Что такое нейтраль в электрике – Нейтральный провод — Википедия

Содержание

Нейтральный провод — Википедия

Материал из Википедии — свободной энциклопедии

Нейтральный (нулевой рабочий) провод — провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях.

При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали, которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению

пожара.
Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.

Шина для раздачи нулевых проводов.

Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (в системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым[1]. Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.

В линиях электропередач разных классов применяются различные виды нейтралей. Это связано с целевым назначением и различной аппаратурой защиты линии от короткого замыкания и утечек. Нейтраль бывает глухозаземлённая, изолированная и эффективно-заземленная.

Глухозаземлённая нейтраль[править | править код]

Применяется в линиях напряжением от 0,4 кВ и до 35 кВ, при небольшой длине ЛЭП и большом количестве точек подключения потребителей. Потребителю приходят 3 фазы и ноль, подключение однофазной нагрузки осуществляется между фазой и нулевым проводом (нейтралью). Нулевой провод генератора также заземлён.

Изолированная нейтраль[править | править код]

Применяется в линиях с напряжением свыше 2 кВ до 35 кВ, такие линии имеют среднюю протяжённость и сравнительно небольшое число точек подключения потребителей, которыми обычно являются ТП в жилых районах и мощные машины фабрик и заводов.

В линиях на 50 кВ может применяться как изолированная, так и эффективно-заземлённая нейтраль.

Эффективно заземленная нейтраль[править | править код]

Применяется на протяжённых линиях с напряжением от 110 кВ до 220 кВ (п. 1.2.16 ПУЭ) Работа электрических сетей напряжением 110 кВ может предусматриваться как с глухозаземленной, так с эффективно заземленной нейтралью. Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземленной нейтралью.

  • «Теоретические основы электротехники. Электрические цепи» Бессонов Л. А. Москва. «Высшая школа». 1996 ISBN 5-8297-0159-6
  • ПУЭ

ru.wikipedia.org

это… Определение, устройство и назначение

Электроэнергетика – это сложный промышленный комплекс, который состоит из множества составных частей. Чтобы каждый элемент работал правильно и выполнял поставленные задачи, необходимо точное знание и понимание физических процессов, которые протекают в силовом оборудовании. Некоторые из них легко объяснить, поэтому предлагаем познакомиться с таким понятием, как «нейтраль».

Общее назначение нулевого провода в обмотках трансформатора

Нейтраль – это общая, нулевая точка соединение проводника в трехфазных трансформаторах или генераторах. На текущий момент существует 4 основных разновидности присоединения нулевой точки:

  1. Изолированная. Этот тип характеризуется отсутствием нейтрали. Основной схемой соединения для представленной сети является треугольник. При однофазных замыканиях на землю на рабочих фазах не чувствуют изменений в энергопотреблении. Подобная разновидность применяется в распределительных сетях 6-35 кВ.
  2. Резонансно-заземленная. Указанный вариант предполагает использование заземления нулевой точки обмоток трансформатора или генератора через дугогасящие катушки или реакторы (ДГК, ДГР). Наличие специализированного оборудования компенсирует повышающийся уровень тока, позволяя избежать более сложных, межфазных повреждений.
  3. Глухозаземленная. Самый распространенный тип нейтрали, который используется в сетях бытового потребления. Обмотка трансформаторов по низкой стороне выполняется соединением разомкнутая звезда, а нулевая точка заземляется через контур заземления трансформатора или трансформаторной подстанции. При повреждениях на линии или возникновении однофазного замыкания создается потенциал относительно земли, что приводит в действие защиту, отключающую линию.
  4. Эффективно-заземленная. Разновидность заземленной нейтрали, которая используется в высоковольтных сетях 110 кВ и выше. Нулевая точка силовых трансформаторов и потенциал замыкания выносится на землю. Для повышения эффективности работы защит используется дополнительное оборудование заземлитель нейтрали одноколонковый (ЗОН). Положение коммутационного аппарата определяется режимными указаниями. Для распределительных сетей 6-35 кВ используется заземление через низкоомный резистор.

Типы соединения обмоток силовых трансформаторов

Как отмечалось выше, нейтраль – это соединение нулевого проводника трехфазного силового трансформатора или генератора. Чтобы определить тип заземления, достаточно посмотреть на схему энергетического оборудования. Для изолированной нейтрали принципиальная схема – это треугольник.

Остальные варианты реализованы через заземление нулевого проводника на землю, ДГК, низкоомный резистор. Последние в основном используются на подстанциях, которые преобразуют электрическую энергию высокого напряжения на низкое, потребительское. Принципиальная схема – звезда.

Изолированная нейтраль в электрических сетях

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Эффективное заземление – это особый вид нулевого проводника, присоединенного к специализированному оборудования, который применяется в электроустановках выше 1 кВ. Для распределительных сетей используется вариант с заземлением через низкоомные резисторы, которые обеспечивают отключение линии при однофазном замыкании на землю без выдержки времени.

Линии высокого напряжения 110 кВ и выше также используют представленный тип нейтрали, что обеспечивает быстроту срабатывания защит. Для повышения чувствительности работы «релейки» у каждого силового трансформатора имеется специальное оборудование ЗОН. Одноколонковый заземлитель нейтрали обеспечивает также защиту от перегруза.

Заземление через низкоомные резисторы

Использование низкоомных резисторов считается идеальным решением в плане безопасности людей в распределительных сетях, а также в вопросах сохранения изоляции кабельных линий. Реализация защит предполагает выведение нулевой точки на специализированное оборудование, которое обладает меньшим омическим сопротивлением и дает сигнал на отключение линии. Фидер отключается с минимальной выдержкой времени, что является одним из достоинств. К прочим необходимо отнести:

  • Первое, это нейтраль, которая при появление «земли» точно определяет поврежденное направление и отключает требуемую линию.
  • Второе: нет необходимости в дополнительных расчетах и составлении режимных карт при ограниченных возможностях кольцевания распределительных сетей.

Важными недостатками такого типа заземления:

  1. Не эффективен при больших токах замыкания на землю, так как появляются проблемы на подстанциях, где установлены низкоомные резисторы.
  2. Низкая эффективность на ВЛ, а также на линиях большой протяженности. В первом случае малейшее приближение веток деревьев станет причиной отключения фидера. Особенно актуально с потребителями 1 особой, 1 и 2 категории.
  3. Лишние отключения, которые возникают из-за неправильного срабатывания защит (отсутствие АПВ), предполагает простои в потреблении, материальные потери энергоснабжающей организации.

Глухое заземление силовых трансформаторов на землю

Все, что связано с распределительной сетью 0,4 кВ – это нейтраль с глухим заземлением на землю. Представленному типу отводится особое место и роль в плане безопасности. При появлении короткого замыкания на землю срабатывает защита, в частности, перегорают ПН-2 или отключается автомат. Относительно такой сети разрабатываются и защиты для проводки в домах и квартирах. Ярким примером является действие УЗО, обеспечивающее выявление токов утечки.

Основными преимуществами такого типа нейтрали считаются:

  1. Идеально подходит для распределения электрической энергии, обеспечивает работоспособность бытового и специализированного однофазного/трехфазного оборудования.
  2. Схема защиты не требует специализированного и дорогого оборудования. Технические средства по типу предохранителей или автоматов легко справляются с глухим замыканием на землю.

К недостаткам относится:

  1. Защиты нечувствительны при дальнем КЗ. Необходимо точный расчет омического сопротивления петли фазы-нуль и правильный выбор автоматов или предохранителей.
  2. Срабатывания не возникает при отсутствии замыкания на землю. Это представляет опасность для человека, что корректируется через использование изолированных проводов.

Резонансно-заземленные или компенсированные нейтрали

Резонансно-заземленные нейтрали применяются в основном в распределительных сетях напряжением 6-35 кВ, где схема подключения выполняется кабельными линиями. Присоединение нулевой точки осуществляется через специальные плунжерные или регулируемые трансформаторы РУОМ. Подобная система позволяет определить индуктивность в сети при однофазном замыкании, что обеспечивает компенсацию уровня тока.

Нейтраль такого типа снижает риск развития аварии, переход однофазного замыкания в межфазное. Достоинствами для напряжения 6-35 кВ являются:

  1. Основное преимущество связывается с назначением оборудования. Высокая степень защиты изоляции кабельных линий при правильной подстройке.

Недостатками сети с таким типом нейтрали считаются:

  1. Трудность настройки. Может возникнуть недокомпенсация или перекомпенсация, что не позволит правильно использовать оборудование. Для выстраивания необходим расчет индуктивности токов в зависимости от длины линии, мощности трансформаторов. В случае изменения схемы или добавления энергооборудования, плунжерные трансформаторы не всегда справляются с поставленными задачами.
  2. Неправильно настроенное оборудование и высокий износ кабельных линий приводит к цепной реакции, которая предполагает выход из строя нескольких слабых участков сети.
  3. Повышение технических потерь, которые возникают во время работы, а также проблемы безопасности. Компенсация тока на подстанции реализовывается относительно земли.
  4. Невозможность определения линии, где произошло замыкание. Процесс выбора фидера с «землей» осуществляется через сравнение токов гармоник, что не всегда считается эффективным средством получения достоверной информации.

Нулевой проводник и дугогасящая катушка, реактор

Разница резонансно-заземленной нейтрали связывается с используемым оборудованием. Как отмечалось выше, нулевая точка может располагаться на дугогасящей катушке плунжерного типа или на регулируемом реакторе. Основные отличия связываются со следующими моментами:

  1. ДГК предполагает компенсацию через отстроенную систему плунжерных трансформаторов. Настройка реализована через расчеты реальной сети службой релейной защиты. При возникновении замыкания на землю происходит компенсация токов, основанная на индуктивности. Процесс не регулируется и не подстраивается, что является неприятным моментом в случае появления «земли» в нескольких точках разных линий.
  2. ДГР – более современное оборудование, которое предполагает использование автоматических систем определения индуктивности сети. Среди популярных вариантов считаются реакторы типа «РУОМ» с подстройкой «САМУР». Реализация опроса выполняется в реальном времени, что обеспечивает работоспособность даже при нескольких повреждениях с замыканием на землю.

Неважно глухозаземлена нейтраль или изолирована, применение каждого типа найдет место в современной электроэнергетике. А знание особенностей позволит разобраться с физической сущностью вопроса.

fb.ru

Глухозаземленная нейтраль: принцип действия, устройство, схемы

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

UF1= UF2=UF3;

UL1=UL2=U

L3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

www.asutpp.ru

Режимы работы нейтрали в электроустановках и электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Для чего применяют нейтральный провод: понятие нулевой провод

Нулевой провод — это провод, использующийся для выравнивания напряжения в фазах. В случае его отсутствия или повреждения могут сгореть подключенные к фазе приборы и даже может начаться пожар. Поэтому необходимо знать принципы работы с ним.

Что такое нулевой провод?

При работе с электричеством особого внимания требует нулевой провод. Что это такое, не всегда известно людям, не связанным профессионально с электросетями, и зачастую у них появляется ошибочное заблуждение, что нейтральный кабель – это только заземление. На самом деле, нейтральный проводник соединяет нейтрали установок в трехфазных цепях. Когда на каждую фазу из трех подается разная нагрузка, появляется смещение нейтрали, вызывающее нарушение симметрии напряжений, то есть, нарушение симметрий нагрузки приводит к тому, что у одних потребители будут получать пониженное напряжение, а другие же повышенное.

При пониженном подключенная электроаппаратура начинает работать неправильно, а при сильно возросшем, любая электроника ломается от перегрузки и может возникнуть пожар. Уравнивание обеспечивает баланс между повышенным и пониженным напряжением. В этом и заключается роль нулевого провода в электрической цепи.

Принцип работы нулевого провода

Данный проводник, соединяя нейтрали электроустановок с разной нагрузкой, балансирует линии с повышенным напряжением и линии с пониженным. Повышенность и пониженность является следствием того, что на каждой из них работают потребители с разной мощностью потребления.

Чем опасно повреждение нулевого провода?

Во-первых, о последствиях обрыва нуля должны знать все, кто работает с высоковольтными электросетями, так как обрыв может привести не только к уничтожению дорогостоящего оборудования, пожарам, но и к смертям пользователей этим оборудованием. Он обеспечивает равность разниц потенциалов в линиях с разной нагрузкой. Теперь представьте, что равности нет. На одной, например, будет 340 Вольт, а на другой всего 100 Вольт. А значит, на линии с большей разницей потенциалов сгорит аппаратура, к ней подключённая. А еще не забывайте, что изоляция тоже может быть пробита.

Причинами повреждения нейтрального соединения могут быть:

  1. механическое повреждение человеком или природными условиями,
  2. короткое замыкание, которое привело к отгоранию,
  3. плохое подключение,
  4. старость проводки.

Задачи и назначение нулевого провода

Главная задача – уравнивание напряжений в фазах. Разница потенциалов в каждой из фаз должна быть одинаковой. Конечно, это не значит, что благодаря ему будет абсолютное равное напряжение во всех трех фазах. Нет, разница потенциалов будет незначительно отличаться из-за сопротивления самой нейтралки, но останется в пределах нормы.

Повторное заземление нулевого провода

Повторное заземление – заземление, повторяющееся по всей длине нейтрального кабеля. Если вы повторно заземлили нулевой защитный проводник цепи, то понижается вероятность удара разрядом тока, появившуюся вследствие отрыва нейтрального кабеля и соединения фазы с корпусом после того места, где произошел обрыв, однако не исключит полностью опасность, т. е. не приведет к тем же безопасным условиям, которые были до разрыва.

Что такое заземление и нейтральный провод

Нейтральный проводник также балансирует потенциалы в нескольких фазах. Согласно ПУЭ, задача нейтрали — обеспечивать током потребителей. Ее необходимо соединять с глухо заземленной нейтралкой трансформатора. В частных домах и квартирах, где используются однофазные электросети, для работы оборудования должно быть два кабеля: фазовый и нулевой. «Ноль» соединяется с «землей», и на нем потенциал должен равняться 0. Подключается к «земле» с помощью контура заземления. Соответственно должно отсутствовать напряжение. При нарушении связи с ней во время работы оборудования оно будет под таким же напряжением, как и на фазе, соответственно – 220. На современных схемах он обозначается буквой N, а в советских документах, уже устаревших, использовалась цифра 0. Согласно ПУЭ, кабель необходимо покрыть изоляцией синего цвета.

Заземляющий проводник, согласно ПУЭ, нужен с целью безопасности. В нормальных условиях на нем отсутствует напряженность, и работает он как проводник, только если повреждена изоляция проводящего фазу или ноль. Соответственно, заземление нужно, чтобы при поломке не возникло дополнительных проблем. К примеру, когда у вас пробита защита холодильника, а сам холодильник не заземлен, прикосновение к нему будет равносильно прикосновению к фазе 220 В. А если холодильник заземлен, то током не ударит, так как потенциал уйдет в землю.

Защитный проводник обозначается буквами «PE». Согласно правилу, его изоляция должна быть окрашена в желтые и зеленые полосы. Если на схеме есть обозначение «PEN», значит, нейтральный и защитный провода совмещаются в один. Подобный кабель должен быть окрашен в голубой цвет с желтыми и зелеными полосами на концах.

Чтобы уравнять разные напряжения, все концы фазных обмоток соединяются в узел, который и называется нейтральной точкой, для чего применяют нейтральный провод при соединении в «звезду». Схема «звезда» с нейтралью применяется на практике, т.к. в ней при произвольной нагрузке отсутствует перекос фаз по напряжению, т.е. все фазные напряжения равны.

Если учесть все изложенное выше, то наверняка вы поняли критическую важность нейтрального кабель, уравнивающего напряжения в нескольких фазах, ведь его отсутствие грозит серьезными проблемами – от повреждения и потери оборудования до пожаров и даже риска смертельного поражения током человека.

pauk.top

Ноль и фаза в электрике — назначение фазного и нулевого провода. Нейтраль в электрике


Что такое фаза, ноль, земля в электрике и зачем они нужны

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

10i5.ru

Нейтральный провод — это… Что такое Нейтральный провод?

Нейтральный (нулевой рабочий) провод — провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях.

Назначение


При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трехфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали, которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключенных электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара. Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.

Обозначение

Шина для раздачи нулевых проводов.

Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (В системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым[1]. Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.

Нейтраль в ЛЭП

В линиях электропередач разных классов применяются различные виды нейтралей. Это связано с целевым назначением и различной аппаратурой защиты линии от короткого замыкания и утечек. Нейтраль бывает глухозаземлённая, изолированная и эффективно-заземленная.

Глухозаземлённая нейтраль

Применяется в линиях напряжением от 2 кВ и до 110 кВ (ПУЭ п.1.2.16), при небольшой длине ЛЭП и большом количестве точек подключения потребителей. Потребителю приходят только фазы, подключение однофазной нагрузки осуществляется между фазой и нулевым проводом (нейтралью). Нулевой провод генератора также заземлён.

Изолированная нейтраль

Применятеся в линиях с напряжением свыше 2 кВ до 35 кВ, такие линии имеют среднюю протяжённость и сравнительно небольшое число точек подключения потребителей, которыми обычно являются ТП в жилых районах и мощные машины фабрик и заводов.

В линиях на 50 кВ может применяться как изолированная, так и эффективно-заземленная нейтраль.

Эффективно заземленная нейтраль

Применяется на протяжённых линиях с напряжением от 110 кВ до 220 кВ (п. 1.2.16 ПУЭ)

Примечания

Источники

  • «Теоретические основы электротехники. Электрические цепи» Бессонов Л. А. Москва «Высшая школа» 1996 ISBN 5-8297-0159-6
  • ПУЭ

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *