Число полюсов асинхронного двигателя – «Какое число пар полюсов имеет асинхронный двигатель, если при включении в промышленную сеть развивает 980 об/мин?» – Яндекс.Знатоки

Содержание

Определение технических характеристик асинхронного двигателя

В данное статье речь пойдет о расчете таких технических характеристик асинхронного электродвигателя, которые не приводятся на щитке электродвигателя, а именно: число пар полюсов (число пар катушек на фазу), скольжение при номинальной нагрузке, полной мощности, активной мощности и потере в двигателе при номинальной нагрузке.

Пример.

На щитке асинхронного двигателя с короткозамкнутым ротором типа АИР71В4У2 имеются следующие обозначения:

двигатель типа АИР71В4У2
  • ∆/Y – схема соединения обмоток двигателя;
  • 220/380 В; 3,4/1,94 А — при схеме соединения обмоток статора в треугольник, мы должны подключатся к напряжению 220 В, при схеме соединения обмоток статора в звезду подключаем напряжение 380 В, соответственно и переменный ток будет равен для соединения в треугольник при напряжении 220 В – 3,4 А, а при схеме соединения в звезду – 1,94 А.

Проверить данные по току, можно рассчитав по формулам:

Для схемы соединения треугольник:

Ток при соединении обмоток двигателя в треугольник

Для схемы соединения звезда:

Ток при соединении обмоток двигателя в звезду
  • 0,75 кВт – номинальная (полезная) мощность;
  • n2 = 1350 об/мин – частота вращения электродвигателя при номинальной нагрузке в минуту;
  • КПД = 75 % — коэффициент полезного действия, характеризуется отношением номинальной (полезной) мощности развиваемой на валу, к активной мощности, потребляемой им из сети. Определяется по формуле:
коэффициент полезного действия
  • сosϕ = 0,78 – коэффициент мощности, для вычисления его достаточно активную мощность Р, разделить на полную мощность S:
коэффициент мощности

Разобравшись какие технические данные представлены на щитке двигателя, перейдем теперь непосредственно к определению величин, о которых шла речь в начале статьи.

1. Определяем число пар полюсов по формуле:

Определяем число пар полюсов по формуле

Если нужно знать количество полюсов, формула будет иметь такой вид:

Определяем количество полюсов по формуле

где:
f = 50 Гц – частота переменного тока;

2. Определяем скольжение при номинальной нагрузке:

Определяем скольжение при номинальной нагрузке

где:
n1 – синхронная скорость двигателя, зависящая от числа пар полюсов, так для одной пары полюсов – 3000 об/мин, для двух пар – 1500 об/мин, для трех пар – 1000 об/мин.

3. Определяем полную мощность двигателя при номинальной нагрузке:

Определяем полную мощность двигателя при номинальной нагрузке

4. Определяем активную мощность, потребляемая двигателем при номинальной нагрузке:

Определяем активную мощность, потребляемая двигателем при номинальной нагрузке

5. Определяем потери в двигателе при номинальной нагрузке:

Определяем потери в двигателе при номинальной нагрузке

Поделиться в социальных сетях

raschet.info

Зависимость частоты от числа пар полюсов

Дата публикации: .
Категория: Электротехника.

При рассмотрении вопроса о получении переменного тока указывают, что за один оборот ротора индуктированная в проводниках обмотки генератора электродвижущая сила (ЭДС) имела один период. Если ротор генератора делает, например 5 об/сек, то ЭДС будет иметь 5 пер/сек или частота тока генератора будет равна 5 Гц. Следовательно, число оборотов в секунду ротора генератора численно равно частоте тока.

Частота тока f выражается следующим соотношением:

Зависимость частоты тока от числа полюсов

где n – число оборотов ротора в минуту.

Для получения от генератора стандартной частоты тока – 50 Гц ротор должен делать 3000 об/мин, то есть

Зависимость частоты тока от числа полюсов

Однако наши рассуждения были справедливы только для двухполюсного генератора, то есть для машины с одной парой полюсов p.

Если машина четырехполюсная, то есть число пар полюсов равно двум: p = 2 (рисунок 1), то один полный период изменения тока будет иметь место за пол-оборота ротора (1 – 5 положения проводника на чертеже). За второй полуоборот ротора ток будет иметь еще один период. Следовательно, за один оборот ротора четырехполюсной машины ток в проводнике имеет два периода. В шестиполюсной машине (p = 3) ток в проводнике за один оборот ротора будет иметь три периода.

Изменение переменного тока в проводнике ротора четырехполюсного генератора

Рисунок 1. Изменение переменного тока в проводнике ротора четырехполюсного генератора

Таким образом, для машин, имеющих p пар полюсов, частота тока при Изменение переменного тока в проводнике ротора четырехполюсного генератора об/сек будет в p раз больше, чем для двухполюсной машины, то есть

Зависимость частоты тока от скорости вращения ротора и числа пар полюсов статора

Отсюда формула зависимости скорости вращения от частоты и числа пар полюсов будет иметь следующий вид:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 1. Определить частоту переменного тока, получаемого от генератора с восемью полюсами (p = 4), скорость вращения ротора которого n = 750 об/мин. Подставляя в формулу для определения частоты тока значение p и n получим:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 2. Определить скорость вращения ротора двадцатиполюсного генератора (p = 10), если частотомер показал частоту тока f = 25 Гц. Подставляя в формулу для определения числа оборотов ротора n значения p и f, получим:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 3. Скорость вращения ротора асинхронного двигателя, составляет 250 об/мин. Определить число пар полюсов асинхронного двигателя, если частота тока питающей сети равна 50 Гц:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Следовательно, двигатель имеет 24 полюса.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

www.electromechanics.ru

Синхронные скорости вращения асинхронных электродвигателей в зависимости от частоты (10-100 Гц) и числа полюсов (2-12), Таблица.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование
/ / Электродвигатели. Электромоторы.  / / Синхронные скорости вращения асинхронных электродвигателей в зависимости от частоты (10-100 Гц) и числа полюсов (2-12), Таблица.

Поделиться:   

Синхронные скорости вращения асинхронных электродвигателей в зависимости от частоты (10-100 Гц) и числа полюсов (2-12), Таблица.

Синхронная скорость вращения обычных асинхронных двигателей выражается как:

  • n = 60*f *2 / p         (1)
  • где
  • n = скорость вращения штока  (об/мин, rpm)
  • f = частота (ГЦ=Hz; оборотов/с; 1/с)
  • p =число полюсов, !!! если формула дается в виде n = (60*f ) / p, то под p понимается число пар полюсов, а не число полюсов!!!

Пример — синхронная скорость четырехполюсного электродвигателя:

Если двигатель запитан напряжением 60Гц , синхронная скорость считается так:

n =  (60*60) (2 / 4) = 1800 об/мин

Таблица синхронной скорости вращения асинхронных электродвигателей в зависимости от частоты и числа полюсов:
Таблица синхронной скорости вращения асинхронных электродвигателей в зависимости от частоты и числа полюсов:
Скорость вращения электромотора, электродвигателя: об/мин
Частота
— f —
(Гц=Hz)
Число полюсов — p —
2 4 6 8 10 12
10 600 300 200 150 120 100
20 1200 600 400 300 240 200
30 1800 900 600 450 360 300
40 2400 1200 800 600 480 400
501) 3000 1500 1000 750 600 500
602) 3600 1800 1200 900 720 600
70 4200 2100 1400 1050 840 700
80 4800 2400 1600 1200 960 800
90 5400 2700 1800 1350 1080 900
100 6000 3000 2000 1500 1200 1000
  1. РФ, Европа, большая часть мира  — 50 Гц
  2. США, Южная Корея, Канада, Тайвань- 60Гц
Справочно: Номиналы электрических сетей.
Поиск в инженерном справочнике DPVA. Введите свой запрос:

dpva.ru

Принцип работы электродвигателей


Принцип работы электродвигателей. Основные понятия.

Магнетизм

Наиболее характерное магнитное явление — притяжение магнитом кусков железа — известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые — отталкиваются друг от друга.



Магнитное поле

Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.

Электромагнетизм

Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.



Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.



Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.

Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.

Ротор:

Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.

Статор:

Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.



Вращение под действием магнитного поля

Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса — притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.



 


Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Переменный ток — AC

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.



 

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

Смена полюсов

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.



Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.



Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.



Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Вращение ротора

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.



 


Индукция

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.



Индукция

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция — это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).




Принцип действия электродвигателей

Индукционные электродвигатели состоят из ротора и статора.

Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.

Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.

Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.

Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.








Статор элетродвигателя

Статор — это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.



Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью — из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.



Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры — класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.


Ротор элетродвигателя

В электродвигателях используются так называемые «беличьи колеса» (короткозамкнутые роторы), конструкция которых напоминает барабаны для белок.



При вращении статора магнитное поле движется перпендикулярно обмоткам проводников ротора; появляется ток. Этот ток циркулирует по обмоткам проводников и создаёт магнитные поля вокруг каждого проводника ротора. Так как магнитное поле в статоре постоянно меняется, меняется и поле в роторе. Это взаимодействие и вызывает движение ротора. Как и статор, ротор изготовлен из пластин электротехнической стали. Но, в отличие от статора, с обмотками из медной проволоки, обмотки ротора выполнены из литого алюминия или силумина, которые выполняют роль проводников.




Асинхронные электродвигатели

В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями. В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя.

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).



Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.             



Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.


Синхронная частота вращения для различного количества полюсов

Число полюсов

Синхронная частота вращения 50 Гц

Синхронная частота вращения 60 Гц

2

3000

3600

4

1500

1800

6

1000

1200

8

750

900

12

500

600


Скольжение элетродвигателя

Теперь мы уже знаем, что электродвигатели переменного тока называют асинхронными, потому что движущееся поле ротора отстает от поля статора.

В электродвигателях переменного тока вращающий момент возникает в результате взаимодействия между ротором и вращающимся магнитным полем статора. Магнитное поле обмоток ротора будет стремиться к тому, чтобы приблизиться к магнитному полю статора, как это было описано раньше. Во время работы частота вращения ротора всегда ниже частоты вращения магнитного поля статора. Таким образом, магнитное поле ротора может пересекать магнитное поле статора и создавать вращающий момент. Эта разница в частоте вращения полей ротора и статора называется скольжением и измеряется в %. Скольжение необходимо для создания вращающего момента. Чем больше нагрузка, а, следовательно, и вращающий момент, тем больше скольжение.



www.eti.su

Принцип работы асинхронного двигателя | Заметки электрика

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Итак, поехали.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Эта частота называется, асинхронной.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Вот его бирка.

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

P.S. На этом статью про принцип работы асинхронного двигателя я завершаю. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

число пар полюсов асинхронного двигателя



число пар полюсов асинхронного двигателя

Автор Select . задал вопрос в разделе Техника

Что такое полюс электродвигателя? и получил лучший ответ

Ответ от Releboy[гуру]
Как это у АД нет полюсов? А работает он на внутреннем сгорании, что ли? Понятие полюс АД является величиной расчетной. У асинхронного двигателя число пар полюсов определяется р = (60*f) / n1
или для частоты f = 50 Герц число полюсов соответствует синхронной частоте АД:
•2 полюса = ~ 3000 об/мин
•4 полюса = ~ 1500 об/мин
•6 полюсов = ~ 1000 об/мин
•8 полюсов = ~ 750 об/мин
Конструктивно число полюсов АД формируется исключительно схемой обмотки статора — числом пазов в статоре и количеством слоев в пазе. У трехфазного АД число пазов в статоре всегда кратно 6. Визуально для трехфазного двигателя число пар полюсов определяется так — достаточно подсчитать число пазов на статоре, поделить на три (фазы) , затем на 2 (пары полюсов) и на число катушечных групп (количества обмоток соединенных последовательно и параллельно — для этого необходимо знать схему обмотки). У двигателей с состредоточенными обмотками все наглядно.
Переключение схем обмоток позволяет изменять число пар полюсов и соответственно скорость двигателя. В последние годы разработаны схемы обмоток, дающие возможность путем переключения катушечных групп изменять числа полюсов и в отношении, отличном от 1:2, с сохранением достаточно высокого обмоточного коэффициента для обеих частот вращения и числа выводных концов обмотки (не более шести). Особенность этих схем заключается в специфической компоновке катушечных групп из разновитковых катушек, при которой изменение точек подсоединения обмотки к питающей сети приводит не только к изменению полярности отдельных катушечных групп, но и к переключению групп между фазами или даже к отключению отдельных катушек. При переключениях изменяется и амплитуда МДС обмотки при разных числах полюсов, поэтому такой метод построения схем называют полюсно-амплитудной модуляцией (ПАМ). Для трехскоростных и четырехскоростных асинхронных двигателей используют оба принципа изменения числа полюсов: устанавливают две независимые обмотки, каждая из которых (в четырехскоростных) или одна из них (в трехскоростных двигателях) выполняется полюснопереключаемой.
Releboy
Гений
(89801)
Я рад.

Ответ от 2 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Что такое полюс электродвигателя?

Ответ от Twoloud[гуру]
у ад нет полюсов

Ответ от Ётарший брат[гуру]

Ответ от Георгий Гончаренко[гуру]
какие там полюса?

Ответ от Геннадий Соболев[активный]
У любого магнита есть пара полюсов. Благодаря электромагнитной индукции АД и работает. Естественно, на каждой фазе возникает пара полюсов- S и N. При увеличении пар полюсов на одной фазе, кратно уменьшается количество оборотов двигателя.


Ответ от 2 ответа[гуру]

Привет! Вот еще темы с похожими вопросами:

Асинхронная машина на Википедии
Посмотрите статью на википедии про Асинхронная машина

 

Ответить на вопрос:

2oa.ru

Полюса электродвигателя

Электродвигатель постоянного тока – устройство, преобразующее электрическую энергию в механическую. Принцип работы такого электродвигателя основан на вращении магнитного поля.

Число пар полюсов электродвигателя

  • Число пар полюсов электродвигателя определяет скорость, с которой будет вращаться вал мотора. Расчет производится с использованием специальных формул. При предельно допустимой нагрузке скорость вращения может незначительно замедлиться из-за скольжения. Скорость скольжения также рассчитывается при использовании соответствующих формул.
  • Для работы синхронного электродвигателя необходимо обеспечить равное количество численности полюсов и рабочей обмотки. То же относится и к асинхронному электродвигателю.
  • Причем короткозамкнутый ротор в асинхронном электродвигателе может отлично работать и при разном числе полюсов статорной обмотки.
  • Асинхронный электродвигатель Доливо-Добровольского на полюсах статора имеет три обмотки. Внутри статора закреплен ротор. Три полюса магнитного тока могут создавать соответствующее вращение, если обмотки соединить особым образом и подключить мотор к трехфазной сети.
  • На внутреннем кольце полюса, который обращен к ротору, суммарный магнитный поток перенаправится от полюса второй катушки к полюсу третьей катушки.
  • Соответственно суммарный магнитный поток может менять свое направление, если изменить направление тока в обмотке статора, или полюсов. В результате получится асинхронный электродвигатель.

Доверяйте все работы профессионалам

Если Вы купили электродвигатель, его монтажом, техническим обслуживанием или ремонтом могут заниматься только специалисты с соответствующим уровнем технической подготовки.

Менять самостоятельно обмотку или заменять потоки направляющей энергии в полюсах нельзя. Вы автоматически потеряете гарантию производителя и последующий ремонт, возможно капитальный, будете проводить за свой счет.

Производители электродвигателей предлагают потребителям огромный ассортимент электродвигателей с разной мощностью и скоростью вращения вала. Из такого разнообразия, наверняка, можно выбрать электродвигатель, который будет полностью соответствовать Вашим требованиям, и выполнять поставленные задачи.

При покупке электродвигателя в компании «РДЭ» Вы можете получить консультацию продавца по подбору электродвигателя с любым количеством полюсов по тел. (495) 668 32 90.

Просмотров: 8409

Дата: Воскресенье, 15 Декабрь 2013

www.rosdiler-electro.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *