Что называется защитным занулением: Что называется защитным занулением

Содержание

Что называется защитным занулением

Назовите требования конструкции электроустановок в отношении защиты от поражения электрическим током


Защитное заземление в электрических цепях с заземленной нейтралью не всегда может обеспечить безопасность их эксплуатации, так как величина аварийного тока, перешедшего на корпус в случае пробоя изоляции, может не вызвать мгновенного срабатывания плавких предохранителей из-за сопротивления (хоть и незначительного) заземлителя. Таким образом, в течение некоторого времени, вполне достаточного для поражения током, корпус оборудования, к которому случайно прикоснулся человек, будет находиться под напряжением до тех пор, пока его не отключат вручную. Поэтому в таких установках вместо заземления применяется другой вид защиты—зануление.

Занулением называют присоединение корпусов и других металлических частей электрооборудования, обычно не находящихся под напряжением, к неоднократно заземленному нулевому проводу питающей сети. Введение в схему нулевого провода увеличивает ток, протекающий через защитное Устройство и обеспечивающий его срабатывание.

В случае замыкания на корпус при пробое изоляции между нулевым и фазовым проводами пройдет ток короткого замыкания (Iк), под влиянием которого, безусловно, расплавятся предохранители, и прекратится подача электроэнергии на поврежденный объект.

В установках с заземленной нейтралью проводимость нулевого провода не меньше половины проводимости фазового.

Следует отметить, что, поскольку Правилами Регистра Украины запрещено применение на судах систем переменного трехфазного тока с заземленной нейтралью , зануление нашло применение только на береговых предприятиях морского транспорта.


Рис.

Назовите технические способы обеспечения электробезопасности

Защитное отключающее устройство обеспечивает быстрое (не более 0,1 с) автоматическое отключение аварийного участка или цепи в целом при возникновении опасности поражения человека электротоком.

Защитное отключение применяется в случаях, если устройство заземления представляет определенные трудности (например, в передвижных установках, ручных электроинструментах и пр.). Кроме того, защитные автоматические устройства гарантируют быстрое отключение аварийного участка цепи при изменении в ней некоторых электрических параметров; напряжения на корпусе относительно земли, тока замыкания на землю, напряжения фаз относительно земли, тока нулевой последовательности и т. д.

Принцип действия приборов защитного отключения основан на использовании в качестве отключающих импульсов опасных изменений одного из перечисленных выше параметров.

Защитные отключающие устройства, применяемые в качестве автоматического средства защиты или в комплексе с защитным заземлением, конструктивно выполняются в виде разнообразных автоматических выключателей, контакторов, снабженных отключающим реле. Элементами прибора являются: датчик (реле), воспринимающий изменение электрического параметра и преобразующий его в какой-либо сигнал; усилитель сигнала датчика, цепь самоконтроля электросхемы прибора; сигнальные лампы; измерительные приборы; автоматический выключатель электроцепи.

Рассмотрим принцип работы отключающего устройства, реагирующего на изменение напряжения на корпусе электротехнического устройства относительно земли. Этот прибор, являющийся дополнительным средством защиты наряду с защитным

Рис.

заземлением, предназначен для устранения опасности поражения током при появлении на заземленном корпусе повышенного электрического потенциала.

Устройство состоит из датчика (реле максимального напряжения Р), включенного в цепь последовательно с защищаемым объектом — корпусом электромотора М и вспомогательным заземлителем (R э.в). Этот заземлитель должен быть расположен на расстоянии 15 — 20 м от защитного заземлителя (Rз). Сердечник отключающей катушки Др соединен с автоматическим выключателем В.

Работа прибора заключается в следующем: при появлении на корпусе электромотора опасного потенциала проявится защитное свойство штатного заземлителя, ограничивающего этот потенциал до некоторой величины. Если же та величина окажется выше предельно допустимого уровня, то немедленно сработает реле максимального напряжения отключающего устройства. При замыкании контактов реле Р через отключающую катушку пойдет ток. Под влиянием возникшего в катушке электромагнитного поля сердечник втягивается, воздействуя на выключатель В. Цепь разрывается, и аварийный участок выключается. Автоматическое отключение от сети аварийной установки как участка цепи позволяет устранить опасность поражения человека электротоком при случайном прикосновении к опасному участку цепи. Надежность работы защитноотключающих устройств определяется их высокой чувствительностью, быстротой срабатывания, а также устойчивостью к колебаниям параметров внешней среды (вибрация, качка, влажность, температура воздуха и т. д.).

Для предотвращения электротравматизма и аварий на судах нашли применение различные ограждения (крышки, кожухи, решетки), блокировочные устройства, конечные выключатели, а также ручные отключающие устройства безопасности.

Электрическое блокирование применяется для автоматического отключения электротехнических устройств в случае ошибочных действий персонала, при снятии ограждений, крышек и люков, позволяющих проникнуть в опасную для жизни зону.

Конечные выключатели электротока применяются в конструктивных схемах грузовых стрел, кранов и других устройств, где во избежание аварийных ситуаций требуется ограничение движений их элементов. Перед началом работ по обслуживанию коммутационных устройств с автоматическим приводом и дистанционным управлением в целях предупреждения ошибочного либо случайного их включения необходимо снять предохранители всех фаз цепей Управления и силовых цепей и вывесить таблички на ключах и кнопках дистанционного управления: «Не включать — работают люди!».

Важной мерой, обеспечивающей электробезопасность обслуживающего электроустановки персонала, является защитное заземление или зануление металлических нетоковедущих (конструктивных) частей электроустановок и электрооборудования, нормально не находящихся под напряжением, но могущих оказаться под напряжением относительно земли в аварийных режимах (в случае повреждения изоляции).

Заземлением называется преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление подразделяется на:

  1. рабочее заземление;
  2. защитное заземление.

ПУЭ дают следующие основные определения в отношении заземлений:

Рабочим заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (для обеспечения надлежащей работы установки в нормальных и аварийных режимах).

Рабочее заземление может осуществляться непосредственно или через специальные аппараты (сопротивления, разрядники, реакторы и др.)

Защитным занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

Нулевой рабочий (нейтральный) проводник (N) — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока.

Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

Заземляющий проводник — проводник, соединяющий заземляющую точку с заземлителем.

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

Напряжение на заземляющем устройстве — напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

Сопротивление заземляющего устройства — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Заземление служит для превращения замыкания на корпус в замыкание на землю с целью снижения напряжения на корпусе относительно земли до безопасной величины.

Защитное заземление

Основное назначение защитного заземления:

  1. устранение опасности поражения электрическим током в случае прикосновения к корпусу или другим нетоковедущим металлическим частям электроустановки оказавшимся под напряжением.

Защитное заземление применяют в 3 х х фазных сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с любым режимом нейтрали . Принципиальная схема защитного заземления представлена на рис. 4.7.

Рис.4.7. Принципиальные схемы защитного заземления (а) в сети с изолированной нейтралью и (б) в сети с заземленной нейтралью.
1 — корпуса защитного оборудования;
2 — заземлитель защитного заземления;
3 — заземлитель рабочего заземлений нейтрали источника тока; R3 и Ro — сопротивления защитного и рабочего заземлений.

Принцип действия защитного заземления основан на снижении напряжения между корпусом, оказавшимся под напряжением, и землёй до безопасной величины .

Поясним это на примере сети до 1 кВ с изолированной нейтралью.

Если корпус электрооборудования не заземлен и он оказался в контакте с фазой, то прикосновение к такому корпусу человека равносильно прикосновению к фазному проводу. В этом случае ток, проходящий через человека, можно определить по формуле (2.5).

При малом сопротивлении обуви, пола и изоляции проводов относительно земли этот ток может достигать опасных значений.

Если же корпус заземлён, то ток, проходящий через человека при R об = R n = 0, можно определить из следующего выражения:

(4.1)

Это выражение получено следующим путем:

с заземленного корпуса (рис. 4.8) ток стекает в землю через заземлитель (I з ) и через человека (I h ). Общий ток определяется выражением:

где:
R общ — общее сопротивление параллельно соединенных R з и R h :

Рис.4.8. К вопросу о принципе действия защитного заземления в сети с изолированной нейтралью.

Из схемы на рис. 4.8

I h ×R h =I з R з = I общ ×R общ.,

откуда ток через тело человека будет:

выполнив простейшие преобразования получим выражение (4.1).

При малом R з по сравнению с R h и R из это выражение упрощается:

(4.2)

где:
R з — сопротивление заземления корпуса, Ом

При R з = 4 Ом, R h =1000 Ом, R из =4500 Ом, ток через тело человека будет:

Такой ток безопасен для человека.

Напряжение прикосновения в этом случае будет также незначительно:

U пр =I h ×R h = 0,00058×1000=0,58 В

Чем меньше R з — тем лучше используются зашитные свойства защитного заземления.

Насчёт заземления существует много заблуждений.

Чаще всего путаница возникает между тем, что называют защитным и нулевым проводом.

На самом деле, хотя нулевой провод может быть и совмещён с заземлением, но это суть два разных понятия.

Также иногда заземление путают с молниезащитой.

Не стоит верить байкам о том, что кто-то там вкручивал лампочку, сунул палец в патрон, его ударило током и он выжил, значит 220 вольт – неопасное напряжение.

В данном случае ток вошёл и вышел через этот же палец, да и там наверняка возник ожог.

При прохождении через сердце, головной мозг, спинной мозг и другие ткани и органы серьёзные последствия неизбежны.

Часто путают нулевой провод и то, что называется защитным заземлением электроустановки.

Не стоит путать эти два понятия. Нулевой и фазный провод в электросети переменного тока выполняют функцию подачи электрического потенциала к потребляющей схеме и затем – отбора остатка потенциала.

Однако теоретически ничего не мешает заземлить нейтраль, ведь она никак не участвует в подаче электроэнергии. Только делать это надо по особым требованиям – обычно такое заземление проводится возле источника подачи электроэнергии и аккредитуется специалистами.

Схемы защитного заземления

  1. Изолированная нейтраль с независимым заземлением, или IT-схема. Схема проста – на вход приводится фазные провода и нулевой, от которых заземление независимо. Корпус прибора заземляется индивидуально, от него отходит отдельный провод на заземление. Схема достаточно проста в реализации, однако даёт много ложных срабатываний. Достаточно надёжна при низком качестве линий электросетей. В этом случае заземляющий провод именуется «защитный ноль», а нулевой – «рабочий ноль».
  2. Заземлённая нейтраль с независимым заземлением, или TT-схема. Нейтраль заземляется возле источника, например, трансформаторного узла. Корпус прибора также заземляется. Более надёжна, чем IT-схема
  3. Заземлённая нейтраль с подключённым к ней заземлением, или TN-схема. В своё время такая была предложена в начале XX века, и до сих пор является самой распространённой. В приборах, имеющих встроенную схему с защитным предохранителем, такое заземление вызовет срабатывание предохранителя. Для сложных бытовых приборов эта схема надёжнее, чем две предыдущих. Существует три её реализации:
  • TN-C-схема. К заземляющему проводу нейтрали идёт провод защитного заземления от самого потребителя. Требует дополнительного провода от точки распределения тока, хорошего качества электросетей, но достаточно надёжна. Провод нейтрали может иметь любую толщину.
  • TN-S-схема. Заземляющий провод от корпуса соединяется с нейтралью перед УЗО, при этом обеспечивается регистрация утечки при пробое на корпус, но с меньшей эффективности, чем в TN-S схеме из-за дополнительного сопротивления провода нейтрали и наличия в ней других токов. Провод нейтрали должен быть даже толще, чем заземляющий по расчётам.
  • TN-CS схема. Заземляющий провод проходит некоторое расстояние до нейтрали источника, которая заземлена, а потом соединяется с ней. Этим обеспечивается меньшее влияние посторонних токов в нейтрали на работу УЗО и меньший расход провода в электросети. Провод нейтрали делается немного меньше, чем в предыдущем случае.

Ошибки при монтаже заземления

Сам способ заземления достаточно прост и описан в соответствующем стандарте – там подбирается по мощности приборов толщина проводника, по условиям – глубина, на которую он закладывается в землю и как соединяется с ней. Имеет смысл рассмотреть именно ошибки подключения:

  • Монтаж заземляющего провода в приборе до штепселя вилки. Эта ошибка приводится первой, поскольку она самая опасная. Многие путают, что называется защитным заземлением электроустановки и подключением к корпусу, и пытаются реализовать схему заземления непосредственно в корпусе установки. Теоретически, если нейтраль заземлена, к ней подводится заземление корпуса, всё вроде должно работать. Но если подумать, вилку можно воткнуть в розетку двумя способами. В первом всё отлично, во втором на корпус приходит фаза из розетки! И сразу же создаётся опасная ситуация.
  • Прямой выход рабочего нулевого провода в заземление через УЗО. Приведёт к постоянному срабатыванию УЗО.
  • Установка на заземляющий провод предохранителя, автомата или плавкой вставки. При срабатывании заземления на предохранитель приходит большой ток. При этом он сразу же плавится, и заземление перестаёт функционировать полностью – на корпусе прибора остаётся полная , УЗО на это не среагирует, создаётся опасная ситуация.

О том, как сделать защитное заземление в частном доме и на даче, можно посмотреть на видео:

Содержание:

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с , рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В , напряжением до 1 кВ с .
  • В однофазных двухпроводных сетях переменного тока, изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита. В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

Что называется рабочим заземлением

Рабочим заземлением считается преднамеренное соединение с землей определенных точек, имеющихся в электрических цепях. В первую очередь, это нейтральные точки генераторных и трансформаторных обмоток. В качестве соединений применяются надежные проводники, а также специальное оборудование в виде пробивных предохранителей, разрядников, резисторов и т.д.

Главным предназначением рабочего заземления является создание препятствий сбоям и замыканиям, поддержание системы в случае возникновения аварийной ситуации. Под его воздействием происходит снижение электрического напряжения в деталях и частях механизма, непосредственно находящихся под напряжением. Принятые меры способствуют локализации электрических сбоев, их отводу и недопущению дальнейшего распространения.

В соответствии с правилами техники безопасности, запрещается совмещать защитное и рабочее заземление. Это связано с тем, что различные токи помех, например, атмосферные электрические разряды, могут наложиться на токи, протекающие в однопроводных цепях. Это может привести к нарушениям внешних связей устройств и даже повреждениям аппаратуры. Кроме того, подобные совмещения могут сделать неэффективной защиту от напряжения. В случае аварийных ситуаций она будет работать в качестве рабочей или не будет функционировать вообще.

Сопротивление рабочего заземления должно быть не более 4 Ом. Такое ограничение связано с величиной напряжения, возникающего относительно земли на нулевом проводе, в процессе протекания тока замыкания на землю через рабочее заземление. Это особенно актуально при замыкании трансформаторной обмотки высокого напряжения на обмотку низкого напряжения.

Заземление электроустановок делится на два основных вида — функциональное рабочее и защитное. В некоторых источниках встречаются и дополнительные виды заземлений, такие как измерительное, контрольное, инструментальное и радио.

Рабочее или функциональное заземление

В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение — устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Как работает защитное (функциональное) заземление

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения сыграет роль защитного, но основная её функция — обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Требования к заземляющим конструкциям

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями

При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

Рекомендуем также

Зануление это просто, что такое защитное зануление

Не все понимают разницу между такими понятиями, как зануление и заземление, хотя, в принципе, это одно и то же. Защитное зануление – это соединение нейтрали трансформатора с металлическим корпусом бытового прибора. А так как система электроснабжения с глухозаземленной нейтралью – основная схема подачи электричества в дома, соответственно схема зануления присутствует в каждом доме.

При всей непонятности названия: глухозаземленная нейтраль – в реалии все достаточно просто. Электроснабжение домов производится от электрической подстанции, в которой установлен трансформатор. Фазные обмотки трансформатора соединены в одной точке, данная схема называется звездой. Разность потенциалов в данной точке равна нулю, то есть, напряжение здесь отсутствует. Именно эта точка соединяется с заземляющим контуром, который расположен внутри подстанции. И от этой точки в дома проводится провод, который называется нулевым. То есть, в каждую квартиру или дом входит два проводника: фазный и нулевой, которые и подают напряжение в 220 вольт.

Теперь, что такое зануление? Современные бытовые приборы в процессе производства комплектуются заземляющим проводом, который соединяет их металлический корпус с вилкой. В последней установлена третья клемма заземления. Соответственно современные розетки также снабжены третьим заземляющим контактом. При установке вилки в розетку происходит замыкание заземляющих контактов, то есть, бытовой прибор подключается к заземляющему контуру, расположенному в подстанции, через нулевой провод. И хотя эта одна из разновидностей заземления, название она получила от нулевого проводника.

Как работает система

Принцип действия зануления очень простой. Он основан на правилах устройства электроустановок (ПУЭ). В них регламентированы нормативы, в которых обозначено, что при появлении короткого замыкания в сети защитное устройство (автомат) должно среагировать за 0,4 секунды. За этот небольшой промежуток времени человек останется в живых, если он коснулся корпуса прибора, который находится под напряжением в виду пробивки изоляции внутри электроустановки.

Есть два тонких момента, которые определяют принцип действия защитного зануления.

  1. При ее использовании значительно уменьшается сопротивление петли «фаза-ноль».
  2. Увеличивается значение тока короткого замыкания, которое становится причиной срабатывания защитного автоматического выключателя.
По второму пункту необходимо дать пояснения. У каждого автомата есть свой определенный предел реагирования на величину тока. Он обычно обозначается на корпусе прибора, к примеру, 16 А. То есть, автомат будет реагировать на силу тока, равную или выше 16 ампер. Все величины ниже данного значения автомат пропускает, то есть, на них он не реагирует, а значит, и не отключает подачу электричества в помещения. Поэтому зануление дома — это защита, которая повышает значение тока короткого замыкания, чтобы автоматы в распределительном щитке срабатывали в независимости от реального пониженного значения.

Внимание! Есть одно требование, которое зафиксировано в ПУЭ. Нельзя изготавливать своими руками отдельный заземляющий контур на улице и подключать к нему заземляющий провод, если в доме используется сеть с глухозаземленной нейтралью. Все дело в том, что самодельный контур может иметь более значительное сопротивление, чем зануляющая система через нейтраль. А это снижение силы тока короткого замыкания, на который не отреагируют защитные автоматы в распределительном щитке.

Это же самое касается создания заземляющего контура через отопление или водопроводные металлические трубы.

Область применения зануления обширна. К ней на промышленных объектах подключаются все электроустановки: электродвигатели, генераторы, трансформаторы, конструкции распределительных устройств и прочие. В быту к ней подключаются бытовые приборы, электрические инструменты и станки, светильники, распределительные щиты.

Назначение защитного зануления – это безопасная эксплуатация электроустановок. Но насколько оно эффективнее настоящей заземляющей сети. Во-первых, необходимо отметить, что отдельно устанавливаемый заземляющий контур – это провод, который проложен от распределительного щитка в доме к трансформатору и подключен к заземляющей сети внутри подстанции.

Во-вторых, могут возникнуть ситуации, когда нулевой проводник по каким-то причинам отгорит. То есть, при коротком замыкании внутри бытового прибора весь потенциал будет направлен на его корпус. А так как при занулении нулевой провод соединен с заземляющим, то последний также не будет задействован в системе безопасности. Последствия при соприкосновении с корпусом прибора – удар током. В заземлении такого не произойдет, потому что оба проводника: ноль и земля – это два отдельно проведенных контура.

Обобщение по теме

Требования ПУЭ точно определяют нормативы, при которых питающая электрическая цепь должна сработать на отключение при возникновении короткого замыкания. Для этого сила тока короткого замыкания должна быть в три раза больше, чем номинальный, обозначенный на автоматическом выключателе. Это касается жилых домов и офисных зданий, где установлены автоматические выключатели с плавкими вставками. Для защитных устройств с электромагнитными расцепителями повышающий коэффициент равен 1,4. Для взрывоопасных помещений используется коэффициент 4-6.

Чтобы ток такой силы мог спокойно растекаться по зануляющей сети, необходимо, чтобы ее сопротивление при 220 вольт было 8 Ом, при 380 вольтах – 4 Ома. Это может обеспечить медный провод сечением 4 мм², не меньше. Этот размер применяется в бытовых сетях, где используется напряжение 220 В.

Обобщая информацию, можно дать окончательное определение зануляющей системе. Итак, занулением называется соединение нетоковедущих металлических частей электроустановок (бытовых приборов) с нейтралью трансформатора. Последняя соединяется с заземлением. Добавим, что заземляющие и зануляющие провода имеют один окрас – желто-зеленый. Это делается для облегчения монтажа и для легкости определения проводников в процессе проводимого ремонта.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Защитное заземление и защитное зануление

Вопросы электробезопасности

Защитное заземление и зануление, а также другие тех­нические устройства и способы применяют для защиты от поражения электрическим током и обеспечения условий от­ключения при повреждении изоляции электроустановок.

Защитным заземлением называется электрическое соеди­нение металлических частей электроустановки с заземлителем (рис. 19.1).

Заземлителем называют металлические детали, углубляе­мые в землю, изготовляемые, как правило, из низкоуглероди­стой стали различного профиля: уголок, полоса, прут и др. Заземлители в виде штырей, забиваемые в землю, называют электродами. Они могут быть одиночными или групповыми. Групповые электроды электрически соединенные общей поло­сой образуют заземляющий контур.

Заземление снижает до безопасного значения напряжение прикосновения человека, поскольку человек оказывается при повреждении изоляции включенным в электрическую цепь параллельно заземлителю, сопротивление которого по срав­нению с сопротивлением человека значительно меньше. Это существенно снижает величину тока 1ц, протекающего через человека, коснувшегося поврежденной установки.

Различают заземление в системах с изолированной нейтралью (рис. 19.1, а) и с глухозаземленной нейтралью (рис. 19.1, б).

Занулением называется преднамеренное соединение час­тей электроустановок, нормально не находящихся под напряжением, с глухо заземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухо зазем­ленным выводом источника однофазного тока, с глухо за­земленной средней точкой источника постоянного тока. За-

Рис. 19.1. Схемы защитного заземления а) и зануления б) в трехфазной уста­новке

нуление применяется в электроустановках напряжением до 1000 В.

Защитное действие зануления заключается в том, что при повреждении изоляции фазы или фаз установки возникает ток короткого замыкания 1#, который немедленно отключается защитным аппаратом.

Для электроустановок с занулением выполняется повторное заземление, заключающееся в присоединении металлических нетоковедущих частей установки к заземлителю (рис. 19.1, б).

Заземление и зануление следует применять:

1) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех случаях;

2)  при напряжении выше 42 В переменного тока и 110 В постоянного тока — в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Заземление или зануление не требуется при напряжении до 42 В переменного тока и 110 В постоянного тока во всех случаях.

Заземлению или занулению подлежат:

1) корпуса электрических машин, аппаратов, трансформа­ торов, светильников и т.д.;

2) приводы электрических аппаратов;

3) вторичные обмотки измерительных трансформаторов;

4) корпуса щитов, шкафов управления, распределительных щитов, щитков освещения и т.д.;

5) металлические конструкции распределительных устройств, металлические кабельные муфты, металлические оболочки и

 

броня контрольных и силовых кабелей,  стальные трубы электропроводок и др;

6)  металлические корпуса передвижных и  переносныхэлектроприемников;

7)  металлические оболочки и броня силовых и контрольных кабелей и проводов напряжением до 42 В переменного и 110 В постоянного тока, проложенных на общих металлических кон­струкциях.

Наименьшие сечения заземляющих и нулевых защитных проводников в электроустановках напряжением до 1000 В приведены в табл. 19.4.1.

Таблица 19.4.1

Наименьшие сечения заземляющих и нулевых защитных проводников в электроустановках до 1000 В

 

Проводник

Медь, мм

Алюминий, мм

Голые проводники при открытой прокладке

4

б

Изолированные провода

1.5

2,5

Заземляющие и нулевые жилы кабелей и многожиль­ных проводов в общей защитной оболочке с фазными

жилами

1

2,5

Таблица 19.4.2

Наименьшие размеры стальных заземлителей и заземляющих

проводников

 

Наименование и форма

В зданиях

В наружных установках

В земле

Круглые, диаметр, мм

5

6

10

Прямоугольные:

сечение, мм толщина, мм

24 3

48 4

48 4

Угловая сталь, толщина полок, мм

2

2,5

4

Газопроводные трубы, толщина стенок, мм

2,5

2,5

3,5

Тонкостенные трубы, толщина стенок, мм

1,5

2,5

Не допус­каются

 

 

Важное значение при устройстве заземлений имеет учет сопротивлений грунтов. Значения удельных сопротивлений грунтов для величин их влажности 10—20 % и воды приведены в табл. 19.4.3.

Таблица 19.4.3

Приближенные значения удельных сопротивлений грунтов и воды, р,

Ом-м

 

Вид грунта

р, Ом*м

Вид грунта и воды

р, Ом*м

Песок

400-700

Чернозем

9-20

Супесок

200—300

Торф

10-20

Суглинок

40-150

Речная вода (равнинная)

50

Глина

40

Морская вода

0,2

Садовая земля

40

 

 

Сопротивление заземляющего устройства

Сопротивление заземляющего устройства должно быть не более:

1) в установках выше 1000 В с глухозаземленнои нейтралью 0,5 Ом с учетом естественных заземлителей;

2) в установках выше 1000 В с изолированной нейтралью — 125/I3 Ом для заземляющего устройства, используемого од­новременно для установок до 1000 В, 250/15 Ом — только для установок выше 1000 В, где 13 — расчетный ток замыкания на землю;

3) в установках до 1000 В с глухозаземленнои нейтралью — 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В. При удельном сопротивлении земли р более 10 Ом*м указанные нормы увеличиваются в отношении р/100, но не более десятикратного.

4) в установках до 1000 В с изолированной нейтралью — 4 Ома. При номинальных мощностях трансформаторов до 100 кВА — не более 10 Ом.

Переносные заземления

Переносные заземления служат для защиты людей, рабо­тающих на отключенных токоведущих частях, от поражения электрическим током от ошибочно поданного или наведенного в цепи напряжения. Технические данные переносных заземлений, используемые для работы в распределительных устрой­ствах на напряжение до 1000 В (РУ) и на воздушных линиях на напряжение до 1000 В (ВЛ), представлены в таблице 16.4.4, а в 16.4.5—16.4.6 — типы переносных заземлений и оператив­ных изолирующих штанг, выпускаемых отечественной промыш­ленностью.

Таблица 19.4.4

Технические данные переносных заземлений

 

Параметры

Для РУ

Дгя ВЛ

Трехсекундный ток термической устойчиво­сти, кА

2,5

2,5

Длина соединительного провода между зажимами, мм

1500

800

Длина заземляющего провода, мм

2000

9000

Общая длина провода, мм

5000

12200

Сечение провода, кв. мм

16

16

Длина штанги с зажимом, мм

1100

420

Масса комплекта, кг

1,82

5,3

Таблица 19.4.5

Типы переносных заземлений для РУ и ЛЭП 0,4—10 кВ

 

Тип заземлителя

ЗПВЛ-1

ПЗРУ-1

ЗПВЛ-10

Напряжение, кВ

1

1

10

Сечение заземляющего провода, кв. мм

16

16

25

Предельный ток короткого замыкания, кА/с

2/2,8

2/2,8

6/1

Количество зажимов

5

3

3

Длина заземляющего спуска, м

9

2

10

Количество штанг

5

3

1

Длина штанги, м

0,2

0,2

1,0

 

 

 

 

 

 

Таблица 19.4.6

Штанги оперативные изолирующие

 

Тип штанги

Рабочее напряжение, кВ

Масса

ШО

ДО 10

1,0

Ш0-15М

до 15

1,2

ШОУ-15

до 15

1,5

ШОУ-35

35

1,7

ШОУ-110

110

2,7

ШОУ-220

220

2,8

Более подробные сведения по материалам, изложенным в главе, читатель найдет в литературе [2, 17, 31, 33, 34, 35, 36, 46, 48].

 



Чем отличачется защитное заземление от защитного зануления?

Сегодня рассмотрим такие понятия как защитное заземление и защитное зануление, а также общие требования, предъявляемые к защитному заземлению и защитному занулению. Заземление и зануление это разные понятия, хоть и выполняют практически одни и те же функции.


В общем случае заземлением называется преднамеренное электрическое соединение какой-либо точки сети ЭУ или оборудования с ЗУ.

Защитным заземлением называется заземление, выполненное с целью обеспечения ЭБ (рис. 1).

Защитное заземление

Рабочим заземлением называется заземление какой-либо точки или точек токоведущих частей ЭУ, выполняемое для обеспечения работы ЭУ (не в целях ЭБ), например, глухое заземление нейтрали или вывода источника (рис. 2). Рабочее заземление должно быть выполнено таким образом, чтобы обеспечивалась нормальная работа ЭУ в режимах, предусмотренных эксплуатационной документацией ЭУ (также см. ГОСТ Р 50571.10-96.).

Электроуставновки в заземленных электрических сетях

Защитным занулением в ЭУ напряжение до 1 кВ называется преднамеренное соединение ОПЧ с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях ЭБ (рис. 3).

Защитное зануление

В ЭУ до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока для защиты людей от поражения током при замыкании на корпус должно быть выполнено защитное зануление (рис.3).

В этом случае при замыкании на металлический корпус ЭУ возникает цепь протекания тока короткого замыкания Iкз, который вызывает срабатывание защиты и отключение аварийной ЭУ от питающей сети. Применение в ЭУ до 1 кВ с глухозаземленной нейтралью (система TN) или глухозаземленным выводом источника однофазного тока заземления корпусов электроприемников (ЭП) без их защитного зануления не допускается.

Действительно, если в этих сетях копус ЭУ заземлить без его защитного зануления (рис. 4), то в аварийной ситуации на заземленном корпусе возникает опасное для человека напряжение относительно земли Uз=IзRз. Если принять, что R0=Rз=R, то Uз может достигать половины фазного напряжения сети:

Защитное заземление в заземленных электрических сетях

Более того, поскольку в заземленных электрических сетях до 1 кВ (система заземления TN) обязательно должно быть выполнено  защитное зануление корпусов электроприемников, то заземление корпуса одного из них без защитного зануления может привести к тому, что в аварийном режиме зануленные корпуса остальных ЭУ, питающихся от данного источника, могут оказаться под опасным напряжением U0 (рис. 5). Действительно, на нейтрали источника от тока замыкания Iз возникает падение напряжения:

Заземление корпуса электроустановки без его защитного зануления в заземленных электрических сетях

Если R0=Rз=R, то нейтраль источника, а с ней и корпуса всех зануленных ЭУ окажется  под напряжением Uф/2.

Таким образом, в заземленных электрических сетях до 1 кВ (система заземления TN)  запрещается применять защитное заземление в качестве единственной меры защиты от замыкания тока на корпус (ОПЧ) ЭУ, но разрешается использовать его в качестве дополнения к защитному занулению (рис. 6).

Защитное зануление в сочетании с защитным заземлением в заземленных электрических сетях

В этом случае при замыкании на металлический корпус ЭУ возникает цепь протекания тока короткого замыкания Iкз, который вызывает срабатывание защиты и отключение аварийной ЭУ от питающей сети. Применение в ЭУ до 1 кВ с глухозаземленной нейтралью (система TN) или глухозаземленным выводом источника однофазного тока заземления корпусов электроприемников (ЭП) без их защитного заземления не допускается.

Полезные источники:

1 Правила устройства электроустановок.

2 ГОСТ Р 50571.10-96. Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники.

3 Защитное заземление и зануление электроустановок. В.Д. Маньков,  С.Ф.  Заграничный. Справочник, 2005.
Советую почитать:

Защитное зануление — принцип действия, область применения: tvin270584 — LiveJournal

Заземлением называют специальное соединение корпуса электроустановки с устройством заземления. Существует два вида заземления электроустановок: зануление и защитное заземление, предназначенные для защиты человека от удара током, если он задел корпус электроустановки или иные ее части, оказавшиеся под напряжением при нарушении изоляции. В этой статье мастер сантехник подробно расскажет, что такое зануление, для чего оно нужно и как работает.

Принцип действия

Работа защитного зануления и защитного заземления отличаются тем, что при занулении, если на корпусе оборудования появляется опасный потенциал, то может случиться короткое замыкание. Под действием тока короткого замыкания в несколько раз большего по значению, чем номинальный ток сети, срабатывает предохранитель или другой защитный аппарат.
При защитном заземлении поражающее действие электрического тока нейтрализуется снижением величины напряжения прикосновения (и напряжения шага) до безопасного значения. Поврежденный бытовой электроприбор или электрооборудование, не имеющие защитных зануления или заземления, могут долгое время находиться под напряжением и стать опасными для человека в момент касания или при приближении к оборудованию на опасное расстояние.

Как сказано выше, при попадании фазы на корпус прибора, который выполнен из металла и соединен с нулевым защитным проводником, происходит короткое замыкание. Величина тока короткого замыкания больше в несколько раз величины номинального тока. Под его воздействием срабатывают аппараты защиты. Вследствие этого отключаются электрические линии, подключенные через защитный аппарат.
Площадь сечения проводников следует выбирать исходя из требований соответствующих глав ПУЭ ( Правила устройства электроустановок ). Для защитных проводников ПУЭ (п. 1.7.5) определяет зависимость их сечения от сечения фазных проводников. Так для площадей сечений проводников фазы, меньших 16 мм2, размер площади сечения защитного проводника равен площади сечения защитного проводника. Если площадь сечения фазного проводника находится в диапазоне от 16 до 35 мм2, то площадь сечения защитного проводника равна 16 мм2 и если площадь сечения фазного проводника больше 35 мм2, то площадь защитного проводника выбирается в 2 раза меньше. Также площадь сечения можно рассчитать самостоятельно на основании этого же пункта ПУЭ. Главное условие выбора — обеспечить быстродействие, которое рассчитывается по формуле:
S≥ I*√t/k
В этой формуле отражена прямая зависимость значения площади поперечного сечения защитного проводника (S) от значения тока короткого замыкания, при котором обеспечивается быстродействие защитных аппаратов в соответствии с табл.1.7.1 ПУЭ и 1.7.2 ПУЭ или за время не более 5 с в соответствии с 1.7.79 ПУЭ и значения времени срабатывания защитного аппарата (t). Обратная зависимость от значения коэффициента, который определяется материалом защитного проводника, его изоляции, начальной и конечной температурами проводника. Значение k для защитных проводников в различных условиях даны в табл.1.7.6-1.7.9 ПУЭ.

Схема защитного зануления
Назначение такого устройства обеспечить быстрое отключение неисправного электрооборудования от электропитания, тем самым нейтрализовать поражающее действие электрического тока при касании человеком неисправного прибора.

Схема работы системы зануления в случае пробоя изоляции
Область применения
Защитное зануление применяется в трехфазных сетях переменного тока и однофазных сетях переменного и постоянного тока, уровень напряжения которых до 1000 В.
Если электрическая сеть трехфазная переменного тока и уровень напряжения составляет 660/380В, 380/220В или 220/127В, то заземляется нулевой проводник — сеть типа TN.
Если сеть однофазная переменного тока, то защитное зануление применяется при условии, что заземлен вывод сети.
Если сеть однофазная постоянного тока, то защитное заземление используется, если заземлена средняя точка источника электрической энергии.
Защитное зануление может выполняться как с помощью РЕ проводников, так и с помощью совмещенного РЕN проводника. Применение того или иного вида защитного зануления зависит от того, какая система заземления используется в электроустановке и какой величины площадь сечения питающих кабелей.
Согласно п 1.7.131 ПУЭ, может объединяться функционал нулевого защитного и нулевого рабочего проводников при условии, что они используются в многофазных цепях в системе TN и проложены стационарно. При этом должны соблюдаться требования по обеспечению площади поперечного сечения жил проводников, изготовленных из разных материалов. Жилы медных кабелей должны иметь площадь поперечного сечения не менее 10 мм2, жилы алюминиевых кабелей — не менее 16 мм2.
П.1.7.132 ПУЭ запрещает в цепях однофазного и постоянного тока совмещать функционал нулевого защитного и нулевого рабочего проводников. Для защитного зануления используется отдельный третий проводник — исключением является ответвление от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.
Назначение
Защитное зануление применяется в качестве защиты от поражения электрическим током при эксплуатации электрооборудования различного назначения — бытового, производственного.

На рисунке выше нулевой защитный проводник системы TN-S обозначен PE. Показана токопроводящая цепь, соединяющая открытые токопроводящие поверхности и глухозаземленную нейтральную точку на источнике питания в трехфазной сети. Данная схема отражает назначение защитного нулевого проводника при заземлении нулевого защитного проводника в системе TN-S, когда применяется отдельный защитный проводник.
Если зануление применяется в системе TN-C, то схема будет выглядеть следующим образом:

В этом случае нулевой рабочий и нулевой защитный проводники объединены в одном PEN-проводнике.
А в этой трехфазной сети нулевой защитный проводник РЕ отделен от PEN проводника на вводе в электроустановку:

В системе постоянного тока заземляется средняя точка источника — рисунок ниже:

Применение защитного зануления в сети постоянного тока TN-C: 1 — заземлитель нейтрали (средней точки) в сети постоянного тока; 2 — открытые токопроводящие элементы сети; 3 — источник питания постоянного тока
Во всех рассмотренных случаях защитный нулевой проводник выполняет защитную функцию, а в случае совмещения с рабочим проводником N в системе TN-C и функцию рабочего нулевого проводника.
Видео
В сюжете — что такое зануление и для чего оно нужно

Вот мы и рассмотрели устройство, принцип действия и назначение защитного зануления. Надеемся, теперь вам понятно как работает данная система и для чего она нужна.
В продолжение темы посмотрите также наш обзор Как сделать заземление в ванной комнате

Источник

https://santekhnik-moskva.blogspot.com/2020/03/Zashchitnoye-zanuleniye.html

область применения и принцип работы

Любое электрооборудование, которое находится в работе (под напряжением) может иметь проводящие металлические части. А уверены ли Вы в том, что по этим частям не пройдет электрический ток, в случае, если изоляция повредится и произойдет короткое замыкание на корпус двигателя. Но бояться не надо, ведь для безопасности в таких случаях и изобрели защитное зануление (ЗЗ).

Защитное зануление – это преднамеренное соединение проводящих частей электроустановки, не находящихся под напряжением в нормальном режиме, с глухозаземленной нейтралью трансформатора или с заземленной точкой источника питания в случае с сетями постоянного тока.

Зануление в разных системах заземления

Рассмотрим зануление в системе TN, систем TT и IT коснемся в другом материале.

Система TN, где T означает, что нейтраль источника питания заземлена, а N – что открытые проводящие части присоединены к нейтрали источника через нулевые проводники.

Существует два нулевых проводника – это PE и N. PE – нулевой защитный проводник (желто-зеленый провод), N – нулевой рабочий проводник (черный провод).

PE – это и есть шина, провод зануления.

У системы TN есть три подсистемы – ТN-С, TN-S, TN-S-C.

Где C означает, что PE+N=PEN, то есть функции нулевого защитного и нулевого рабочего совмещены в одном проводе под названием PEN.

S означает, что PE // N, то есть нулевой защитный и нулевой рабочий на протяжении линии идут по разным проводам. Это самая дорогая и надежная система. Применяется в Великобритании.

S-C – на протяжении линии в одной части функции нулевого защитного и нулевого рабочего совмещены в одном проводе PEN, в другой части они разделены.

Зануление применяется в электрических сетях с глухозаземленной нейтралью постоянного и переменного тока напряжением до 1000В.

Принцип действия защитного зануления

Рассмотрим схематически принцип действия зануления на примере четырехпроводной сети с подключенной однофазной нагрузкой.

Ситуация следующая, фаза, в нашем случае L1 замкнулась в случае пробоя изоляции на корпус. Ток пошел по корпусу через провод зануления. Образовался контур, состоящий из фазы источника питания (трансформатора), цепи фазного и нулевого проводов. Этот контур еще называют петля «фаза-ноль».

Сопротивление петли «фаза-ноль» достаточно мало, вследствие чего, ток возрастает до аварийной величины, что в свою очередь вызывает срабатывание устройства защиты (автомата). После срабатывания автомата, поврежденная линия отключается. Время срабатывания защиты для отключения линии при КЗ на корпус в сетях до 1кВ составляет:

Номинальное фазное напряжение, В Время отключения, с
120 0,8
230 0,4
400 0,2
Более 400 0,1

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Защитное зануление | Подробная схема

Защитное зануление от точки «А» до точки «Б»

Откуда к нам в дом попадает защитное зануление, оно же ноль или нейтраль? Давайте рассмотрим его путь от трансформаторной подстанции. Как видно из схемы (внизу), начинается оно с глухозаземленной нейтрали.

В нашем случае глухозаземленная нейтраль – это нейтраль силового трансформатора, соединённая с заземляющим устройством. Затем вместе с линией, состоящей из трех фаз, нейтраль попадает во вводной шкаф и распределяется по электрощитам на этажах.

От нее берется рабочий ноль, который вместе с фазой образует привычное для нас фазное напряжение. Ноль называется рабочим, потому что вы используете его для работы электроприборов (электроустановок).

А вот отдельный ноль (защитный ноль), взятый со щитка, электрически соединенный с глухозаземленной нейтралью, и образует защитное зануление.

Помните, в цепи защитных зануляющих проводников не должно быть разделяющих приспособлений и предохранителей.

Внимание!

Никогда не используйте рабочий ноль как защитный (защитное зануление), этим вы подвергните опасности, как себя, так и окружающих вас людей.

Поскольку при обрыве цепи рабочего нуля, фазный ток через включенные нагрузки попадет на корпус электроприбора, и вместо защиты вы получите ничем не защищенный источник опасного напряжения.

Назначение защитного зануления – устранение опасности поражения электрическим током при прикосновении к корпусу электроустановки или другим нетоковедущим частям, оказавшимся под напряжением, при замыкании фазы на корпус или землю.

Принцип действия зануления заключается в превращении замыкания фазного проводника на корпус электроустановки в однофазное короткое замыкание. Что вызывает большой ток, который обеспечивает быстрое срабатывание защиты поврежденной электроустановки и отключает ее от питающей сети.

Электросхема по теме защитное зануление

Увеличить рис.

1 – Трансформаторная подстанция

  • S – Отсекатель
  • FV1 – FV6 разрядники
  • F1 – F3 предохранители
  • Т – силовой трансформатор
  • S1 – рубильник
  • SF1 – SF3 – автоматические выключатели
  • A, B, C – Линия состоящая из фаз
  • N – Глухозаземленная нейтраль

2 – Многоэтажный дом

2а – Квартира

2b – Распределительный электрический щит

  • SF– автоматический выключатель
  • BW – Счетчик
  • Lc  – фаза
  • N – нейтраль

2C – Вводной электрошкаф

  • A, B, C – Фазные линии
  • N – Глухозаземленная нейтраль
  • F4 – F6 Предохранители
  • S2 – Рубильник

Зануляющие и питающие проводники должны быть одного сечения, кабеля с тремя проводами легко решают эту проблему. Нужное вам сечение провода можете выбрать по таблице «Допустимые значения тока, А»

Статья написана в ознакомительных целях для более простого представления, что такое защитное зануление и откуда оно берется.

Удачного монтажа!
————————————————————————————-
Источники:
Консультант Святенко С. П.
Сайт «Школа для электрика»  http://electricalschool.info
Г. А. Дулицкий, А.П. Комаревцев справочник «Электробезопасность при эксплуатации электроустановок до 1000В»

Применение средств индивидуальной защиты — охрана труда и безопасность

Применение средств индивидуальной защиты

Всегда проверяйте цепи на отсутствие напряжения перед установкой заземления. То, что вы знаете, что он обесточен, не означает, что это действительно так.

  • Джеймс Р. Уайт
  • 1 июня 2013 г.

Основания индивидуальной защиты в отрасли имеют несколько наименований: «временные защитные площадки», «заземляющие комплексы», «наземные кластеры» или просто грунтовые площадки.«Средства индивидуальной защиты используются всякий раз, когда рабочие выполняют работы в электроэнергетических системах, которые по какой-либо причине могут быть повторно задействованы, например, повторным включением выключателей или автоматических выключателей, статическим напряжением, индуцированным напряжением на внешних подстанциях или линиях, а также емкостными разрядами. В то время как большинство технических специалистов подумайте об использовании средств индивидуальной защиты при работе с системами высокого напряжения, они также необходимы при работе с системами низкого напряжения, особенно когда в цепь могут быть подключены конденсаторы (системы ИБП и частотно-регулируемые приводы) или когда цепь может быть повреждена. с учетом одной из проблем, упомянутых ранее.Использование индивидуального защитного заземления регулируется OSHA 1910.269 (n), «Заземление для защиты сотрудников» и NFPA 70E, раздел 120.3, «Временное защитное заземление». Оба источника содержат очень похожие требования.

NFPA 70E Раздел 120.3 (A) Размещение состояния, «Временные защитные площадки (средства индивидуальной защиты) должны быть размещены так, чтобы они не подвергали сотрудников опасным перепадам потенциалов.Земля не может быть размещена слишком близко к месту работы и должна быть размещена или закреплена так, чтобы она не могла контактировать с людьми ». Земля должна быть расположена достаточно близко, чтобы защитить рабочих, но не настолько близко, чтобы они могли ударить по ним, если земля станет возобновляется подача энергии, особенно из-за токов аварийного уровня. Ток, протекающий через заземляющий кабель, может создать магнитное поле, достаточно сильное, чтобы заставить кабель ломаться, как хлыст, что может привести к поломке костей или сбиванию рабочих с строений.

Линейщики должны быть осторожны с размещением средств индивидуальной защиты, поскольку они должны создавать эквипотенциальную зону и работать в пределах этой зоны.А.Б. Chance является одним из источников информации о средствах индивидуальной защиты, и у него есть несколько хороших буклетов и видеороликов, в которых подробно рассказывается об эффективном размещении территорий. На рис. 1 показан правильно спроектированный, правильно установленный комплект заземления на распределительном трансформаторе, установленном на площадках. Сравните это с рисунком 2, который очень похож на акт самоубийства.


Эта статья впервые появилась в июньском выпуске журнала «Охрана труда и безопасность» за 2013 год.

Применение и удаление защитного заземления

Средства индивидуальной защиты для защиты электротехников в случае случайного включения оборудования.

Индивидуальное защитное заземление для электрического обслуживания включает в себя кабель, подключенный к обесточенным линиям и оборудованию путем перемычки и соединения с соответствующими зажимами, чтобы ограничить разность напряжений между доступными точками на рабочем месте до безопасных значений, если линии или оборудование были случайно повторно включены. .

Должны быть размещены средства индивидуальной защиты для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Фото: USBR.

Защитные заземления рассчитаны на пропускание максимально доступного тока короткого замыкания на рабочем месте. Также называется перемычкой заземления, это преднамеренно низкоомный путь к земле.

Любой сотрудник, работающий с обесточенным высоковольтным оборудованием, несет ответственность за понимание требований и процедур защитного заземления.Только обученные и квалифицированные рабочие должны применять и удалять временные средства индивидуальной защиты.

Примечание: Необходимо разместить временные защитные заземления для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Основания безопасности не должны быть слишком длинными, потому что они могут начать резкое движение в случае неисправности и нанести кому-либо травму. Ссылка NFPA 70B Раздел 7.7.4.2.4


Шаг 1: Обесточьте линию в соответствии с процедурами.

Используйте задокументированную процедуру LOTO, чтобы убедиться, что цепь или оборудование обесточены и изолированы от всех источников опасной энергии. Желательно разместить временные защитные площадки для создания эквипотенциальной зоны в рабочей зоне на месте проведения работ.


Шаг 2: Проверить цепь на наличие напряжения.

Зажимы на концах проводов должны устанавливаться и отсоединяться горячими палками соответствующего номинала и длины.При нанесении грунта всегда используйте защитные средства индивидуальной защиты от поражения электрическим током и дуговым разрядом соответствующего уровня.

Не думайте, что цепь была обесточена только потому, что она была выключена. Другие источники энергии, такие как индукция от близлежащих цепей, могут привести к смертельным ударам и другим травмам.

Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием.

Трехточечный тест состоит из проверки тестера напряжения на известном источнике под напряжением, чтобы убедиться, что он работает должным образом. (Тест № 1) .

Затем проверьте цепь, на которой должны выполняться работы (Тест № 2) .

Наконец, протестируйте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно. (Тест № 3) .

ВАЖНАЯ ИНФОРМАЦИЯ: При нанесении грунта всегда используйте средства индивидуальной защиты, защищающие от удара током и искрения дуги.

Рекомендовано: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Шаг 3: Очистите все соединения.

Следует исключить дополнительное сопротивление, вызванное коррозией и грязью, чтобы поддерживать чрезвычайно низкое сопротивление заземления, в противном случае одноточечное заземление будет неэффективным.


Шаг 4: Сначала установите зажимы заземления и снимите их в последнюю очередь.

Это гарантирует, что во время установки не будет времени, в течение которого оператор может стать путем заземления с наименьшим сопротивлением.Механические соединения должны быть достаточно прочными, чтобы выдерживать силы, создаваемые электромагнитной индукцией.


Шаг 5: Зажимы на концах проводов должны устанавливаться и отсоединяться горячими палками соответствующего номинала и длины.

Если физически невозможно использовать инструменты горячей линии для нанесения грунта, для защиты рабочего требуются дополнительные средства индивидуальной защиты от ударов и дуги.


Список литературы

Требования к защитному заземлению для линий передачи и распределения

Введение в защитное заземление

В этой технической статье рассматриваются требования к защитному заземлению для линий передачи и распределения, поддерживаемых стальными опорами и деревянными опорами, и изолированных силовых кабелей.Защитные заземления должны быть установлены так, чтобы все фазы линий или кабеля были заметно и эффективно соединены вместе в многофазном «коротком замыкании» и подключены к земле (земле) на рабочем месте.

Требования к защитному заземлению для линий передачи и распределения

Однофазное заземление многофазных цепей запрещено. Электропроводящие объекты в пределах досягаемости любого рабочего, будь то воздушные или наземные, должны быть подключены к этой системе заземления. Следовательно, на рабочем месте должно быть установлено достаточное количество защитных заземлений таким образом, чтобы они располагались непосредственно в шунте со всеми точками соприкосновения рабочих.

Заземление НЕ ДОЛЖНО использоваться в качестве проводника защитного заземления или как часть цепи между защитными заземлениями в этом отношении.

Устройство защитных заземлений на сооружениях ЛЭП создает на сооружении эквипотенциальную безопасную рабочую зону . Однако без использования установленных заземляющих матов опасные ступеньки, прикосновения и передаваемые потенциалы прикосновения могут существовать на земле рядом с основанием конструкции и объектами, подключенными к системе заземления на рабочем месте во время случайного включения линии.

Взгляните на рисунок 1 ниже.

Рис. 1 — График, изображающий ступенчатое и сенсорное напряжение экспонирования, создаваемое на поверхности земли током, протекающим в землю от заземленных объектов.

Имейте в виду, что при протекании тока замыкания на землю будет повышаться напряжение при каждом подключении к земле. Никто не должен приближаться к в пределах 10 футов от защитной заземленной конструкции или любого другого проводящего объекта, который был связан с системой заземления на рабочем месте, если не приняты защитные меры для снижения опасности ступенчатого напряжения и напряжения прикосновения.

В противном случае, только когда необходимо получить доступ к строению с земли, линейные монтеры должны быстро приближаться и садиться / спешиваться у основания конструкции.

Содержание:

    1. Заземление на металлических трансмиссионных конструкциях
      1. Решетчатые стальные конструкции
      2. Стальные опорные конструкции с скользящим шарниром
      3. Стальные опорные конструкции, устойчивые к атмосферным воздействиям
      4. Окрашенная сталь
      5. Воздушные заземляющие провода
      6. заземление конструкции
    2. Заземление на деревянных опорных конструкциях электропередачи
    3. Заземление оконечных устройств линии электропередачи
    4. Заземление на линиях электропередачи
    5. Заземление наземного оборудования и транспортных средств
      1. Воздушные устройства
      2. Контакт с заземленными транспортными средствами на рабочем месте
    6. Изолированный кабель питания

1.Заземление на металлических конструкциях электропередачи

1.1 Стальные конструкции решетчатых конструкций

Предпочтительный метод установки заземления на конструкции стальных линий электропередачи с одноцепной решеткой высокого напряжения, где проводники расположены на большем расстоянии от конструкции, чем проводники на конструкциях более низкого напряжения, составляет установить их с перемычки над проводниками (см. рисунок 2).

Эта конфигурация сводит к минимуму индукционный контур заземления, образованный линейным рабочим органом, контактирующим со сталью башенного моста и линейным проводником (вдоль боковой гирлянды изолятора).Это также снижает напряжение воздействия линейного монтера.

В двухцепных решетчатых стальных передающих конструкциях фазные проводники должны быть заземлены на их верхних плечах конструкции, как показано на рисунке 2. Защитные заземления должны присоединяться от нижней фазы вверх и удаляться от верхней фазы вниз.

Обратите внимание, что OGW обозначает Воздушная линия заземления .

Рисунок 2 — Предпочтительный метод заземления проводов на стальных конструкциях одноконтурных высоковольтных линий

Пунктирные линии показывают альтернативную ориентацию защитных заземлений на меньших (более низкое напряжение) конструкциях.OGW обозначает воздушный провод заземления. OGW должны быть подключены к системе заземления на рабочем месте, если они находятся в пределах досягаемости линейных монтажников.

Вернуться к таблице содержания ↑

1.2 Конструкции стальных опор скользящего соединения

Конструкции скользящего соединения либо имеют соединительные кабели, постоянно прикрепленные к каждому стыку, либо сопротивление стыка должно измеряться на выбранных конструкциях после установки и периодически, по мнению обслуживающего персонала.

Поверхности, на которые должно быть нанесено защитное заземление, необходимо очистить перед подключением кабеля, чтобы обеспечить надлежащий электрический контакт.

Рисунок 3 — Конструкция стальной опоры скользящего соединения 110 кВ

Вернуться к таблице содержания ↑


1.3 Атмосферные стальные опоры

Нельзя удалять высокорезистивный защитный оксид на стали, подверженной атмосферным воздействиям. Защитное заземление лучше всего выполнять путем приваривания медного или стального стержня или гайки из нержавеющей стали, в которую можно вставить медную шпильку с резьбой в каждом месте заземления.

Стальные опоры, устойчивые к атмосферным воздействиям, должны быть сконструированы с соединениями между поперечинами и полюсами, а также между соединениями скольжения для обеспечения непрерывности электрического тока.Если соединительные ленты не являются частью конструкции, защитное заземление должно быть продлено до заземляющего стержня и воздушного провода заземления.

Рисунок 4 — Выветривания стальных опор в линию где-то в Тусоне, США

Вернуться к таблице содержания ↑

1.4 Окрашенная сталь

Заземление лучше всего выполнить путем создания точки крепления к земле , как описано в разделе 1.3 выше. Соскабливание краски редко обеспечивает надлежащее электрическое соединение, и впоследствии потребуется перекраска.

Вернуться к таблице содержания ↑


1.5 Воздушные провода заземления

Воздушные провода заземления должны быть соединены с системой заземления на рабочем месте (конструкционная сталь) с помощью защитного заземления, если рабочие размещают линейных рабочих в пределах досягаемости.

С точки зрения безопасности нельзя полагаться на надежные подвесы для подвесных заземляющих проводов.

Преднамеренное соединение воздушных заземляющих проводов с конструкцией рабочего места также помогает отвести ток замыкания на землю от фундамента конструкции к соседним конструкциям, если линия случайно повторно подана, что снижает ступенчатое и контактное напряжение на земле на рабочем месте.

Однако следует соблюдать меры предосторожности, чтобы избежать воздействия возможных опасных ступенек и потенциалов прикосновения на соседних конструкциях.

При выполнении работ вблизи изолированных воздушных заземляющих проводов необходимо соблюдать указанное рабочее расстояние для цепи 15 кВ (таблица 1) или применять защитное заземление.

Таблица 1 — Минимальное расстояние доступа переменного тока для электротехников

Примечание: Все расстояния в футах-дюймах, воздействие фаза-земля.Информацию о межфазном воздействии см. В OSHA CFR 29 1910.269, Таблица R-6 .

Невозможно переоценить важность подключения воздушных проводов заземления к конструкции рабочего места для обеспечения электробезопасности. В противном случае смертельное переданное напряжение прикосновения может появиться между конструкционной сталью и проводом во время случайного включения заземленной линии или, в некоторых случаях, из-за связи от соседней линии, находящейся под напряжением.

Вернуться к таблице содержания ↑


1.6 Заземление опоры конструкции

Перед установкой защитного заземления необходимо проверить постоянное заземление для опор конструкции на предмет повреждений, пропусков или других признаков плохой непрерывности между конструкцией и заземляющим электродом фундамента.

В случае сомнений следует установить временный стержень заземления рядом с основанием и прикрепить его к системе заземления рабочего места (стальной).

Вернуться к таблице содержания ↑


2. Заземление на деревянных опорных передающих конструкциях

Предпочтительные применения трехфазного заземления на деревянных опорных конструкциях с использованием заземляющих кластерных стержней показаны на рисунках 6 и 7. Заземляющие кластерные стержни должны располагаться ровно ниже самой низкой высоте футов путевой обходчик для рабочей зоны (примерно на высоте фазовых проводов) и должны быть соединены с полюсными выводами грунтовой структуры, если это предусмотрено.

Рисунок 5 — Первый кластер бара прикреплена к полюсу древесины

Строке обеспечивает удобную точку присоединения для защитных оснований и связь с полюсной структурой провода заземления, если это предусмотрено.

Положение полосы кластера определяет нижнюю границу эквипотенциальной рабочей зоны на опоре. На рисунке 5 показан пример установленной заземляющей кластерной шины.

Рисунок 6 — Установка перемычки защитного заземления для двухполюсных и трехполюсных конструкций (заземленных конструкций)

OGW обозначает контактный заземляющий провод.OGW должны быть подключены к системе заземления на рабочем месте, если они находятся в пределах досягаемости линейных монтажников. OGW могут быть присоединены к шинам кластера или к заземленным фазным проводам с защитным заземлением.

Перед установкой защитного заземления необходимо проверить постоянное заземление для опор столбов на предмет повреждений, пропусков или других признаков плохой непрерывности между конструктивным оборудованием и заземляющим электродом полюса.

В случае сомнений следует установить временный заземляющий стержень рядом с опорой и прикрепить его к системе заземления рабочей площадки (см. Рисунок 5).

Рисунок 7 — Пример установки перемычки защитного заземления, показывающий использование заземляющего стержня для незаземленных конструкций или сооружений с сомнительной целостностью заземления

Вернуться к таблице содержания ↑


3. Выключатели заземления на клеммах линии передачи

Переключатели заземления на клеммах линии передачи могут быть замкнуты параллельно с средствами индивидуальной защиты на рабочем месте. Выключатели заземления на клеммах замкнутой линии могут помочь гарантировать, что защитные устройства (реле, предохранители) сработают в заданном соотношении время / ток, чтобы быстро изолировать источник случайного электрического напряжения.

Кроме того, во многих случаях замкнутые клеммные выключатели заземления уменьшают ток короткого замыкания в защитных заземлениях на рабочем месте, что снижает рабочее напряжение.

Однако, в зависимости от конфигурации системы и условий нагрузки, замкнутые клеммные выключатели заземления могут увеличивать наведенный циркулирующий ток в линии и множественные заземления из-за связи с близлежащими линиями, находящимися под напряжением. Этот циркулирующий ток может быть нежелательным при установке или удалении защитного заземления или создавать постоянные опасные уровни ступенчатого напряжения и напряжения прикосновения на заземленной рабочей площадке.

Таким образом, использование выключателей заземления оконечных устройств линии остается на усмотрение экипажа и региональной политики. Выключатели заземления линейных клемм не могут заменить защитное заземление на рабочем месте.

Вернуться к таблице содержания ↑


4. Заземление распределительных линий

Защитное заземление распределительных линий и окончаний воздушных кабелей должно выполняться, как показано на Рисунке 6.

Рисунок 6 — Предпочтительный метод защитного заземления при более низком напряжении распределительные линии

Заземляющая шина кластера (см. фото, Рисунок 3) должна располагаться чуть ниже самой нижней отметки ступней линейного монтера для рабочей зоны и должна быть соединена с нейтральным проводом и проводом заземления полюса (не показан), если он предусмотрен. .

Положение кластерной шины определяет нижнюю границу эквипотенциальной рабочей зоны на опоре.

Подключение индивидуальных защитных заземлений от кластерной шины к каждому фазному проводу является допустимой альтернативой, но может привести к немного более высокому напряжению воздействия.

Полюсные заземляющие провода, используемые для защитного заземления , должны быть проверены перед использованием, чтобы убедиться, что они не были разрезаны, повреждены или удалены . Если полюса заземления нет, временный заземляющий стержень следует вбить или вкрутить в землю рядом с полюсом и прикрепить к шине кластера с помощью защитного заземления.

Любые растяжки в пределах досягаемости линейного мастера должны быть прикреплены к системе заземления рабочего места (групповой стержень). Наземная бригада должна оставаться на расстоянии (не менее 10 футов) от полюсов, заземляющих стержней и растяжек.

Вернуться к таблице содержания ↑


5. Заземление наземного оборудования и транспортных средств

Этот параграф применяется к заземлению и заземлению оборудования и транспортных средств, участвующих в работах по техническому обслуживанию на линиях электропередач или вблизи них. Транспортные средства включают, помимо прочего, воздушные устройства, легковые грузовики, копатели столбов и краны.

Целью подключения оборудования и транспортных средств к системе заземления на рабочем месте (во время работы без напряжения) является контроль и минимизация передаваемых потенциалов прикосновения между конструкцией, оборудованием и транспортным средством во время случайного включения линии.

Площадки для транспортных средств и оборудования должны использоваться вместе с правильно установленными средствами индивидуальной защиты. Ни в коем случае нельзя использовать заземления для транспортных средств и оборудования вместо средств индивидуальной защиты.

Вернуться к таблице содержания ↑


5.1 Воздушные устройства

Воздушные устройства с изолированной или неизолированной стрелой и другие транспортные средства или оборудование для технического обслуживания, которые могут контактировать с заземленной рабочей площадкой или позволять рабочему контактировать с площадкой, должны быть подключены к системе заземления на рабочем месте.

Они должны быть прикреплены (заземлены) к конструкции в качестве первого шага в установке системы заземления.

Вернуться к таблице содержимого ↑


5.2 Контакт с заземленными транспортными средствами на рабочем месте

Транспортные средства и оборудование, подключенные к системе заземления рабочего места, могут представлять опасное переданное напряжение прикосновения к окружающей поверхности заземления.

Следовательно, любое транспортное средство или оборудование, подключенное к системе заземления рабочего места (включая токопроводящие стропы лебедки) и требующее постоянного контакта при стоянии на земле, должно быть оборудовано изолированной платформой или проводящим ковриком , прикрепленным к транспортному средству или оборудованию для оператор стоять на.

См. Рисунок 7 ниже.

Рисунок 7 — Применение токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото предоставлено idube.net)

Коврик и автомобиль прикреплены к системе заземления рабочего места, создавая эквипотенциальную зону между руками оператора (рама автомобиля) и ноги.

Рисунок 8 — Пример использования токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото: idube.net)

Вернуться к таблице содержания ↑


6.Заземление изолированного силового кабеля

Защитное заземление на рабочей площадке для изолированных концевых частей силового кабеля должно выполняться аналогично заземлению конструкций линий электропередач. Фазовые клеммы кабеля (терминаторы, наконечники и т. Д.) И проводники экрана должны быть подключены к системе заземления на рабочем месте.

Удаленный (незаземленный) конец кабеля ДОЛЖЕН рассматриваться как находящийся под напряжением . Хотя фазовые жилы кабеля незаземлены (изолированы) на удаленном (нерабочем) конце кабеля, экраны кабеля заземлены там.

Следовательно, рабочие должны принимать необходимые меры предосторожности против опасного скачка или прикосновения потенциалов, которые могут возникнуть на рабочем месте из-за замыкания на землю системы на удаленном конце .

Вернуться к таблице содержания ↑

Источники:

  1. Личное защитное заземление для объектов электроэнергетики и линий электропередач Департаментом внутренних дел США Бюро мелиорации
  2. Работа и методы работы под высоким напряжением руководство Western Power Network

Заземление — Устройство защиты от перенапряжения Устройство защиты от перенапряжения SPD

Метод защитной проводки, при котором металлическая часть электрического устройства (то есть металлическая конструктивная часть, изолированная от токоведущей части), может заряжаться после повреждения изоляционного материала или в других случаях надежного соединения проводом и заземляющим телом.Система защиты от заземления имеет только фазную и нейтральную линии. Трехфазная силовая нагрузка может использоваться без нейтральной линии. Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия была защищена в любом случае. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

Введение / Защита от заземления

Меры по заземлению металлического корпуса электрооборудования. Это может предотвратить прохождение сильного тока через тело человека, когда металлический корпус заряжается в условиях повреждения изоляции или аварии, чтобы обеспечить личную безопасность.

Это своего рода метод защитной проводки, который соединяет металлическую часть электрического прибора (то есть часть металлической конструкции, изолированную от токоведущей части), которая может заряжаться после повреждения изоляционного материала или в других случаях, и проводник надежно соединен с заземляющим телом.Заземление обычно используется в системе электропитания, где нейтральная точка распределительного трансформатора не заземлена напрямую (трехфазная трехпроводная система), чтобы гарантировать, что напряжение заземления, генерируемое при утечке электрического оборудования из-за повреждения изоляции, не превышает безопасный диапазон. Если бытовой прибор не защищен заземлением, когда изоляция определенной части повреждена или определенная фазовая линия касается внешнего кожуха, внешний кожух бытового прибора будет заряжен, и если человеческое тело касается внешнего кожуха ( каркас) электрооборудования, поврежденного изоляцией, это может привести к поражению электрическим током.Напротив, если электрическое оборудование заземлено, ток короткого замыкания однофазного заземления будет проходить через две параллельные ветви заземляющего устройства и тело человека. Вообще говоря, сопротивление человеческого тела превышает 1000 Ом, а сопротивление заземляющего тела не может превышать 4 Ом в соответствии с правилами, поэтому ток, протекающий через человеческое тело, невелик, и ток, текущий через заземление устройство большое. Это снижает риск поражения электрическим током тела человека после утечки электрического оборудования.

Операция защитного заземления и меры предосторожности / Защита заземления

Практика доказала, что использование защитного заземления является эффективной мерой безопасности в низковольтных электросетях Китая. Поскольку защитное заземление делится на защиту заземления и защиту от нулевого соединения, объективная среда, используемая двумя различными методами защиты, различается. Следовательно, неправильный выбор не только повлияет на характеристики защиты потребителя, но и повлияет на надежность электроснабжения энергосистемы.Тогда, как потребителю электроэнергии в распределительной сети общего пользования, как мы можем правильно и разумно выбрать и использовать защитное заземление?

Защита от заземления и защита от нулевого соединения

Чтобы понять и понять защиту от заземления и защиту от нулевого соединения, ознакомьтесь с различиями и областью использования этих двух методов защиты.

Защита от заземления и защита от нулевого соединения вместе называются защитным заземлением. Это важная техническая мера, принимаемая для предотвращения поражения электрическим током и обеспечения нормальной работы электрического оборудования.Разница между этими двумя защитами в основном проявляется в трех аспектах: во-первых, различен принцип защиты. Основной принцип защиты заземления заключается в ограничении тока утечки устройства утечки на землю так, чтобы он не превышал определенный диапазон безопасности. Как только защитное устройство превышает определенное установленное значение, подача питания может быть автоматически отключена. Принцип защиты от нулевого соединения заключается в использовании нулевой соединительной линии. Когда устройство повреждено изоляцией и образует однофазное металлическое короткое замыкание, ток короткого замыкания используется для быстрого срабатывания защитного устройства на линии.Во-вторых, разная сфера применения. В соответствии с соответствующими факторами, такими как распределение нагрузки, плотность нагрузки и характер нагрузки, Технический регламент по низковольтному энергоснабжению в сельской местности разделяет сферу использования двух вышеуказанных операционных систем энергосистемы. Система ТТ обычно применима к сельской низковольтной электросети общего пользования, которая относится к режиму защиты заземления в защитном заземлении; Система TN (систему TN можно разделить на TN-C, TN-CS, TN-S) в основном подходит для городских сетей низкого напряжения. Выделенная сеть низкого напряжения для потребителей электроэнергии, таких как электрические сети, фабрики и шахты.Эта система представляет собой метод защиты при нулевом подключении в защитном заземлении. В настоящее время в нынешних низковольтных распределительных сетях общего пользования Китая обычно используются системы TT или TN-C, а также реализуются однофазные и трехфазные гибридные режимы электропитания. То есть трехфазное четырехпроводное распределение мощности 380/220 В при подаче питания на осветительную нагрузку и силовую нагрузку. В-третьих, линейная структура отличается. Система защиты от заземления имеет только фазную и нейтральную линии. Трехфазная силовая нагрузка может использоваться без нейтральной линии.Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия была защищена в любом случае. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

Выбор методов защиты

В зависимости от системы электроснабжения, в которой находится заказчик, следует правильно выбрать защиту от заземления и метод защиты от нулевого подключения.

Какую защиту должен использовать потребитель электроэнергии? Во-первых, это должно зависеть от типа системы распределения электроэнергии, в которой находится система электроснабжения. Если распределительная сеть общего пользования, в которой находится заказчик, является системой TT, заказчик должен принять унифицированную защиту заземления; если распределительная сеть общего пользования, в которой находится заказчик, находится в системе TN-C, защита от нулевого соединения должна быть принята единообразно.

Система TT и система TN-C — это две системы с собственными независимыми характеристиками.Хотя обе системы могут предоставить клиентам одно- и трехфазные гибридные источники питания 220/380 В, они могут не только заменять друг друга, но и защищать их. Вышеуказанные требования совершенно другие. Это связано с тем, что в одной и той же системе распределения электроэнергии, если два режима защиты существуют одновременно, напряжение фаза-земля нейтральной линии возрастет до половины или выше фазного напряжения в случае заземления. защищенное устройство. В это время все устройства с нулевой защитой (поскольку металлический корпус устройства напрямую соединен с нейтральной линией) будут иметь одинаковый высокий потенциал, так что металлические части, такие как корпус устройства, будут иметь высокое напряжение для землю, тем самым подвергая опасности пользователя.Безопасность. Следовательно, одна и та же система распространения может использовать только один и тот же метод защиты, и эти два метода защиты нельзя смешивать. Во-вторых, заказчик должен понимать, что называется защитным заземлением, и правильно различать разницу между заземлением и защитой от обнуления. Под защитным заземлением понимается тот факт, что бытовые приборы, электрическое оборудование и т. Д. Могут быть заряжены металлическим корпусом из-за повреждения изоляции. Заземление, предназначенное для предотвращения угрозы безопасности персонала от такого напряжения, называется защитным заземлением.Заземляющая защита металлического корпуса с проводом защитного заземления (PEE), непосредственно подключенным к заземляющему столбу, называется защитой заземления. Когда металлический корпус соединен с защитным проводом (PE) и защитным нейтральным проводом (PEN), это называется защитой от нулевого соединения.

Стандартный дизайн, стандарт процесса

В соответствии с различными требованиями к настройке двух методов защиты, стандартного проектирования и стандартов процесса строительства.

Стандартизация стандартов проектирования и строительства и требований распределительных линий в зданиях, принимающих электроэнергию, и замена внутренней части распределения электроэнергии в недавно построенных или реконструированных зданиях заказчика на местную трехфазную пятипроводную систему или одиночную -фазная трехпроводная система. Трехфазный четырехпроводной или однофазный двухпроводной режим распределения питания в системе TT или TN-C может эффективно реализовать защитное заземление клиента. Так называемая «локальная трехфазная пятипроводная система или однофазная трехпроводная система» означает, что после подключения низковольтной линии к заказчику заказчик должен изменить исходный традиционный режим электропроводки на основе оригинальная трехфазная четырехпроводная система и однофазная двухпроводная система разводки.Вверху каждая дополнительная линия защиты подключается к каждой клемме заземляющего провода заказчика, которая должна обеспечивать электрическую розетку для защиты от заземления. Чтобы облегчить обслуживание и управление, пересечение внутреннего вывода и наружного вводного конца линии защиты должно быть установлено на распределительном щите, на котором вводится источник питания, а затем метод доступа к защите. Линия должна быть установлена ​​отдельно в соответствии с системой распределения электроэнергии, в которой находится заказчик.

1, Установка требований к линии защиты заземления системы TT (PEE)

Если система распределения электроэнергии потребителя является системой TT, система требует, чтобы покупатель использовал метод защиты заземления. Таким образом, чтобы соответствовать значению сопротивления заземления защиты заземления, заказчик должен закопать устройство искусственного заземления на открытом воздухе в соответствии с требованиями «Технического регламента на сельское низковольтное электроснабжение». Сопротивление заземления должно соответствовать следующим требованиям:

Re≤Ulom / Iop

Re сопротивление заземления (Ом)

Ulom называется пределом напряжения (В).В нормальных условиях его можно рассматривать как среднеквадратичное значение переменного тока 50 В.

Рабочий ток устройства защиты от остаточного тока (утечки) рядом с Iop (I)

Для среднего потребителя, если используется стальной уголок 40 × 40 × 4 × 2500 мм, его можно заглубить в землю на 0,6 м вертикально механическим приводом, который может соответствовать требованиям сопротивления заземления. Затем его приваривают к круглой стали диаметром ≥ φ8 и выводят на землю на 0.6 м, а затем подсоединяется к защитному проводу (PEE) распределительного щита с использованием того же материала и типа провода, что и фаза импортного источника питания.

2, Установка требований к линии нулевой защиты (PE) системы TN-C

Поскольку система требует, чтобы заказчик принял режим защиты нулевого соединения, необходимо добавить специальную линию защиты (PE) на основа оригинальной трехфазной четырехпроводной системы или однофазной двухпроводной системы, которая защищена приемным концом потребителя.Защитная нейтральная линия (PEN) распределительного щита вынимается и подключается к исходной трехфазной четырехпроводной системе или однофазной двухпроводной системе. Для обеспечения безопасности и надежности всей системы особое внимание следует уделять использованию. После того, как линия защиты (PE) отключена от линии защиты нейтрали (PEN), на стороне клиента формируются нейтральная линия N и линия защиты (PE). Два провода нельзя объединить в линию (PEN) во время использования. Для обеспечения надежности повторного заземления защитной нейтральной линии (PEN), первой и конечной магистрали системы TN-C, всех клеммных стержней T ответвления, концевых стержней ответвления и т. Д.должна быть оборудована повторяющимися линиями заземления и трехфазной. Четырехпроводная система также должна быть повторно заземлена на входном кронштейне абонентской линии, прежде чем линия (PEN) будет разделена на нейтральную линию (N) и линию защиты. (ПЭ). Сечение провода защитной нейтрали (PEN), нейтрали (N) или защитного провода (PE) всегда выбирается в соответствии с типом провода и стандартом сечения фазовой линии.

Защитное заземление и заземление экрана / Защита заземления

Защитное заземление

1, Защищенная зона:

Все шкафы находятся внутри.Например, в шкафу обычно нет места, где нет краски, а потом подключаются провода. Это заземление корпуса шкафа. Провод заземления внутри блока питания (то есть желто-зеленая фаза) также играет роль. Его цель — предотвратить зарядку шкафа.

2, зона защиты обычно выполняется электрическими приборами.

3 Заземление питания:

Эта линия, обычно через источник питания, возвращается к центральной линии трансформатора и затем входит в землю.В некоторых местах это и охраняемая территория — одно, а некоторые места — не одно.

Заземление экрана

1, Также называется заземлением прибора:

Следует отметить, что провод заземления прибора не должен касаться электрического / защитного заземления во время процесса подключения, иначе он потеряет свое значение.

2, Внимание при экранировании:

При использовании экранированного кабеля используйте несимметричное заземление. Не заземляйте экранированный провод в полевых условиях.Обратите внимание на уборку. В главной диспетчерской оплетите экранирующие провода нескольких кабелей и подключите их к клемме заземления экрана шкафа. (Хорошие шкафы имеют заземленные медные полосы и изолированы от шкафа)

3, Специальный анализ

Клемма заземления экрана шкафа соединена с заземлением экрана прибора. Это дает возможность подключить заземление прибора в целом. Он имеет аналоговое заземление, цифровое заземление, заземление низкого напряжения, источник питания высокого напряжения (220 В) и несколько типов защиты.В центре управления осуществляется точечное заземление, сопротивление заземления составляет 1 Ом, а если оно не 4 Ом, то заземляющие провода разных разных линий сначала собираются в специальную точку заземления. Затем подключите все точки заземления к общему местоположению, правила заземления для каждого объекта, аналоговое заземление, заземляющие провода низкого напряжения питания цифрового заземления соответственно сконцентрированы, а затем соединены с точкой заземления сигнала заземления и, наконец, подключены к экран кабеля, высоковольтное заземление и защита После подключения заземления сопротивление заземления составляет 4 Ом, и две точки заземления поля изолированы.Сопротивление изоляции следует указывать в соответствии с требованиями датчика, но оно должно быть более 0,5 МОм. То есть сигнальный контур заземлен на одном конце, а заземление для защиты поля имеет переднюю заземляющую защиту в качестве сигнального заземления для предотвращения пробоя заземления из-за индуцированного напряжения. Если два конца заземлены, будет сформирована индуктивная петля, которая вызовет сигнал помехи и приведет к саморазрушению. Если вы чувствуете себя не в своей тарелке, вы можете использовать варисторный поглотитель перенапряжения непрямого действия на объекте или для защиты на месте.Уровень напряжения меньше максимального напряжения, которое может выдержать датчик. Как правило, не превышайте напряжение питания 24 вольт. Экранирование имеет два значения: электромагнитное экранирование и электростатическое экранирование, которые относятся к экранированию магнитных цепей и цепей соответственно. Обычная экранирующая проволока из медной сетки не влияет на магнитную цепь, поэтому учитывается только экранирование электрических помех, то есть электростатическое экранирование. В это время необходимо заземлить экранирующий слой (магнитная цепь экранирована без заземления).Принцип в основном тот же: источник помех и приемный конец эквивалентны двум полюсам конденсатора. Одна сторона колебания напряжения будет воспринимать другой конец через конденсатор. Промежуточный слой (то есть экран), вставленный в землю, разрушает эту эквивалентную емкость, тем самым перекрывая путь помех. Будьте осторожны при подключении к земле сигнала, который вы хотите защитить при заземлении, и подключайте только на одном конце экрана.В противном случае возникнет большой ток (контур заземления), вызывающий повреждение, когда потенциалы на обеих сторонах не равны.

Важность индивидуального защитного заземления

Линейщики, работающие на ЛЭП и опорах, выполняют опасную работу. Они часто работают высоко над землей и обеспечивают обслуживание цепей и линий электропередач с опасными электрическими токами. Линейным мастерам важно защищать себя на работе, используя подходящее оборудование и средства индивидуальной защиты.

Что такое защитное заземление?

Защитное заземление — это то, что линейные и другие коммунальные работники используют для защиты от поражения электрическим током при работе с линиями электропередач и цепями. Линейщики строят защитные заземления, используя кабели и зажимы, которые эффективно заземляют любой электрический ток, который может проходить по линиям электропередач и работающей цепи. Это сделано для защиты линейных монтеров в случае, если линии электропередач не обесточены или не будут снова запитаны из-за одного из нескольких возможных факторов.

Как заземление электросети защищает линейных операторов

Когда линейные монтеры работают на коммунальном оборудовании, через оборудование всегда проходит электрический ток. Защитное заземление не убивает ток, а вместо этого обеспечивает путь для заземления тока.

Оборудование защитного заземления не устанавливается до тех пор, пока цепь не будет проверена на отсутствие напряжения. В случае повторного включения силовых линий или цепи защитное заземление позволит максимальному току короткого замыкания в системе.

Выбор подходящего средства индивидуальной защиты для заземления

Средство индивидуального защитного заземления должно быть установлено правильно, и важно использовать правильное оборудование, соответствующее ситуации. Плохое соединение может привести к неисправности защитного заземления, что подвергнет опасности линейных.

Выбирая кабели заземления высокого напряжения для использования в качестве защитного заземления, вы должны учитывать номинальную стойкость кабеля и длину.Рейтинг устойчивости показывает, какой ток могут выдерживать кабели и как долго.

Проверка и очистка защитного заземления

Перед установкой оборудования защитного заземления необходимо убедиться, что оно находится в безупречном рабочем состоянии для эффективной защиты линейных игроков. Это оборудование необходимо тщательно осмотреть перед установкой и очистить, чтобы оно работало должным образом.

Инспекция защитных территорий

Убедитесь, что вы проверили кабели и зажимы на наличие следующих проблем.Если вы обнаружите, что оборудование повреждено одним из следующих способов, вам следует немедленно прекратить его использование.

  • Проверьте, не являются ли участки кабеля плоскими, обрезанными или изогнутыми.
  • Ищите обрывы жил кабеля в точках подключения.
  • Ищите вздутые оболочки кабелей или мягкие пятна, которые могут указывать на коррозию.
  • Поищите трещины, трещины и другие повреждения зажимов.
  • Проверить зажимные губки на износ.
  • Проверить на износ резьбы стяжных болтов зажима.
  • Поищите неплотные соединения между зажимами и кабелями и наконечниками.
  • Убедитесь, что резьбовой зажимной механизм работает плавно.

Очистка защитных оснований

Фазовые проводники и электроды не должны иметь окисления перед подключением к заземляющим кабелям. Убедитесь, что вы очистили эти детали жесткой проволочной щеткой, чтобы удалить окисление.

Испытания защитного заземления

Последнее, что вам нужно сделать перед началом работы, — это проверить заземление.Тестирование важно, чтобы убедиться, что средства индивидуальной защиты и защитят линейных гонщиков. После того, как вы установили защитное заземление, лучше всего будет нанять профессионала, который проверит защитное заземление за вас.

Divergent Alliance предоставляет комплексные услуги наземных испытаний средств индивидуальной защиты. Мы проверим кабели, наконечники и зажимы, чтобы убедиться, что они правильно подключены. Мы также будем искать признаки повреждений оборудования и при необходимости можем почистить соединительные детали.

Убедившись, что защитное заземление установлено правильно и оборудование находится в хорошем состоянии, мы проверим его, чтобы убедиться, что оно работает эффективно. Наши испытания проводятся в соответствии со стандартными спецификациями ASTM F2249 и ASTM F855 для получения точных результатов.

Свяжитесь с Divergent Alliance, чтобы узнать больше о наших услугах по испытанию и ремонту защитного заземления , а также о заземляющем оборудовании, которое мы предоставляем.

Эквипотенциальное заземление в сравнении с параллельным заземлением — Leaf Electrical Safety

Если вы электрик, работающий с высоковольтным оборудованием (все с номинальным напряжением более 750 вольт), вам следует хорошо понимать концепцию эквипотенциального заземления и то, чем оно отличается от параллельного заземления.Я буду использовать в качестве примера 3-фазные линии высокого напряжения с нейтралью, потому что это легче визуализировать, но как только вы получите концепцию, ту же теорию можно будет применить и при работе с высоковольтным распределительным устройством в металлическом корпусе.

Вплоть до начала 70-х годов люди во всех отраслях промышленности почти исключительно использовали параллельное заземление для «защиты» рабочего от опасностей поражения электрическим током при работе с высоковольтным оборудованием. Проблема была в том, что он не работал. Линейщики и другие высоковольтные рабочие были убиты во время инцидентов, когда линии были случайно повторно включены или наведены напряжения и токи от соседних проводников под напряжением.

Почему не работает параллельное заземление?

Первое, что вам нужно понять, это то, что используются средства индивидуальной защиты, чтобы максимизировать ток, протекающий на землю … цель состоит в том, чтобы поддерживать уровень напряжения в рабочем месте на безопасном уровне до тех пор, пока не сработает вышестоящее устройство максимального тока. .

Представьте, что вы — яркая блестящая лампочка. Что бы случилось с вами, если бы кто-нибудь подключил настольную пилу промышленного размера и включил ее? Вы бы очень потускнели, может, даже погасли… это будет только на секунду, но, надеюсь, вы поняли суть. У вас будет нулевое или полное отсутствие падения напряжения на вашем теле … или … я имею в виду, ваша нить накала …

Земля действует как огромный двигатель, и когда в линию случайно снова подается напряжение, кто-то на рабочем месте как лампочка, которая гаснет. В теории.

На самом деле проблема с параллельным заземлением в том, что оно не работает. В конечном итоге на теле человека на рабочем месте все равно будет , и это приведет к падению напряжения на , и это вызовет смертельный шок.Если соединения между заземляющими кабелями, фазными проводниками и землей не были идеальными (возможно, из-за небольшого окисления проводников), то удерживать напряжение системы около нуля было почти невозможно.

Различные типы заземления — Подробнее

Система заземления внешнего здания относится только к методу внешнего заземления здания. Обычно используется в сочетании с одноточечной системой заземления.

Система заземления Halo (HGS) — это философия заземления, согласно которой все неэлектрические металлические компоненты имеют короткие отрезки заземляющих проводов от металлических предметов, не создающих скачков напряжения, до системы заземления Halo (HGS) в целях безопасности персонала.Система заземления Halo (HGS) иногда называется системой внутреннего заземляющего кольца. Система Halo Ground (HGS) когда-то широко использовалась в помещениях для радиоаппаратуры.

Система заземления Halo (HGS) обычно состоит из неизолированного одножильного или многожильного провода сечением минимум 2 AWG, проложенного по внутреннему периметру стен здания или помещения. Система заземления Halo (HGS) обычно подключается в каждом углу здания или комнаты к внешней системе заземляющих электродов через отдельный провод заземляющего электрода.

Система громоотвода (LRS) — это метод размещения металлического стержня выше здания, чтобы притягивать к нему молнию и направлять ее на землю. Эта система используется вместе с системой заземления внешнего здания.

Многоточечная наземная система (MPGS) иногда называют интегрированной наземной системой (IGS). Многоточечная система заземления (MPGS) — это философия заземления, согласно которой все основные компоненты системы защиты здания должны быть спроектированы и подключены к как можно большему количеству компонентов заземления.Эти компоненты состоят из проводов заземляющих электродов, заземляющих проводов, заземленных проводов и случайных соединений. Эти заземляющие проводники и случайные соединения предназначены для создания нескольких путей сопротивления / импеданса. Это позволяет любому уровню напряжения, который будет создаваться как ток, течет или возвращается к своему источнику по этим множественным путям. Это должно снизить опасность для персонала и защитить оборудование.

Заземляющие проводники и их заземленные компоненты не требуют изоляции от случайного контакта с другими заземляющими проводниками или заземленными компонентами.Чем больше количество случайных точек соприкосновения между различными заземляющими проводниками и компонентами в системе многоточечного заземления (MPGS), тем лучше, потому что таким образом создаются контуры заземления.

Система одноточечного заземления Система одноточечного заземления (SPGS) — это философия заземления, которая требует, чтобы все основные компоненты системы защиты здания были спроектированы и подключены к единой контрольной точке заземления. Эти компоненты состоят из заземляющих электродов, проводов заземляющих электродов, заземленных проводов и заземляющих проводов.Эти проводники предназначены для создания пути наименьшего сопротивления / импеданса. Это позволяет любому напряжению, создаваемому как ток, течь или возвращаться к своему источнику по надлежащему обозначенному пути.

Реализация философии единой точки заземления (SPGS) проста, но очень сложна. Обозначенные заземляющие проводники методично подключаются по всей системе защиты здания в пределах обозначенных зон к единой контрольной точке заземления, главной шине заземления (MGB).

Заземляющие проводники и их заземленные компоненты должны быть изолированы от любого непреднамеренного контакта с другими заземляющими проводниками и заземленными компонентами, за исключением единственной контрольной точки заземления, главной шины заземления (MGB).Любые непреднамеренные точки соприкосновения между различными заземляющими проводниками и компонентами создают контуры заземления в системе единого заземления (SPGS) и являются нарушением системы единого заземления (SPGS).

Система одноточечного заземления (SPGS) идентифицирует каждый проводник на шине заземления по типу проводника или типу работы, для которой он предназначен. Система называется системой PANI . Шина разделена на секции, и только один тип проводов помещается в эту секцию шины заземления.Ниже приведены некоторые описания проводников. Затем каждый проводник будет помещен в соответствующую часть шины заземления слева направо. Примеры: все P, , все A, , все N, , а затем все I.

Радиокадры
Шина заземления входа телефонного кабеля (CEGB)
Экраны входа телефонного кабеля
Рама трансформатора внутри здания

Вход питания переменного тока Многозаземленная нейтраль (MGN)
Система заземления здания (BEGS)
Строительные конструкции Сталь (BSS)
Изолированное заземление оборудования переменного тока (ACEG)
Система металлических кабелепроводов
Обсадная труба

Внутриофисная кабельная экранирующая планка (IOCSB)
Внутри офисная кабельная экранировка
Главная распределительная рама (MDF)
(-) Ссылка в постоянном токе Электростанция с отрицательным заземлением
(+) Опорный сигнал в электростанции постоянного тока с положительным заземлением
Шкафы для хранения
Передаточные рамы
Рабочие столы

(I) — Изолированное заземление (IGP) Заземление оборудования

Изолированное заземляющее оборудование переменного тока Заземление (ACEG)
Изолированные кабельные трассы заземления
Изолированная шина заземления рамы (IGP-FRB)
Изолированный журнал заземления Возвратная шина ic (IGP-LRB)
Изолированная заземляющая пластина с металлическими кабелепроводами
Изолированная заземляющая шина (IGPB) должна иметь четкую трафаретную или маркировку и изолирована от ее опоры в изолированной заземляющей пластине (IGP)

Эта изолированная заземляющая шина (IGPB) становится «окном» к фактической основной планке заземления (MGB).Изолированная заземляющая шина (IGPB) ДОЛЖНА иметь правильно проложенный, соединенный заземляющий провод соответствующего размера и подключенный непосредственно к главной заземляющей шине (MGB).

Зоны изолированной поверхности земли (IGP) должны быть четко и постоянно отмечены на полу или другим легко узнаваемым способом. Уместна краска или лента отличительного цвета, например, оранжевого.

Назначение изолированной заземляющей плоскости (IGP) — изолировать все чувствительное к напряжению оборудование внутри изолированной заземляющей пластины (IGP) от любого события напряжения, происходящего за пределами изолированной заземляющей плоскости (IGP).Это предотвратит любое событие за пределами изолированной заземляющей плоскости (IGP), которое приведет к отключению в любой форме обслуживания чувствительного к напряжению оборудования внутри изолированной заземляющей плоскости (IGP).

В большинстве зданий используется изолированный слой заземления (IGP) для изоляции чувствительного к напряжению оборудования, такого как цифровой коммутатор, от остального оборудования в здании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *