Что такое внутреннее сопротивление источника тока: Внутреннее сопротивление источника тока | HamLab

Содержание

Внутреннее сопротивление — это… Что такое Внутреннее сопротивление?

Двухполюсник и его эквивалентная схема

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

В соответствии с законом Ома при источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведенном примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.

Эквивалентная схема активного двухполюсника

Реальные активные двухполюсники хорошо описываются математически, если их рассматривать как эквивалентную схему, состоящую из (см. рисунок) последовательно включённых генератора напряжения и сопротивления (в общем случае — комплексного импеданса). Генератор напряжения представляет собственно источник энергии, находящийся в этом двухполюснике. Этот генератор мог бы отдать в нагрузку сколь угодно большие мощность и ток. Однако сопротивление, включённое последовательно с генератором, ограничивает мощность, которую данный двухполюсник может отдать в нагрузку.

Это воображаемое сопротивление и называется внутренним сопротивлением. Оно является лишь параметром абстрактной модели двухполюсника, то есть реального «резистора» внутри двухполюсников обычно нет. Хотя в реальных гальванических элементах это внутреннее сопротивление есть. Это суммарное сопротивления плюсового стержня (углерода, стали), самого корпуса (цинка и никеля), а также самого электролита (соли) и поглотителя водорода (в солевых элементах). Все эти реальные материалы имеют вполне конечное сопротивление, отличное от нуля. В прочих источниках эту функцию исполняют обмотки и контакты, которые также снижают характеристики источников напряжения. Контактные разности потенциалов имеют иную природу падения напряжения и носят неомический характер, то есть все затраты энергии идут на работу выхода носителей заряда.

Сопротивление и внутреннее сопротивление

Основной характеристикой двухполюсника является его сопротивление (или импеданс

[1]). Однако характеризовать двухполюсник одним только сопротивлением не всегда возможно. Дело в том, что термин сопротивление примени́м только для чисто пассивных элементов, то есть не содержащих в себе источников энергии. Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, поскольку закон Ома в формулировке U=Ir не выполняется[2].

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников

[3], то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

  • Входное сопротивление — внутреннее сопротивление двухполюсника, которым является вход системы[источник не указан 147 дней].
  • Выходное сопротивление — внутреннее сопротивление двухполюсника, которым является выход системы.

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление, то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне

ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности, отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи.
    Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в химическом источнике мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему
    , внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

  • Внутреннее сопротивление невозможно убрать из двухполюсника[4]
  • Внутреннее сопротивление не является стабильной величиной: оно может изменяться при изменении каких-либо внешних (нагрузка, ток) и внутренних (нагрев, истощение реагентов) условий.

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника.

Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Если к источнику с ЭДС[5] генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:

Нахождение внутреннего сопротивления

Расчёт

Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).

Примечание: Строго говоря, любой реальный импеданс (в том числе и внутреннее сопротивление) обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства (например, при рассмотрении системы на высоких частотах), то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

(Напряжения)

где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (Напряжения) записывается следующим образом:

где Uoc — выходное напряжение в режиме холостого хода (англ. 

open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

(ВнутрСопр)

Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:

  • Рассчитать выходное напряжение двухполюсника в режиме холостого хода
  • Рассчитать выходной ток двухполюсника в режиме короткого замыкания
  • На основании полученных значений найти r и U по формуле (ВнутрСопр).

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

  • Согласование по напряжению — получение в нагрузке максимального напряжения. Для этого сопротивление нагрузки должно быть как можно бо́льшим, по крайней мере, много больше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме холостого хода. При этом максимально достижимое в нагрузке напряжение равно ЭДС генератора напряжения E. Данный тип согласования применяется в электронных системах, когда носителем сигнала является напряжение, и его необходимо передать от источника к нагрузке с минимальными потерями.
  • Согласование по току — получение в нагрузке максимального тока. Для этого сопротивление нагрузки должно быть как можно меньшим, по крайней мере, много меньше, чем внутреннее сопротивление источника. Другими словами, двухполюсник должен быть в режиме короткого замыкания. При этом максимально достижимый в нагрузке ток равен Imax=E/r. Применяется в электронных системах, когда носителем сигнала является ток. Например, при съеме сигнала с быстродействующего фотодиода целесообразно применять преобразователь ток-напряжение с минимальным входным сопротивлением. Малое входное сопротивление также решает проблему заужения полосы из-за паразитного RC-фильтра.
  • Согласование по мощности — обеспечивает получение в нагрузке (что эквивалентно отбору от источника) максимально возможной мощности, равной Pmax=E²/(4r). В цепях постоянного тока: сопротивление нагрузки должно быть равно внутреннему сопротивлению r источника. В цепях переменного тока (в общем случае): импеданс нагрузки должен быть комплексно сопряженным внутреннему импедансу источника.
  • Согласование по волновому сопротивлению — получение максимального коэффициента бегущей волны в линии передачи (в СВЧ технике и теории длинных линий). То же самое, что и согласование по мощности, но применительно к длинным линиям. Волновое сопротивление нагрузки должно быть равно внутреннему сопротивлению r. В СВЧ технике применяется практически всегда. Чаще всего термин согласованная нагрузка используется именно в этом смысле.

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы. Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители, однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор, который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r. Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

  • Нулевым внутренним сопротивлением обладает только идеальный генератор напряжения. Если также рассматривать двухполюсники без источников, то сверхпроводящее короткое соединение тоже имеет нулевое внутреннее сопротивление (до величины токов, вызывающих потерю сверхпроводимости). Генератор со сверхпроводящей обмоткой при не слишком больших частотах и небольших токах также имеет активное внутреннее сопротивление, весьма близкое к нулю (индуктивный импеданс при определенных условиях может быть тоже довольно невелик).
  • Автомобильная свинцово-кислотная стартёрная аккумуляторная батарея имеет r около 0,01 Ом. Благодаря столь низкому внутреннему сопротивлению ток, отдаваемый батареей при запуске двигателя, достигает 250 ампер и более (для легковых автомобилей).
  • Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от 0,05 Ом до 1 Ом и более (зависит от качества электропроводки). Сопротивление 1 Ом и более соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. Повышается пожароопасность, поскольку на сопротивлении проводов выделяется значительная мощность. И наоборот, в хорошей сети с низким сопротивлением напряжение падает от допустимых нагрузок лишь незначительно. Ток при коротком замыкании в хорошей бытовой электросети может достигать 3 тысяч ампер, что требует применения автоматических предохранителей, выдерживающих подобные токовые удары.
  • Используя отрицательную обратную связь в электронных схемах, можно искусственно создавать источники, обладающие (при определённых условиях) очень низким внутренним сопротивлением. Такими свойствами обладают современные электронные стабилизаторы напряжения. Например, интегральный стабилизатор напряжения 7805 (выходное напряжение 5 В) имеет типичное выходное сопротивление менее 0,0009 Ома[6]. Однако это вовсе не означает, что такой стабилизатор может отдать в нагрузку ток до 5500 А или мощность до 13 кВт при правильном согласовании. Характеристики стабилизатора нормированы только для рабочего диапазона токов, то есть в данном примере до 1,5 А. При превышении этого значения сработает защита, и стабилизатор отключится (при других конструкциях защиты ток ограничивается, а не отключается полностью).

Большое внутреннее сопротивление

Обычно двухполюсники с большим внутренним сопротивлением — это различного рода датчики, источники сигналов и т. п. Типичная задача при работе с такими устройствами — снятие с них сигнала без потерь из-за неправильного согласования. Для достижения хорошего согласования по напряжению сигнал с такого двухполюсника должен сниматься устройством, имеющим ещё большее входное сопротивление (как правило, сигнал с высокоомного источника снимается при помощи буферного усилителя).

  • Бесконечным внутренним сопротивлением обладает только идеальный источник тока. Если также рассматривать двухполюсники без источников, то простой разрыв цепи (два вывода, ничем не соединённые) тоже имеет бесконечное внутреннее сопротивление.
  • Конденсаторные микрофоны, пьезоэлектрические и пироэлектрические датчики, а также все остальные «конденсаторо-подобные» устройства имеют реактивное внутреннее сопротивление, модуль которого может достигать[7] десятков и сотен мегаом. Поэтому такие источники требуют обязательного использования буферного усилителя для достижения согласования по напряжению. Конденсаторные микрофоны, как правило, уже содержат встроенный буферный усилитель, собранный на полевом транзисторе.
  • Для измерения электрических потенциалов внутри живых клеток применяются электроды, представляющие собой стеклянный капилляр, заполненный проводящей жидкостью. Толщина такого проводника может быть порядка сотен ангстрем. Вследствие чрезвычайно малой толщины проводника такой «двухполюсник» (клетка с присоединёнными электродами) имеет внутреннее сопротивление порядка 100 мегаом. Высокое сопротивление и малое напряжение делают измерение напряжений внутри клетки непростой задачей.

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов.

См. также

Входной импеданс антенны

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
  • Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5

Примечания

  1. Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
  2. Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
  3. Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
  4. Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
  5. То же самое, что и напряжение
  6. Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
  7. В рабочем диапазоне частот
  8. Похоже, что в графике ошибка: внутреннее сопротивление аккумулятора должно измеряться в миллиомах, а не в омах, как на графике.

Почему внутри источника существует внутреннее сопротивление. Реактивное внутреннее сопротивление

Внутреннее сопротивление источников тока пренебрежимо мало.
Внутреннее сопротивление источника тока пренебрежимо мало.
Внутреннее сопротивление источника тока, рассчитанное по данной формуле, будет, строго говоря, действительно только для данного интервала нагрузок вследствие того, что поляризация не пропорциональна плотности тока.
Внутреннее сопротивление источника тока — сопротивление, которым обладает, источник тока. Это важная характеристика всякого источника тока, определяющая его внутреннее падение напряжения, напряжение, которое может создать источник на концах питаемой им цепи, и тот наибольший ток, который может дать источник при коротком замыкании.
Внутреннее сопротивление источника тока — сопротивление, которым обладает источник тока.
Внутренним сопротивлением источника тока, сопротивлениями соединительных проводов и контактов в ключах пренебречь.
Чему равно внутреннее сопротивление источника тока, ЭДС которого равна 30 В, если после включения внешней цепи сопротивлением 6 Ом напряжение на зажимах батареи стало равным 18 В.
Отсюда находим внутреннее сопротивление источника тока.
Здесь и далее внутренним сопротивлением источника тока и подводящих проводов следует пренебречь, если оно не задано в условии.
Здесь тэар при небольшом внутреннем сопротивлении источника тока и соответственно небольшом сопротивлении лампы rgK относительно невелико. Соответственно тзар, определяющееся в основном высоким сопротивлением RgK (получающимся в результате того, что при разряде потенциал сетки оказывается под отрицательным потенциалом относительно катода), становится во много раз больше, чем тзар и длина экспоненциального импульса на выходе (считая продолжительность для половины амплитуды) в несколько десятков раз превышает длительность импульса, по-данного на вход.
Определить электродвижущую силу и внутреннее сопротивление источника тока, если при одном положении движка реостата амперметр показывает 0 2 А, вольтметр — 1 8 В, а при другом положении движка — 0 4 Аи 1 6 В соответственно.
Обозначим через г — внутреннее сопротивление источника тока, через R — сопротивление каждого из вольтметров.
Ничем, так как внутреннее сопротивление источника тока бесконечно велико.
Сначала определим ЭДС и внутреннее сопротивление источника тока.

Для определения ЭДС и внутреннего сопротивления источника тока к его выходу был подключен сначала резистор сопротивлением Д 2 Ом, затем — резистор сопротивлением Л2 4 Ом.
Наклон этих кривых определяется внутренним сопротивлением источника тока. В это понятие включается обычно как собственно омическое сопротивление, так и сопротивление, обусловленное поляризацией.
Здесь пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Для создания такого режима необходимо, чтобы внутреннее сопротивление источника тока было больше сопротивления базо-эмиг-терного перехода как в открытом, так и в закрытом состоянии. Чаще всего это условие выполняется при включении последовательно входу транзнсюра индуктивной катушки, которая одновременно является контурной катушкой.
При прохождении тока часть мощности выделяется на внутреннем сопротивлении источника тока.
К каким отрицательным последствиям приводит то, что внутреннее сопротивление источника тока дифференциального каскада имеет конечное значение.
Цепь из двух параллельных ветвей. U (в в течение t сек. равна.| Соотношения между единицами энергии. Мощность, передаваемая нагрузке, будет максимальной при раввщ ве внутреннего сопротивления источника тока и сопротивления нагрузки.
Зачастую серьезные недоразумения возникают у учащихся из-за неумения правильно учитывать влияние внутреннего сопротивления источников тока на режим работы всей электрической цепи. Ряд задач параграфа (например, 383, 385, 386, 392 — 395 и др.) посвящен специально выяснению этого вопроса, а также выяснению вопроса о выборе наиболее выгодных условий работы источников тока.
Кристаллы аммиаката цинка не-электропроводны, и образование этого соединения приводит к увеличению внутреннего сопротивления источника тока.
В любом замкнутом контуре (например, а ] 6, с алгебраическая сумма электродвижущих сил равна алгебраической сумме произведений величин токов на сопротивления отдельных участков цепи. Вычисляя сумму произведений токов на сопротивления отдельных участков цепи, следует учитывать также и внутренние сопротивления источников тока.
Если предположить, что емкость C0z пренебрежимо мала или включить ее в схему четырехполюсника Q, то внутреннее сопротивление источника тока / g можно считать действительным и равным У.
Получили, что максимальная мощность выделяется на нагрузке при условии, что величина внешнего сопротивления цепи R равна внутреннему сопротивлению источника тока.
Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под г — внутреннее сопротивление источника тока.

Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под т — внутреннее сопротивление источника тока.
Механическая система и ее электрические модели (метод четырехполюсников. Как уже указывалось выше, внутреннее сопротивление источника напряжения (первая система аналогий) должно быть весьма малым, а внутреннее сопротивление источника тока (вторая система аналогий) — весьма большим, по сравнению с сопротивлением модели.
К положительным качествам рассматриваемого преобразователя следует отнести то, что в нем не предъявляется особо жестких требований к переходному сопротивлению ключей, так как величина их переходного сопротивления составляет лишь незначительную часть внутреннего сопротивления источника тока и не оказывает влияния на точность преобразования.
Итак, при последовательном включении п одинаковых источников тока электродвижущая сила образующейся батареи в п раз превышает электродвижущую силу отдельного источника тока, однако в этом случае складываются не только электродвижущие силы, но также и внутренние сопротивления источников тока. Такое включение является выгодным, когда внешнее сопротивление цепи весьма велико в сравнении с внутренним сопротивлением.
Следует отметить, что схема рис. 1 — 2 6 эквивалентна схеме рис. 1 — 1 а только в отношений энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника тока.
Но Сумма разностей потенциалов замкнутой цепи равна нулю, сумма сопротивлений всех участков замкнутой цепи — это ее суммарное сопротивление, которое обычно записывают в виде двух слагаемых: R — внешнее (по отношению к источникам) сопротивление иг — внутреннее сопротивление источников тока.
Второй [ IMAGE ] Схема к примеру. В этом уравнении г и г % — внутренние сопротивления источни-ков тока е и е2 — на схеме не показаны; IR, IR2 и IRS — падения напряжения на внешних сопротивлениях цепи; / г, и / г2 — падения напряжений на внутренних сопротивлениях источников тока.
Внутреннее сопротивление источника тока может быть как чисто активным, так и реактивным.
Зависимость р / ро — отношения (выраженного в децибелах звукового давления на поверхности жесткого цилиндра (с высотой, равной его диаметру, куба, сферы к звуковому давлению, имевшему место в поле до их внесения, от отношения dA (или. /. — диаметра цилиндра или сферы (или ребра куба к длине волны. Параметр семейства кривых — угол Ф между осью цилиндра, куба, сферы и направлением прихода звука. При расчете микрофонных усилителей исходят из следующих соображений. Номинальное сопротивление микрофона является внутренним сопротивлением источника тока на входе усилителя, входное сопротивление усилителя — сопротивлением нагрузки микрофона.
В качестве источников тока в потенциометрии чаще всего применяют аккумуляторы или сухие элементы, значительно реже — стабилизированные источники постоянного тока. Современные потенциометры устроены таким образом, что внутреннее сопротивление источника тока не отражается на работе потенциометра. При работе с сухими батареями и аккумуляторами необходимо учитывать зависимость разрядного тока от времени, которая имеет минимальную крутизну через 10 — 15 мин после включения.
Распределение электрического напряжения вдоль обмотки сверхпроводящего магнита при образовании в нем нормальной зоны. На самом деле (рис. 9.2) высокий потенциал развивается внутри обмотки, где существует активная компонента напряжения, направленная навстречу индуктивной. Небольшая разность потенциалов между подводящими проводами обусловлена внутренним сопротивлением источника тока, который обычно автоматически отключается при переходе магнита в нормальное состояние. Но даже если это не произойдет, напряжение на источнике тока будет составлять всего лишь несколько вольт по сравнению с сотнями и, возможно, тысячами вольт в нормальной зоне. Поэтому напряжением источника можно пренебречь, но источник тока следует по возможности быстро отключить, чтобы не допустить длительного тепловыделения в обмотке и криостате.

Символом Rt на рис. 5.12, а обозначено внутреннее сопротивление источника тока.
Ключ, закорачивающий точку А на землю, с малым сопротивлением в открытом состоянии. Сопротивление открытого ключа обычно пренебрежимо мало по срав-нению с внутренним сопротивлением источника тока. Поэтому падение напряжения на ключе вызывает ничтожную погрешность.
Зависимость зарядного тока гео. На рис. 3 показана зависимость зарядного тока геометрической емкости от времени без учета токов абсорбции. Необходимо отметить, что спад тока в этом случае определяется внутренним сопротивлением источника тока, а не состоянием изоляции.
Хорошо, что при решении задачи Вы воспользовались методом эквивалентного активного двухполюсника. К сожалению, Вы ошиблись в определении значения сопротивления активного двухполюсника R3K: внутреннее сопротивление источника тока бесконечно велико, поэтому пассивный двухполюсник, к которому преобразуется схема рис. 6.13 а, при определении R3K будет содержать два резис-тивных элемента, соединенных последовательно.
К, так как в противном случае в выражении (5.1) должно быть учтено также напряжение непосредственно на входе усилителя. Вторым ограничивающим условием при выводе соотношения (5.1) является предположение о том, что внутреннее сопротивление источника тока весьма мало.
Таким образом, трансформатор изменяет величину сопротивления R в k2 раз. Этим широко пользуются при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Основные типы однофазных трансформаторов.| Однофазные трансформаторы большой мощности. Таким образом, трансформатор изменяет величину сопротивления г в k2 раз. Этим свойством широко пользуются ьри разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Простей-шая электрическая цепь. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Цепь постоянного тока. Напряжение, действующее во внешней электрической цепи источника тока, может быть представлено в виде суммы падений напряжения на отдельных элементах этой цепи. Но ведь ток, циркулирующий в цепи, протекает и через источник тока, который имеет свое сопротивление, называемое внутренним сопротивлением источника тока.

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление — это сопротивление раствора электролита и электродов, для генератора — сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.

Гальванические элементы (такие как батарейка) — напротив — имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум — десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:

Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.

Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников, то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление , то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности , отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему , внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов U out = φ 2 − φ 1 ) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

где U out1 I 1 , U out2 — выходное напряжение при токе I 2 . Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система () записывается следующим образом:

где U oc — выходное напряжение в режиме холостого хода (англ. open circuit ), то есть при нулевом токе нагрузки; I sc — ток нагрузки в режиме короткого замыкания (англ. short circuit ), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение , которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности , то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды , то есть расчет производится методом комплексных амплитуд .

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией , а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль , аргумент , только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы . Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители , однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор , который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения , что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r . Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

Большое внутреннее сопротивление

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов .

См. также

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
  • Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5

Примечания

Wikimedia Foundation . 2010 . Политехнический терминологический толковый словарь

Внутреннее сопротивление источника тока. Внутреннее сопротивление

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

  • Автомобильный свинцово-кислотный аккумулятор напряжением 12 вольт и ёмкостью 55 А·ч
  • Восемь батареек типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше — примерно 1 А·ч

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников, то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление , то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности , отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции — ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему , внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов U out = φ 2 − φ 1 ) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

где U out1 I 1 , U out2 — выходное напряжение при токе I 2 . Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система () записывается следующим образом:

где U oc — выходное напряжение в режиме холостого хода (англ. open circuit ), то есть при нулевом токе нагрузки; I sc — ток нагрузки в режиме короткого замыкания (англ. short circuit ), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение , которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности , то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды , то есть расчет производится методом комплексных амплитуд .

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией , а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль , аргумент , только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки — это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы . Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители , однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор , который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения , что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r . Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

Большое внутреннее сопротивление

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

  • элементов с отрицательным дифференциальным сопротивлением , например, туннельных диодов

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов .

См. также

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с.
  • Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с. ISBN 5-94836-086-5

Примечания

Wikimedia Foundation . 2010 . Политехнический терминологический толковый словарь

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление — это сопротивление раствора электролита и электродов, для генератора — сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.

Гальванические элементы (такие как батарейка) — напротив — имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум — десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:

Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.

Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

Внутреннее сопротивление источников тока пренебрежимо мало.
Внутреннее сопротивление источника тока пренебрежимо мало.
Внутреннее сопротивление источника тока, рассчитанное по данной формуле, будет, строго говоря, действительно только для данного интервала нагрузок вследствие того, что поляризация не пропорциональна плотности тока.
Внутреннее сопротивление источника тока — сопротивление, которым обладает, источник тока. Это важная характеристика всякого источника тока, определяющая его внутреннее падение напряжения, напряжение, которое может создать источник на концах питаемой им цепи, и тот наибольший ток, который может дать источник при коротком замыкании.
Внутреннее сопротивление источника тока — сопротивление, которым обладает источник тока.
Внутренним сопротивлением источника тока, сопротивлениями соединительных проводов и контактов в ключах пренебречь.
Чему равно внутреннее сопротивление источника тока, ЭДС которого равна 30 В, если после включения внешней цепи сопротивлением 6 Ом напряжение на зажимах батареи стало равным 18 В.
Отсюда находим внутреннее сопротивление источника тока.
Здесь и далее внутренним сопротивлением источника тока и подводящих проводов следует пренебречь, если оно не задано в условии.
Здесь тэар при небольшом внутреннем сопротивлении источника тока и соответственно небольшом сопротивлении лампы rgK относительно невелико. Соответственно тзар, определяющееся в основном высоким сопротивлением RgK (получающимся в результате того, что при разряде потенциал сетки оказывается под отрицательным потенциалом относительно катода), становится во много раз больше, чем тзар и длина экспоненциального импульса на выходе (считая продолжительность для половины амплитуды) в несколько десятков раз превышает длительность импульса, по-данного на вход.
Определить электродвижущую силу и внутреннее сопротивление источника тока, если при одном положении движка реостата амперметр показывает 0 2 А, вольтметр — 1 8 В, а при другом положении движка — 0 4 Аи 1 6 В соответственно.
Обозначим через г — внутреннее сопротивление источника тока, через R — сопротивление каждого из вольтметров.
Ничем, так как внутреннее сопротивление источника тока бесконечно велико.
Сначала определим ЭДС и внутреннее сопротивление источника тока.

Для определения ЭДС и внутреннего сопротивления источника тока к его выходу был подключен сначала резистор сопротивлением Д 2 Ом, затем — резистор сопротивлением Л2 4 Ом.
Наклон этих кривых определяется внутренним сопротивлением источника тока. В это понятие включается обычно как собственно омическое сопротивление, так и сопротивление, обусловленное поляризацией.
Здесь пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Для создания такого режима необходимо, чтобы внутреннее сопротивление источника тока было больше сопротивления базо-эмиг-терного перехода как в открытом, так и в закрытом состоянии. Чаще всего это условие выполняется при включении последовательно входу транзнсюра индуктивной катушки, которая одновременно является контурной катушкой.
При прохождении тока часть мощности выделяется на внутреннем сопротивлении источника тока.
К каким отрицательным последствиям приводит то, что внутреннее сопротивление источника тока дифференциального каскада имеет конечное значение.
Цепь из двух параллельных ветвей. U (в в течение t сек. равна.| Соотношения между единицами энергии. Мощность, передаваемая нагрузке, будет максимальной при раввщ ве внутреннего сопротивления источника тока и сопротивления нагрузки.
Зачастую серьезные недоразумения возникают у учащихся из-за неумения правильно учитывать влияние внутреннего сопротивления источников тока на режим работы всей электрической цепи. Ряд задач параграфа (например, 383, 385, 386, 392 — 395 и др.) посвящен специально выяснению этого вопроса, а также выяснению вопроса о выборе наиболее выгодных условий работы источников тока.
Кристаллы аммиаката цинка не-электропроводны, и образование этого соединения приводит к увеличению внутреннего сопротивления источника тока.
В любом замкнутом контуре (например, а ] 6, с алгебраическая сумма электродвижущих сил равна алгебраической сумме произведений величин токов на сопротивления отдельных участков цепи. Вычисляя сумму произведений токов на сопротивления отдельных участков цепи, следует учитывать также и внутренние сопротивления источников тока.
Если предположить, что емкость C0z пренебрежимо мала или включить ее в схему четырехполюсника Q, то внутреннее сопротивление источника тока / g можно считать действительным и равным У.
Получили, что максимальная мощность выделяется на нагрузке при условии, что величина внешнего сопротивления цепи R равна внутреннему сопротивлению источника тока.
Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под г — внутреннее сопротивление источника тока.

Здесь под R понимается сопротивление всех резисторов, образующих цепь (сопротивление нагрузки), а под т — внутреннее сопротивление источника тока.
Механическая система и ее электрические модели (метод четырехполюсников. Как уже указывалось выше, внутреннее сопротивление источника напряжения (первая система аналогий) должно быть весьма малым, а внутреннее сопротивление источника тока (вторая система аналогий) — весьма большим, по сравнению с сопротивлением модели.
К положительным качествам рассматриваемого преобразователя следует отнести то, что в нем не предъявляется особо жестких требований к переходному сопротивлению ключей, так как величина их переходного сопротивления составляет лишь незначительную часть внутреннего сопротивления источника тока и не оказывает влияния на точность преобразования.
Итак, при последовательном включении п одинаковых источников тока электродвижущая сила образующейся батареи в п раз превышает электродвижущую силу отдельного источника тока, однако в этом случае складываются не только электродвижущие силы, но также и внутренние сопротивления источников тока. Такое включение является выгодным, когда внешнее сопротивление цепи весьма велико в сравнении с внутренним сопротивлением.
Следует отметить, что схема рис. 1 — 2 6 эквивалентна схеме рис. 1 — 1 а только в отношений энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника тока.
Но Сумма разностей потенциалов замкнутой цепи равна нулю, сумма сопротивлений всех участков замкнутой цепи — это ее суммарное сопротивление, которое обычно записывают в виде двух слагаемых: R — внешнее (по отношению к источникам) сопротивление иг — внутреннее сопротивление источников тока.
Второй [ IMAGE ] Схема к примеру. В этом уравнении г и г % — внутренние сопротивления источни-ков тока е и е2 — на схеме не показаны; IR, IR2 и IRS — падения напряжения на внешних сопротивлениях цепи; / г, и / г2 — падения напряжений на внутренних сопротивлениях источников тока.
Внутреннее сопротивление источника тока может быть как чисто активным, так и реактивным.
Зависимость р / ро — отношения (выраженного в децибелах звукового давления на поверхности жесткого цилиндра (с высотой, равной его диаметру, куба, сферы к звуковому давлению, имевшему место в поле до их внесения, от отношения dA (или. /. — диаметра цилиндра или сферы (или ребра куба к длине волны. Параметр семейства кривых — угол Ф между осью цилиндра, куба, сферы и направлением прихода звука. При расчете микрофонных усилителей исходят из следующих соображений. Номинальное сопротивление микрофона является внутренним сопротивлением источника тока на входе усилителя, входное сопротивление усилителя — сопротивлением нагрузки микрофона.
В качестве источников тока в потенциометрии чаще всего применяют аккумуляторы или сухие элементы, значительно реже — стабилизированные источники постоянного тока. Современные потенциометры устроены таким образом, что внутреннее сопротивление источника тока не отражается на работе потенциометра. При работе с сухими батареями и аккумуляторами необходимо учитывать зависимость разрядного тока от времени, которая имеет минимальную крутизну через 10 — 15 мин после включения.
Распределение электрического напряжения вдоль обмотки сверхпроводящего магнита при образовании в нем нормальной зоны. На самом деле (рис. 9.2) высокий потенциал развивается внутри обмотки, где существует активная компонента напряжения, направленная навстречу индуктивной. Небольшая разность потенциалов между подводящими проводами обусловлена внутренним сопротивлением источника тока, который обычно автоматически отключается при переходе магнита в нормальное состояние. Но даже если это не произойдет, напряжение на источнике тока будет составлять всего лишь несколько вольт по сравнению с сотнями и, возможно, тысячами вольт в нормальной зоне. Поэтому напряжением источника можно пренебречь, но источник тока следует по возможности быстро отключить, чтобы не допустить длительного тепловыделения в обмотке и криостате.

Символом Rt на рис. 5.12, а обозначено внутреннее сопротивление источника тока.
Ключ, закорачивающий точку А на землю, с малым сопротивлением в открытом состоянии. Сопротивление открытого ключа обычно пренебрежимо мало по срав-нению с внутренним сопротивлением источника тока. Поэтому падение напряжения на ключе вызывает ничтожную погрешность.
Зависимость зарядного тока гео. На рис. 3 показана зависимость зарядного тока геометрической емкости от времени без учета токов абсорбции. Необходимо отметить, что спад тока в этом случае определяется внутренним сопротивлением источника тока, а не состоянием изоляции.
Хорошо, что при решении задачи Вы воспользовались методом эквивалентного активного двухполюсника. К сожалению, Вы ошиблись в определении значения сопротивления активного двухполюсника R3K: внутреннее сопротивление источника тока бесконечно велико, поэтому пассивный двухполюсник, к которому преобразуется схема рис. 6.13 а, при определении R3K будет содержать два резис-тивных элемента, соединенных последовательно.
К, так как в противном случае в выражении (5.1) должно быть учтено также напряжение непосредственно на входе усилителя. Вторым ограничивающим условием при выводе соотношения (5.1) является предположение о том, что внутреннее сопротивление источника тока весьма мало.
Таким образом, трансформатор изменяет величину сопротивления R в k2 раз. Этим широко пользуются при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Основные типы однофазных трансформаторов.| Однофазные трансформаторы большой мощности. Таким образом, трансформатор изменяет величину сопротивления г в k2 раз. Этим свойством широко пользуются ьри разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников тока.
Простей-шая электрическая цепь. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
Цепь постоянного тока. Напряжение, действующее во внешней электрической цепи источника тока, может быть представлено в виде суммы падений напряжения на отдельных элементах этой цепи. Но ведь ток, циркулирующий в цепи, протекает и через источник тока, который имеет свое сопротивление, называемое внутренним сопротивлением источника тока.

Вопрос №1. Электротехника — это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях.

Электрическая цепь — это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы .

Источники энергии , т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Приемники , или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током . Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I .

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i .

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила . На зажимах источника возникает разность потенциалов или напряжение , под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.

Различают активные и пассивные цепи , участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными — электрические цепи, не содержащие источников энергии. Электрическую цепь называют линейной , если ни один параметр цепи не зависит от величины или направления тока, или напряжения. Электрическая цепь является нелинейной , если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема — это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения — это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.

В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

где l — длина проводника;

S — сечение;

r — удельное сопротивление.

Величина, обратная сопротивлению, называется проводимостью .

Сопротивление измеряется в омах (Ом), а проводимость — в сименсах (См). Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P — потребляемая мощность;

I — ток. Сопротивление в схеме замещения изображается следующим образом:

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W — число витков катушки;

Ф — магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают. Емкость конденсатора, измеряемая в фарадах (Ф ), определяется по формуле:

где q — заряд на обкладках конденсатора;

Uс — напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС — это источник, характеризующийся электродвижущей силой и внутренним сопротивлением. Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

изображен источник ЭДС, к зажимам которого подключено сопротивление R.

Ri — внутреннее сопротивление источника ЭДС.

Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Ток (1.2)(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.

Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.

Возможен другой путь идеализации источника: представление его в виде источника тока.

Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю.

Поделим левую и правую части уравнения (1.2) на Ri и получим

где — ток источника тока; — внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи . Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

Различают разветвленные и неразветвленные схемы .

На рис. 1.5 изображена неразветвленная схема.

На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.

Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема — это сложная комбинация соединений пассивных и активных элементов.

Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью . Место соединения двух и более ветвей электрической цепи называется узлом . Узел, в котором сходятся две ветви, называется устранимым . Узел является неустранимым , если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой .

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.

Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром .

В зависимости от нагрузки различают следующие режимы работы : номинальный, режим холостого хода, короткого замыкания, согласованный режим.

При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.

Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.

Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.

Согласованный режим — это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.

Падением напряжения на сопротивлении называется произведение тока , протекающего через сопротивление, на величину этого сопротивления

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему и запишем для нее уравнение по первому закону Кирхгофаили Токам, направленным к узлу, присвоим знак «плюс», а токам, направленным от узла — знак «минус».

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа. Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком «плюс», если направления их совпадают с направлением обхода контура, и со знаком «минус», если не совпадают.

При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви. Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке. ПолучимИз этого уравнения выведем формулу для токаВ общем виде:где R — сумма сопротивлений ветви;

E — алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком «плюс», если направление ее совпадает с направлением тока и со знаком «минус», если не совпадает.

Вопрос №2. Идеальный источник ЭДС представляет собой активный элемент с двумя выводами, напряжение на котором не зависит от сопротивления внешней цепи, т.е., не зависит от тока, проходящего через источник. Изображение идеального источника ЭДС приведено на рис. 1.8а

Предполагается, что внутри такого источника пассивные элементы (r, L, C) отсутствуют, и поэтому протекание тока через него не вызывает в нем падение напряжения. Внутреннее сопротивление идеального источника ЭДС равно нулю.

В отличие от пассивных элементов, где ток протекает от большего потенциала к меньшему, в источнике ЭДС этот процесс обратный вследствие действия внутренних сил источника. Работа, затрачиваемая на перемещение заряда от вывода “–” к выводу “+” и отнесенная к величине этого заряда, называется электродвижущей силой источника , и обозначатся в общем случае как e , а постоянная ЭДС, как Е. Соответственно, напряжение на выводах источника ЭДС равно u = e, т.е., положительное направление напряжения противоположно положительному направлению ЭДС.

Идеальных источников ЭДС в природе нет. Нет такого источника, короткое замыкание (соединение выводов проводником с сопротивлением, равным нулю) которого приводит к бесконечно большим токам iкз =. В любом источнике существует внутреннее сопротивление, падение напряжения на котором при коротком замыкании уравновешивает ЭДС источника, поэтому ток короткого замыкания имеет конечную величину.

Источник ЭДС конечной мощности изображается идеальным источником ЭДС и последовательно включенным пассивным элементом (рис. 1.8.б), параметры которого подбираются такими, чтобы отобразить реальные процессы на выводах источника. В цепях постоянного тока это, как правило, внутреннее сопротивление (на рис. 1.8б обозначено как Rвн), величина которого много меньше параметров внешней цепи. В некоторых случаях этим сопротивлением можно пренебречь (в зависимости от требуемой точности расчета). Вольтамперные характеристики идеального (1) и реального (2) источников ЭДС постоянного тока изображены на рис

Источник тока представляет собой активный элемент, ток которого практически не зависит от напряжения на его выводах. Это может быть, если сопротивление источника тока несоизмеримо больше сопротивления внешней цепи. Целесообразно ввести понятие идеального источника тока. Очевидно, что у идеального источника тока внутреннее сопротивление равно бесконечности.

Условное обозначение идеального источника тока приведено на рис. 1.9а. Двойная стрелка и знаки (+) и (–) указывают на положительное направление тока и полярность источника.

Если к идеальному источнику тока подключить сопротивление и увеличивать его до бесконечности, то напряжение на его выводах и соответственно мощность будут неограниченно возрастать. Поэтому идеальный источник тока, также как и идеальный источник ЭДС, рассматриваются как источники бесконечной мощности.

Источники тока конечной мощности (реальные) изображается в виде идеального с подключенным к нему пассивным элементом (рис. 1.9б), которым ограничивается мощность, выдаваемая во внешнюю цепь, и отражаются внутренние параметры источника. Ток реального источника меньше тока идеального на величину тока Iвн, протекающего по внутреннему сопротивлению Rвн.

Вопрос №3. Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу — индуктивности — является реальный элемент электрической цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

где N — число витков катушки.

Индуктивность В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф — Фси + Фвп.

Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: ψ= ψси + ψвп

Индуктивность наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:

e = eси + eвп ,

здесь еси — ЭДС самоиндукции, евп — ЭДС внешних полей.

Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер — амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1).В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).

Вебер-амперные характеристики индуктивной катушки: 1 — нелинейная, 2 — линейная.

В системе единиц СИ индуктивность выражают в генри (Гн).

При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля.

Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.

2 ЭДС и внутреннее сопротивление источника тока Краткосрочный план

Решение задач

1.      На рисунке изображены графики зависимости силы тока от напряжения для двух резисторов (1 и 2). Чему равно сопротивление этих проводников?

Дескрипторы:

·         Определяет значения силы тока и напряжения для каждого проводника;

·         Использует закон Ома для вычисления сопротивления проводников.

 

2.      Напряжение в сети 220 В. Определите силу тока в спирали электроплитки, имеющей сопротивление 44 Ом.

3.      Определите сопротивление электрической лампы, сила тока в которой 0,5 А, при напряжении 120 В.

4.      Определите напряжение на концах проводника сопротивлением 30 Ом, если сила тока в проводнике 0,6 А.

 

       Дескрипторы:

·         Записывает закон Ома;

·         Выводит неизвестную величину;

·         Проводит математические расчеты.

 

5.      За 20 с через проводник прошел заряд 30 Кл. Каково напряжение на концах проводника, если его сопротивление 10 Ом?

       Дескрипторы:

·         Записывает закон Ома для напряжения;

·         Вычисляет силу тока и напряжение в цепи.

 

6.      Определите силу тока, проходящего по стальному проводу длиной 100 м и поперечным сечением 0,5 мм², при напряжении 68 В.

       Дескрипторы:

·         Определяет сопротивление провода;

·         Вычисляет силу тока, применяя закон Ома.

7.      ЭДС источника тока 12 вольт. Какую работу совершили сторонние силы по перемещению заряда 2 Кл?

8.      ЭДС источника тока 24 вольт. Какой заряд был перемещен источником тока, если работа сторонних сил 72 мДж.

       Дескрипторы:

·         Записывает формулу ЭДС;

·         Выводит неизвестную величину

·         Правильно производит расчты

Нахождение внутреннего сопротивления и ЭДС источника.

В статье расчёт в маткаде переходных процессов в ёмкостном фильтре исследовался переходный процесс в фильтре поставленном на выходе однофазного однополупериодного выпрямителя, при этом в схеме замещения выпрямитель с источником переменного напряжения заменены последовательным соединением источника ЭДС и резистора, такая замена делает возможным расчёт схем но при этом для расчётов требуется найти ЭДС источника и его внутреннее сопротивление. Найти ЭДС источника и его внутреннее сопротивление эксперементально можно проделав опыт холостого хода и опыт короткого замыкания но это не всегда возможно, например когда необходимо найти ЭДС и внутреннее сопротивление источника представляющего собой вторичную обмотку трансформатора, поэтому бывает необходимо определить параметры схемы замещения источника не внося больших изменений сопротивления нагрузки в схему. Рассмотрим схему на рисунке 1:

Рисунок 1 — Схема для определения параметров схемы замещения источника.

В этой схеме значения ЭДС источника и его внутреннего сопротивления неизвестны, известны только показания амперметра и вольтметра. Учтём что тока в цепи вольтметра нет, так как у него большое сопротивление и его проводимостью можно пренебреч а сопротивление амперметра настолько мало что им тоже можно пренебреч и заменить амперметр перемычкой. Ток в этой цепи обозначим как I1 (его показывает амперметр) а напряжение на R1 и G обозначим как U1 (его показывает вольтметр) при этом будем считать что ток направлен как показано на рисунке 1, а напряжения на R1 и r направлены в туже сторону что и ток. Рассмотрим схему на рисунке 2 в которой изменено (в нашем случае увеличено) сопротивление реостата:

Рисунок 2 — Схема для определения параметров схемы замещения источника с изменённым сопротивлением реостата.

В этой схеме показание амперметра обозначим как I2 а показание вольтметра как U2.

Из схемы на рисунке 1, составим уравнение по второму закону Кирхгофа для контура который остаётся если заменить вольтметр разрывом:

Здесь E — ЭДС источника, U1 — напряжение на реостате (показывает вольтметр), I1 — ток в цепи (показывает амперметр), r — внутреннее сопротивление источника. Выразим из уравнения (1) напряжение U1:

Аналогично найдём U2, используя схему на рисунке 2:

Подставим (1) в (3):

Выразим из уравнения (4) внутреннее сопротивление источника r:

 Подставим (6) в (1) и найдём ЭДС источника:

По формулам (6) и (7) находятся параметры схемы замещения источника электрической энергии (по формуле (7) его ЭДС, по формуле (6) его внутреннее сопротивление). Последовательно с реостатом можно поставить измерительный резистор и использовать его для измерения тока вольтметром тогда измерения можно проводить одним вольтметром сначала подключая его паралельно источнику G, а потом паралельно измерительному резистору.
Для расчёта внутреннего сопротивления и ЭДС источника можно воспользоваться программой:
Первое измерение должно быть с меньшим сопротивлением реостата, а второе с большим.

Химические источники тока внутреннее сопротивление


    На внутреннее сопротивление химического источника тока большое влияние оказывает величина поверхности электродов. С увеличением поверхности уменьшаются плотность разрядного тока и внутреннее сопротивление элемента. Для увеличения поверхности электродов стремятся повысить их пористость, применяя электроды, изготовленные из порошковых материалов. [c.24]

    Глава III. Методы измерения внутреннего сопротивления химических источников тока. ….. [c.381]

    При выборе источника тока потребитель интересуется не только величиной э. д. с. и поляризацией. Существенное значение имеют полное внутреннее сопротивление, напряжение, емкость, отдаваемая источником тока при разряде, величина потери емкости при хранении, т. е. саморазряд, форма разрядных кривых и стабильность напряжения при разряде, энергия и мощность гальванического элемента. Только правильный выбор химического источника тока может гарантировать бесперебойную работу устройств, которые получают электрическую энергию от гальванической батареи или элемента. [c.21]

    При разработке химических источников тока стремятся максимально снизить внутреннее сопротивление. С этой целью уменьшают межэлектродные расстояния и используют электродные материалы и электролиты с высокой электропроводностью. Электропроводность неводных электролитов в 100—1000 раз меньше, чем [c.23]

    Напряжение на зажимах химического источника тока зависит, таким образом, от электродвижущей силы данного источника тока и падения напряжения а его полном внутреннем сопротивлении. [c.12]

    Полным внутренним сопротивлением г химического источника энергии называют сопротивление, оказываемое источником энергии при прохождении постоянного электрического тока оно складывается из омического Го и поляризационного г сопротивлений  [c.405]

    Полным внутренним сопротивлением г химического источника тока называется сопротивление, оказываемое им при прохождении внутри него постоянного тока  [c.11]

    Ценность того или иного химического источника тока определяется его электрическими характеристиками. Под электрическими характеристиками понимают электродвижущую силу, напряжение, емкость, внутреннее сопротивление, характер зарядной и разрядной кривой, саморазряд, отдачу, коэффициент использования массы и срок слулхимических источников тока. [c.476]

    Напряжение и внутреннее сопротивление. Разность потенциалов между выводами химического источника тока, находящегося под нагрузкой, называется напряжением и. По закону Ома [c.15]


    МЕТОДЫ ИЗМЕРЕНИЯ ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА [c.75]

    Другой метод отличается большой наглядностью и особенно удобен для измерения внутреннего сопротивления, имеющего емкостный характер. Метод основан на пропускании через химический источник тока импульсов прямоугольной формы и осциллографировании процесса изменения напряжения на клеммах источника тока во времени. Метод может рассматриваться как разновидность известного способа определения степени заряженности никель-кадмиевых аккумуляторов, при котором используется пульсирующий ток однополупериодного выпрямителя. Сущность метода заключается в следующем. При прохождении через источник тока импульсов прямоугольной формы напряжение на его зажимах изменяется так, как показано на рис. 24. В течение полу-периода от а до через источник тока протекает ток и напряжение на зажимах будет складываться из э. д. с. Е, падения напряжения на активном сопротивлении источника тока Уг и падения напряжения /с- [c.83]

    Основными специфическими требованиями, которым в ряде случаев должны отвечать химические источники тока, являются высокие значения удельных характеристик, механическая прочность, широкий интервал рабочих температур, пологость разрядных характеристик, малое внутреннее сопротивление, возможность работы при любой пространственной ориентации, удобства эксплуатации. [c.7]

    Э. д. с., напряжение и внутреннее сопротивление химических источников тока [c.11]

    В процессе работы химического источника тока активные вещества электродов или электролита (иногда те и другие вместе) могут превратиться в повые химические вещества. При этом изменяются полное внутреннее сопротивление источника (так как вновь образовавшиеся вещества имеют другое удельное сопротивление) и потенциалы электродов, т. е. э. д. с. Чем больше электричества отдал источник тока, тем сильнее изменения в составе его активных веществ и тем значительнее его э. д. с. отличается от первоначальной. [c.12]

    Многочисленные способы, предложенные для измерения внутреннего сопротивления химических источников тока методом постоянного тока, основаны на применении закона Ома к цепи постоянного тока. Полное внутреннее сопротивление определяется по уравнению [c.75]

    Ценным вкладом в общий фонд теории расчета характеристик ХИТ являются труды проф. Б. В. Беляева, показавшего, что имеется общая закономерность для характеристик разряда наиболее распространенных систем химических источников тока и что полное внутреннее сопротивление в значительной степени определяет величину емкости, а также зависимость емкости и напряжения от температуры [9, 10]. [c.15]

    Рассчитать кривые можно без особого труда с помощью справочника по математике, содержащего таблицы показательных функций. Выше уже упоминалось о полном внутреннем сопротивлении г-химического источника тока. Уточним теперь это понятие. Полным внутренним сопротивлением ХИТ называется сопротивление, которое он оказывает прохождению постоянного тока  [c.24]

    После определения понятий э. д. с., падения напряжения на полном внутреннем сопротивлении и сопротивления химических источников тока становится возможным уточнить понятие разрядного напряжения ХИТ. [c.25]

    Измерение внутреннего сопротивления по этому методу производится фактически по двум точкам на разрядной кривой. По существу так же определяется внутреннее сопротивление, исходя из вольтамперной характеристики химического источника тока  [c.75]

    Внутреннее сопротивление химических источников тока, разряжающихся с незначительной поляризацией, очень мало зависит от величины тока. Например, величина тока практически не влияет на внутреннее сопротивление серебряно-цинковых аккумуляторов, разряжающихся на второй ступени, разрядной кривой. [c.76]


    Внутреннее сопротивление любого химического источника тока, измеренное на переменном токе, обычно отличается от сопротивления, измеренного по 76 [c.76]

    Таким образом, по форме напряжения на зажимах химического источника тока можно качественно оценить характер его внутреннего сопротивления. В некоторых случаях, однако, этот метод дает возможность непосредственно из осциллограммы вычислить все составляющие внутреннего сопротивления химического источника тока. Это можно сделать, когда емкостное сопротивление не очень сильно отличается по величине от шунтирующего сопротивления гг (рис. 25,6), путем подбора такой частоты следования импульсов, при которой заряд и разряд емкости будет полностью заканчиваться за время полупериода. [c.85]

    В связи с вышеизложенным следует особо подчеркнуть, что укоренившееся представление 2] о том, что будто бы внутреннее сопротивление химического источника тока, измеренное методом постоянного тока, всегда больше измеренного по методу переменного тока, не соответствует действительности. [c.86]

    Величина полного внутреннего сопротивления химического источника тока (рис. 23), измеренная на переменном токе, зависит от величин составляющих полного внутреннего сопротивления, а также от частоты переменного тока. Внутреннее сопротивление, измеренное на 86 [c.86]

    Для химических источников тока с емкостно-индуктивным характером внутреннего сопротивления (рис. 23,а) величина последнего, измеренная на переменном токе, в резонансной точке может быть значительно меньше, а на индуктивной ветви больше значения, полученного методом постоянного тока. Такая зависимость наблюдается, например, у свинцовых аккумуляторов емкостью не более 700 а-ч, а также у небольших никель-кадмиевых аккумуляторов. [c.87]

    Для химических источников тока с индуктивным характером сопротивления (рис. 23,6) величина внутреннего сопротивления, измеренная методом переменного, тока, будет всегда, даже при небольших частотах, больше значения, измеренного методом постоянного тока. Это наблюдается, например, у свинцовых аккумуляторов емкостью более 800 а-ч. [c.88]

    Часто задают вопрос, какое значение внутреннего сопротивления химического источника тока более правильное измеренное по методу постоянного тока или же по методу переменного тока. Из всего изложенного выше очевидно, что подобная постановка вопроса не имеет смысла. Пользоваться следует тем значением внутреннего сопротивления, которое соответствует конкретным условиям эксплуатации химического источника тока. [c.88]

    Главнейшими характеристиками химических источников тока являются электродвижущая сила, напряжение, внутреннее сопротивление, мощность, емкость, отдача, саморазряд и срок службы. [c.100]

    Внутреннее сопротивление химического источника тока обычно мало по сравнению с сопротивлением вольтметра. Поэтому сила тока измерения будет определяться главным образом сопротивлением вольтметра. [c.101]

    Мическое сопротивление зависит от природы веществ, через которые проходит ток, и от температуры, а полное внутреннее сопротивление — еще и от силы тока и характера электродных процессов. Поэтому полное внутреннее сопротивление химического источника тока не является постоянной величиной. Например, полное внутреннее сопротивление разряженного аккумулятора значительно больше, чем заряженного у гальванических элементов оно колеблется от нескольких десятых ома до пяти и больше ом, а у аккумуляторов — от десятитысячных до десятых ома. С увеличением размеров источника тока сопротивление падает. Уменьшение сопротивления при увеличении размеров источника тока вызывается тем, что вследствие увеличения площади соприкосновения растворов электролита с электродами сопротивление раствора электролита падает. Зависимость величины сопротивления от площади электродов и расстояния между ними вытекает из формулы  [c.104]

    Таким образом, для создания во внешней цепи максимальной полезной мощности неа ходимо, чтобы внешнее сопротивление было равно полному внутреннему сопротивлению химического источника тока. [c.106]

    Как мы уже указали (стр. 103), полное внутреннее сб-противление химического источника тока слагается из величин омического сопротивления и некоторой величины [c.159]

    Электрическая энергия, развиваемая химическими источниками тока, частично затрачивается в самом элементе при преодолевании внутренних сопротивлений. Чем меньше последние, тем полнее может быть полезное использование электрической энергии во внешней цепк. Коэфициент полезного действия химического источника тока по энергии зависит от соотношения сопротивления внешней цепи и внутреннего сопротивления. При бесконечно малом внешнем сопротивлении (короткое замыкание) получается наивысшая сила тока, но вся энергия затрачивается внутри элемента на выделение тепла и коэфициент полезного действия равен 0. При возрастании внешнего сопротивления коэфициент полезного действия растет, но мощность, развиваемая элементом, уменьшается. [c.182]

    Электролит, пригодный для использования в химических источниках тока, должен, прежде всего, обладать высокой электропроводностью. В противном случае мощность источника тока будет ограничена его внутренним сопротивлением. Кроме требования высокой электропроводности, раствор электролита должен содержать ионы, участвующие в электрохимическом процессе, для обеспечения обратимой работы электродов. Однако, это условие выполнить не всегда возможно, так как, например, фториды и хлориды щелочных металлов растворимы часто слишком мало. В нропиленкарбо-нате растворимость составляет 5,5-10 , а иС1 — 5,5- 10 2 лолб/л [12].  [c.62]

    Эти уравнения используются для расчета полного внутреннего сопро- 1 ивления химического источника тока. Уменьшение внутреннего сопротивления химических источников тока может быть достигнуто максимально возможным сближением электродов, прикенением электролита, обладающего возможно большей электропроводностью. Что касается э. д. с поляризации, то она в основном определяется физико-химическими свойствами применяемых активных материалов. [c.477]

    Следующим крупным открытием в области химических источников тока явилось изобретение в 1836 г. академиком Якоби в России и Даниэлем в Англии медно-цинкового элемента 2п 12п5041 СибО Си, состоящего из цинкового и медного электродов, погруженных в растворы собственных солей, разделенных пористой перегородкой. Э. д. с. этого элемента 1,16б. Внутреннее сопротивление — немного больше одного ома. Недостатками элемента являются большое внутреннее сопротивление и высокий саморазряд, вызываемый проникновением ионов меди через перегородку. Замена сульфата цинка сульфатом магния увеличивает э. д. с. элемента до 1,18 в. [c.480]

    Следует, однако, отметить, что и» мереиия внутреннего сопротивления химических источников тока на раз- [c.79]

    Внутреннее сопротивление химических источнико в тока имеет большое значение при эксплоатации их, так как, например, величина напряжения источника тока зависит не только от величины э. д. с., но и от величины внутреннего сопротивления. Кроме того, как мы покажем ниже, полезная мощность химического источника тока зависит от величины полного внутреннего сопротивления. [c.105]


Внутреннее сопротивление источника тока. Сопротивление

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

2014 г.

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

. (2)

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:
. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

и
(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы
, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

, (4)

где
— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:
.

Закон Ома для полной цепи.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

. (5)

Из выражений (2), (4) и (5) получаем:


. (6)

Так как
, то

, (7)

или

. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:


. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Рис.1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника
, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.

. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :

. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что

(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Вычислите внутреннее сопротивление источника тока.

Таблица1.

, В

, В

I , А

, В

r , Ом

2 способ.

Сначала соберите экспериментальную установку, изображенную на рисунке 2.

Рис. 2.

Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора =5 Ом. Все данные заносятся в таблицу 2. , Ом

Контрольные вопросы :

    Внешний и внутренний участки цепи.

    Какое сопротивление называются внутренним? Обозначение.

    Чему равно полное сопротивление?

    Дайте определение электродвижущей силы (ЭДС). Обозначение. Единицы измерения.

    Сформулируйте закон Ома для полной цепи.

    Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

    Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Цель работы: изучить метод измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: металлический планшет, источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирают электрическую цепь, схема которой показана на рисунке 1.

К источнику тока подключают амперметр, сопротивление и ключ, соединенные последовательно. Кроме того, непосредствен­но к выходным гнездам источника подключают еще и вольтметр.

ЭДС измеряют по показанию вольтметра при разомкнутом ключе. Этот прием определения ЭДС основан на следствии из за­кона Ома для полной цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на зажимах источника равно его ЭДС. (См. параграф «Закон Ома для полной цепи» учебника «Физика 10»).

Для определения внутреннего сопротивления источника за­мыкают ключ К. При этом в цепи можно условно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока). Поскольку ЭДС источника равна сумме падения напряжений на внутрен­нем и внешнем участках цепи:

ε = U r +U R , то U r = ε -U R (1)

По закону Ома для участка цепи U r = I· r (2). Подставив равенство (2) в (1) получают:

I · r = ε U r , откуда r = (ε U R )/ J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо пред­варительно определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внеш­нем сопротивлении, а также силу тока в нем.

Ход работы

1. Подготовьте таблицу для записи результатов измерений и вычислений:

ε

U r , B

i,a

r , Ом

    Начертите в тетради схему для измерения ЭДС и внутреннего сопротивления источника.

    После проверки схемы соберите электрическую цепь. Ключ разомкните.

    Измерьте величину ЭДС источника.

    Замкните ключ и определите показания амперметра и вольтметра.

    Вычислите внутреннее сопротивление источника.

  1. Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы: изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование: гальванический элемент, амперметр, вольтметр, резистор R 1 , переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. — силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

    Для записи результатов измерений подготовьте таблицу:

  1. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.
  2. Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

    Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

    Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока — по горизонтальной. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

    Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Поэтому большинству людей нужны ассоциации или критическая масса в планетарном поле, чтобы получать сигналы энергии и воспоминания о сознании и иметь возможность правильно воспринимать сигналы. Трехмерная система управления не учитывает симптомы вознесения, опыт, связанный с сознанием, или многие радикальные изменения, которые происходят у людей с этой Земли. Заземление — это форма заземления на Земле и относится к прямому контакту тела с элементами Земли. Это может быть полезно для многих людей, которые испытывают недостаток заземления и плотского дискомфорта во время планетарных изменений.

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой , поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

Если у вас нет доступа к природе, и вы хотите создать электрическую схему с полем Земли, вы также можете использовать праймер, который связан с человеческим телом. Электрический потенциал цепи заземления зависит от местоположения, атмосферных условий, времени суток и ночи, а также от влаги, которая расположена на поверхности Земли. Интуитивные эмпаты и звездные саженцы, которые хотят восстановить энергетическую настройку с телом планеты, должны обратить внимание на их естественные чувства, потому что они должны знать, должны ли они быть заземлены или нет.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

В некоторых случаях из-за неорганических или внешних течений в определенных областях эта практика может оказаться нецелесообразной. Для большинства людей, которые посеяны Землей, на фазе духовной интеграции обоснование будет положительно ощущаться и будет очень полезно для тела, потому что оно будет действовать как нейромодулятор. Нейромодуляция — это процесс, в котором активность нервной системы регулируется путем регулирования физиологических уровней посредством стимуляции нейротрансмиттеров. Таким образом, заземление изменяет плотность отрицательного заряда в области энергии человека и его нервной системы и непосредственно влияет на физиологические процессы, такие как химия мозга.

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Земля посылает электромагнитные сигналы для поддержки человеческих тел при адаптации к ее вознесению, и этот сигнал позволяет человеческой нервной системе лучше адаптироваться к требованиям, предъявляемым к телу и мозгу во время интенсивных изменений сознания. Когда мы хотим восстановить электрический баланс активности мозга, может быть особенно полезно окружить природу, сосредоточиться на глубоком дыхании и соединиться с Землей или с элементом воды.

Почки — это органы, которые питают энергию. В настоящее время население людей переживает эпидемию заболеваний почек, вызванных неспособностью органов быстро адаптироваться к новым обстоятельствам, плохого признания событий, изменяющих жизнь, сердечных заболеваний, перегрузки токсичными химическими веществами и негативных эмоций. Целью почек является удаление вредных метаболических продуктов, выделяемых мочевым пузырем, и поддержание надлежащей химии крови и давления, поскольку они контролируют все химические вещества, растворенные в кровотоке.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

Когда почки ослаблены и перегружены, в крови и тканях накапливаются токсичные отходы, а также химические вещества, которые невозможно фильтровать надлежащим образом. Почечная недостаточность увеличивается в Соединенных Штатах на 5% в год, при этом в качестве терапии используют почечный диализ или трансплантацию. Десять процентов населения имеют некоторую форму диабета и неврологического дискомфорта, и это число, по-видимому, неуклонно растет — у взрослых и у детей. Что случилось с нашими почками?

Восточная медицинская философия знает, что почки питают другие органы тела. Они действуют как корни жизни, которые отвечают за защиту организма и распределение энергии во всех органах, репродуктивных функциях и всего организма. Почки — это органы взаимоотношений, поэтому они страдают от проблем с межличностными и сексуальными отношениями, которые могут возникнуть в результате отсутствия поддержки у других или чувства нелюбимой или даже из-за отсутствия физической чувствительности. Эмоции циркулируют в личной энергетической области, и когда она будет выпущена, у вас может возникнуть ощущение течения, благодаря которому вы ощущаете эмоции.

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:

. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

Это позволяет вам освобождать эмоциональную боль и страх и избавляет вас от хронических проблем с почками, открывая для себя большее эмоциональное и духовное расширение энергии. Когда это наоборот, когда сердце закрыто от боли и страха, что блокирует эмоции, оно влияет на функцию управления жидкостью через почки и нарушает распределение жизненной энергии, необходимой для заземленного, здорового и сбалансированного ума и тела.

Более того, когда наше сердце исцеляется, внутри горит пламя, которое также питается жизненной энергией, хранящейся в почках. Треугольный соединитель соединяет сердце с каждой почкой, которая работает в светящемся теле, как электрическая цепь. В основании этого треугольника слева и справа находятся почки, а верхняя точка связана с сердцем. Когда сердце исцеляется, пламя в сердце и почках одновременно активирует конфигурацию сердца во внутреннем двойном пламени. Двойное пламя соответствует восстановленному энергетическому балансу между энергией самца и женщины, т.е. структурой света, созданного в комплексе сердца.


и

(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы

, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

Поэтому, когда два огня зажигаются в сердце, жизненно важная сущность, хранящаяся в почках, помогает переносить чи-пламя по всему физическому телу, чтобы соединиться с духовным пламенем монадического тела. Монада — это большее пламя духа, а физическое тело — меньшее пламя жизненной сущности или жизненной силы. Когда эти два огня зажигаются и объединяются, пламя взрывается от сердца, которое посылает огонь, чтобы поддержать рост сущности жизни, создаваемой почками. В основном, почки помогают построить внутреннее светящееся тело, необходимое для встраивания монадического тела.


, (4)

— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:

.

Закон Ома для полной цепи.

Любые визуальные упражнения, направленные на создание жизненной силы энергии в низших диенах и вызывают энергию для циркуляции у подножия ног, укрепляют способность почек хранить жизненно важную сущность, помогают исправить механизм заземления и выполнять функции физической очистки крови. Существуют некоторые потенцирующие агенты для почек и трав, которые являются общими для восточной медицины и полезны для тонизирования функции почек, особенно если есть проблема с заземлением или центрированием сердечника.

Почечная недостаточность вызывает выработку надпочечников. Надпочечники — это железы, которые производят много гормонов, и хорошо известно, что под давлением они перекачивают кортизол в кровоток, что приводит к тому, что человеческая нервная система переходит в состояние борьбы или полета. Адреналин обычно продуцируется как надпочечниками, так и некоторыми нейронами, которые также могут активироваться эмоциональными реакциями. Каждая эмоциональная реакция имеет поведенческий компонент, компонент вегетативной нервной системы, секрецию железы или гормональный фактор.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

Гормональные факторы, связанные со стрессом и эмоциональной болью, включают высвобождение адреналина и реакции надпочечников — в ответ на чувства, основанные на страхе, контролируемые симпатической нервной системой. Основная эмоция, которая выделяет адреналин в кровь, — это страх.

Кроме того, надпочечники играют важную роль в реагировании на борьбу или бегство, увеличивая приток крови к мышцам и сердцу, а затем учащиеся расширяются и уровень сахара в крови увеличивается. Адреналин закачивается в кровоток, когда человек провоцируется на террористические акты или страх, чтобы произвести как можно больше негативной эмоциональной энергии, что может быть основной причиной того, что надпочечники полностью истощены у большинства людей. Когда человек не исправляет это состояние и все еще накачивает адреналин или другие гормоны стресса в кровоток, нервная система замерзает, состояние шока и онемения.


. (5)

Из выражений (2), (4) и (5) получаем:

. (6)

, то


, (7)

В какой-то момент, когда вы испытываете постоянную боль или страх, из-за чрезмерной нагрузки адреналина, тело и нервная система попадают в состояние онемения, которое отключает эмоциональные реакции, закрывая сердце. Надпочечники находятся в верхней части каждой почки, поэтому они непосредственно подвержены истощению почек, что, естественно, приводит к выходу надпочечников. Если мы делаем что-то действительно нездоровое для нашего духа, и наша повседневная работа не соответствует тому, кто мы есть, он также истощает почки, адреналин и жизненную силу.


. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Когда нам приходится сталкиваться с трудными стрессовыми факторами на работе, в отношениях или в других ситуациях, организм может подвергаться глубокому бессознательному эмоциональному стрессу. Мы чувствуем себя беспомощными и расстроены тем, что мы должны просто работать, чтобы выполнить финансовые обязательства или выжить. Наше тело дает нам сообщение из-за чрезмерного истощения, что мы уже не можем жить таким же образом, мы должны вносить изменения, и первое изменение должно состоять в том, чтобы осуществить сознание через смерть эго.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов ; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

Планетарный контроль над человеческими почками Чи. Мы должны стремиться к восстановлению сердечного центра и превращению почек в более высокую цель, связанную с вознесением тела. Существуют оверлеи, кодирующие человеческие тела для порабощения, установленные во время рождения, в записи последовательности трансдукции в теле проявления ядра или в Древе Жизни. Основной шаблон проявления сетки дерева имеет набор инструкций для контроля функций органов и желез на уровне каждого измерения, поскольку железы выделяют вещества и гормоны, которые позволяют человеческому сознанию двигаться быстрее между измерениями.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:

В землях Соединенного Королевства ключи от пробуждения структур Альбиона скрыты, и они являются гигантскими спящими существами. Теги используются для руководства людьми на Земле для будущих временных линий для работы в рабских колониях или в различных галактических местах торговли людьми, которые контролируются этими внеземными коррумпированными конгломератами и группами драконов.

Группы Черного Солнца Ориона оставляли за собой право на некоторые человеческие тела, генетический материал и человеческое Древо Жизни, и именно поэтому они контролируют его. Благодаря этому им легче контролировать и контролировать информацию, связанную со структурой души и многомерной анатомией. Это драконовцы, которые воруют из духовных частей тела, а также из органов и желез.

. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника

, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.


. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :


. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что


(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Сформулируйте закон Ома для полной цепи.

Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Цель работы: Научиться экспериментальным путем определять ЭДС, и внутреннее сопротивление источника тока.

Приборы и оборудование: Источники электрической энергии, амперметр (до 2А с делением до 0,1А), вольтметр (постоянного до 3А с делением до 0,3В), магазин (сопротивления до 10 Ом) ключ, соединительные провода.

ТЕОРИЯ:

Для поддержания тока в проводнике необходимо, чтобы разность потенциалов (напряжение) на его концах была неизменной. Для этого используется источник тока. Разность потенциалов на его полюсах образуется вследствие разделения зарядов на положительные и отрицательные. Работу по разделению зарядов выполняют сторонние силы (не электрического происхождения).

Величина, измеряемая работой, совершенной сторонними силами при перемещении единичного положительного электрического заряда внутри источника тока, называется электродвижущей силой источника тока (ЭДС) и выражается в вольтах.

Когда цепь замыкается, разделенные в источнике тока заряды образуют электрическое поле, которое перемещает заряды по внешней цепи; внутри же источника тока заряды движутся навстречу полю под действием сторонних сил. Таким образом, энергия, запасенная в источнике тока, расходуется на работу по перемещению заряда в цепи с внешним R и внутренним r сопротивлениями.

ХОД РАБОТЫ

1. Собрать электрическую цепь как показано на схеме.

2. Измерить ЭДС источника электрической энергии замкнув его на вольтметр (схема).

3. Измерить силу тока и падение напряжения на заданном сопротивлении.

Е U I R r rcр
1.
2.
3.

4. Вычислить внутреннее сопротивление по закону Ома для всей цепи.

5. Произвести опыты с другими сопротивлениями и вычислить внутреннее сопротивление элемента.

6. Вычислить среднее значение внутреннего сопротивления элемента.

7. Результаты всех измерений и вычислений записать в таблицу.

8. Найти абсолютную и относительную погрешность.

9. Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите условия существования электрического тока в проводнике.

2. Какова роль источника электрической энергии в электрической цепи?

3. От чего зависит напряжение на зажимах источника электрической энергии?

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ЭКВИВАЛЕНТА МЕДИ.

Цель работы : научиться на практике рассчитывать электрохимический эквивалент меди.

Оборудование: Весы с разновесом, амперметр, часы., источник электрической энергии, реостат, ключ, медные пластины (электроды), соединительные провода, электролитическая ванна с раствором медного купороса.

Теория

Процесс, при котором молекулы солей, кислот и щелочей при растворении в воде или других растворителях распадаются на заряженные частицы (ионы), назы­вается электролитической диссоциацией, получившийся при этом раствор с поло­жительными и отрицательными ионами называется электролитом.

Если в сосуд с электролитом поместить пластины (электроды), соединенные с зажимами источника тока (создать в электролите электрическое поле), то положи­тельные ионы будут двигаться к катоду, а отрицательные — к аноду. Следовательно, в растворах кислот, солей и щелочей электрический заряд будет перемещаться вместе с частицами вещества. У электродов при этом происходит окислительно-восстановительные реакции, при которых на них выделяется вещест­во. Процесс прохождения электрического тока через электролит, сопровождающий­ся химическими реакциями называется электролизом.

Для электролиза справедлив закон Фарадея: масса выделившегося вещества на электроде прямо пропорциональна заряду, прошедшему через электролит:

где k-электрохимический эквивалент-количествовещества, выделенное при прохождении через электролит 1 Кл электричества. Измерив силу тока в цепи, вре­мя его прохождения и массу выделившегося на катоде вещества можно определить электрохимический эквивалент (1с выражается в кг/Кл).

где m-масса меди, выделившейся на катоде; I-сила тока в цепи; t- время пропускания тока в цепи.

Соберите электрическую цепь по схеме.

1. Одну из пластин, которая будет катодом, (если пластина мокрая, ее надо подсушить) тщательно взвесить с точностью до 10мг и записать результат в таблицу.

2. Вставить электрод в электролитическую ванну и составить электрическую цепь согласно схеме.

3. Отрегулировать реостатом ток, чтобы величина его не превышала 1А на 50см 2 погруженной части катодной пластины.

4. Замкнуть цепь на 15-20 минут.

5. Разомкнуть цепь, вынуть катодную пластинку, смыть с нее остатка раствора и высушить под рукосушителем.

6. Взвесить высушенную пластину с точностью до 10мг.

7. Значение тока, время опыта, увеличение в массе катодной пластину записать в таблицу и определить электрохимический эквивалент.

Оценка погрешностей.

.

Относительная погрешность:
.

, следовательно .

После этого дается результат в виде: .

Сравните полученный результат с табличным.

Контрольные вопросы.

1. Что такое электролитическая диссоциация, электролиз?

2. До каких пор будет происходить электролиз медного купороса, если оба электрода медные? Оба электрода угольные?

3. Быстрее или медленнее пойдет электролиз, если один из медных электродов заменить цинковым?

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

— термоэлектрическая — в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Что такое источник напряжения и источник тока — идеально и практично

A Источник — это устройство, преобразующее механическую, химическую, тепловую или другую форму энергии в электрическую. Другими словами, источник — это активный сетевой элемент, предназначенный для выработки электроэнергии.

В электрической сети доступны различные типы источников: источники напряжения и источники тока. Источник напряжения имеет форсирующую функцию ЭДС, тогда как источник тока имеет форсирующую функцию тока.

Состав:

Источники тока и напряжения далее классифицируются как идеальный источник или практический источник.

Источник напряжения

Источник напряжения — это двухконтактное устройство, напряжение которого в любой момент времени является постоянным и не зависит от тока, потребляемого от него. Такой источник напряжения называется Идеальным источником напряжения и имеет нулевое внутреннее сопротивление.

Практически невозможно получить идеальный источник напряжения.

Источники, имеющие некоторое внутреннее сопротивление, известны как Практический источник напряжения . Благодаря этому внутреннему сопротивлению; Происходит падение напряжения, что приводит к снижению напряжения на клеммах. Чем меньше внутреннее сопротивление (r) источника напряжения, тем он ближе к идеальному источнику.

Символическое изображение идеального и практичного источника напряжения показано ниже.

На рисунке А, показанном ниже, показаны принципиальная схема и характеристики идеального источника напряжения:

На рисунке B, показанном ниже, показана принципиальная схема и характеристики практического источника напряжения:

.

Примером источников напряжения являются аккумуляторные батареи и генераторы переменного тока.

Источник тока

Источники тока далее подразделяются на идеальные и практические источники тока.

Идеальный источник тока — это двухконтактный схемный элемент, который подает одинаковый ток на любое сопротивление нагрузки, подключенное к его клеммам. Важно помнить, что ток, подаваемый источником тока, не зависит от напряжения на клеммах источника. У него бесконечное сопротивление.

Практический источник тока представлен как идеальный источник тока, подключенный к сопротивлению параллельно.Символическое изображение показано ниже:

Рисунок C, показанный ниже, показывает его характеристики. На рисунке D, показанном ниже, показаны характеристики практического источника тока.

Примером источников тока являются фотоэлементы, коллекторные токи транзисторов.

6.2: Преобразование источников — Разработка LibreTexts

Мы начнем с рассмотрения более реалистичной модели для источников постоянного напряжения и постоянного тока. Идеальный источник напряжения всегда создает заявленный потенциал независимо от того, к чему он подключен.Идеальный источник тока ведет себя аналогичным образом; он всегда будет производить один и тот же ток независимо от нагрузки. Эти ожидания нереалистичны. Например, если мы поместим сплошную медную полосу на клеммы источника напряжения, она может иметь сопротивление всего миллиом, что означает выходной ток в тысячи ампер. Точно так же, если бы мы отключили источник тока от любой нагрузки, его эффективная нагрузка была бы сопротивлением воздуха между его выводами, а закон Ома диктовал бы выходное напряжение, возможно, в тысячи или даже миллионы вольт.Источники из реального мира не ведут себя подобным образом.

Реалистичные модели источников

Высокоточная модель любого источника напряжения или источника тока может быть довольно сложной, но для работы общего назначения мы можем значительно улучшить наши идеальные источники, просто добавив к ним резистор. Это сопротивление называется внутренним сопротивлением источника. Важно понимать, что это не резистор, как внутренний компонент, который можно изменить, а скорее математическое дополнение к источнику, которое лучше предсказывает его поведение.Кроме того, значение этого эффективного сопротивления можно определить в лаборатории путем соответствующих измерений.

Рисунок 6.2.1 : Практическая модель источника напряжения.

Модель источника напряжения добавляет последовательно сопротивление, как показано на рисунке 6.2.1. . Это сопротивление устанавливает верхний предел токового выхода источника. Даже если выходные клеммы закорочены, максимальный ток будет определяться законом Ома как напряжение источника, деленное на внутреннее сопротивление, или \ (E / R \).Очевидно, это внутреннее сопротивление создаст некоторый эффект делителя напряжения с подключенной нагрузкой. Чтобы свести к минимуму этот эффект, внутреннее сопротивление должно быть как можно меньше. Таким образом,

\ [\ text {Идеальное внутреннее сопротивление источника напряжения равно нулю Ом (короткое замыкание).} \ Nonumber \]

При внутреннем сопротивлении 0 Ом эта улучшенная модель возвращается к исходному идеальному источнику. В случае лабораторного источника питания внутреннее сопротивление обычно составляет небольшую долю Ом.

Рисунок 6.2.2 : Практическая модель источника тока.

Для источника тока улучшенная модель добавляет сопротивление параллельно, как показано на рисунке 6.2.2. . Это сопротивление устанавливает верхний предел выходного напряжения источника. Если выходные клеммы разомкнуты, максимальное напряжение больше не будет создавать огромное напряжение. Вместо этого по закону Ома он должен быть равен току источника, умноженному на внутреннее сопротивление, или \ (I \ cdot R \). Это внутреннее сопротивление создаст некоторый эффект делителя тока с присоединенной нагрузкой.Чтобы свести к минимуму этот эффект, внутреннее сопротивление должно быть как можно большим. Таким образом,

\ [\ text {Идеальное внутреннее сопротивление источника тока бесконечно.} \ Nonumber \]

При бесконечном внутреннем сопротивлении в Ом (т. Е. Разомкнутом) эта улучшенная модель возвращается к исходному идеальному источнику. С этого момента, когда мы имеем дело с практическими источниками напряжения и тока, мы понимаем, что эти источники имеют некоторое внутреннее сопротивление, даже если они не показаны явно на схематической диаграмме.Кроме того, всякий раз, когда мы говорим об идеальных источниках, мы просто используем сокращение для внутреннего сопротивления источника напряжения и разрыв для внутреннего сопротивления источника тока.

Источники эквивалентности

Для любого простого источника напряжения, состоящего из идеального источника напряжения с последовательным внутренним сопротивлением, можно создать эквивалентный источник тока. Точно так же для любого простого источника тока, состоящего из идеального источника тока с параллельным внутренним сопротивлением, может быть создан эквивалентный источник напряжения.Под «эквивалентным» мы подразумеваем, что токи нагрузки должны быть одинаковыми для обеих цепей при любом значении сопротивления нагрузки. (Обратите внимание, что если токи одинаковы, то напряжения также должны быть одинаковыми из-за закона Ома.) Рассмотрим простой источник напряжения, показанный на рисунке 6.2.1. . Его эквивалентным источником тока будет тот, который показан на рисунке 6.2.2. . Обратное тоже верно.

По причинам, которые станут очевидными из следующего раздела, посвященного теореме Тевенина, внутренние сопротивления этих двух цепей должны быть идентичны, если они должны вести себя одинаково.Зная это, найти требуемую ценность другого источника — несложный процесс. Поскольку вольт-амперная характеристика для этих цепей является линейной, линия графика может быть определена всего двумя точками. Два очевидных момента для использования — это открытые и закороченные варианты нагружения. Другими словами, если он эквивалентен для этих двух ситуаций, он должен работать при любой нагрузке. Вариант закороченной нагрузки обеспечивает максимальный ток нагрузки при нулевом напряжении нагрузки, в то время как открытый вариант нагрузки дает максимальное напряжение нагрузки при нулевом токе нагрузки.

При наличии источника напряжения максимальный ток развивается, когда нагрузка замыкается, и возникает ток \ (E / R \). В тех же условиях нагрузки весь ток от текущей версии источника должен проходить через нагрузку. Следовательно, значение эквивалентного источника тока должно быть максимальным током \ (E / R \). Было бы бессмысленно использовать источник тока, который был бы больше или меньше этого значения.

В продолжение, если мы посмотрим на случай открытой нагрузки, для источника напряжения ток нагрузки будет равен нулю, а напряжение нагрузки будет полным напряжением источника \ (E \).Для источника тока нагрузка также не будет иметь тока, а ее напряжение будет представлять собой напряжение, возникающее на ее внутреннем сопротивлении, которое в \ (R \) умножено на ток \ (E / R \), или просто \ (E \). Таким образом, оба устройства ведут себя одинаково при предельных значениях нагрузки.

Точно так же, если мы начнем с источника тока, открытая нагрузка дает максимальное напряжение нагрузки \ (I \ cdot R \). Следовательно, эквивалентный источник напряжения должен иметь значение \ (I \ cdot R \). Для источника тока закороченная нагрузка создаст ток нагрузки, равный значению источника, или \ (I \).Версия с источником напряжения будет производить ток \ (E / R \), где значение \ (E \), как было обнаружено, равно \ (I \ cdot R \), и, таким образом, ток нагрузки будет \ (I \ cdot R / R \) или просто \ (I \). И снова две версии ведут себя идентично при предельных значениях нагрузки.

Чтобы подвести итог процесса преобразования источника:

  • Внутреннее сопротивление будет одинаковым для обеих версий.
  • При преобразовании из источника напряжения в источник тока значение источника тока будет максимальным током, доступным от источника напряжения (случай закороченной нагрузки), и будет равно \ (E / R \).
  • При преобразовании от источника тока к источнику напряжения значение источника напряжения будет максимальным напряжением, доступным от источника тока (открытый вариант нагрузки), и будет равно \ (I \ cdot R \).

Если выполняется преобразование нескольких источников (т. Е. Источников напряжения, подключенных последовательно, или источников тока, подключенных параллельно), сначала объедините источники, чтобы получить простейший источник, а затем выполните преобразование. Не конвертируйте сначала источники, а затем объединяйте их, так как вы получите последовательно-параллельные конфигурации, а не простые источники.

Разумное использование преобразования источников может иногда упростить схемы с несколькими источниками, позволяя объединять преобразованные источники, в результате чего получается один источник.

Пример 6.2.1

Определите эквивалент источника тока для источника, показанного на Рисунке 6.2.3. .

Рисунок 6.2.3 : Источник для примера 6.2.1 .

Во-первых, значение сопротивления просто копируется, поэтому внутреннее сопротивление источника тока составляет 50 \ (\ Omega \).Значение источника тока рассчитывается с использованием закона Ома на основе максимального тока, возникающего при коротком замыкании. Таким образом, все 15 вольт падают на сопротивление 50 \ (\ Omega \).

\ [I_s = \ frac {E} {R_s} \ nonumber \]

\ [I_s = \ frac {15V} {50 \ Omega} \ nonumber \]

\ [I_s = 0,3A \ nonumber \]

Рисунок 6.2.4 : Эквивалентный источник тока для источника, показанного на Рисунке 6.2.3. .

Эквивалентный источник тока показан на рисунке 6.2,4 . Мы знаем, что это будет работать для закороченных и открытых корпусов, но если остались какие-либо сомнения относительно его универсального характера, просто замените любое другое значение сопротивления и сравните результаты двух цепей. Без особой причины, давайте попробуем использовать нагрузку 200 \ (\ Omega \) и посмотрим, идентичны ли токи нагрузки.

Для исходного источника напряжения можно использовать закон Ома:

\ [I_L = \ frac {E} {R_s + R_L} \ nonumber \]

\ [I_L = \ frac {15 V} {50 \ Omega +200 \ Omega} \ nonumber \]

\ [I_L = 60 мА \ nonumber \]

Для эквивалентного источника тока мы можем использовать CDR:

\ [I_L = I_s \ frac {R_s} {R_s + R_L} \ nonumber \]

\ [I_L = 0.3 A \ frac {50 \ Omega} {50 \ Omega +200 \ Omega} \ nonumber \]

\ [I_L = 60 мА \ nonumber \]

Попробуйте это с любым другим нагрузочным резистором. Результаты всегда должны быть идентичными.

А теперь попробуем пойти другим путем.

Пример 6.2.2

Определите эквивалент источника напряжения для источника, показанного на Рисунке 6.2.5. .

Рисунок 6.2.5 : Источник для примера 6.2.2 .

Еще раз, значение сопротивления просто копируется, поэтому внутреннее сопротивление источника напряжения составляет 22 кОм \ (\ Омега \).Значение источника напряжения основано на максимальном напряжении, создаваемом при разомкнутой нагрузке, и вычисляется с использованием закона Ома. В открытом корпусе все 15 миллиампер проходят через сопротивление 22 кОм.

\ [E_s = I \ times \ nonumber \]

\ [E_s = 15 мА \ раз 22к \ Омега \ nonumber \]

\ [E_s = 330 В \ nonumber \]

Эквивалентный источник напряжения показан на рисунке 6.2.6. . Опять же, давайте попробуем использовать другое значение резистора нагрузки, чтобы увидеть, идентичны ли результаты тока нагрузки и напряжения между двумя источниками.На этот раз мы сопоставим нагрузку с внутренним сопротивлением 22 кОм (\ Омега \).

Рисунок 6.2.6 : Эквивалентный источник тока для источника на Рисунке 6.2.5. .

Для источника напряжения с согласованным сопротивлением мы устанавливаем простой 50% делитель напряжения, таким образом, напряжение нагрузки будет вдвое меньше напряжения источника, или 165 вольт. Исходный текущий источник видит текущее разделение пополам из-за текущего правила делителя. Таким образом, ток нагрузки должен составлять 7,5 мА. При таком токе напряжение нагрузки будет равно

\ [V_L = I \ times \ nonumber \]

\ [V_L = 7.5 мА \ умножить на 22 к \ Омега \ nonumber \]

\ [V_L = 165 V \ nonumber \]

И снова результаты совпадают.

Теперь, когда у нас есть возможность заменить один тип источника другим, пришло время исследовать, как мы могли бы использовать его, помимо простого предоставления нам другого способа управления цепью. При разумном применении преобразования источников можно использовать для упрощения и сокращения сложных схем и, таким образом, упрощения вычислительных трудностей. Например, рассмотрим схему на рисунке 6.2,7 .

Рисунок 6.2.7 : Схема с двумя источниками.

Эта схема не похожа ни на одну схему, которую мы видели до сих пор. Хотя мы анализировали схемы с использованием нескольких источников напряжения, они всегда были в простом последовательном контуре. Таким образом, их напряжения можно сложить вместе, чтобы найти один эквивалентный источник напряжения. Здесь дело обстоит иначе. В этой схеме источники напряжения являются частью последовательно-параллельной сети, поэтому их потенциалы не могут быть просто суммированы. Фактически, дальнейшие упрощения этой схемы с использованием базовых последовательно-параллельных методов не требуются.Кажется, мы застряли.

Но это не так. Эту схему можно упростить в прямую полностью параллельную сеть за счет преобразования источника. Комбинация \ (E_1 \), \ (R_1 \) может быть преобразована в один текущий источник, а комбинация \ (E_2 \), \ (R_2 \) может быть преобразована во второй источник. После преобразования результирующая схема будет состоять из двух источников тока и трех резисторов, включенных параллельно. Эту схему мы решили еще в главе 4.

Пример 6.2.3

Определите \ (V_b \) для схемы на Рисунке 6.2.8 .

Рисунок 6.2.8 : Схема для примера 6.2.3 .

Первым шагом будет преобразование источников напряжения в источники тока. Мы будем рассматривать резисторы, подключенные к их положительным клеммам, как их внутренние сопротивления. Другими словами, у нас есть источник на 15 В с сопротивлением 1 кОм (\ Омега \) и источник на 6 В с сопротивлением 4 кОм (\ Омега \).

Для первого источника ток будет:

\ [I_s = \ frac {E} {R_s} \ nonumber \]

\ [I_s = \ frac {15 V} {1k \ Omega} \ nonumber \]

\ [I_s = 15 мА \ nonumber \]

А для второго источника:

\ [I_s = \ frac {E} {R_s} \ nonumber \]

\ [I_s = \ frac {6V} {4 k \ Omega} \ nonumber \]

\ [I_s = 1.5 мА \ nonumber \]

Рисунок 6.2.9 : Версия схемы с эквивалентным источником тока, изображенная на Рисунке 6.2.8. .

Эквивалентная преобразованная схема показана на рисунке 6.2.9. . Прежде чем продолжить, стоит отметить, что соединительные узлы \ (a \) и \ (c \) больше не существуют в этой цепи. Подробнее об этом чуть позже. Эта новая схема состоит из пары источников тока, которые в сумме составляют 16,5 мА и которые управляют тремя параллельными резисторами, 1 k \ (\ Omega \) \ (|| \) 4 k \ (\ Omega \) \ (|| \) 5 к \ (\ Омега \), или примерно 689.7 \ (\ Омега \). Закон Ома говорит нам, что \ (V_b \) составляет:

\ [V_b = I_ {Total} \ times R_ {Equivalent} \ nonumber \]

\ [V_b \ приблизительно 16,5 мА \ раз 689,7 \ Омега \ nonumber \]

\ [V_b = 11,38 В \ nonumber \]

Теперь мы можем взять это напряжение и подать его обратно в исходную (непреобразованную) цепь. Зная этот потенциал, относительно легко определить другие токи и напряжения, используя KVL и закон Ома. Глядя на резистор 1 кОм (\ Омега \), напряжение на нем должно быть 15 В — 11.38 В, или 3,62 В. Следовательно, ток через него должен быть 3,62 мА. Точно так же напряжение на резисторе 4 кОм (\ Омега \) должно быть 11,38 В — 6 В, или 5,38 В, что дает ток 1,345 мА. Оба этих потока текут слева направо. Затем третий ток, протекающий через 5 кОм \ (\ Omega \), составляет 11,38 В / 5 кОм \ (\ Omega \), или 2,276 мА. KCL утверждает, что текущий входящий узел \ (b \) должен равняться токам на выходе. Входящий ток 3,62 мА. Выходные токи 1,345 мА и 2.276 мА или 3,62 мА при округлении до трех разрядов (как входной ток).

Как уже упоминалось, узлы \ (a \) и \ (c \) исчезли в преобразованной схеме в Примере 6.2.3. . Это поднимает важный момент. Эквивалентные схемы эквивалентны в том смысле, что элементы, подключенные к эквивалентной схеме, ведут себя так же, как и с исходной схемой. Это не означает, что элементы внутри эквивалента видят одинаковый ток или напряжение. Мы не ожидаем, что напряжение на резисторах 1 к \ (\ Omega \) или 4 к \ (\ Omega \) в преобразованной версии будет таким же, как в исходной версии.

идеальных источников | Книга Ultimate Electronics

Ultimate Electronics: практическое проектирование и анализ схем


Идеальные источники напряжения, идеальные источники тока и неидеальные источники с внутренним сопротивлением. Читать 7 мин

Идеальные источники напряжения и тока — примитивные концепции для моделирования схем. Мы обсуждали напряжение и ток в предыдущем разделе.

Вот схематические обозначения этих двух идеальных источников:


Символ идеального источника напряжения помечен положительной и отрицательной клеммами, указывающими его направление.Он определяется всего одним параметром В : разностью напряжений на его выводах.

Идеальный источник напряжения поддерживает одинаковую разницу напряжений на своих выводах независимо от величины тока, направления тока или общего заряда.

Идеальных источников напряжения не существует в физической реальности. Батарея (электрохимический элемент) ведет себя как идеальный источник напряжения, но это приближение не работает, когда токи велики и / или когда батарея разряжена.Мы обсудим батареи более подробно позже.

Когда какой-либо ток подается в идеальный источник напряжения или выходит из него, напряжение на нем остается неизменным. Вот простая симуляция, демонстрирующая этот эффект:

Exercise Щелкните схему, затем щелкните «Simulate» и «Run DC Sweep». Он настроен на регулировку тока, подаваемого на источник напряжения V1 или выходящего из него.

График напряжения показывает, что напряжение остается постоянным (ровная линия на 5 вольт) независимо от силы тока.Это скучная симуляция, но она показывает, что идеальный источник напряжения делает именно то, что должен!


На символе идеального источника тока есть стрелка, указывающая направление тока — при условии, что определенный параметр тока I положителен.

Идеальный источник тока подталкивает определенное постоянное количество заряда за раз, независимо от напряжения, энергии или общего заряда.

Источник тока также иногда называют приемником тока , в зависимости от того, с какого направления мы на него смотрим.Термин источник тока может использоваться в любом направлении.

Нет простого физического почти согласованного компонента, такого как батарея выше. Однако механические аналогии существуют. Водяной насос, который всегда выталкивает воду с заданной постоянной скоростью, независимо от того, насколько сильно он должен отталкивать любые препятствия в трубе, является разумным гидравлическим приближением к источнику тока.

Эта аналогия намекает на проблемы, которые мы увидим в электронике: что произойдет, если мы последовательно подключим идеальный водяной насос с производительностью 1 литр / час к идеальному водяному насосу с производительностью 2 литра / час? Кто победит? Ответ в том, что что-то нужно дать.Два последовательных идеальных источника тока несовместимы.

Аналогично, что, если мы возьмем наш идеальный водяной насос на 1 литр / час и полностью заблокируем его выходную трубу? Это похоже на то же самое, потому что заблокированный выход подобен источнику тока 0 литров / час. Итак, в конце концов, что-то должно дать — либо насос, либо препятствие — но математически мы создали невозможную ситуацию.

Хотя они могут не встречаться в природе, текущий источник является ценным методом моделирования, потому что в довольно широком диапазоне некоторые вещи ведут себя как текущие источники, и / или полезно создавать текущие источники как подкомпонент других систем или моделей. .

Вот простая симуляция, показывающая, что независимо от приложенного напряжения ток остается неизменным:

Exercise Щелкните схему, щелкните «Simulate» и «Run DC Sweep».

Опять же, это скучная симуляция плоской линии, но источник тока поддерживает ток 10 А независимо от приложенного напряжения.


Моделирование неидеальных источников требует размышлений о сопротивлении и законе Ома, а также о том, как напряжения и токи ведут себя в сети, в соответствии с законом Кирхгофа и законом тока Кирхгофа.Однако эти модели тесно связаны с идеальными источниками, поэтому мы кратко их представим здесь.


Практический источник напряжения моделируется в первом порядке с внутренним сопротивлением серии :

Это означает, что фактическое напряжение, видимое снаружи, падает по мере того, как от него отводится ток. (В качестве альтернативы внешнее напряжение возрастает, если в него подается ток.) ​​

Иногда этот эффект важен, а иногда нет: он зависит от величины падения напряжения и от того, рассчитана ли остальная часть вашей системы на это.

На самом деле это не всегда линейно. Это даже не всегда монотонно: например, посмотрите защита от перегрузки ломом , чтобы увидеть, как разработчики источников питания иногда намеренно хотят нелинейного поведения сопротивления для защиты схемы от перегрузки и перегрева.

Сравните это моделирование неидеального источника напряжения с приведенным выше примером идеального источника напряжения:

Exercise Щелкните схему, щелкните «Simulate» и «Run DC Sweep». Теперь, когда внутреннее сопротивление ненулевое, график напряжения больше не плоский.Наклон зависит от величины внутреннего сопротивления.

Поскольку батареи часто моделируются как источники напряжения, важно помнить, что настоящие электрохимические элементы батареи также имеют внутреннее сопротивление. Это сопротивление зависит от химического состава, конструкции и истории батареи. Свежие высококачественные батареи будут иметь более низкое внутреннее сопротивление, чем старые, использованные батареи. Когда люди, плохо знакомые с электроникой, рассматривают возможность управления большой нагрузкой от батарей, они часто забывают учитывать падение напряжения из-за внутреннего сопротивления, которое может привести к тому, что система не сможет обеспечить ожидаемую мощность для нагрузки.Кроме того, падение напряжения может привести к сбросу цифровых систем или вызвать колебания источника питания в точных аналоговых системах. Подумайте, может ли внутреннее сопротивление батареи повлиять на остальную часть вашей системы.


Практический источник тока моделируется в первом порядке с параллельным внутренним сопротивлением :

Почему этот дополнительный резистор в параллельно здесь, а не в серии , как для неидеального источника напряжения? Это потому, что последовательный резистор ничего не сделает с идеальным источником тока.(Источник тока не заботится о падении напряжения, поэтому любое дополнительное падение напряжения из-за последовательного резистора не повлияет на идеальный источник внутри.) Вместо этого параллельный резистор указывает, что потребляемый ток будет изменяться в зависимости от приложенного напряжения: как идеальный источник и резистор будут потреблять ток одновременно.

Сравните это моделирование неидеального источника тока с приведенным выше идеальным источником тока:

Exercise Щелкните схему, щелкните «Simulate» и «Run DC Sweep».«Теперь, когда существует конечное (больше не бесконечное) внутреннее сопротивление, график тока больше не является плоским с внешним приложенным напряжением.


Поскольку истинного идеального напряжения не существует, а источники тока — это природа, у проектировщика есть три варианта:

  1. Смоделируйте все нелинейное поведение источника. Это часто бывает сложно понять.
  2. Смоделируйте линеаризованное поведение источника вблизи его рабочей точки. Это намного проще и легче для понимания.
  3. Считайте неидеальный источник «достаточно близким» к идеальному (нулевое или бесконечное внутреннее сопротивление). Это наименее сложный и самый простой для понимания.

Практически это решение, которое может и должен делать инженер. Обычно моделирование как №2 или №3 в некотором ограниченном диапазоне, где мы считаем, что эффект «достаточно плоский, чтобы линеаризовать» или «достаточно мал, чтобы игнорировать», является хорошим решением, если мы не проектируем напрямую преднамеренно нелинейный источник.

Неидеальные источники напряжения и тока, показанные на этой странице, также называются эквивалентными схемами Тевенина и Нортона, которые мы изучим в следующем разделе.


В следующем разделе «Земля» мы поговорим о концепции единой точки отсчета нулевого напряжения — концепции, которая невероятно широко используется и невероятно сбивает с толку многих новичков.


Роббинс, Майкл Ф. Ultimate Electronics: Практическое проектирование и анализ схем. CircuitLab, Inc., 2021, ultimateelectronicsbook.com. Доступно. (Авторское право © CircuitLab, Inc., 2021)

Электронное устройство и схемы — источники тока и напряжения MCQ

В этом разделе электронных устройств и схем. Он содержит MCQ источников тока и напряжения (ответы на вопросы с несколькими вариантами ответов). Все MCQ (ответы на вопросы с несколькими вариантами ответов) требуют углубленного изучения темы электронных устройств и схем, поскольку уровень жесткости MCQ имеет был сохранен на повышенном уровне.Эти наборы вопросов очень полезны при подготовке к различным конкурсным экзаменам и экзаменам университетского уровня.

В этом разделе рассматриваются следующие темы:

  1. Источники электроэнергии MCQ.
  2. MCQ внутреннего сопротивления и импеданса.
  3. Идеальный источник напряжения, MCQ источника реального напряжения.
  4. Источник тока, идеальный источник тока, MCQ реального источника тока.
  5. MCQ теоремы о передаче максимальной мощности.
  6. Теорема Тевенина MCQs.

Практикуйтесь прямо сейчас, чтобы отточить свою концепцию.


1

. Идеальный источник напряжения — это тот, который имеет внутреннее сопротивление

2

. Идеальный источник тока — это тот, который имеет внутреннее сопротивление

3

. Практический источник постоянного напряжения должен иметь внутреннее сопротивление

4

. Практический источник постоянного тока должен иметь внутреннее сопротивление

5

.Максимальная мощность будет передаваться от источника с внутренним сопротивлением 15 Ом, когда сопротивление нагрузки будет
.

6

. Когда сопротивление нагрузки равно внутреннему сопротивлению источника, КПД будет
.

7

. Идеальный источник напряжения 12 В обеспечивает ток 150 мА на нагрузку. если сопротивление нагрузки увеличивается вдвое, новый ток нагрузки становится

8

. Идеальный источник тока обеспечивает ток 200 мА на нагрузку 1 кОм.при изменении нагрузки на 100 Ом. ток нагрузки будет

9

. Чтобы определить ток в резисторе 3 кОм в схеме, показанной на рисунке ниже, с Rl = 6 кОм Согласно теореме Тевенина сеть сводится к источнику, имеющему значения Eth и Rth как

10

. решение электрической схемы даст тот же результат независимо от того, рассматривается ли источник как источник напряжения или как источник тока

11

. Идеальный источник напряжения имеет

12

.Реальный источник напряжения имеет

13

. Если сопротивление нагрузки составляет 1 кОм, жесткий источник напряжения имеет сопротивление
Ом.

14

. Идеальный источник тока имеет

15

. Реальный источник тока имеет

16

. Если сопротивление нагрузки составляет 1 кОм, жесткий источник тока имеет сопротивление
Ом.

17

. Напряжение Thevenin такое же, как у

18

. Сопротивление Thevenin равно сопротивлению
.

19

.Чтобы получить напряжение Thevenin, вам нужно

20

. Чтобы получить текущую версию Norton, необходимо набрать

21

. Ток Нортона иногда называют

25

. Замкнутый резистор имеет

26

. Идеальный источник напряжения и внутреннее сопротивление — это пример

27

. Рассмотрение соединительного провода как проводника с нулевым сопротивлением является примером

28

.Напряжение от идеального источника напряжения

29

. Ток из идеального источника тока

30

. Теорема Тевенина заменяет сложную цепь, обращенную к нагрузке, на схему

31

. Теорема Нортона заменяет сложную схему, обращенную к нагрузке, на схему

32

. Один из способов закоротить устройство —

Внутреннее сопротивление | Батареи и другие источники питания

Внутреннее сопротивление | Аккумуляторы и другие источники питания

В электрических цепях, которые мы рассмотрели до сих пор, мы рассматривали источник напряжения, питающий цепь, как идеальный источник напряжения.то есть:

  • Мы предположили, что напряжение, подаваемое в цепь, остается постоянным, независимо от того, какой ток подается. поставляется.
  • Мы также предположили, что энергия преобразуется в тепло только за счет сопротивления во внешней цепи.

На практике это не так:

  1. Напряжение на клеммах батареи уменьшается по мере того, как ток, подаваемый в цепь, увеличивается.
    Это то же самое для всех реальных источников напряжения. (Однако разработчики блоков питания действительно производят стабилизированные блоки питания, в которых обратная связь схемы используются для поддержания относительно постоянного выходного напряжения).
  2. Все блоки питания нагреваются во время использования, что свидетельствует о том, что часть выделяемой ими энергии фактически расходуется. преобразуется в тепло внутри самого блока питания!

Это показано на анимации ниже.

Это изменение напряжения питания потенциально трудно объяснить, особенно если учесть, что Причины отклонения будут зависеть от типа используемого источника питания.
Например:

  • Для батареи: напряжение падает из-за скорости химических реакций, передающих заряд на клеммы батареи, не может соответствовать скорости, с которой заряд покидает клеммы, чтобы течь по цепи.
  • Для генератора: ток создает более сильные магнитные поля внутри генератора, которые замедляют работу генератора и уменьшают напряжение питания.

К счастью, мы можем избежать этих деталей, и, независимо от фактического характера источника питания, мы можем представить его в виде модель блока питания, полностью состоящая из простых электрических компонентов. Один из способов сделать это — представить власть как идеальный источник напряжения (например,м.д.) последовательно с внутренним сопротивлением. Когда эта модель источника питания применяется к внешней цепи, ток цепи также течет через внутреннее сопротивление. Это вызывает внутреннее падение напряжения внутри источника питания, что, следовательно, снижает напряжение на клеммах источника питания. Мощность, рассеиваемая внутренним сопротивлением, представляет собой тепло, выделяемое в источнике питания. Это показано на анимации ниже.

Напряжение на клеммах (В) равно эл.м.ф. напряжение (E) за вычетом внутреннего падения напряжения (Ir).
(используя закон Ома: внутреннее падение напряжения = ток (I) x внутреннее сопротивление (r)).

Чтобы смоделировать любой реальный источник питания, нам просто нужно определить правильные значения E и r для использования.

Когда источник питания не подключен к цепи, ток не протекает, поэтому:

  • V = E — 0 x r.
  • В = E.
  • то есть e.Напряжение m.f равно напряжению на клеммах холостого хода источника питания.

Внутреннее сопротивление можно определить, подключив цепь с известным сопротивлением и измерив протекающий ток.

  • I = E / (R + r).
  • поэтому r = (E / I) — R.

Мощность, подаваемая э.д.с., определяется как P = EI, а мощность, рассеиваемая в источнике питания, определяется как P = I 2 r.
Энергия, обеспечиваемая e.m.f. определяется выражением W = EIt, а энергия, рассеиваемая в источнике питания, определяется выражением W = I 2 rt.

Источник напряжения и источник тока

Источник напряжения и источник тока:

В соответствии с характеристиками напряжения и тока на клеммах электрические источники энергии подразделяются на идеальных источников напряжения и источников тока . Далее их можно разделить на независимых и зависимых источников .

Идеальный источник напряжения — это двухконтактный элемент, в котором напряжение v s полностью не зависит от тока i s через его выводы. Представление Идеальных источников постоянного напряжения показано на Рис. 1.6 (a).

Если мы наблюдаем характеристики v — i для идеальных источников напряжения, как показано на рис. 1.6 (c), в любое время, значение напряжения на клеммах v s будет постоянным по отношению к значению тока i s .Когда v s = 0, источники напряжения такие же, как при коротком замыкании. Источники напряжения не обязательно должны иметь постоянную величину; во многих случаях указанное напряжение может зависеть от времени, как синусоидальная форма волны. Это можно представить, как показано на рис. 1.6 (b). Во многих практических источниках напряжения внутреннее сопротивление представлено последовательно с источником, как показано на рис. 1.7 (a). При этом напряжение на клеммах падает по мере увеличения тока через нее, как показано на рис.1.7 (б).

Напряжение на клеммах V t зависит от тока источника, как показано на рис. 1.7 (b), где V t = v s — i s R.

Идеальным источником постоянного тока является двухполюсный элемент, в котором ток i s полностью не зависит от напряжения v s на его выводах. Подобно источникам напряжения, мы можем иметь источники тока постоянной величины i s или источники, ток которых изменяется со временем i s (t).Изображение идеальных источников тока показано на рис. 1.8 (а).

Если мы наблюдаем характеристики v — i для идеальных источников тока, как показано на рис. 1.8 (b), в любое время значение тока i s остается постоянным по отношению к напряжению на нем. Во многих практических источниках тока сопротивление подключено параллельно источнику, как показано на рис. 1.9 (а). При этом величина тока падает с увеличением напряжения на его выводах. Его терминальные v — i характеристики показаны на рис.1.9 (б).

Ток на клеммах равен

.

i t = i s — (v s / R)

где

  • R — внутреннее сопротивление идеальных источников тока.

Два типа идеальных источников, которые мы обсудили, являются независимыми источниками, для которых напряжение и ток независимы и не зависят от других частей схемы.

В случае зависимых источников напряжение или ток источника не фиксированы, а зависят от напряжения или тока, существующих в каком-либо другом месте в цепи.

Различные типы зависимых или контролируемых источников
  1. Источник напряжения с регулируемым напряжением (VCVS)
  2. Источники управляемого напряжения (CCVS)
  3. Источник тока, управляемый напряжением (VCCS)
  4. Источник тока с регулируемым током (CCCS)

Они представлены на принципиальной схеме символом, показанным на рис. 1.10. Эти типы источников в основном встречаются при анализе схем замещения транзисторов.

Источники напряжения и тока — Вопросы и ответы по теории сетей

Этот набор вопросов и ответов по теории сети с множественным выбором (MCQ) посвящен «источникам напряжения и тока».

1. Выберите неверное утверждение из следующего.
a) Индуктор — пассивный элемент
b) Источник тока — активный элемент
c) Резистор — пассивный элемент
d) Источник напряжения — пассивный элемент
Посмотреть ответ

Ответ: b
Пояснение: Источники энергии (напряжение или источники тока) — это активные элементы, способные подавать питание на какое-либо внешнее устройство.

2. Для того чтобы источником напряжения можно было пренебречь, клеммы на источнике должны быть ___________
a) заменены индуктором
b) закорочены
c) заменены некоторым сопротивлением
d) разомкнуты
Посмотреть ответ

Ответ: b
Пояснение: Если источником напряжения пренебречь, его можно просто заменить с помощью провода, т. Е. Его следует замкнуть накоротко.

3. Источник напряжения и напряжение на клеммах могут быть связаны следующим образом: ___________
a) напряжение на клеммах выше, чем ЭДС источника
b) напряжение на клеммах равно ЭДС источника
c) напряжение на клеммах всегда ниже, чем ЭДС источника
d) клемма напряжение не может превышать ЭДС источника
Посмотреть ответ

Ответ: c
Объяснение: Практический источник напряжения может быть представлен с сопротивлением, последовательно соединенным с источником.Следовательно, на резисторе будет некоторое падение напряжения, а напряжение на клеммах всегда ниже, чем ЭДС источника.

4. В случае идеальных источников тока они имеют ___________
a) нулевое внутреннее сопротивление
b) низкое значение напряжения
c) большое значение тока
d) бесконечное внутреннее сопротивление
Посмотреть ответ

Ответ: d
Пояснение: В идеальных источниках тока ток полностью не зависит от напряжения и имеет бесконечное внутреннее сопротивление.

5. В сети, состоящей из линейных резисторов и идеального источника напряжения, если номинал резисторов удвоится, то напряжение на каждом резисторе ___________
a) возрастет в четыре раза
b) останется неизменным
c) удвоится
d) уменьшится вдвое
Просмотр Ответ

Ответ: b
Пояснение: Даже при изменении номиналов линейных резисторов напряжение остается постоянным в случае идеального источника напряжения.

6. Практический источник тока также может быть представлен как ___________
a) сопротивление, подключенное параллельно идеальному источнику напряжения
b) сопротивление, подключенное параллельно идеальному источнику тока
c) сопротивление, подключенное последовательно с идеальным источником тока
г) ни один из упомянутых
Посмотреть ответ

Ответ: b
Объяснение: Практический источник тока можно представить с помощью резистора, подключенного параллельно идеальному источнику тока.

7. Практический источник напряжения также может быть представлен как ___________
a) сопротивление, подключенное последовательно с идеальным источником тока
b) сопротивление, подключенное последовательно с идеальным источником напряжения
c) сопротивление, подключенное параллельно идеальному источнику напряжения
г) ни один из упомянутых
Посмотреть ответ

Ответ: b
Объяснение: Практический источник напряжения можно представить с помощью резистора, соединенного последовательно с идеальным источником напряжения.

8. Источник постоянного напряжения ___________
a) активный и двусторонний
b) пассивный и двусторонний
c) активный и односторонний
d) пассивный и односторонний
Посмотреть ответ

Ответ: c
Пояснение: Источник напряжения является активным элементом и односторонний.

9. Какое из утверждений об идеальном источнике напряжения верно?
a) нулевое сопротивление
b) малая ЭДС
c) большая эдс
d) бесконечное сопротивление
Посмотреть ответ

Ответ: a
Пояснение: Идеальный источник напряжения с нулевым внутренним сопротивлением.

10. Зависимый источник ___________
a) может быть источником тока или источником напряжения
b) всегда является источником напряжения
c) всегда является источником тока
d) ни один из упомянутых
Посмотреть ответ

Ответ: a
Пояснение: Зависимые источники могут быть либо источниками тока, либо источниками напряжения.

11. С некоторым начальным изменением при t = 0+ конденсатор будет действовать как ___________
a) разомкнутая цепь
b) короткое замыкание
c) источник тока
d) источник напряжения
Посмотреть ответ

Ответ: d
Пояснение: При t = 0 + конденсатор начинает заряжаться до определенного напряжения и действует как источник напряжения.

12. Если источником тока можно пренебречь, клеммы на источнике ___________
a) заменены сопротивлением источника
b) разомкнуты
c) заменены конденсатором
d) закорочены
Просмотреть ответ

Ответ : b
Пояснение: Поскольку идеальный источник тока имеет бесконечное сопротивление, им можно пренебречь, замкнув клеммы на разрыв.

13. Источник постоянного тока подает электрический ток 200 мА на нагрузку 2 кОм. Когда нагрузка изменится на 100 Ом, ток нагрузки будет ___________
a) 9mA
b) 4A
c) 700mA
d) 12A
Посмотреть ответ

Ответ: b
Объяснение: Согласно закону Ома, сопротивление обратно пропорционально сопротивлению. Текущий.

14. Источник напряжения с напряжением холостого хода 200 В и внутренним сопротивлением 50 Ом эквивалентен источнику тока ___________
a) 4 А с 50 Ом параллельно
b) 4 А с 50 Ом последовательно
c) 0.5A с 50 Ом параллельно
d) ни один из упомянутых
Посмотреть ответ

Ответ: a
Объяснение: Источник напряжения с последовательным сопротивлением можно заменить на источник тока с параллельным сопротивлением.

15. Источник напряжения 300 В имеет внутреннее сопротивление 4 Ом и питает нагрузку с таким же сопротивлением. Мощность, потребляемая нагрузкой, составляет?
a) 1150 Вт
b) 1250 Вт
c) 5625 Вт
d) 5000 Вт
Посмотреть ответ

Ответ: c
Пояснение: Потребляемая мощность = I 2 R.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *