Что такое люминесцентная – принцип работы, устройство, маркировка, типы и виды, срок службы

Содержание

как выбирать и какие плюсы

Люминесцентные лампы – это газоразрядные источники света. В них создается УФ излучение в процессе прохождения электрического заряда через пары ртути. В уловимое для человеческого глаза излучение оно преобразуется за счет специального покрытия на колбе – люминофора. Мощностью данных ламп меньше, чем накаливания, а световая отдача больше. За счет этого они в разы экономней.

Принцип работы и устройство

Лампочка состоит из таких элементов:

  1. Трубка или колба. Этот компонент бывает разным в зависимости от исполнения.
  2. Цоколь. Он может быть 1 или 2.
  3. Нити накаливания, что расположены внутри.
  4. На внутренней поверхности нанесен люминофор – важнейшая деталь.
  5. Внутри содержится в вакуумных условиях инертный газ, пары ртути, под стабильным давлением.
Устройство и принцип работы люминесцентной лампы

Когда лампочка включается, между электродами внутри возникает дуговой тлеющий разряд. Газ проводит ток и провоцирует появление УФ излучения. Люминофор поглощает его и воспроизводит заметный для человеческого зрения свет. В подобных источниках применены энергосберегающие технологии. Разряд внутри поддерживает термоэлектронная эмиссия заряженных частиц с поверхностью катода.

Важно! В зависимости от того какой люминофор нанесен могут быть разные оттенки свечения.

к содержанию ↑

Область применения

За счет незначительного энергопотребления такие лампы часто используются для общественных мест. В торговых центрах и офисах на потолках типа Армстронг монтируются именно ЛЛ линейного типа. Когда появились компактные изделия они стали очень востребованы в быту для освещения квартир и домов. ЛЛ заменили собой стандартные лампы накаливания.

Особенно часто их используют в местах, где есть критические требования к цветопередаче. Конкретней:

  • Больницы.
  • Школы, в том числе для освещения коридоров и классов.
  • Стоматологические клиники.
  • Ювелирные мастерские.
  • Парикмахерские.
  • Магазины.
  • Музеи.
  • Типографии.
  • Покрасочные цехи в автомастерских, текстильных цехах, графических студиях.
Люминесцентное освещение в подземном переходе

Их рационально использовать для основного освещения помещений большого размера. Качество освещения улучшается, а энергопотребление снижается на 50% как минимум. Часто используются в подсветке места работы, исторических строений, световой рекламе.

к содержанию ↑

Классификация

Разновидностей люминесцентных лам существует много, ведь они используются не только для освещения помещений, но и для специфических целей. К примеру, лечебных. Они отличаются по вариантам исполнения, что также влияет на сферу применения.

Варианты исполнения

Изначально такие лампы были исключительно линейными, но с развитием технологий появились и компактные. Оба вида имеют одинаковые свойства, негативные и положительные стороны. Данную группу можно назвать общие, так как, по сути, они отличаются формой колбы и в определенной мере конструкцией.

Линейные лампы

Это ртутная лампа прямого, кольцевого или U-образного исполнения. Такие имеют классификацию по:

  1. Длине.
  2. Диаметру колбы.

При этом чем больше по габаритам лампа, тем она мощнее. Для линейных ламп используется цоколь G13, а диаметр колбы: Т4, Т5, Т8, Т10, Т12. Цифры после «Т» означают диаметр стеклянного элемента, выраженный в дюймах. Указанные выше типоразмеры считаются стандартными.

Линейные лампы разных размеров

Основное отличие подобной конфигурации в том, что она имеет вваренные электроды по краям, которые направлены внутрь изделия. Снаружи установлены цоколи с контактными штырьками для подключения ее в цепь.

Линейные лампы преимущественно используют в офисах, торговых центрах, транспорте, других общественных местах. Все потому что они потребляют не больше 15% электроэнергии, если брать за 100% потребления энергию лампочкой накаливания.

Компактные

Компактные классифицируются по:

  • Форме и размеру колбы.
  • Размеру и типу цоколя.

В основном колба в них изогнутая, и «сложена» в виде спирали или в другую форму. За счет этого они и компактны. Использование в бытовых условиях очень удобное и практичное. Ведь можно найти изделие со стандартным цоколем (е27) и устанавливать в любой бытовой светильник без какой-либо его переделки. Кроме того, цоколи бывают: g-11, g23 и другие.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Как только КЛЛ появились, они практически вытеснили использование ламп накаливания в люстрах, бра, светильниках в различных помещениях, в том числе в детской. В первую очередь за счет своей энергоэффективности.

Компактные люминесцентные лампы

Есть ЛЛ с улучшенной светопередачей. Эта их особенность достигается за счет нанесения нескольких слоев люминофора. Как результат, они качественней ретранслируют цвета. Могут быть как линейного, так и компактного исполнения.

Специальные

Основное отличие их от стандартных люминесцентных ламп дневного света – это спектр излучения. Существуют такие специальные:

  • Лампы дневного света, отвечающие повышенным требованиям по цветопередаче. Используются для типографий, музеев, картинных галерей.
  • Источники света со спектральным излучением близким к солнечному. Часто используются в медицинских целях для проведения светотерапии.
  • Для растений (рассады в том числе) и аквариумов, обозначаются fluora. Для них характерен усиленный спектральный диапазон синего и красного. Он оказывает положительное влияние на фотобиологические процессы. Могут использоваться даже в саду или в собственной теплице.
Люминесцентная лампа для подсветки растений
  • Аквариумные с преобладанием синего спектра и ультрафиолета. Они помогают создать оптимальные условия для роста кораллов. Отдельные виды способны при таком освещении флуоресцировать.
  • Изделия для освещения помещений, в которых содержаться птицы. Их спектр излучения характеризуется присутствием ближнего ультрафиолета. Это способствует созданию оптимальных условий для птиц, очень приближенных к естественным, применять их стараются в домашних условиях в холодное время года, а на фабриках круглогодично.
  • Лампы с разной цветностью: зеленые, синие, фиолетовые, красные, желтые и др. Активно используются для создания световых эффектов, к примеру, в ночных клубах и других развлекательных заведениях. Достигается световой эффект за счет окрашивания колбы или покрытия ее специальным составом люминофора изнутри. Подобные цветные лампы розового оттенка активно используются для подсветки мясных витрин в магазинах. Они делают мясо привлекательным для глаз, а значит, покупатель с большей вероятностью его купит.
  • Лампы для соляриев. Еще одно направление среди специальных люминесцентных осветительных элементов.
  • УФ лампы из черного стекла, переносные. Используются в сфере лабораторных исследований.
  • Лампы для стерилизации и озонирования – ртутно-кварцевые и бактерицидные, гигиенические.

Важно! Разные типы ЛЛ специального назначения активно используются в механике, текстильном, пищевом производстве, криминалистике, сельскохозяйственной сфере.

к содержанию ↑

Маркировка

Разбираться в маркировке люминесцентных ламп просто необходимо, чтобы правильно выбирать источник освещения для своих потребностей. На металлических элементах или колбе могут быть нанесены буквы и цифры, что они значат понять несложно.

Маркировка ЛЛ разных производителей

Первое что удастся обнаружить это буква Л – она расшифровывается, что лампа люминесцентная. Далее, проставляется:

  • Б – означает белый свет или white.
  • Д – дневной.
  • У – универсальный.
  • ХБ – холодный белый или просто cool.
  • ТБ – теплый белый.
  • Е – естественно белый.
  • К, Ж, З, Г, С – соответственно красный, желтый, зеленый, голубой, синий.
  • УФ – ультрафиолетовый.

Следующие обозначение расскажет о диаметре колбы. Считается, что чем он больше, тем дольше будет служить лампа. Чаще всего встречаются изделия с диаметром – 18, 26 и 38 м. Перед цифрой, которая обозначает диаметр, стоит буква «Т».

Следующий важный параметр мощность. Отталкиваясь от этого показателя, удастся определить, какое по размерам помещение удастся осветить. Обозначается W (Ватт), цифра после это мощность. К примеру, 13 W, 18 W, обозначение может быть и таким 9 Вт, 28 Вт.

Следующий параметр в маркировке физическая характеристика цоколя. Варианты обозначения:

  1. FS – один.
  2. FD – двухцокольная или трубчатая.
  3. FB – так подписывается компактная.

Напряжение в сети обозначается в вольтах. Варианты нанесенной маркировки: 127 В или 220 В. И последнее обозначения, которое можно найти на колбе это ее форма. Варианты:

  • U – дуга, подковообразная.
  • 4U – четырехдуговая.
  • S – спиральная.
  • C – свеча.
  • G – шарообразная.
  • R – рефлекторная.
  • T – в виде таблетки.
Форма колбы указывается в маркировке

Важно! Последняя маркировка практически не используется для стандартных ламп дневного света.

Располагаться эти обозначения могут и в другом порядке.

к содержанию ↑

Люминофоры и спектр излучаемого света

Существует мнение, что излучаемый рассматриваемыми лампами свет неприятен для глаз, а предметы имеют искаженный цвет. Это происходит по нескольким причинам:

  • Синие и зеленые линии в спектре.
  • Неправильно подобранного типа ламп, в нем использован не тот, что требуется в конкретных условиях люминофор.

В ЛЛ, которые относятся к недорогим, используется галофосфатный люминофор, его спектр излучения преимущественно желтый и синий, красного и зеленого значительно меньше. Для глаза свет воспринимается как белый, но при отражении от предметов их цвет выглядит искаженным. Но у таких источников света существенное преимущество – они обеспечивают наивысшую светоотдачу.

Люминесцентные лампы с разным люминофором

В более дорогих лампах наноситься трехполосный и пятиполосный люминофор. Он обеспечивает более равномерное распределение излучения в части видимого спектра. Как результат, предметы, от которых он отбивается, выглядят более естественными.

Совет! Чтобы в домашних условиях оценить спектр лампы можно использовать обычные компакт-диски. На источник света следует посмотреть в отражении диска. В дифракционной линии удастся рассмотреть спектральные линии люминофора.

к содержанию ↑

Преимущества и недостатки

Основные достоинства подробно:

  1. Высокий КПД и большая светоотдача, если сравнивать с лампами накаливания, что позволяет экономить энергию.
  2. Разные цвета и оттенки – существенный плюс в современных условиях.
  3. Спектр излучения ближе к солнечному.
  4. Рассеивание света, поток идет по всей колбе, а не только по нити накала.
  5. Продолжительный срок службы – производитель гарантирует до 20 тыс. часов. Такой показатель удастся достичь только при условии достаточного качества электропитания и соблюдения количества включений/выключений. То есть, сколько она реально прослужит, зависит от правильности использования.
  6. Слабый нагрев, то есть они не будут перегревать плафон, то есть она отвечает нормам пожарной безопасности. Светиться при этом лучше лампы накала.
  7. Питание от сети 220В.
  8. Подходят для стандартных бытовых осветительных приборов, которые используются в спальне, гостиной, кухне. Установка компактных ламп не требует какой-либо переделки.
  9. Небольшой вес лампы, то есть и вся люстра не будет много весить.
Люминесцентные лампы очень экономны

Недостатки:

  • Необходимость специальной утилизации –главный минус.
  • Мигание, от чего устают глаза. Меньше мигать она будет, если используется балласт.
  • Необходимость подключения пускорегулирующего оборудования.
  • Лампы достаточно хрупкие.
  • Люминофор изнашивается, что приводит к изменению спектра.
  • Возможность использование при нормальной температуре. Работать она может только в диапазоне от -40 до + 50 градусов.
  • Чувствительность к повышенной влажности.
  • Задержка включения – необходимо время для разогрева. То есть они не сразу запускаются и дают тот свет, который способны, через пару минут он становиться ярче.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Одними из самых качественных считаются лампы от торговых брендов Philips (Филипс) и Osram (Осрам). Цены лампочек этих марок вполне доступны.

к содержанию ↑

Безопасность и утилизация

Когда люминесцентная лампа исправна (нет трещин и других повреждений на колбе) ее использование абсолютно безопасно для человека, животных, растений. Но с ними следует обращаться предельно аккуратно, ведь внутри содержатся пары ртути. Даже в тех небольших количествах, они способны принести вред человеку.

Люминесцентные лампы нельзя выбрасывать с обычным бытовым мусором после отработки срока эксплуатации. При попадании в почву способны загрязнять огромные площади. Если пары ртути проникнут в воду она будет медленно отравлять все живое. Функционируют пункты приема таких ламп, в которых бесплатно можно сдать опасный бытовой мусор подобного типа.

Контейнеры для утилизации люминесцентных ламп

Важно! Если лампа, новая или старая, имеет следы повреждения, трещины, пробои использовать ее нельзя ни при каких условиях. При покупке каждую лампу следует проверить не только на работоспособность, но и на целостность.

Обращение с довольно хрупкими лампами должно быть аккуратным. Ремонт их своим силами, в том числе разборка, запрещена. Еще один важный момент, люминофор, что находится внутри колбы, со временем утратит свойства, поэтому меняется спектр. Как раз по этой причине использовать дольше указанного срока на упаковке такую лампочку нежелательно, даже если она еще не перегорела.

Переработка рассматриваемых ламп в заводских условиях проводится при необходимых условиях безопасности. В таком случае они не вредят экологии. При этом применяются разные методы извлечения опасных паров ртути. Остатки ламп отправляются на вторичную переработку.

к содержанию ↑

Видео сравнения люминесцентных ламп и ламп накаливания

В видео можно ознакомиться с детальным описанием люминесцентных ламп их техническими особенностями.

Вывод

Люминесцентные лампы более практичное решение для освещения дома и общественных мест. Правда, с появлением светодиодных источников света их востребованность несколько снизилась.

lampaexpert.ru

советы по использованию и как сделать самостоятельно

Современный строительный рынок предлагает много отделочных материалов, что помогает воплотить любую дизайнерскую фантазию. Люминесцентная краска – это интересное и актуальное решение для обустройства внутренней отделки. Необязательно тратиться на покупку готового состава, компоненты таковы, что без проблем удастся сделать ее своим руками.

Что это такое?

Люминесценция – это способность веществ светиться в темноте за счет энергии, которую удалось накопить за световой день. В составе рассматриваемой краски есть люминофоры – это специальный светящийся порошок. Он накапливает свет днем от естественных или искусственных источников. При наступлении темноты проявляется яркое свечение поверхности, на которую нанесен краситель.

Важно! Люминесцентные и флуоресцентные краски это не одно и то же. Последние проявляют свечение только под воздействием УФ-лучей. Люминесцентные составы абсолютно безопасны для здоровья человека.

За счет того, что люминофор, что есть в составе, может постоянно накапливать и отдавать свет, эффект от него можно наблюдать по меньшей мере 3 десятка лет. Чтобы в темное время суток свечение было видимым нужна «подзарядка» всего на протяжении 20 минут. Длительность свечения зависит от продолжительности воздействия света днем, а яркость от объема (концентрации) люминофора в краске.

к содержанию ↑

Специфика материала и общие заблуждения

Кроме люминофора в составе есть лак, в зависимости от того, какой именно использован, краска будет иметь разную цену. Варианты: алкидный, акриловый, полиуретановый. От этого компонента также зависит долговечность.

Использование люминесцентной краски в детской — она полностью безопасна

Основное заблуждение, которое бытует – это опасность краски для здоровья человека, если дело касается именно люминесцентной краски, то она безвредна. Это нельзя сказать о составе на основе фосфора. Единственное, что может оказать влияние – это тип используемого лака, а точнее его сильный запах.

Лак, что есть в составе, надежно защищает предметы от повреждений. В особенном уходе изделия и поверхности с таким лакокрасочным покрытием не нуждаются.

Сферы использования люминесцентных красок разнообразны, среди вариантов:

  1. Для изготовления дорожных знаков и указателей, нанесения разметки на асфальт, обозначения других дорожных конструкций, на которые водителю требуется обратить внимание.
  2. Декорирование помещений внутри. Причем она может быть применена как для окраски стен, потолков, пола, так и отдельных элементов интерьера.
  3. Для создания световых эффектов в цирке, театре. Ее даже наносят на костюмы и декорации.
  4. За счет безопасности люминофорного состава краску разрешено использовать для растений. Применяется в этом случае аэрозольный метод, так распылять удобней.
  5. В рекламе для окрашивания баннеров, афиш, вывесок.
  6. Декорирование уличных элементов благоустройства на территории частного дома.
  7. Для автомобилей, велосипедов, других видов транспорта: прокрашиваются диски, бампера, элементы кузова.
  8. В ателье по пошиву спецодежды.
Яркий и оригинальный букет

Важно! Возможность использования в той или иной сфере определяется исходя из состава.

к содержанию ↑

Классификации люминесцентных красок

Разделение по тем или иным критериям производится исходя из состава. Первое подразделение идет по цвету:

  • Бесцветные или полупрозрачные. Подобный прозрачный состав при свете дня практически невидим, разве что присутствует слабый блеск. Успешно используется для нанесения на любой цветной рисунок.
  • Цветные. Кроме люминофора, который дает свечение ночью, в дневное время заметен колер. Такое возможно за счет добавления красящего пигмента.

Исходя из эксплуатационных качеств, бывают такие типы:

  1. Для металлических, стеклянных, керамических поверхностей. Такие краски с люминофором еще называют термостойкими.
  2. Для ткани – в основе их акриловый лак.
  3. Водоэмульсионная краска, что может использоваться для стен или нанесения на растения. Подобные быстро сохнут и не имеют запаха, но не выдерживают механических воздействий.
  4. Для древесины.
  5. Для бетона.
  6. Для пластика – это полиуретаново-минеральные эмали. Возможность использования на пластике достигается за счет высокой адгезии покрытия.
Краска в дневное время и в ночное

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Обратите внимание! Для красок используются органические люминофоры, которые не несут опасности для здоровья человека.

к содержанию ↑

Компоненты люминесцентной краски

В составе таких красок всегда есть люминофор и лак. Люминофор – это пигмент, который отвечает за накопление и свечение ночью. Яркость светового эффекта во многом зависит от качества этого компонента. Этот порошок способен быстро адаптироваться к условиям окружающей среды, имеет стабильные физические и химические характеристики.

Часть лака в составе значительно больше, так для создания используется 1 часть порошка и 3 части лака выбранного типа. Собственно лак не влияет на люминесцентные качества. Процесс создания не требует особенных условий, поэтому ее часто делают самостоятельно.

к содержанию ↑

Выбор краски

Производителей, которые предлагают в своем ассортименте люминесцентные краски много, каждый старается выделить свой продукт. Кто-то предлагает оригинальные эффекты за счет придания уникальных характеристик, другие делают краску доступной по цене.

Расфасовывается краска в банки, как и обычный лак или в баллоны. Если нужно нанести ее на небольшую по площади поверхность, то баллончик удобнее всего. К тому же так краска будет распылена равномерно.

Люминесцентную краску в баллончике удобнее распылять

Если краска наносится на кожу, то нужно искать ту, что имеет именно такое предназначение, другие составы способны причинить вред. Стоимость краски достаточно высокая от 30 до 100 долларов за 1 л. Такого объема хватит на 10–12 кв. м. при нанесении в один слой. Именно поэтому часто подобное декоративное покрытие делают своим руками. В таком случае удается удешевить ее в 2–3 раза.

к содержанию ↑

Советы по нанесению

Чтобы поверхность выглядела аккуратно, а краска дала желанный эффект, требуется правильно ее наносить. Это получится сделать своими руками, но важно соблюдать следующие правила:

  • Удалить с поверхности старую отделку, независимо от ее типа. Также на стенах не должно быть пыли, влаги.
  • Перед использованием краски ее хорошо взболтать или перемешать, чтобы поднять осадок. Люминофор со временем имеет свойство осаживаться на дне емкости. Это касается как красок в банках, так и в виде спреев.
  • Второй слой можно наносить только после высыхания предыдущего. Для этого в зависимости от типа краски и способа нанесения (кисточкой или аэрозолем) потребуется от 1 до 2 часов.
  • Качество свечения будет выше, если поверхность светлая. Идеальный вариант оштукатуривание или обработка белой грунтовкой.
  • Работать с краской, независимо от типа лучше в перчатках и очках.
  • Если окрашиваются стены, то нужно обеспечить вентилирование. При нанесении на предметы, которые можно вынести из дома/квартиры, лучше наносить краску на улице в безветренную погоду.
  • Финишное покрытие бесцветным лаком сделает поверхность устойчивой к любым негативным воздействиям.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Совет! При нанесении на стену для достижения оригинального эффекта стоит использовать трафареты, они гарантируют ровные и аккуратные контуры на поверхности.

к содержанию ↑

Самостоятельно изготавливаем люминесцентную краску

Для создания своими руками люминесцентной краски можно использовать порошковый люминофор или сделать подобный состав своими руками. Для начала рассмотрим порядок изготовления именно красителя. В процессе понадобятся такие реактивы:

  1. Хвойный концентрат. Его необходимо растворить в воде в соотношении 1:50. В результате раствор должен иметь желтоватый цвет. От концентрации зависит цвет и интенсивность люминофора.
  2. Борная кислота. Ее в объеме 2–3 г поместить в жаропрочную посуду с широким дном.
  3. К борной кислоте добавить 10 капель раствора хвои, перемешать раствор и равномерно распределить по дну емкости.
  4. Поставить на огонь и сушить на минимальном огне.
  5. После испарения воды, смесь будет плавиться. В процесс появляются пузырьки, их необходимо прокалывать.
  6. После полного растворения снять с плиты и оставить для остывания при комнатной температуре.
  7. Корочку, которая образовалась после застывания, необходимо растереть в порошок. Это и будет люминофором.
Порошок люминофор можно купить или сделать самостоятельно

Что касается изготовления люминесцентной краски, то тут процесс куда проще. Для этого нужны:

  • Прозрачный лак. Его следует выбирать в зависимости от типа поверхности, на которую будет наноситься лак.
  • Растворитель для лака.
  • Люминофор в виде порошка. Его можно купить в строительном магазине, например, Леруа Мерлен, цена зависит от цвета порошка. Яркие обойдутся дороже, пастельные дешевле.
  • Подходящая по размерам стеклянная или керамическая посудина.

Последовательность замешивания:

  1. В посуду налить лак.
  2. Насыпать люминофор. Идеальная концентрация – 70% лака и 30% пигмента.
  3. В смесь добавить растворитель. Не больше 1% от общего объема.
  4. Перемешать.
  5. Если нужна цветная люминесцентная краска, то добавляется еще и колер необходимого оттенка.

Использовать и хранить такой лакокрасочный люминофорный состав можно в закрытой посудине столько как допускается сберегать лак, который является его основой.

к содержанию ↑

Электролюминесцентная краска

Это новый вид светящейся краски, которая является безопасной для человека. Используется преимущественно для автотюнинга. Специфика ее в том, что свечение становится заметным только после подачи электрического тока. На данный момент можно найти подобные краски в зеленом, голубом, желтом, белом и красном цвете.

«Работа» краски возможна при переменном токе 500–1000 Гц. Для воздействия используется инвертор 12 В, он уже подключается к источнику питания. Ним может быть розетка (220 В) или батарейки.

к содержанию ↑

Вывод

При выборе люминесцентной краски, следует учитывать, для какой поверхности она нужна. То же касается и самостоятельного ее изготовления. Светящийся краситель позволяет создать оригинальный эффект и украсть помещение. Конечно, результат заметен только в темное время суток.

lampaexpert.ru

📌 люминесценция — это… 🎓 Что такое люминесценция?

ЛЮМИНЕСЦЕ́НЦИЯ -и; ж. [от лат. lumen (luminis) — свет и escentia — суффикс, обозначающий слабое действие] Физ. Свечение газа, жидкости или твёрдого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул.

(от лат. lumen, род. п. luminis — свет и –escent — суффикс, означающий слабое действие), свечение веществ, избыточное над их тепловым излучением при данной температуре и возбуждённое какими-либо источниками энергии. Возникает под действием света, радиоактивного и рентгеновского излучений, электрического поля, при химических реакциях и при механических воздействиях. Примеры люминесценции — свечение гниющего дерева, некоторых насекомых, экрана телевизора. По механизму различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценцию, по длительности — флуоресценцию (кратковременную люминесценцию) и фосфоресценцию (длительную люминесценцию).

ЛЮМИНЕСЦЕ́НЦИЯ (от лат. lumen, родительный падеж luminis — свет и -escent — суффикс, означающий слабое действие), свечение, избыточное над тепловым излучением тела и продолжающееся после прекращения возбуждения в течение времени, значительно превышающего период световой волны (по определению С. И. Вавилова (
см.
ВАВИЛОВ Сергей Иванович)). Т. е. люминесценция — процесс неравновесный и не относится к тепловому равновесному излучению тел. Но люминесценция не относится и к таким практически безинерционным неравновесным процессам, как отражение и рассеяние света и тормозное излучение (см. ТОРМОЗНОЕ ИЗЛУЧЕНИЕ). Для наблюдения люминесценции вещество необходимо вывести из состояния термодинамического равновесия, т.
е. возбудить. При люминесценции акты возбуждения и излучения света разделены во времени промежуточными процессами, что обусловливает относительно длительное время существования свечения вещества после прекращения возбуждения.
Вещества, способные люминесцировать, называются люминофорами (см. ЛЮМИНОФОРЫ). Неорганические люминофоры часто называют фосфорами, а в том случае, когда они имеют кристаллическую структуру — кристаллофосфорами (см. КРИСТАЛЛОФОСФОРЫ).
Виды люминесценции
По длительности свечения различают флуоресценцию (быстро затухающую люминесценцию) и фосфоресценцию (длительную люминесценцию). Деление это условное, так как нельзя указать строго определенной временной границы: она зависит от временного разрешения регистрирующих приборов.
В зависимости от вида возбуждения люминофора различают фотолюминесценцию (см. ФОТОЛЮМИНЕСЦЕНЦИЯ) (возбуждение светом), катодолюминесценцию (см. КАТОДОЛЮМИНЕСЦЕНЦИЯ) (возбуждение ускоренным потоком электронов), электролюминесценцию (см. ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ) (свечение под действием электрического поля), рентгенолюминесценцию (возбуждение рентгеновским излучением), радиолюминесценцию ( возбуждение a- и b-частицами, протонами, осколками ядерного деления), хеми (см. ХЕМИЛЮМИНЕСЦЕНЦИЯ)- и биолюминесценцию (
см.
БИОЛЮМИНЕСЦЕНЦИЯ), при которых излучение света сопровождает химическую реакцию, лиолюминесценцию (возбуждение при растворении кристаллов) кандолюминесценцию (возбуждение при механических воздействиях, например, при разрушении кристаллической решетки).
В зависимости от механизмов элементарных процессов при люминесценции различают резонансную, спонтанную, метастабильную, или вынужденную, и рекомбинационную люминесценции.
Механизмы люминесценции
Люминесценция, по сути, процесс выделения полученной веществом предварительно при переходе в неравновесное состояние избыточной энергии. При возбуждении люминесценции атом (молекула), поглощая энергию, переходит с основного уровня энергии на возбужденный уровень. Если при люминесценции происходит обратный переход из возбужденного состояния в основное, частоты люминесценции и возбуждающего света совпадают, то наблюдается резонансная люминесценция.
При взаимодействии с окружающими атомами возбужденный атом может передать им часть энергии и перейти на промежуточный уровень, при излучательном переходе с которого происходит люминесценция, называемая спонтанной.
Такие переходы происходят самопроизвольно. При спонтанных переходах испускание фотонов не зависит от внешних воздействий на систему, поэтому спонтанное излучение является некогерентным. Под действием внешнего электромагнитного поля определенной частоты могут происходить квантовые переходы соответствующие частоте возбуждающего излучения. Это вынужденное или стимулированное излучение, которое является когерентным.
Механизм люминесценции в твердом теле, например, в полупроводнике, может различаться в зависимости от того, происходит ли она внутри примесного центра или с участием электронной подсистемы всего кристалла.
Уровень испускания может принадлежать тому же атому (молекуле), который поглотил энергию возбуждения (такие переходы называются внутрицентровыми). При внутрицентровой люминесценции все процессы поглощения энергии и испускания фотонов происходят внутри ионов-активаторов, а кристаллическая решетка играет пассивную роль. Переход энергии квантов люминесценции соответствует разнице энергетических уровней электрона до и после излучательного перехода или может отличаться от нее на энергию фононов, возникших в процессе рекомбинации. При возбуждении люминесценции атом (или молекула) поглощает энергию, ее собственный уровень энергии изменяется. Если процесс люминесценции испускание энергии происходит непосредственно тем же атомом, который поглотил энергию возбуждения, то происходит внутрицентровая люминесценция. В этом случае возбуждение люминофора не сопровождается ионизацией центра свечения, поскольку и основному и возбужденному состоянию активного иона соответствуют локальные уровни, лежащие внутри запрещенной зоны. Такой механизм люминесценции характерен для материалов с большой шириной запрещенной зоны (
см.
ЗАПРЕЩЕННАЯ ЗОНА), например, в ZnS, легированном Mn, в Al2O3, легированном Cr, в Y3Al5O12, легированном Nd.
При участии электронной подсистемы в процессе люминесценции имеет место рекомбинационное излучение. Передача энергии другим атомам и молекулам осуществляется электронами при электронно-ионных ударах, при процессах ионизации и рекомбинации, обменным путем, при непосредственном столкновении возбужденного атома с невозбужденным. Определяющей в кристаллах становится передача энергии с помощью электронов проводимости, дырок и электронно-дырочных пар и заключительным актом передачи энергии является рекомбинация (например, электронов и ионов или электронов и дырок). Рекомбинационная люминесценция характерна для полупроводниковых кристаллов. Излучение кванта света из полупроводника может происходить в результате межзонной рекомбинации, т. е. при переходе электронов из зоны проводимости в валентную зону, рекомбинации экситонов (
см.
ЭКСИТОН) или при участии рекомбинационных ловушек. Очень часто в полупроводниках преобладает безызлучательная рекомбинация, когда освобождаемая энергия в виде теплоты передается кристаллической решетке.
Основные закономерности излучательной рекомбинации носителей определяются законами сохранения энергии и импульса.
Механизмы, аналогичные внутрицентровому поглощению света, получили название мономолекулярной и метастабильной люминесценции. Мономолекулярная люминесценция представляет собой свечение при обратном переходе электрона с возбужденного уровня на основной. Если на возбужденный центр одновременно действуют еще какие-либо внешние факторы, то имеет место метастабильная люминесценция. При метастабильной (вынужденной или стимулированной) люминесценции атом (молекула) прежде, чем перейти на уровень испускания, оказывается на промежуточном уровне, и чтобы осуществился переход на уровень испускания, ему надо сообщить дополнительную энергию, например энергию теплового движения или света.
Свойства люминесценции
Процессы, связанные с образованием центров свечения и механизмы люминесценции очень разнообразны. Люминесцентные свойства твердых тел во многом определяются концентрацией примесей и дефектов структуры. Примесные атомы, образующие локальные уровни в запрещенной зоне кристаллов, отвечающие за свечение материала, называются активаторами люминесценции. Часто спектр вводимого активатора определяет спектр свечения люминофора. Во многих случаях точечные дефекты могут быть многозарядными, кроме этого при высоких концентрациях точечные дефекты могут образовывать ассоциаты или комплексы, которые тоже могут являться центрами свечения. Механизмы излучения также многообразны.
Мономолекулярная и метастабильная люминесценция проявляются в кристаллах рубина Al
2
O3, легированных хромом (часть атомов алюминия замещена атомами хрома). Переходы электронов внутри уровней, принадлежащих Cr3+, обусловливают две линии излучения, которые беспрепятственно выводятся из широкозонного кристалла Al2O3. Это явление используется в лазерах (см. ЛАЗЕР).
В полупроводниках более важную роль играет рекомбинационное излучение, которое происходит как непосредственно между электронами зоны проводимости и дырками валентной зоны, так и с участием примесных центров. Краевой люминесценцией в полупроводниках называют межзонное излучение с энергией квантов, равной ширине запрещенной зоны. Если в спектре люминесценции наблюдаются полосы с энергией менее ширины запрещенной зоны, то их происхождение связано с рекомбинацией через локальные центры, так как примесные атомы образуют локальные уровни. Такая люминесценция является примесной. Излучение может быть за счет внутрицентровой люминесценции, за счет излучательной рекомбинации носителей заряда в донорно-акцепторных парах, может осуществляться рекомбинационная люминесценция с участием одной из зон, может происходить излучательный распад свободных экситонов (в соединения А
2
В6), и экситонов, связанных с мелкими донорами, люминесценция экситонов, локализованная на электронных ловушках и т. д. Экситонная люминесценция наблюдается также в чистых кристаллах с малым количеством примеси и соответствует рекомбинации экситонов.
На характер спектра излучения вещества помимо типа и концентрации дефектов в нем влияют такие внешние факторы, как температура, уровень возбуждения образца, наличие деформаций, электрических и магнитных полей и т. д.
Количественно люминесценция, как и любое электромагнитное излучение, характеризуется интенсивностью — числом квантов (энергией), излучаемой с единицы поверхности кристалла в единицу времени. Эффективность преобразования разных видов энергии в излучение при люминесценции характеризуют энергетическим выходом (КПД), который определяется как отношение излученной энергии к поглощенной за то же время:
h= Еизлпогл
Интенсивность люминесценции зависит от относительного вклада излучательной и безызлучательной рекомбинации, поэтому ни интенсивность люминесценции, ни площадь пика примесной люминесценции не являются величинами, пропорциональными концентрации примесных центров. Определение природы центров свечения в кристаллах является очень сложной задачей. Обычно параллельно с термовысвечиванием используется электронный парамагнитный резонанс.
Тушение люминесценции
Повышение вероятности безызлучательных переходов приводит к тушению люминесценции. Тушение люминесценции зависит как от природы люминесцирующего вещества и его агрегатного состояния, так и от внешних условий.
В кристаллах тушение связано с перепоглощением люминесценции на уровнях центров тушения и перезахватом ими образующихся неравновесных носителей заряда. В ряде случаев наблюдается концентрационное тушение люминесценции, возникающее при увеличении концентрации центров свечения. Причиной его возникновения является то обстоятельство, что при больших концентрациях центров свечения, когда они располагаются близко друг от друга, между ними может возникнуть взаимодействие, в результате которого вероятность излучательного перехода уменьшится. Тушителями люминесценции могут быть некоторые точечные дефекты (некоторые примеси в кристаллах), а также радиационные дефекты. В этом случае тушение связано с перепоглощением люминесценции на уровнях центров тушения и перезахватом ими образующихся неравновесных носителей заряда.
Применение люминесценции
Спектральный анализ люминесценции является методом исследования полупроводников и диэлектриков. Изучение спектра, кинетики и поляризации излучения люминесценции (поляризация люминесценции связана с ориентацией и мультипольностью излучающих и поглощающих атомных систем) позволяет исследовать спектр энергетического состояния вещества, пространственную структуру молекул, процессы миграции энергии и т. д. Характер спектра излучения кристаллов зависит от очень многих факторов, от типа и концентрации дефектов, температуры, уровня возбуждения, наличия деформаций, электрических и магнитных полей. Все это позволяет использовать спектральный анализ люминесценции в качестве метода исследования кристаллов.
Люминесцирующие вещества являются активной средой лазеров. Катодолюминесценция лежит в основе свечения экранов осциллографов, телевизоров, локаторов. Полупроводниковые светодиоды основаны на явлении электролюминесценции, в рентгеноскопии использую рентгенолюминесценцию. В сцинтилляционных детекторах (см. СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР) используется радиолюминесценция — свечение сцинтилляторов под воздействием радиационного облучения, и т. д.

dic.academic.ru

Люминесцентные лампы — это какие? Типы люминесцентных ламп

В январе нынешнего года компания General Electric (GE) объявила о прекращении выпуска в США компактных люминесцентных ламп к концу 2016-го. Новая светодиодная технология смела со своего пути успевшую стать привычной люминесцентную, как когда-то она сама свергла «правление» ламп накаливания, изобретённых основателем GE Томасом Эдисоном.

Так что же собой представляет люминесцентная лампа?

Люминесцентные лампы – это ртутные газоразрядные осветительные приборы низкого давления, в которых для излучения видимого света используется флюоресценция. Электрический ток в газе возбуждает пары ртути, которые начинают излучать свет в ультрафиолетовом диапазоне, что вызывает свечение внутреннего фосфорного покрытия.

Различают следующие типы люминесцентных ламп: с холодным катодом, горячего запуска и электролюминесцентные.

Горячий запуск

Наиболее распространёнными являются лампы горячего запуска. Источник света такого типа состоит из стеклянной колбы, наполненной инертным газом (как правило, аргоном) низкого давления. С каждой стороны колбы расположен электрод из вольфрама. Балласт регулирует мощность электродов. В старых лампах для их запуска использовался стартёр. В современных используются электронные пускорегулирующие аппараты.

Они в чём-то напоминают лампы накаливания. Начальное свечение производится разогретой спиралью из вольфрама, но затем электрический разряд в смеси паров ртути и инертных газов вызывает ультрафиолетовое излучение. Особый состав, который покрывает стенки колбы, поглощает ультрафиолет и излучает видимый свет. Называется он люминофором и является смесью соединений на основе фосфора. Благодаря ему световой поток таких ламп превосходит мощность излучения ламп накаливания в несколько раз. Нить накаливания продолжает светиться и по окончании розжига, но только для поддержания разряда.

Для создания электрического разряда необходимо высокое напряжение. Чем холоднее колба, тем выше этот параметр. Но, поскольку высокие показатели опасны, были разработаны средства «разогрева» колбы для снижения напряжения.

Один из методов разогрева заключается в использовании стартера. При подаче напряжения зажигается разрядная лампа, нагревающая биметаллические контакты. Контакты замыкаются, шунтируют её, и электрический ток нагревает вольфрамовые электроды, которые, в свою очередь, нагревают и ионизируют инертный газ. Остыв, биметаллические контакты размыкаются, подавая всё напряжение, а также энергию дросселя на электроды. Если разряда не произойдёт, то процесс повторится снова. После зажигания лампы стартер отключится, так как его сопротивление намного превышает сопротивление плазмы.

В современных системах быстрого старта электроды постоянно подогреваются, а дуга инициируется заземлённым рефлектором или стартовой полосой.

Люминесцентные лампы с холодным катодом

Холоднокатодные люминесцентные лампы – это приборы, температура катода которых не превышает 150 °C по сравнению с 900 °C ламп горячего запуска. Рабочее напряжение – 600-900 В, пусковое — 900-1600 В. Свет излучается ионизированным газом, для создания которого необходимо высокое напряжение. Разряд возникает при пробое пространства между электродами. Газ в лампе в нормальных условиях является диэлектриком, но в электрическом поле ионы и электроны приходят в движение. При подаче высокого напряжения электрическое поле настолько разгоняет заряженные частицы, что они, сталкиваясь с молекулами газа, выбивают из них электроны. Вновь созданные ионы и электроны также задействуются в ионизации: процесс становится лавинообразным.

В лампах горячего пуска разряд является дуговым, а источниках света холодного разряда — тлеющим. Постепенно ртуть переходит из жидкого состояния в газообразное. Электроны, сталкиваясь с атомами ртути, инициируют выделение энергии и интенсивное излучение в ультрафиолетовой области. Свет излучается люминофорным покрытием внутри колбы. Ртуть излучает фотоны, которые возбуждают атомы фосфора, увеличивая энергию его электронов. При возвращении электронов в начальное состояние атомы фосфора излучают световую энергию.

Электролюминесцентные лампы

Излучение света в электролюминесцентных лампах происходит благодаря прохождению электрического тока прямо через фосфоросодержащие материалы с эффектом нетермического преобразования электроэнергии в световую. Данный эффект также используется в светодиодах (LED) и органических светодиодах (OLED). Электролюминесцентные лампы отличаются от светодиодов тем, что в последних свет излучается в p-n переходе – месте соединения двух полупроводников, а у первых свет излучается всем слоем-активатором.

Высоковольтный переменный электрический ток проходит через тонкий слой фосфора или полупроводника, что имеет следствием излучение им света. Два слоя твёрдого вещества, один из которых прозрачен, действуют подобно электродам, а порошкообразный фосфор или проводник между ними светится, когда электроны проходят сквозь него.

Аргументы за

  • Такие осветительные приборы могут служить в десятки раз дольше ламп накаливания при условии стабильного питания без значительных колебаний напряжения и ограничения количества включений. При включении на электродах выгорает и осыпается специальный состав, предохраняющий вольфрамовую нить от перегрева и обеспечивающий стабильность разряда, что уменьшает срок службы источника света. Концы колбы темнеют, и лампа начинает мерцать.
  • Светоотдача люминесцентных ламп на единицу потребляемой мощности примерно в 3-4 раза больше, чем у ламп накаливания.
  • Они разнообразны по цвету, их спектр излучения ближе к солнечному.
  • Рассеянное свечение со всей поверхности колбы, а не вольфрамовой нити.

Минусы

  • Относительно большая стоимость.
  • Люминесцентные лампы – это потенциальный источник опасности, так как каждая колба содержит до 5 мг ртути, которая очень токсична и может нанести вред здоровью и окружающей среде.
  • Газоразрядные лампы чувствительны к пониженным и повышенным температурам. Могут не работать при температуре воздуха ниже -20 °C и выше +50 °C.
  • Чувствительны к влажности.
  • Задержка включения, так как требуется время для разогрева лампы.
  • Непривычный для зрения световой спектр, следствием чего является искажение цветовосприятия. Мерцание с частотой вдвое выше частоты электросети.

Критерии выбора

1. Форма и размеры. Стеклянные колбы и патроны сильно отличаются по этим параметрам. Обычной формой люминесцентных светильников является прямая трубка. Диаметр ее кратен одной восьмой дюйма. Так, размер лампы диаметром в 1 дюйм – T8. Размер варьируется от T2 до T17. Компактные люминесцентные лампы, как правило, имеют форму U-образную и спиралевидную. Конечно, внешний вид не оказывает влияния на работу лампы, но спиральные модели стоят немного дороже, так как их производство сложнее.

2. Старт. Возможен со стартером, электронным или с электромагнитным балластом.

3. Мощность. Колеблется от 3 до 85 Вт. Световой поток ламп накаливания в 3-4 раза ниже, чем у люминесцентных, поэтому выбирать необходимую мощность следует, исходя из требуемой яркости. Люминесцентные лампы, мощность которых равна 25-30 Вт, заменят обычнгые 100-ваттные электроприборы. Для замены 75-ваттной достаточно энергосберегающего источника света в 9 Вт. А люминесцентные лампы, мощность которых составляет 15 Вт, смогут заменить лампу накаливания мощностью 60 Вт.

Таблица отношения светового потока и потребляемой мощности ламп разных типов поможет разобраться во всех нюансах.

Световой поток

Светодиодная лампа

Лампа накаливания

Люминесцентная лампа

люмен

ватт

ватт

ватт

450

4-5

40

9-13

800

6-8

60

13-15

1,100

9-13

75

18-25

1,600

16-20

100

25-30

2,600

25-28

150

30-55

4. Цоколь. Распространены следующие типы:

  • байонет B;
  • винтовой (эдисоновский) цоколь E;
  • односторонние двухконтактные G.

Число после буквы обозначает либо диаметр цоколя типа B или E, либо расстояние между контактами в мм в цоколях типа G.

В основном в люстрах и бра используются компактные люминесцентные лампы с цоколем Е27 диаметром 27 мм и миньоны Е14 диаметром 14 мм.

5. Цветность света. Соответствует температуре чёрного тела, излучающего с определённой хроматичностью. При повышении температуры синяя часть спектра увеличивается, а красная уменьшается. Измеряется в кельвинах. Субъективное ощущение человека, смотрящего на свет определённой цветности, называется цветовым ощущением. Основные цветности света и соответствующее им цветоощущение:

  • 2700 К – сверхтёплый белый;
  • 3000 К – тёплый белый свет;
  • 3500 K – белый свет;
  • 4000 К – холодный белый свет;
  • 5000 К и больше – дневной свет.

6. Цветопередача. Показывает, насколько естественно выглядят окружающие предметы в свете лампы. Измеряется коэффициентом цветопередачи Ra. Источники света с равной цветностью могут иметь разную цветопередачу по причине разного спектра излучаемого света. Для солнечного света коэффициент равен 100.

Маркировка

Производители светильников отмечают изделия по-разному.

В США люминесцентные лампы обычно маркируются по шаблону FxxTy, где F обозначает тип (англ. fluorescent, люминесцентный), первое число xx – либо мощность в ваттах, либо длину в дюймах, T –форму (англ. tubular, трубчатый) и последнее число y – диаметр в 1/8 дюйма (3.175 мм).

Далее следует буквенное обозначение цветности:

  • WW – Warm White, тёплый белый.
  • CW – Cool White, холодный белый.
  • N – Neutral, нейтральный.
  • D – Daylight, дневной свет.
  • WWX – Deluxe Warm White, тёплый белый с высокой цветопередачей.
  • CWX – Deluxe Cool White, холодный белый с высокой цветопередачей.
  • BLB – Blacklight, ультрафиолет.

В самом конце маркировки обозначены особенности устройства:

  • RS – Rapid Start, быстрый старт.
  • IS – Instant Start, мгновенный старт.
  • HO – High Output, высокая эффективность.

Характеристики люминесцентных ламп

Декоративная лампа General Electric Candle T2 мощностью 9 Вт выпускается с цоколями E14 и E27, номинальным световым потоком 405 люмен, тёплой белой и дневной температурой цвета (2700 К и 6500 К), индексом цветопередачи 82 Ra. Применяется в люстрах и других светильниках с видимой колбой в помещениях, коридорах и холлах торговых залов, гостиниц, ресторанов, жилищ.

Продукция Philips

Master TL-D 90 De Luxe – лампа люминесцентная G13, T8, с индексом цветопередачи 93 Ra8, цветовой температурой 65000 К – холодный дневной свет. Выпускается в трёх модификациях:

  • 18W/965 1SL – лампы люминесцентные 18 Вт с номинальным световым потоком 1150 люмен и номинальной световой отдачей 63,9 Лм/Вт;
  • 58W/965 1SL – 58-ваттные источники света с номинальным световым потоком 4550 люмен и номинальной световой отдачей 77,8 Лм/Вт;
  • 36W/965 1SL – лампы люминесцентные 36 Вт с номинальным световым потоком 2800 люмен и номинальной световой отдачей 77,8 Лм/Вт.

Высокий индекс цветопередачи позволяет увидеть богатые, сочные и натуральные цвета, что делает лампу незаменимой в больницах, типографиях, салонах красоты, музеях, кабинетах стоматологии и магазинах. Лампы отличаются люминесцентным покрытием высокого качества с применением трёхполосного фосфора и почти полным отсутствием снижения уровня освещения.

Master TL-D Xtreme 36W/840 1SL – лампа люминесцентная 36-ваттной мощности, двухштыревая, холодного белого цвета с индексом цветопередачи 85 Ra8, номинальным световым потоком 3250 люмен, номинальной светоотдачей 90 Лм/Вт. Её особенностью является повышенный срок службы, достигающий 66 000 часов, что важно для мест, где высока стоимость замены ламп по причине высоты помещения, необходимости прерывания работы, или там, где свет горит постоянно – в тоннелях, буровых установках, в условиях непрерывного производства.

Master PL-C 18W/830/2P 1CT – двухконтактная люминесцентная лампа 18-ваттной мощности с G24d-2-цоколем, тёплого белого цвета 3000 К, с индексом цветопередачи 82 Ra8, номинальным световым потоком 1200 люмен, номинальной светоотдачей 67 Лм/Вт. Предназначена для общего верхнего освещения в заведениях досуга, розничной торговли и офисных зданиях. Лампа люминесцентная Philips Master Pl-C использует оригинальную технология мостового подключения, гарантирующую оптимальную работу, лучшее освещение и высокую эффективнось. Двухконтактная модель имеет извлекаемый цоколь и используется с ЭМПРА.

Энергосберегающие источники света от Osram

Osram выпускает компактные лампы люминесцентные 18 Вт DSST FCY 18 W/825 E27 тёплого цвета 2500 K, с индексом цветопередачи 80, световым потоком 1050 люмен и патроном E27. Прибор способен выдержать очень большое число пусковых циклов – до 1 млн.

Osram Lumilux T9 C – 29-мм кольцеобразный светильник с патроном G10Q, номинальной мощностью 22 Вт, цветовой температурой 2700 К, индексом цветопередачи 80-89, номинальным световым потоком 1350 люмен и номинальной светоотдачей 61 Лм/Вт. Предназначена для общественных зданий, ресторанов, производств, магазинов, супермаркетов, гостиниц. Его отличают экономичность, хорошее качество света, превосходный световой поток, равномерное освещение без теней. Допускается регулировка яркости.

L 36 W/840-1 – 1-метровые линейные лампы, люминесцентные, 36 Вт, с цоколем G13 base, цветовой температурой 4000 К, номинальным световым потоком 3100 люмен, индексом цветопередачи 80 Ra, номинальной светоотдачей 86 Лм/Вт. Предназначены для освещения общественного транспорта.

Endura 70 W/830 – безэлектродный источник света Osram мощностью 70 Вт, номинальным световым потоком 6200 люмен тёплого белого цвета температурой 3000 К, индексом цветопередачи 80-90 Ra и светоотдачей 80 Лм/Вт. Применяется для освещения туннелей, производств, улиц, спортивных площадок. Отличается высоким сроком службы (до 100 000 ч.), экономичностью, высоким световым потоком, мгновенным запуском.

Безэлектродные люминесцентные лампы – это устройства, у которых разряд происходит в высокочастотном электромагнитном поле, создаваемом магнитопроводами на колбе. Магнитопроводы играют роль первичной обмотки трансформатора, а газовый разряд – вторичной. Характеристики люминесцентных ламп этого типа сводятся к следющему: приборы отличаются стабильностью, они долго служат благодаря отсутствию разрушающихся электродов.

DSST SENSOR CL A 15 W/827 E27 – люминесцентная лампа мощностью 15 Вт, номинальным световым потоком 870 люмен, тёплым белым светом температурой 2700 К. Отличается повышенной эффективностью благодаря автоматическому отключению в светлое время суток. Предназначена только для наружного применения.

fb.ru

Люминесценция: виды, методы, применение. Термостимулированная люминесценция

Люминесценция – это излучение света определенными материалами в относительно холодном состоянии. Она отличается от излучения раскаленных тел, например горящего дерева или угля, расплавленного железа и проволоки, нагреваемой электрическим током. Излучение люминесценции наблюдается:

  • в неоновых и люминесцентных лампах, телевизорах, радарах и экранах флюороскопов;
  • в органических веществах, таких как люминол или люциферин в светлячках;
  • в некоторых пигментах, используемых в наружной рекламе;
  • при молнии и северном сиянии.

Во всех этих явлениях световое излучение не является результатом нагревания материала выше комнатной температуры, поэтому его называют холодным светом. Практическая ценность люминесцентных материалов заключается в их способности трансформировать невидимые формы энергии в видимое излучение.

Источники и процесс

Явление люминесценции происходит в результате поглощения материалом энергии, например, от источника ультрафиолетового или рентгеновского излучения, пучков электронов, химических реакций и т. д. Это приводит атомы вещества в возбужденное состояние. Так как оно неустойчиво, материал возвращается в свое исходное состояние, а поглощенная энергия выделяется в виде света и/или тепла. В процессе задействованы только внешние электроны. Эффективность люминесценции зависит от степени превращения энергии возбуждения в свет. Число материалов, обладающих достаточной для практического применения эффективностью, относительно небольшое.

Люминесценция и накаливание

Возбуждение люминесценции не связано с возбуждением атомов. Когда горячие материалы начинают светиться в результате накаливания, их атомы находятся в возбужденном состоянии. Хотя они вибрируют уже при комнатной температуре, этого достаточно, чтобы излучение происходило в дальней инфракрасной области спектра. С повышением температуры частота электромагнитного излучения смещается в видимую область. С другой стороны, при очень высоких температурах, которые создаются, например, в ударных трубах, столкновения атомов могут быть настолько сильными, что электроны отделяются от них и рекомбинируют, испуская свет. В этом случае люминесценция и накаливание становятся неразличимыми.

Люминесцентные пигменты и красители

Обычные пигменты и красители обладают цветом, так как они отражают ту часть спектра, которая комплементарна поглощенной. Небольшая часть энергии преобразуется в тепло, но заметного излучения не происходит. Если, однако, люминесцентный пигмент поглощает дневной свет на определенном участке спектра, он может излучать фотоны, отличающиеся от отраженных. Это происходит в результате процессов внутри молекулы красителя или пигмента, благодаря которым ультрафиолет может быть преобразован в видимый, например, синий свет. Такие методы люминесценции используются в наружной рекламе и в стиральных порошках. В последнем случае «осветлитель» остается в ткани не только для отражения белого, но и для преобразования ультрафиолетового излучения в синий цвет, компенсирующий желтизну и усиливающий белизну.

Ранние исследования

Хотя молнии, северное сияние и тусклое свечение светлячков и грибов всегда были известны человечеству, первые исследования люминесценции начались с синтетического материала, когда Винченцо Каскариоло, алхимик и сапожник из Болоньи (Италия), в 1603 г. нагрел смесь сульфата бария (в виде барита, тяжелого шпата) с углем. Порошок, полученный после охлаждения, ночью испускал голубоватое свечение, и Каскариоло заметил, что оно может быть восстановлено путем воздействия на порошок солнечного света. Вещество было названо «ляпис солярис», или солнечный камень, потому что алхимики надеялись, что оно способно превращать металлы в золото, символом которого является солнце. Послесвечение вызвало интерес многих ученых того периода, дававших материалу и другие названия, в том числе «фосфор», что означает «носитель света».

Сегодня название «фосфор» используется только для химического элемента, в то время как микрокристаллические люминесцирующие материалы называются люминофором. «Фосфор» Каскариоло, по-видимому, был сульфидом бария. Первым коммерчески доступным люминофором (1870 г.) стала «краска Бальмена» — раствор сульфида кальция. В 1866 году был описан первый стабильный люминофор из сульфида цинка – один из важнейших в современной технике.

Одно из первых научных исследований люминесценции, проявляющейся при гниении древесины или плоти и в светлячках, было выполнено в 1672 году английским ученым Робертом Бойлем, который, хотя и не знал о биохимическом происхождении этого света, тем не менее установил некоторые из основных свойств биолюминесцентных систем:

  • свечение холодное;
  • оно может быть подавлено такими химическими агентами, как спирт, соляная кислота и аммиак;
  • излучение требует доступа к воздуху.

В 1885-1887 годах было замечено, что неочищенные экстракты, полученные из вест-индийских светлячков (огненосных щелкунов) и из моллюсков фолад, при смешивании производят свет.

Первыми эффективными хемилюминесцентными материалами были небиологические синтетические соединения, такие как люминола, открытая в 1928 году.

Хеми- и биолюминесценция

Большая часть энергии, выделяющейся в химических реакциях, особенно реакциях окисления, имеет форму тепла. В некоторых реакциях, однако, ее часть используется для возбуждения электронов до более высоких уровней, а во флуоресцентных молекулах до возникновения хемилюминесценции (ХЛ). Исследования показывают, что ХЛ является универсальным явлением, хотя интенсивность люминесценции бывает настолько мала, что требуется использование чувствительных детекторов. Есть, однако, некоторые соединения, которые демонстрируют яркую ХЛ. Наиболее известным из них является люминол, который при окислении пероксидом водорода может давать сильный синий или сине-зеленый свет. Другие сильные ХЛ-вещества – люцигенин и лофин. Несмотря на яркость их ХЛ, не все они эффективны при преобразовании химической энергии в световую, т. к. менее 1 % молекул излучают свет. В 1960-е годы было обнаружено, что сложные эфиры щавелевой кислоты, окисленные в безводных растворителях в присутствии сильно флуоресцирующих ароматических соединений, излучают яркий свет с эффективностью до 23 %.

Биолюминесценция представляет собой особый тип ХЛ, катализируемой ферментами. Выход люминесценции таких реакций может достигать 100 %, что означает, что каждая молекула реагирующего люциферина переходит в излучающее состояние. Все известные сегодня биолюминесцентные реакции катализируются реакциями окисления, протекающими в присутствии воздуха.

Термостимулированная люминесценция

Термолюминесценция означает не температурное излучение, но усиление светового излучения материалов, электроны которых возбуждены под действием тепла. Термостимулированная люминесценция наблюдается у некоторых минералов и прежде всего у кристаллофосфоров после того, как они были возбуждены светом.

Фотолюминесценция

Фотолюминесценция, которая возникает под действием электромагнитного излучения, падающего на вещество, может производиться в диапазоне от видимого света через ультрафиолетовый до рентгеновского и гамма-излучения. В люминесценции, вызванной фотонами, длина волны излучаемого света, как правило, равна или больше длины волны возбуждающего (т. е. равной или меньшей энергии). Эта разница в длине волны обусловлена ​​преобразованием поступающей энергии в колебания атомов или ионов. Иногда, при интенсивном воздействии лучом лазера, испускаемый свет может иметь более короткую длину волны.

Тот факт, что ФЛ может возбуждаться под действием ультрафиолетового излучения, был обнаружен немецким физиком Иоганном Риттером в 1801 г. Он заметил, что люминофоры ярко светятся в невидимой области за фиолетовой частью спектра, и таким образом открыл УФ-излучение. Превращение УФ в видимый свет имеет большое практическое значение.

Гамма- и рентгеновские лучи возбуждают кристаллические люминофоры и другие материалы до состояния люминесценции путем процесса ионизации с последующей рекомбинацией электронов и ионов, в результате чего и происходит люминесценция. Применение она находит во флюороскопах, используемых в рентгенодиагностике, и в сцинтилляционных счетчиках. Последние регистрируют и измеряют гамма-излучение, направленное на диск, покрытый люминофором, который находится в оптическом контакте с поверхностью фотоумножителя.

Триболюминесценция

Когда кристаллы некоторых веществ, например сахара, измельчаются, видны искры. То же наблюдается у многих органических и неорганических веществ. Все эти виды люминесценции порождаются положительными и отрицательными электрическими зарядами. Последние производятся за счет механического разделения поверхностей и в процессе кристаллизации. Световое излучение затем происходит путем разряда – либо непосредственного, между фрагментами молекул, либо через возбуждение люминесценции атмосферы вблизи отделенной поверхности.

Электролюминесценция

Как и термолюминесценция, термин электролюминесценция (ЭЛ) включает в себя разные виды люминесценции, общей чертой которых является то, что свет излучается при электрическом разряде в газах, жидкостях и твердых материалах. В 1752 г. Бенджамин Франклин установил люминесценцию молнии, вызванную электрическим разрядом через атмосферу. В 1860 году в Лондонском королевском обществе впервые была продемонстрирована разрядная лампа. Она производила яркий белый свет при разряде высокого напряжения через двуокись углерода при низком давлении. Современные люминесцентные лампы основаны на комбинации электролюминесценции и фотолюминесценции: атомы ртути в лампе возбуждаются электрическим разрядом, испускаемое ими ультрафиолетовое излучение преобразуется в видимый свет с помощью люминофора.

ЭЛ, наблюдаемая у электродов при электролизе, обусловлена ​​рекомбинацией ионов (следовательно, это своего рода хемилюминесценция). Под действием электрического поля в тонких слоях люминесцирующего сульфида цинка происходит излучение света, которое также называют электролюминесценцией.

Большое количество материалов испускает свечение под воздействием ускоренных электронов – алмаз, рубин, кристаллический фосфор и некоторые комплексные соли платины. Первое практическое применение катодолюминесценции – осциллограф (1897). Аналогичные экраны, использующие улучшенные кристаллические люминофоры, используются в телевизорах, радарах, осциллографах и электронных микроскопах.

Радиолюминесценция

Радиоактивные элементы могут испускать альфа-частицы (ядра гелия), электроны и гамма-лучи (высокоэнергетическое электромагнитное излучение). Радиационная люминесценция – это свечение, возбуждаемое радиоактивным веществом. Когда альфа-частицы бомбардируют кристаллический фосфор, под микроскопом видны крошечные мерцания. Этот принцип использовал английский физик Эрнест Резерфорд, чтобы доказать, что атом обладает центральным ядром. Самосветящиеся краски, используемые для маркировки часов и других инструментов, действуют на основе РЛ. Они состоят из люминофора и радиоактивного вещества, например трития или радия. Впечатляющая естественная люминесценция – это северное сияние: радиоактивные процессы на Солнце выбрасывают в пространство огромные массы электронов и ионов. Когда они приближаются к Земле, ее геомагнитное поле направляет их к полюсам. Газоразрядные процессы в верхних слоях атмосферы и создают знаменитые полярные сияния.

Люминесценция: физика процесса

Излучение видимого света (т. е. с длинами волн между 690 нм и 400 нм) требует энергии возбуждения, минимум которой определяется законом Эйнштейна. Энергия (Е) равна постоянной Планка (h), умноженной на частоту света (ν) или на его скорость в вакууме (с), деленную на длину волны (λ): E = hν = hc / λ.

Таким образом, энергия, необходимая для возбуждения, колеблется в пределах от 40 килокалорий (для красного) до 60 килокалорий (для желтого) и 80 килокалорий (для фиолетового) на моль вещества. Другой способ выражения энергии – через электрон-вольты (1 эВ = 1,6 × 10-12 эрг) – от 1,8 до 3,1 эВ.

Энергия возбуждения передается электронам, ответственным за люминесценцию, которые перескакивают со своего основного энергетического уровня на более высокий. Эти состояния определяются законами квантовой механики. Различные механизмы возбуждения зависят от того, происходит ли оно в одиночных атомах и молекулах, в комбинациях молекул или в кристалле. Они инициируются посредством воздействия ускоренных частиц, таких как электроны, положительные ионы или фотоны.

Часто энергия возбуждения значительно выше необходимых для поднятия электрона до уровня излучения. Например, свечение кристаллов люминофора в телевизионных экранах производится катодными электронами со средними энергиями 25000 электрон-вольт. Тем не менее цвет люминесцентного света почти не зависит от энергии частиц. На него влияет уровень возбужденного состояния энергии кристаллических центров.

Люминесцентные лампы

Частицы, из-за которых возникает люминесценция, – это внешние электроны атомов или молекул. В люминесцентных лампах, например, атом ртути возбуждается под воздействием энергии 6,7 эВ или более, поднимая один из двух внешних электронов на более высокий уровень. После его возвращения в основное состояние разница в энергии излучается в виде ультрафиолетового света с длиной волны 185 нм. Переход между другим уровнем и базовым производит ультрафиолетовое излучение при 254 нм, которое, в свою очередь, может возбуждать другие люминофоры, генерирующие видимый свет.

Это излучение особенно интенсивно при низких давлениях паров ртути (10-5 атмосферы), используемых в газоразрядных лампах низкого давления. Таким образом около 60 % энергии электронов преобразуется в монохроматический УФ-свет.

При высоком давлении частота увеличивается. Спектры больше не состоят из одной спектральной линии 254 нм, а энергия излучения распределена по спектральным линиям, соответствующим различным электронным уровням: 303, 313, 334, 366, 405, 436, 546 и 578 нм. Ртутные лампы высокого давления используют для освещения, так как 405–546 нм соответствуют видимому голубовато-зеленому свету, а при трансформации части излучения в красный свет с помощью люминофора в итоге получается белый.

Когда молекулы газа возбуждаются, их спектры люминесценции показывают широкие полосы; не только электроны поднимаются на уровни более высокой энергии, но одновременно возбуждаются колебательные и вращательные движения атомов в целом. Это происходит потому, что колебательные и вращательные энергии молекул составляют 10-2 и 10-4 от энергий переходов, которые, складываясь, образуют множество немного отличающихся длин волн, составляющих одну полосу. В более крупных молекулах есть несколько перекрывающих друг друга полос, по одной для каждого вида перехода. Излучение молекул в растворе преимущественно лентовидное, что вызвано взаимодействием относительно большого числа возбужденных молекул с молекулами растворителя. В молекулах, как и в атомах, в люминесценции участвуют внешние электроны молекулярных орбиталей.

Флуоресценция и фосфоресценция

Эти термины можно различать не только на основании длительности свечения, но и по способу его производства. Когда электрон возбуждается до синглетного состояния со сроком пребывания в нем 10-8 с, из которого он может легко вернуться в основное, вещество излучает свою энергию в виде флуоресценции. Во время перехода спин не изменяется. Базовое и возбужденное состояния имеют подобную кратность.

Электрон, однако, можно поднять на более высокий энергетический уровень (называемый «возбужденное триплетное состояние») с обращением его спина. В квантовой механике переходы из триплетных состояний в синглетные запрещены, и, следовательно, время их жизни значительно больше. Поэтому люминесценция в этом случае имеет гораздо более длительный срок: наблюдается фосфоресценция.

fb.ru

📌 ЛЮМИНЕСЦЕНЦИЯ — это… 🎓 Что такое ЛЮМИНЕСЦЕНЦИЯ?

(от лат. lumen, род. п. luminis — свет и -escent — суффикс, означающий слабое действие) — излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения Л. отделяет её от теплового равновесного излучения и указывает на то, что понятие Л. применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному (отклонение от равновесного состояния может заключаться в том, что одна термоди-намич. подсистема, напр. ионы, имеет определ. темп-ру, а другая — валентные электроны — находится в неравновесном состоянии). При сильном отклонении от равновесного состояния говорить о тепловом излучении или Л. не имеет смысла. В видимой области спектра тепловое излучение становится заметным только при темп-ре ~103-104 К, люминесцировать же в этой области тело может при любой темп-ре, поэтому Л. часто наз. холодным свечением.

Вторая часть определения — признак длительности — была введена С. И. Вавиловым, чтобы отделить Л. от разл. видов рассеяния, отражения, парамет-рич. преобразования света, тормозного и Черенкова — Вавилова излучений. В отличие от рассеяния света, при Л. между поглощением и испусканием происходят промежуточные процессы, длительность к-рых больше периода световой волны. Однако критерий сравнения длительности этих процессов с периодом световой волны недостаточен, чтобы, напр., отделить резонансное рассеяние от т. н. резонансной флуоресценции (см. ниже). При большом времени жизни возбуждённого состояния акт резонансного рассеяния длится долее периода световых колебаний, как и процессов когерентного испускания света, системой атомов (см. Фотонное эхо). Однако в этих процессах сохраняются определ. соотношения между фазами поглощённой и испущенной световых волн, в то время как при Л. эта корреляция утрачивается. Поэтому целесообразно отделять Л. от др. процессов по времени фазовой релаксации поляризации среды.

Л. в природе — северное сияние, свечение нек-рых насекомых, минералов, гниющего дерева — наблюдалась давно, однако систематически Л. изучается с 17 в. Л.- квантовый процесс, происходит при квантовых переходах в атомах, молекулах, кристаллах.

Виды люминесценции. По виду возбуждения различают фотолюминесценцию (возбуждение светом), радиолюминесценцию (возбуждение проникающей радиацией; к ней, в частности, относятся рентгено-, катодо-, ионо- и a-люминесценции), электролюминесценцию (возбуждение электрич. полем), кандолюминесценцию (возбуждение при механич. воздействиях, напр. при разрушении кристаллич. решётки), хемилюминесценцию (возбуждение при хим. реакции), в частности биолюминесценцию, радикалорекомбинационную Л., лиолюминесценцию (возбуждение при растворении кристаллов).

По длительности свечения различают флуоресценцию (быстрозатухающую Л.) и фосфоресценцию (длительная Л.). Это деление условное, оно зависит от временного разрешения регистрирующих приборов. Иногда термины «флуоресценция» и «фосфоресценция» используют, чтобы отличить Л., происходящую при переходах с синглетных уровней, от переходов, происходящих с метастабильных триплетных уровней.

По механизму элементарных процессов различают резонансную, спонтанную, метаcтабильную, или вынужденную, и рекомбинационную Л.

Кроме способа возбуждения к осн. характеристикам Л. относятся энергетич. и квантовый выход Л., кинетика Л., спектральный состав свечения и возбуждающего света, механизм преобразования энергии.

Люминесцировать могут вещества во всех агрегатных состояниях — газы и пары, растворы органич. веществ, стёкла, кристаллич. вещества; осн. условие — наличие дискретного спектра. Вещества с непрерывным энергетич. спектром (напр., металлы в конденсированном состоянии) не люминесцируют, т. к. в них энергия возбуждения непрерывным образом переходит в теплоту. Кроме того, для возникновения Л. вероятность излучат. переходов должна превышать вероятность безызлучательного. Соотношение между этими вероятностями определяет эффективность Л. Интенсивность Л. зависит от интенсивности возбуждения, поэтому не может служить характеристикой Л. Более однозначная характеристика — выход Л. — отношение энергии Л. к поглощённой энергии возбуждения (при фотолюминесценции — квантовый выход Л.- отношение числа испущенных и поглощённых квантов света).

Тушение люминесценции. Повышение вероятности безызлучательных переходов влечёт за собой тушение Л. Эта вероятность зависит от мн. факторов, возрастает, напр., при повышении темп-ры (температурное тушение), концентрации люминесцирующих молекул (концентрационное тушение) или примесей (примесное тушение). Тушение Л. зависит как от природы люминесцирующего вещества и его агрегатного состояния, так и от внеш. условий.

При низком давлении люминесцируют пары металлов, благородные газы, пары мн. органич. веществ. В достаточно разреженных атомных парах, когда время между соударениями больше времени жизни возбуждённого состояния, выход Л. близок к единице. При столкновениях энергия возбуждения может переходить в кине-тич. энергию атомов, что уменьшает выход Л. В молекулярных парах энергия электронного возбуждения может безызлучательно переходить в колебательно-вращательную энергию молекул, к-рая при соударениях переходит в кинетич. энергию. Такие процессы яасто приводят к полному тушению Л.

В конденсированных средах ещё более вероятны безызлучат. переходы энергии электронного возбуждения в колебательную и распределение её между мн. молекулами в результате их взаимодействия, что приводит систему к состоянию термодинамич. равновесия. Поэтому Л. наблюдается не у всех веществ, а лишь у тех, для к-рых по тем или иным причинам отношение вероятностей излучат. и безызлучат. переходов высоко. У специально приготовленных ярко люминесцирующих веществ — люминофоров — квантовый выход фотолюминесценции составляет десятки процентов, а у нек-рых приближается к единице.

В жидком состоянии люминесцируют растворы органич. веществ с цепями сопряжённых двойных связей, в т. ч. большинства ароматич. соединений (некрые из них — стильбен, антрацен и др. — способны люминесцировать и в кристаллич. состоянии), растворы ураниловых и платиносинеродистых солей, нек-рых солей редкоземельных и переходных металлов (примеси этих солей в кристаллич. и стеклообразных матрицах также способны к Л.). Люминесцируют нек-рые щёлочно-галоидные кристаллы, а также кристаллы групп (напр., ZnS) и особенно кристаллы, содержащие примеси-активаторы (см. Кристаллофосфоры).

Механизм и свойства люминесценции. При возбуждении Л. атом (молекула), поглощая энергию, переходит с основного уровня энергии 1 (рис. 1) на возбуждённый уровень 3. В атомных парах (Hg, Na, Cd и др.), нек-рых простых молекулах и в примесных атомах Л. может происходить непосредственно при переходе 31.

В этом случае частоты Л. и возбуждающего света совпадают, а Л. наз. резонансной. При взаимодействии с окружающими атомами возбуждённый атом может передать им часть энергии и перейти на уровень 2, при излучат. переходе с к-рого и происходит Л., наз. спонтанной. Как правило, уровень испускания 2 лежит ниже уровня 3, часть энергии при возбуждении теряется на тепло, а длина волны испущенного света больше, чем поглощённого (стоксова люминесценция; см. Стокса правило). Возможны и процессы, когда излучающий атом получает дополнит. энергию от др. атомов; тогда испущенный квант может иметь меньшую длину волны (антистоксова Л.). Эта добавочная энергия может быть как энергией теплового движения атомов, так и результатом суммирования энергии возбуждения — передачи энергии, поглощённой неск. атомами, одному излучающему атому (см. Кооперативная люминесценция).

Рис. 1. Схема квантовых переходов при элементарном процессе люминесценции: 1 — основной уровень энергии; 2 — уровень испускания; 3 — уровень возбуждения. Пунктирной линией обозначен переход, соответствующий резонансной люминесценции, волнистой — безызлучательный переход.

В нек-рых случаях атом (молекула), прежде чем перейти на уровень испускания 2 (рис. 2), оказывается на промежуточном метастабильном уровне 4 и для перехода на уровень 2 ему необходимо сообщить дополнит. энергию, напр. энергию теплового движения или света. Л., возникающая при таких процессах, наз. метастабильной (вынужденной или стимулированной).

Рис. 2. Схема квантовых переходов при мстастабильной (стимулированной) люминесценции: 1, 2, 3 — то же, что на рис. 1; 4 — метастабильный уровень.

В молекулах мн. органич. веществ метастабильным уровнем наиб. часто служит триплетный. В этих молекулах наблюдается как быстрозатухающая Л., соответствующая переходам между синглетными уровнями, так и более длительная Л.- с участием триплетных уровней. Во мн. веществах триплет-синглетный переход также является излучательным, это приводит к появлению в спектре Л. дополнительной, более длинноволновой полосы.

При спонтанной Л. уровни 2 и 3 могут относиться к одному и тому же электронному состоянию, но к различным колебат. состояниям. Время колебат. релаксации ~10-11-10-13 с, т. е. существенно меньше времени жизни возбуждённого электронного состояния. Т. о., за время, много меньшее времени высвечивания Л., в системе успевает установиться термодинамич. равновесие по колебат. степеням свободы. Это равновесное распределение и определяет спектральный состав полосы Л. В этом случае говорят о независимости спектра фотолюминесценции от длины волны возбуждающего света, а для определ. электронного состояния спектры поглощения и Л. зеркально симметричны относительно частоты чисто электронного перехода (см. Лёвшина правило).

При наблюдении Л. за очень короткие промежутки времени, когда в веществе ещё не установилось термодинамич. равновесие, можно обнаружить, что спектр Л. отличается от равновесного (см. Горячая люминесценция). Ширина спектральных полос Л. зависит от размеров молекул, агрегатного состояния, темп-ры и имеет значение (в волновых числах) от 10 -3 (Л. атомов в атомных пучках) и единиц см -1 (Л. примесей редкоземельных элементов в кристаллах) до 103 см -1 (Л. растворов сложных органич. молекул).

Уровень испускания может принадлежать как тому же атому (молекуле), к-рый поглотил энергию возбуждения (такие переходы называются внутрицентровыми), так и др. частице. Передача энергии др. атомам и молекулам осуществляется электронами при электронно-ионных ударах, при процессах ионизации и рекомбинации, индуктивно-резонансным или обменным путём, при непосредственном столкновении возбуждённого атома с невозбуждённым. Из-за малой концентрации атомов в разреженных газах процессы резонансной и обменной передачи энергии в них играют малую роль. Они становятся существенными в конденсированных средах, где энергия возбуждения может передаваться также с помощью колебаний ядер. И, наконец, в кристаллах определяющей становится передача энергии с помощью электронов проводимости, дырок и электронно-дырочных пар (экситонов). Если заключит. актом передачи энергии является рекомбинация (напр., электронов и ионов или электронов и дырок), то сопровождающая этот процесс Л. наз. рекомбинационной.

В реальных кристаллах необходимо учитывать происходящие в них промежуточные процессы. Упрощённая схема переходов в кристаллофосфорах представлена на рис. 3. Между энергетическими зонами-валентной (1) и проводимости (3 )расположены локальные уровни энергии, связанные с атомами примесей или дефектами решётки. Если переходы между уровнями локального центра сопровождаются излучением, то такие центры наз. центрами свечения или центрами Л. (уровни 2 и 4). Помимо центров свечения примеси и др. дефекты решётки могут создавать ловушки (5 )электронов и центры безызлучат. рекомбинации (6 )(центры тушения). Поглощение света при фотолюминесценции или электронный удар при электролюминесценции переводит электроны из валентной зоны или центра Л. в зону проводимости (переходы а к б соответственно). При межзонном возбуждении дырка из валентной зоны может уйти на центр Л. (в). В зоне проводимости электроны диффундируют, оседая на т. н. мелких ловушках и затем термически высвобождаясь из них (переходы г и д соответственно). Далее они могут возвратиться на ионизованный центр Л. (г) и при рекомбинации испустить квант света.

Рис. 3. Схема переходов при люминесценции кристаллофосфо-ров: 1 — валентная зона; 2 и 4 — уровни центра люминесценции; 3 — зона проводимости; 5 — ловушки электронов; 6 — уровень безызлучательной рекомбинации. Переходы а и б соответствуют возбуждению люминесценции, в — ионизация центра дыркой, г и д — оседание электронов на ловушках и их освобождение.

В чистых кристаллах с малым кол-вом примесей наблюдаются также полосы экс и тонной Л., соответствующие рекомбинации экситонов. В нек-рых кристаллах возможно наблюдение т. н. краевой Л., соответствующей непосредственной межзонной рекомбинации электронов и дырок. В процессе миграции электронов по зоне проводимости может возникать их безызлучат. рекомбинация с центрами тушения (6), захватившими дырки из валентной зоны.

Кинетика люминесценции. Кинетика затухания спонтанной Л. в простейшем случае, когда можно пренебречь временем колебат. релаксации и малы вероятности безызлучат. переходов, описывается экспоненциальным законом:


где I0 и I — интенсивности Л. соответственно в нач. момент времени и через время t;характеризует ср. время жизни возбуждённого состояния, равное обратной величине вероятности А спонтанного перехода в единицу времени (см. Эйнштейна коэффициенты). Если квантовый выход Л. меньше единицы, то , где q — вероятность безызлучат. потери энергии электронного возбуждения. В этом случае экспоненциальный закон затухания сохраняется только при q=const. Когда q оказывается зависящим от времени (напр., если тушение определяется диффузионным сближением молекул люминесцирующего вещества и тушителя при индуктивно-резонансном или обменном механизме передачи энергии; см. Перенос энергии), затухание Л. не является экспоненциальным. Отклонение от экспоненциальной зависимости может возникать также при Л. вещества большой толщины, когда спектры Л. и поглощения перекрываются; тогда явления реабсорбции и переизлучения (см. Перенос излучения )приводят к затягиванию Л. При большой мощности возбуждения может возникнуть инверсия населённости в веществе, когда на нижних колебат. уровнях возбуждённого электронного состояния оказывается больше частиц, чем на колебат. уровнях осн. электронного состояния. В этом случае наблюдается эффект усиления света, которое приводит к изменению спектрального состава Л., её яркости, кинетики и угл. распределения. Такая Л. наз. суперлюминесценцией.

Кинетика метастабильной Л. после прекращения возбуждения в случае с одним метастабильным уровнем определяется суммой двух экспонент:


причём времена жизни и на уровнях зависят от вероятностен излучат. и безызлучат. переходов, а предэкспоненциальные множители С1 и С2 кроме того, и от нач. состояния молекул. Вероятность W безызлучат. перехода с метастабильного уровня 4 на уровень испускания 2 при поглощении энергии теплового движения зависит от абс. темп-ры Т:


где — глубина метастабильного уровня 4 относительно уровня 2. В связи с этим время затухания метастабильной Л. оказывается резко зависящим от темп-ры, в отличие от спонтанной, в к-рой температурная зависимость проявляется только через тушение.

В простейшем случае кинетика рекомбинационной Л. описывается ур-нием бимолекулярной реакции, решение к-рого приводит к гиперболич. закону затухания:


( р — постоянная).

Кинетика Л. кристаллофосфоров сложна и определяется вероятностями излучат. и безызлучат. переходов, вероятностями захвата и освобождения электронов и дырок ловушками. Во мн. случаях в широком диапазоне времён кинетика затухания Л. аппроксимируется гиперболой Беккереля:


где При включении возбуждающего света наблюдаются процессы нарастания яркости Л., связанные с накоплением электронов на ловушках. В зависимости от условий, в частности от глубины ловушек и темп-ры, затухание Л. кристаллофосфоров может продолжаться от ~10-8 с до неск. часов. Если происходят процессы тушения, то сокращается время затухания Л. и уменьшается её выход.

При изучении Л. кристаллофосфоров необходимо учитывать также освобождение электронов из ловушек под действием возбуждающего света (т. н. высвечивающее действие света). Запасённая электронам» на ловушках энергия (запасённая светосумма) может быть освобождена при нагревании кристаллофосфора. Метод термовысвечивания применяется для исследования энергетич. спектра уровней захвата. Освобождение ИК-светом электронов из ловушек предварительно возбуждённого кристаллофосфора используется для создания вспышечных фосфоров, предназначенных для визуализации ИК-света (см. Сенсибилизированная люминесценция).

Исследование кинетики Л. позволяет судить о вероятностях переходов, процессах миграции энергии н процессах взаимодействия атомов и молекул. Кинетика Л. изучается с помощью спектрофлуориметров. Совр. спектрофлуориметры, основанные на высокочастотной модуляции возбуждающего света или использующие лазеры с пикосекундной длительностью возбуждающих импульсов света, имеют временное разрешение в неск. пикосекунд. С их помощью удаётся исследовать процессы внутримолекулярной релаксации колебат. энергии.

Применения люминесценции. Исследование спектров Л. и спектров возбуждения Л. является составной частью спектроскопии и даёт информацию об энергетич. спектре веществ. Наряду с обычными задачами спектроскопии при исследовании Л. важным является измерение выхода Л.

По поляризации Л. можно определить ориентацию и мультипольность испускающих и поглощающих атомных и молекулярных систем н получить информацию о процессах передачи энергии между ними (см. Поляризованная люминесценция).

Люминесцентные методы относятся к наиб. важным в физике твёрдого тела. При изучении кристаллофосфоров параллельно сравнивают их Л. и проводимость. Биолюминесценция позволяет получать информацию о процессах, происходящих в клетках на молекулярном уровне.

Люминесцирующие вещества являются активной средой лазеров. Яркость Л. и её высокий энергетич. выход для ряда веществ позволили создать нетепловые источники света (газоразрядные и люминесцентные лампы) с высоким кпд. Яркая Л. ряда веществ обусловила развитие метода обнаружения малых кол-в примесей и сортировки по их Л. и изучение смесей, напр. нефти; чувствительность совр. флуоресцентного анализа позволяет детектировать отд. ионы (см. Люминесцентный анализ).

Катодолюминесценция лежит в основе свечения экранов осциллографов, телевизоров, локаторов и т. д. Мн. полупроводниковые светодиоды основаны на явлении электролюминесценции; в рентгеноскопии используется рентгенолюминесценция. В сцинтилляционных детекторах использована радиолюминесценция. Л. применяется в дефектоскопии, криминалистике, люминесцентными красками окрашивают ткани, дорожные знаки, отбеливают бумагу и т. д.

Лит.: Левшин В. Л., Фотолюминесценция жидких и твёрдых веществ, М.- Л., 1951; Вавилов С. И., Собр. соч., т. 2, М., 1952, с. 20, 28, 29; Антонов — Романовекий В. В., Кинетика фотолюминесценции кристаллофосфоров, М., 1966; Гурвич А. М., Введение в физическую-химию кристаллофосфоров, 2 изд., М., 1982: Агранович В. М., Галанин М. Д., Перенос энергии электронного возбуждения в конденсированных средах, М.. 1978.

Э. Л. Свириденков.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru

📌 Люминесцентные лампы — это… 🎓 Что такое Люминесцентные лампы?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *