
  • Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.

Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства
  • Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
  • Высокое допустимое коллекторное напряжение.
Недостатки
  • Малое усиление по току, равное α, так как α всегда немного менее 1
  • Малое входное сопротивление

Схема включения с общим эмиттером

Схема включения с общим эмиттером.
Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
Достоинства
  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.
Недостатки
  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.

Схема с общим коллектором

Схема включения с общим коллектором.
Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
Достоинства
  • Большое входное сопротивление.
  • Малое выходное сопротивление.
Недостатки
  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем».

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.
{\displaystyle U_{E}>U_{B}>U_{C}}

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h 11 ∍ = r δ + r ∍ 1 − α {\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}} ;

h 12 ∍ ≈ r ∍ r κ ( 1 − α ) {\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}} ;

h 21 ∍ = β = α 1 − α {\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}} ;

h 22 ∍ ≈ 1 r κ ( 1 − α ) {\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}} .

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Биполярный СВЧ-транзистор

Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].

Технологии изготовления транзисторов

Применение транзисторов

См. также

Примечания

  1. ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
  2. 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
  3. ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
  4. Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
  5. ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
  6. ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
  7. ↑ Кулешов, 2008, с. 284.
  8. ↑ Кулешов, 2008, с. 285.
  9. ↑ Кулешов, 2008, с. 286.
  10. 1 2 Кулешов, 2008, с. 292.

Ссылки

Литература

  • Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

Биполярные транзисторы

Добавлено 21 октября 2016 в 17:45

Сохранить или поделиться

Биполярный транзистор был назван так, потому что его работа предполагает движение двух носителей заряда: электронов и дырок в одном и том же кристалле. Первый биполярный транзистор был изобретен в Bell Labs Уильямом Шокли, Уолтером Браттейном и Джоном Бардином в конце 1947 года, и поэтому публикации о нем не появлялись до 1948 года. Таким образом, многие тексты различаются по дате изобретения. Браттейн изготовил германиевый точечный транзистор, который имел некоторое сходство с точечным диодом. В течение месяца у Шокли появился более практичный плоскостной биполярный транзистор, который мы опишем ниже. В 1956 году за изобретение транзистора они были удостоены Нобелевской премии по физики.

Биполярный транзистор, показанный на рисунке ниже (a), – это NPN трехслойный полупроводниковый сэндвич с эмиттером и коллектором на концах и базой между ними. Это как если бы к двухслойному диоду был добавлен третий слой. Но если бы это было единственным требованием, было бы достаточно иметь пару расположенных «спина к спине» диодов. Да и изготовить пару диодов, расположенных «спина к спине», гораздо проще. Но основой изготовления биполярного транзистора является создание среднего слоя, базы, такого тонкого насколько это возможно без замыкания внешних слоев, эмиттера и базы. Невозможно переоценить важность тонкой области базы.

Полупроводниковый прибор на рисунке ниже (a) имеет два перехода, между эмиттером и базой и между базой и коллектором, и две обедненные области.

Структура биполярного npn транзистора(a) Биполярный NPN транзистор.
(b) Применение обратного смещения к переходу база-коллектор.

На переход база-коллектор биполярного транзистора принято подавать обратное смещение, как показано на рисунке выше (b). Обратите внимание, что это увеличивает ширину обедненной области. Напряжение обратного смещения для большинства транзисторов может находиться в диапазоне от нескольких вольт до десятков вольт. В данный момент в коллекторной цепи нет тока, кроме тока утечки.

На рисунке ниже (a) добавлен еще один источник напряжения в цепь между эмиттером и базой. Обычно мы прикладываем к переходу эмиттер-база прямое смещение, преодолевающее потенциальный барьер 0,6В. Это похоже на прямое смещение полупроводникового диода. Источник напряжения должен превышать 0,6В, чтобы основные носители (электроны для NPN) начали протекать от эмиттера в базу, становясь неосновными носителями заряда в полупроводнике P-типа.

Если бы область базы была толстой, как в паре расположенный «спина к спине» диодов, весь ток, поступающий в базу, утекал бы через вывод базы. В нашем примере NPN транзистора электроны, выходящие из эмиттера в базу, будут объединяться с дырками в базе, освобождая место для большего числа дырок, которые будут созданы на (+) выводе батареи, подключенного к базе, как только электроны уйдут.

Однако база изготавливается тонкой. Несколько основных носителей в эмиттере, введенных как неосновные носители в базу, действительно рекомбинируют. Смотрите рисунок ниже (b). Несколько электронов, введенных эмиттером в базу NPN транзистора, попадают в дырки. Также несколько электронов, вошедших в базу, потекут напрямую через базу к положительной клемме батареи. Большая часть эмиттерного потока электронов диффундирует через тонкую базу в коллектор. Кроме того, изменение небольшого тока базы приводит к большим изменениям тока коллектора. Если напряжение на базе падает ниже примерно 0,6 вольт для кремниевого транзистора, то перестает течь большой ток эмиттер-коллектор.

Смещения и токи в биполярном NPN транзистореБиполярный NPN транзистор с обратным смещением перехода коллектор-база: (a) добавление прямого смещения к переходу база-эмиттер дает в результате (b) маленький ток базы и большие токи эмиттера и коллектора.

На рисунке ниже мы более внимательно рассмотрим механизм усиления тока. У нас есть увеличенный вид переходов биполярного NPN транзистора с акцентом на тонкую область базы. Хотя это не показано, мы предполагаем, что подключены внешние источники напряжения: (1) прямое смещение перехода эмиттер-база, (2) обратное смещение перехода база-коллектор. Электроны, основные носители, входят в эмиттер от клеммы (-) батареи. Ток базы соответствует электронам, покидающим вывод базы к выводу (+) батареи. Впрочем, это небольшой ток по сравнению с током эмиттера.

Движение электронов в биполярном npn транзистореЭлектроны, входящие в базу:
(a) Утерянные в результате рекомбинации с дырками базы.
(b) Выходящие из вывода базы.
(c) Большинство диффундирует из эмиттера через тонкую базу в обедненную область база-коллектор,
и (d) быстро захватываются сильным электрическим полем обедненной области в коллектор.

Основными носителям внутри эмиттера N-типа являются электроны, становящиеся неосновными носителями, когда входят в базу P-типа. У этих электронов, попадающих в тонкую базу P-типа, есть четыре возможных варианта. Несколько электронов (на рисунке (a) выше) попадают в дырки в базе, что способствует протеканию тока к выводу базы от клеммы (+) батареи. Это не показано, но дырки в базе могут диффундировать в эмиттер и объединяться с электронами, способствуя протеканию тока через вывод базы. Несколько (b) протекают через базу к выводу (+) батареи, как если бы база была просто резистором. Обе группы электронов, и (a) и (b), вносят очень маленький вклад в ток базы. Для маломощных транзисторов ток базы обычно составляет 1% от тока эмиттера или коллектора. Большая часть электронов эмиттера диффундирует сквозь тонкую базу (c) в обедненную область база-коллектор. Обратите внимание на полярность обедненной области, окружающей электрон на рисунке (d). Сильное электрическое поле быстро сметает электрон в коллектор. Сила поля пропорциональна напряжению батареи коллектора. Таким образом, 99% эмиттерного тока поступает в коллектор. Он управляется током базы, который составляет 1% от тока эмиттера. Это потенциальное усиление тока в 99 раз, отношение IК/IБ, также известное как бета β.

Это потрясающе, распространение 99% носителей эмиттера через базу возможно, только если база очень тонкая. Что было бы с основными носителями эмиттера, если бы база была в 100 раз толще? Можно было бы ожидать увеличения рекомбинации, число электронов, попадающих в дырки, было бы намного больше. Может быть 99%, а не 1%, попало бы в дырки, никогда не достигнув коллектора. Второй момент состоит в том, что ток базы может управлять 99% тока эмиттера, только если 99% тока эмиттера диффундирует в коллектор. Если бы весь ток вытекал из базы, никакое управление не было бы возможно.

Еще одна особенность, необходимая для передачи 99% электронов из эмиттера в коллектор, заключается в том, что реальные биполярные транзисторы используют небольшой сильно легированный эмиттер. Высокая концентрация электронов эмиттера заставляет больше электронов диффундировать в базу. Более низкая концентрация легирующей примеси в базе означает, что меньшее количество дырок диффундирует в эмиттер, которые могли бы увеличить ток базы. Распространение носителей заряда от эмиттера к базе пользуется большим преимуществом.

Тонкая база и сильно легированный эмиттер помогают сохранить высокую эффективность эмиттера, например, 99%. Это соответствует тому, что 100% тока эмиттера разделяется между базой (1%) и коллектором (99%). Эффективность эмиттера известна, как α = IК/IЭ.

Биполярные транзисторы могут иметь структуру как NPN, так и PNP. Мы приведем сравнение этих двух структур на рисунке ниже. Разница заключается в полярности PN-переходов база-эмиттер, что и обозначено направлением стрелки эмиттера на условном графическом обозначении. Она указывает в том же направлении, как и стрелка анода диода, противоположно направлению движения электронов.

Смотрите условное обозначение на изображении в P-N переход. Начало стрелки и ее конец соответствуют полупроводникам P-типа и N-типа, соответственно. Для эмиттеров NPN и PNP транзисторов стрелка указывает по направлениям от базы и к базе, соответственно. На условном обозначении нет стрелки на коллекторе. Тем не менее, переход база-коллектор имеет ту же полярность, как диод, что и переход база-эмиттер. Обратите внимание, что мы говорим о полярности диода, а не источника питания.

Сравнение NPN и PNP транзисторовСравните NPN транзистор (a) с PNP транзистором (b). Обратите внимание на стрелку эмиттера и полярности источника питания.

Источники напряжения для PNP транзисторов перевернуты по сравнению с NPN транзисторами, как показано на рисунке выше. Переход база-эмиттер должен быть смещен в прямом направлении в обоих случаях. На базу PNP транзистора подается отрицательное смещение (b), по сравнению с положительным (a) для NPN транзистора. В обоих случаях переход база-коллектор смещен в обратном направлении. Источник питания коллектора PNP транзистора имеет отрицательную полярность, по сравнению с положительной для NPN транзистора.

Поперечное сечение биполярного транзистораБиполярный плоскостной транзистор (BJT): (a) поперечное сечение отдельного прибора, (b) условное графическое обозначение, (c) поперечное сечение интегральной микросхемы.

Обратите внимание, что биполярный транзистор (BJT) на рисунке (a) выше имеет сильное легирование в эмиттере, обозначенное N+. База обладает нормальным уровнем P-легирования. База намного тоньше, чем показано на рисунке поперечного сечения не в масштабе. Коллектор легирован слабо, что обозначено с помощью N. Коллектор должен быть легирован так слабо, чтобы переход коллектор-база обладал высоким напряжением пробоя. Это приводит к высокому допустимому напряжению источника питания коллектора. Напряжение пробоя у маломощных кремниевых транзисторов составляет 60-80 вольт. Для высоковольтных транзисторов оно может достигать сотен вольт. Коллектор также должен быть сильно легирован для уменьшения резистивных потерь, если транзистор должен работать с большими токами. Эти противоречивые требования удовлетворяются за счет более сильного легирования коллектора в области металлического контакта. Коллектор около базы легирован слабо по сравнению с эмиттером. Сильное легирование в эмиттере дает низкое напряжение пробоя перехода эмиттер-база, которое составляет примерно 7 вольт для маломощных транзисторов. Сильнолегированный эмиттер делает переход эмиттер-база при обратном смещении, похожим по характеристикам на стабилитрон.

Основание биполярного плоскостного транзистора, пластина из полупроводника, – это коллектор, установленный (в случае мощных транзисторов) на металлическом корпусе. То есть, металлический корпус электрически соединен с коллектором. Основание маломощных транзисторов может быть заключено в эпоксидную смолу. В мощных транзисторах алюминиевые соединительные провода подключаются к базе и эмиттеру и соединяются с выводами корпуса. Основания маломощных транзисторов могут устанавливаться непосредственно на выводящих проводниках. На одном кристалле может быть изготовлено несколько транзисторов, что будет называться интегральной схемой. Коллектор даже может быть установлен не на корпусе, а на выводе. Интегральная схема может содержать внутренние проводники, соединяющие транзисторы и другие интегрированные компоненты. Встроенный биполярный транзистор, показанный на рисунке (c) выше, намного тоньше, чем показано на рисунке «не в масштабе». Область P+ изолирует несколько транзисторов в одном кристалле. Алюминиевый слой металлизации (не показан) соединяет между собой несколько транзисторов и другие компоненты. Область эмиттера сильно легирована N+ по сравнению с базой и коллектором для того, чтобы повысить эффективность эмиттера.

Дискретные PNP транзисторы почти столь же высокого качества, как и NPN транзисторы. Тем не менее, интегрированные PNP транзисторы не так хороши, как NPN в аналогичном кристалле интегральной схемы. Таким образом, интегральные схемы по максимуму используют NPN транзисторы.

Подведем итоги

  • Биполярные транзисторы проводят ток, используя и электроны, и дырки в одном приборе.
  • Функционирование биполярного транзистора, как усилителя тока, требует, чтобы на переход коллектор-база было подано обратное смещение, а на переход эмиттер-база – прямое.
  • Транзистор отличается от пары соединенных «спина к спине» диодов тем, что база (центральный слой) очень тонкая. Это позволяет основным носителям заряд из эмиттера диффундировать, как неосновные носители, через базу в обедненную область перехода база-коллектор, где их подбирает сильное электрическое поле.
  • Эффективность эмиттера улучшается более сильным легированием по сравнению с коллектором. Эффективность эмиттера: α = IC/IE, составляет 0,99 для маломощных транзисторов.
  • Усиление по току: β=IC/IB, для маломощных транзисторов лежит в диапазоне от 100 до 300.

Оригинал статьи:

Теги

PN переходБиполярный транзисторОбучениеЭлектроника

Сохранить или поделиться

Принцип работы транзистора

Принцип работы транзистора

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок.

Принцип действия

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером.

Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы.

Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный.

В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто».

В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Как работает транзистор — видео

Принцип работы биполярного транзистора

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет

Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Типы полевых транзисторов

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Режимы работы

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Схема и характеристики транзистора

с общей базой »Электроника

Конфигурация общего базового усилителя широко не используется, за исключением высокочастотных усилителей, где она имеет некоторые явные преимущества.


Учебное пособие по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Общая схема эмиттера Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


Усилитель с общей базой — наименее широко используемый из трех конфигураций транзисторных усилителей.Конфигурации с общим эмиттером и общим коллектором (эмиттерным повторителем) используются гораздо более широко, потому что их характеристики обычно более полезны.

Конфигурация общего базового усилителя проявляет себя на высоких частотах, где стабильность может быть проблемой.

Основы транзисторного усилителя с общей базой

Характеристики транзисторного усилителя с эмиттерным повторителем позволяют использовать схему в качестве буферного усилителя.

Common base transistor configuration showing the base connection common to both input and output circuits Конфигурация схемы общей базы транзистора

Как для схем NPN, так и для схем PNP, можно видеть, что для схемы усилителя с общей базой вход подается на эмиттер, а выход снимается с коллектора.Общая клемма для обеих цепей является базой. База заземлена для сигнала, и по этой причине схему иногда можно назвать схемой заземленной базы.

Конфигурация усилителя с общей базой не используется так широко, как конфигурации транзисторных усилителей. Однако он находит применение в усилителях, которым требуются низкие уровни входного сопротивления. Одно из применений — это предусилители микрофонов с подвижной катушкой — эти микрофоны имеют очень низкие уровни импеданса.

Еще одно применение — в усилителях VHF и UHF RF, где низкий входной импеданс позволяет точно согласовать импеданс фидера, который обычно составляет 50 или 75 Ом.Конфигурация также улучшает стабильность, что является ключевым моментом.

Стоит отметить, что коэффициент усиления по току усилителя с общей базой всегда меньше единицы.

Однако коэффициент усиления по напряжению больше, но он является функцией входного и выходного сопротивлений (а также внутреннего сопротивления перехода эмиттер-база). В результате коэффициент усиления по напряжению усилителя с общей базой может быть очень высоким.

Обзор характеристик транзисторного усилителя с общей базой

В таблице ниже приведены основные характеристики транзисторного усилителя с общей базой.


Общая базовая характеристика
Параметр Характеристики
Коэффициент усиления по напряжению Высокая
Текущая прибыль Низкий
Прирост мощности Низкий
Соотношение фаз входа / выхода 0 и
Входное сопротивление Низкий
Выходное сопротивление Высокая

Цепь с общей базой не находит многих применений для низкочастотных цепей — обычно желательны высокий входной импеданс и низкий выходной импеданс.Однако он находит применение в некоторых высокочастотных усилителях, например, для VHF и UHF. В конфигурации с общей базой входная емкость не страдает от эффекта Миллера, который ухудшает пропускную способность конфигурации с общим эмиттером. Также существует относительно высокая изоляция между входом и выходом, а это означает, что обратная связь между выходом и входом незначительна, что приводит к высокой стабильности.

Схема усилителя на транзисторах с общей базой

На схеме ниже показано, как можно реализовать схему обычного базового усилителя.

Те же ограничения по смещению применяются к общей цепи базы, но сигналы применяются по-разному, что позволяет заземлить базу и, следовательно, использовать ее как для входных, так и для выходных цепей.

Circuit of a basic common base transistor amplifier Схема транзисторного усилителя с общей базой

В этой схеме действуют те же условия смещения. Однако при выборе эмиттерного резистора необходимо соблюдать осторожность, чтобы обеспечить правильное согласование импеданса входного сигнала.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

.

Все транзисторы. Техническая спецификация. Поиск по перекрестным ссылкам. База данных транзисторов.

BJT TOP50: 2N2222 | 2N3055 | BC547 | 2N3904 | 2N2222A | BC107 | C945 | BC548 | BD139 | 8050 | S8050 | BC557 | BC337 | TIP31 | D882 | AC128 | BC108 | S9014 | C1815 | BD140 | 2N3906 | S8550 | 8550 | 2SC945 | 2SC5200 | BC547B | 2N5551 | MJE13003 | 9014 | BC549 | BC148 | TIP122 | 9013 | 2N2907 | BC558 | BC327 | C102 | A733 | 2SC1815 | 2N60C | 2N222 | 2N4401 | BC109 | BD135 | S9013 | BC546 | A1015 | 9012 | 431 | 2N3773 |

MOSFET TOP30: IRF3205 | IRFZ44N | IRF740 | IRF540 | IRF840 | BS170 | IRFZ44 | IRF640 | IRF540N | 2N7000 | IRF630 | IRFP460 | IRFZ46N | IRF530 | IRF1404 | IRF3710 | IRFZ34N | IRFP250 | BUZ11 | RFP50N06 | IRF520 | IRFP450 | IRFB3306 | IRF510 | IRF830 | 2N5484 | IRF730 | IRF150 | STF5N52U | IRF2807 |

IGBT TOP15: IRGP4086 | CT60AM-18F | FGPF4633 | G40N60B3 | IRG7IC28U | G20N60B3D | IXGR40N60C2D1 | G7N60C3D | РДЖП30х2ДПД | ИКВ50Н60х4 | 10Н40Ф1Д | GT60M303 | ФГх50Н60СФД | IRG4BC30W-S | IRG4PC50UD |

КУПИТЬ ТРАНЗИСТОРЫ

Выбор замены биполярного транзистора

Материал =

Структура =

ПК> W

Vcb> V

Vce> V

Веб> В

Ic> А

Tj> C

Ft> МГц

куб.см пФ

Hfe>

крышки =

R1 = кОм

R2 = кОм

R1 / R2 =

Пустые или нулевые поля при поиске игнорируются!

Как выбрать замену биполярному транзистору 🔗

ИТОГО: 123970 транзисторов


Back to Top

.Конфигурации схем транзисторов

»Примечания по электронике

В схемах транзисторов

используется одна из трех конфигураций транзисторов: общая база, общий коллектор (эмиттерный повторитель) и общий эмиттер — одна из них выбирается в процессе проектирования электронной схемы.


Учебное пособие по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Общая схема эмиттера Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


При рассмотрении конструкции электронной схемы для транзисторной схемы можно использовать три различных базовых конфигурации схемы.

Три разные конфигурации схемы транзисторов: общий эмиттер, общая база и общий коллектор (эмиттерный повторитель), эти три конфигурации схемы имеют разные характеристики, и в зависимости от требований будет выбран один тип схемы.

Каждый из них имеет разные свойства с точки зрения усиления, входного и выходного импеданса и т.д., и в результате в процессе проектирования электронной схемы будет выбрана конкретная конфигурация.

Summary of the basic transistor configurations: common emitter, common base, common collector - shown as basic configurations with no electronic components

Каждая из различных топологий транзисторов имеет входы и выходы, подключенные к разным точкам, при этом одна клемма является общей для входа и выхода.

В дополнение к выбору правильной конфигурации схемы или топологии на этапе проектирования электронной схемы, для обеспечения требуемых основных характеристик вокруг транзистора размещаются дополнительные электронные компоненты: обычно резисторы и конденсаторы, и значения рассчитываются для получения точных необходимых характеристик .

Как выбор топологии, так и расчет значений электронных компонентов являются ключевыми элементами процесса проектирования электронных схем.

Схемы транзисторов

Названия трех основных конфигураций транзисторов указывают на клеммы транзистора, которые являются общими для входных и выходных цепей. Это дает начало трем терминам: общая база, общий коллектор и общий эмиттер.

2N3553 transistor in a TO39 metal can Транзистор 2N3553 в металлической банке ТО39

Термин «заземленный», то есть заземленная база, заземленный коллектор и заземленный эмиттер, также может использоваться в некоторых случаях, потому что сигнал общего элемента обычно заземлен.

Существуют конфигурации эквивалентных схем для полевых транзисторов, а также термоэмиссионных клапанов / вакуумных ламп. Эти конфигурации имеют одинаковые типы свойств, хотя и немного изменены в зависимости от типа используемого электронного устройства.

Для полевых транзисторов используются такие термины, как общий сток, общий исток и общий затвор, а для клапанов / трубок терминология включает общий катод, общий анод и общую сетку.

Конфигурация транзистора с общей базой

По алфавиту это первая конфигурация транзистора, но, вероятно, она будет использоваться с наименьшей вероятностью.

Эта конфигурация транзистора обеспечивает низкое входное сопротивление при высоком выходном сопротивлении. Несмотря на высокое напряжение, коэффициент усиления по току невелик, а общий коэффициент усиления по мощности также невелик по сравнению с другими доступными конфигурациями транзисторов. Другой важной особенностью этой конфигурации является то, что вход и выход находятся в фазе.

Эта конфигурация транзисторов, вероятно, используется меньше всего, но она дает преимущества, заключающиеся в том, что база, общая для входа и выхода, заземлена, и это дает преимущества в уменьшении нежелательной обратной связи между выходом и входом для различных приложений проектирования радиочастотных схем.Это происходит потому, что база, которая физически является электродом между эмиттером и коллектором, заземлена, тем самым создавая барьер между ними.

В результате общая базовая конфигурация обычно используется для усилителей РЧ, где повышенная изоляция между входом и выходом дает больший уровень стабильности и снижает вероятность нежелательных колебаний. Как подтвердит любой, кто занимается проектированием радиочастот, это очень полезный атрибут.

Также низкий входной импеданс часто может обеспечить хорошее согласование с сопротивлением 50 Ом, что является полезным атрибутом для многих сценариев проектирования ВЧ.

Common base transistor configuration showing the base connection common to both input and output circuits Конфигурация схемы общей базы транзистора

Общий коллектор (эмиттерный повторитель)

Конфигурация схемы общего коллектора, возможно, более широко известна как эмиттерный повторитель, потому что напряжение эмиттера следует за напряжением базы, хотя и ниже по напряжению на величину, равную напряжению включения базового эмиттерного перехода.

Общий коллектор, эмиттерный повторитель обеспечивает высокий входной импеданс и низкий выходной импеданс.Коэффициент усиления по напряжению равен единице, хотя коэффициент усиления по току велик. Входной и выходной сигналы синфазны.

Принимая во внимание эти характеристики, конфигурация эмиттерного повторителя широко используется в качестве буферной схемы, обеспечивающей высокий входной импеданс для предотвращения нагрузки предыдущего каскада и низкий выходной импеданс для управления следующими каскадами.

Common collector transistor configuration showing the base connection common to both input and output circuits Конфигурация схемы общего коллектора транзистора

Как видно из схемы, в этой конфигурации транзистора коллекторный электрод является общим как для входных, так и для выходных цепей.Несколько дополнительных электронных компонентов используются с резистором для эмиттера, возможно, конденсаторами на входе и выходе и резисторами смещения на базе, если это необходимо. В некоторых случаях эмиттерный повторитель может быть напрямую соединен с предыдущим каскадом, поскольку выходное напряжение постоянного тока может быть подходящим для размещения цепью повторителя. Это означает, что требуется очень мало дополнительных электронных компонентов.


Конфигурация транзистора с общим эмиттером

Эта конфигурация транзисторов, вероятно, является наиболее широко используемой.Схема обеспечивает средние уровни входного и выходного сопротивления. Усиление по току и напряжению можно описать как среднее, но выход является обратным входному, то есть изменение фазы на 180 °. Это обеспечивает хорошую общую производительность и поэтому часто является наиболее широко используемой конфигурацией.

Common emitter transistor configuration showing the base connection common to both input and output circuits Конфигурация схемы общего эмиттера транзистора

Как видно из схемы, в этой конфигурации транзистора эмиттерный электрод является общим как для входных, так и для выходных цепей.


Сводная таблица конфигурации схемы транзистора

В таблице ниже дается сводка основных свойств различных конфигураций транзисторов. При разработке транзисторной схемы важным аспектом является не только усиление, но и такие параметры, как входное и выходное сопротивление.


Сводная таблица конфигурации транзисторов

Конфигурация транзистора Общая база Общий коллектор
(эмиттерный повторитель)
Общий эмиттер
Коэффициент усиления по напряжению Высокая Низкий Средний
Текущая прибыль Низкий Высокая Средний
Прирост мощности Низкий Средний Высокая
Соотношение фаз входа / выхода 0 и град. 0 ° 180 °
Входное сопротивление Низкий Высокая Средний
Выходное сопротивление Высокая Низкий Средний

Дополнительные электронные компоненты

Какая бы форма подтверждения транзистора ни была выбрана на этапе проектирования электронной схемы, вокруг транзистора потребуются дополнительные компоненты: резисторы для установки точек смещения и конденсаторы для обеспечения связи и развязки.

Circuit of a basic common emitter transistor amplifier showing the associated electronic components including resistors an capacitors Схема транзистора с общим эмиттером, показывающая дополнительные компоненты, необходимые для обеспечения смещения, связи и развязки и т. Д.

В этой схеме усилителя с общим эмиттером базовая конфигурация устанавливает основные условия схемы: средний входной импеданс, средний выходной импеданс, приемлемый коэффициент усиления по напряжению и т.п. Затем рассчитываются дополнительные электронные компоненты, чтобы обеспечить требуемые рабочие условия сверх указанных.

Каждый из электронных компонентов должен быть рассчитан на этапе проектирования электронной схемы, чтобы обеспечить требуемую производительность.

Хотя общий эмиттер, вероятно, будет чаще всего встречаться с электронными компонентами, такими как резисторы и конденсаторы, при использовании для проектирования ВЧ-схемы в схему также могут быть включены такие компоненты, как индукторы и трансформаторы. То же верно и для других конфигураций транзисторных схем.

Наиболее часто используемая конфигурация схемы — это общий эмиттер — он используется для многих каскадов усилителя, обеспечивающих усиление по напряжению. Также широко используется эмиттерный повторитель или общий коллектор.Обеспечивая высокий входной импеданс и низкий выходной импеданс, он действует как буфер и обеспечивает только усиление по току — его усиление по напряжению равно единице. Общая база используется в более специализированных приложениях и заметно меньше.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

.

Что такое транзистор PNP? — Определение, символ, конструкция и работа

Определение: Транзистор, в котором один материал n-типа легирован двумя материалами p-типа, такого типа транзистор, известен как транзистор PNP. Это устройство, управляемое током. Небольшая величина базового тока контролировала как эмиттерный, так и коллекторный ток. Транзистор PNP имеет два кристаллических диода, соединенных спиной друг к другу. Левая сторона диода известна как диод эмиттер-база, а правая сторона диода известна как диод коллектор-база.

Отверстие — это основные носители PNP-транзисторов, которые составляют в нем ток. Ток внутри транзистора образуется из-за изменения положения отверстий, а в выводах транзистора — из-за потока электронов. Транзистор PNP включается, когда через базу протекает небольшой ток. Направление тока в транзисторе PNP — от эмиттера к коллектору.

Буква PNP-транзистора указывает напряжение, требуемое для эмиттера, коллектора и базы транзистора.База PNP-транзистора всегда была отрицательной по отношению к эмиттеру и коллектору. В транзисторе PNP электроны снимаются с клеммы базы. Ток, который входит в базу, усиливается на концах коллектора.

Обозначение транзистора PNP

Обозначение транзистора PNP показано на рисунке ниже. Стрелка внутрь показывает, что направление тока в транзисторе PNP — от эмиттера к коллектору.

pnp-transistor-symbol

Конструкция транзистора PNP

Конструкция транзистора PNP показана на рисунке ниже.Переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением. Эмиттер, который подключен в прямом смещении, притягивает электроны к батарее и, следовательно, составляет ток, протекающий от эмиттера к коллектору.

Block-diagram-pnp-transistor

База транзистора всегда находится в положительном положении относительно коллектора, так что отверстие от коллекторного перехода не может войти в базу. И база-эмиттер удерживается впереди, из-за чего отверстия из области эмиттера входят в базу, а затем в область коллектора, пересекая область обеднения.

Работа транзистора PNP

Переход эмиттер-база соединен с прямым смещением, из-за чего эмиттер проталкивает отверстия в области базы. Эти отверстия составляют ток эмиттера. Когда эти электроны перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и очень слабо легированная. Следовательно, только несколько дырок в сочетании с электронами, а оставшиеся перемещаются к слою объемного заряда коллектора.Следовательно, развивается базовый ток.

working-pnp-transistor

База коллектора подключена с обратным смещением. Отверстия, которые собираются вокруг обедненной области под воздействием отрицательной полярности, собираются или притягиваются коллектором. Это развивает ток коллектора. Полный ток эмиттера протекает через ток коллектора I C .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *