Цветомузыка на тиристорах ку202н: Цветомузыка на тиристорах своими руками. Цветомузыка на мощных светодиодах со стробоскопом

Содержание

ЦВЕТОМУЗЫКА ДЛЯ НАЧИНАЮЩИХ

   На днях решил собрать цветомузыкальную установку. Очень в местном клубе захотелось добавить световых эффектов. Порывшись хорошенько в интернете, нашёл 3-х канальную ЦМУ (цветомузыкальную установку). Схема на вид не сложная, и оказалась простая при пайке. Вот сообственно и она:


   Данная 3-х канальная ЦМУ очень проста в изготовлении, однако обладает некоторыми недостатками. Это, во-первых, большой требуемый входной уровень сигнала, во-вторых, малое входное сопротивление, в-третьих, резкое мигание ламп, вызванное отсутствием компрессии и простотой применяемых фильтров. Но как для начинающих радиолюбителей — схема будет в самый раз.


   Управление вспышками выполняют тиристоры. Их можно ставить серии КУ202 с буквами к, л, м, н. Конечно же лучше взять такие, как на схеме. Питание от сети 220в. Регулировка каждого канала производится переменными резисторами. В настройке схема не нуждается, работает сразу после правильной сборки. При работе с цветомузыкой учтите, что нужен достаточно большой сигнал музыки.


   Трансформатор ТР1 выполняется на сердечнике Ш16х24 из трансформаторной стали. Обмотка I содержит 60 витков провода ПЭЛ 0,51. Обмотка II — 100 витков ПЭЛ 0,51. Может использоваться и любой другой малогабаритный трансформатор (например, от транзисторных приемников) с соотношением витков в обмотках близким к 1:2. Тиристоры необходимо установить на теплоотводящие радиаторы, если суммарная мощность ламп на один канал будет превышать 200 Вт.


   Собрал, проверил. Работает очень отлично. Вот сам девайс в корпусе: 


   Вот такое расположение элементов внутри коробки выбрал. Включать лучше через диодный мост. Стоит он дёшево. Но я думаю радиолюбителю важно не это, а само повторение девайса. Схему может спаять даже начинающий. Готовое цветомузыкальное устройство работает без помех, долгое время работы не напрягает тиристоры. Они даже не нагреваются. Автор материала: Max.

   Форум по цветомузыкальным приставкам

   Форум по обсуждению материала ЦВЕТОМУЗЫКА ДЛЯ НАЧИНАЮЩИХ

Простые схемы на микросхеме к155ла3. Использование микросхемы К155ЛА3. Схема «цветомузыки» на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока

 

Сирена используется для подачи мощного и сильного звукового сигнала для привлечения внимания людей и применяется в системах пожарной сигнализации и автоматики, а также в сочетании с устройствами сигнализации на различных охраняемых объектах.

 

Генераторы в схеме отмечены желтой рамкой. Первый Г1 задаёт частоту изменения тона, а второй Г2 собственно сам тон, который плавно меняется на транзисторе VT1 включенного последовательно ссопротивлением R2. Для выбора требуемого звучания можно вместо сопротивлений R1, R2 использовать подстроечные резисторы тех же значений.

При включение напряжения питания, звукоизлучатель начинает генерировать тональный акустический сигнал, высота тона меняется с высокого на низкий и обратно. Сигнал звучит непрерывно, изменяется только тон звука, который переключаются с частотой 3-4 Гц.

В схеме сирены применены два мультивибратора на элементах D1.1 и D1.2 микросхемы К561ЛН2, управляющий тоном, и мультивибратор на элементах D1.3 и D1.4 этой же микросхемы, генерирующий тональные сигналы. Частота импульсов, генерируемая первым мультивибратором на элементах D1.3 и D1.4 зависит от элементов C2, R2 и C3, R4. Изменять частоту следования импульсов, а значит и тона звукового сигнала можно как сопротивлениями, так и емкостями.

Предположим, в начальный момент на выходе мультивибратора на элементах D1.1 и D1.2 имеется уровень логической единицы. Так как на катоды диодов VD1 и VD2 поступает плюс, то диоды будут запертыми. Сопротивления R4 и R5, в работе схемы не участвуют и частота на выходе мультивибратора минимальна, звучит низкотональный сигнал.

Как только на выходе этих элементов установится логический ноль диоды VD1 и VD2 откроются и подсоединят сопротивления R4 и R5. В результатечастота навыходе мультивибратора возрастет.

Используемые в схеме транзисторы КТ815 можно заменить на КТ817, а КТ814на КТ816. Диоды — КД521, КД522, КД503, КД102.

Следующее устройство может быть использовано в качестве аварийного сигнализатора или звукового сигнала для горного велосипеда. Оно представляет собой двухтональную сирену и состоит из тактового генератора на элементах DD1.1-DD1.3, двух тональных генераторов (первого на элементах DD2.1, DD2.2 и второго на элементах DD2.3, DD2.4), согласующего каскада с усилителем мощности на элементе DD1.4 и транзисторе VT1.

Схема состоит из двух генераторов. Первый используется для генерации тона, второй для изменения и модулирования.

Для максимального уровня громкости, необходимо, чтобы на пьезоэлемент поступала частота эквивалентная его резонансной частоте по мостовой схеме.

Основа конструкции мощный мультивибратор 4047, работающий в нестабильном режиме. Все это управляется мощным полевым MOSFET-транзистором VТ1, которым управляет таймер NE555, посредством генерации соответствующих прямоугольных импульсов низкой частоты, в результате чего осуществляется пожарной сирены.

Переключение режимов работы непрерывно или прерывисто устанавливается с помощью тумблера.

Выводы 10 и 11 микросборки 4047 выдают противофазные, сигналы с которых управляют мостом на четырех MOSFET. Для получения максимальной громкости, то есть установки резонансной частоту пьезоэлемента, в конструкцию добавлен подстроечное сопротивление R6.

Эта схема составлена из сочетания музыкального синтезатора на микросхеме УМС-8-08 с мощным выходным каскадом электронной сирены. Для запуска схемы применено реле, обмотка которого имеет гальваническую развязку от остальной части схемы.


Микросхема УМС имеет стандартную схему подключения. Три кнопочных выключателя S1-S3 дают возможность настроить микросхему на исполнение одной из мелодий. При нажатии на первую кнопку начинается воспроизведение мелодии, а нажимая на третью можно перебрать мелодии и выбрать нужную.


Подборка нескольких схем сирен на микроконтроллерах PIC

Данная схема представляет собой простую многотональную сирену на основе микросборки UM3561


В схеме использован динамик на 8 Ом, мощностью 0,5 Вт. С помощью двух переключателей осуществляется выбор и воспроизведения различных тонов звучания тревожного сигнала. Каждая позиция генерирует свой собственный звуковой эффект.

У каждого радиолюбителя где-то «завалялась» микросхема к155ла3. Но зачастую они не могут найти им серьезного применения, так как во многих книгах и журналах присутствуют только схемы мигалок, игрушек и др. с этой деталью. В этой статье будут рассмотрены схемы с применением микросхемы к155ла3.
Для начала рассмотрим характеристики радиодетали.
1. Самое главное — это питание. Оно подается на 7(-) и 14(+) ножки и состовляет 4.5 — 5 В. Более 5.5В подавать на микросхему не следует(начинает перегреваться и сгорает).
2. Далее надо определить назначение детали. Она состоит из 4 элементов по 2и-не(два входа). То есть, если подавать на один вход 1, а на другой — 0, то на выходе будет 1.
3. Рассмотрим цоколевку микросхемы:

Для упрощения схемы на ней изображают раздельные элементы детали:

4. Рассмотрим расположение ножек относительно ключа:

Паять микросхему надо очень аккуратно, не нагревая ее(можно спалить).

Вот схемы с применением микросхемы к155ла3: 1. Стабилизатор напряжения(можно использовать как зарядку телефона от прикуривателя автомобиля).
Вот схема:


На вход можно подавать до 23Вольт. Вместо транзистора П213 можно поставить КТ814, но тогда придется ставить радиатор, так как при большой нагрузке может перегреваться.
Печатная плата:


Еще один вариант стабилизатора напряжения(мощный):


2. Индикатор заряда автомобильного аккумулятора.
Вот схема:

3. Испытатель любых транзисторов.
Вот схема:

Вместо диодов Д9 можно поставить д18, д10.
Кнопки SA1 и SA2 есть переключатели для проверки прямых и обратных транзисторов.

4. Два варианта отпугивателя грызунов.
Вот первая схема:


С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 — 100 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, V1 – КТ315, V2 — КТ361. Также можно поставить транзисторы серии МП. Динамическая головка — 8…10 ом. Питание 5В.

Второй вариант:

С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 — 200 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, R4 — 4,7 ком, R5 – 220 Ом, V1 – КТ361 (МП 26, МП 42, кт 203 и т.п.), V2 – ГТ404 (КТ815, КТ817), V3 – ГТ402 (КТ814, КТ816, П213). Динамическая головка 8…10 ом.
Питание 5В.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия — прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности — это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум — одного, а максимум — группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой — либо заданной программе, то цветомузыкальная установка считается — автоматической.
Именно такого рода «цветомузыки» обычно собирают своими руками начинающие конструкторы — радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое — звенящее и пищащее.

Недостаток один — необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику» для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыки» на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте — на три канала. По первому каналу идет самая низкочастотная составляющая сигнала — фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны — 1 мкФ, но как показала практика — их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту — примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны — 0,015 мкФ, но их емкость следует увеличить, до 0,33 — 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны — 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае — это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы — до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум — 2А. Если количество ламп на каждый канал увеличить — соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум — 250 мА(а лучше — больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, — собирают активный фильтр. Далее — проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем — реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после «чистовой» сборки на монтажной плате, если работа проведена без ошибок и с применением «испытанных» деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом — поможет избавиться от навесных проводов-перемычек.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Схему, приведённую ниже, собирал в юности, на занятиях кружка радиоконструирования. Причём безуспешно. Возможно, микросхема К155ЛА3 всё-таки не подходит для подобного металлоискателя, возможно частота 465 кГц не самая подходящая для подобных устройств, а возможно надо было экранировать поисковую катушку как в остальных схемах раздела «Металлоискатели»

В общем получившаяся «писчалка» реагировала не только на металлы но и на руку и прочие неметаллические предметы. К тому же микросхемы 155-ой серии слишком не экономичны для переносных приборов.

Радио 1985 — 2 стр. 61. Простой металлоискатель

Простой металлоискатель

Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомных (2 кОм) головных телефонов BF1 изменение тональности звучания которых и свидетельствует о наличии под катушкой-антенной металлического предмета.

Генератор, собранный на элементах DD1. 1 и DD1.2, само возбуждается на частоте резонанса последовательного колебательного контура L1C1, настроенного на частоту 465 кГц (использованы элементы фильтра ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью катушки-антенны 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью конденсатора переменной емкости С2. позволяющего перед поиском настроить металлоискатель на обнаружение предметов определенной массы. Биения, возникшие в результате смешения колебаний обоих генераторов, детектируются диодами VD1, VD2. фильтруются конденсатором С5 и поступают на головные телефоны BF1.

Все устройство собрано на небольшой печатной плате, что позволяет при питании от плоской батареи для карманного фонаря сделать его очень компактным и удобным в обращении

Janeczek A Prosty wykrywacz melali. — Radioelektromk, 1984, № 9 стр. 5.

Примечание редакции. При повторении металлоискателя можно использовать микросхему К155ЛA3, любые высокочастотные германиевые диоды н КПЕ от радиоприемника «Альпинист».

Эта же схема более подробно рассмотрена в сборнике Адаменко М.В. «Металлоискатели» М.2006 (Скачать). Далее статья из этой книги

3.1 Простой металлоискатель на микросхеме К155ЛА3

Начинающим радиолюбителям можно рекомендовать для повторения конструкцию простого металлоискателя, основой для которого послужила схема, неоднократно публиковавшаяся в конце 70-х годов прошлого столетия в различных отечественных и зарубежных специализированных изданиях. Этот металлодетектор, выполненный всего на одной микросхеме типа К155ЛА3, можно собрать за несколько минут.

Принципиальная схема

Предлагаемая конструкция представляет собой один из многочисленных вариантов ме-таллодетекторов типа BFO (Beat Frequency Oscillator), то есть является устройством, в основу которого положен принцип анализа биений двух сигналов, близких по частоте (рис. 3.1). При этом в данной конструкции оценка изменения частоты биений осуществляется на слух.

Основу прибора составляют измерительный и опорный генераторы, детектор колебаний ВЧ, схема индикации, а также стабилизатор питающего напряжения.

В рассматриваемой конструкции использованы два простых LC-генератора, выполненные на микросхеме IC1. Схемотехнические решения этих генераторов практически идентичны. При этом первый генератор, который является опорным, собран на элементах IC1.1 и IC1.2, а второй, измерительный или перестраиваемый генератор, выполнен на элементах IC1.3 и IC1.4.

Контур опорного генератора образован конденсатором С1 емкостью 200 пФ и катушкой L1. В контуре измерительного генератора используются конденсатор переменной емкости С2 с максимальной емкостью примерно 300 пФ, а также поисковая катушка L2. При этом оба генератора настроены на рабочую частоту примерно 465 кГц.


Рис. 3.1.
Принципиальная схема металлоискателя на микросхеме К155ЛА3

Выходы генераторов через развязывающие конденсаторы СЗ и С4 подключены к детектору колебаний ВЧ, выполненному на диодах D1 и D2 по схеме удвоения выпрямленного напряжения. Нагрузкой детектора являются головные телефоны BF1, на которых выделяется сигнал низкочастотной составляющей. При этом конденсатор С5 шунтирует нагрузку по высшим частотам.

При приближении поисковой катушки L2 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты данного генератора. При этом, если вблизи катушки L2 находится предмет из черного металла (ферромагнетика), ее индуктивность увеличивается, что приводит к уменьшению частоты перестраиваемого генератора. Цветной же металл уменьшает индуктивность катушки L2, а рабочую частоту генератора увеличивает.

ВЧ-сигнал, сформированный в результате смешивания сигналов измерительного и опорного генераторов после прохождения через конденсаторы С3 и С4, подается на детектор. При этом амплитуда сигнала ВЧ изменяется с частотой биений.

Низкочастотная огибающая ВЧ-сигнала выделяется детектором, выполненным на диодах D1 и D2. Конденсатор С5 обеспечивает фильтрацию высокочастотной составляющей сигнала. Далее сигнал биений поступает на головные телефоны BF1.

Питание на микросхему IC1 подается от источника В1 напряжением 9 В через стабилизатор напряжения, образованный стабилитроном D3, балластным резистором R3 и регулирующим транзистором T1.

Детали и конструкция

Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому к используемым деталям не предъявляются какие-либо ограничения, связанные с габаритными размерами. Монтаж может быть как навесной, так и печатный.

При повторении металлодетектора можно использовать микросхему К155ЛА3, состоящую из четырех логических элементов 2И-НЕ, питающихся от общего источника постоянного тока. В качестве конденсатора С2 можно использовать конденсатор настройки от переносного радиоприемника (например от радиоприемника «Альпинист»). Диоды D1 и D2 можно заменить любыми высокочастотными германиевыми диодами.

Катушка L1 контура опорного генератора должна иметь индуктивность около 500 мкГ. В качестве такой катушки рекомендуется использовать, например, катушку фильтра ПЧ супергетеродинного приемника.

Измерительная катушка L2 содержит 30 витков провода ПЭЛ диаметром 0,4 мм и выполнена в виде тора диаметром 200 мм. Эту катушку проще изготовить на жестком каркасе, однако можно обойтись и без него. В этом случае в качестве временного каркаса можно использовать любой подходящий по размерам круглый предмет, например банку. Витки катушки наматываются внавал, после чего снимаются с каркаса и экранируются электростатическим экраном, который представляет собой незамкнутую ленту из алюминиевой фольги, намотанную поверх жгута витков. Щель между началом и концом намотки ленты (зазор между концами экрана) должна составлять не менее 15 мм.

При изготовлении катушки L2 нужно особенно следить за тем, чтобы не произошло — замыкание концов экранирующей ленты, поскольку в этом случае образуется коротко-замкнутый виток. В целях повышения механической прочности катушку можно пропитать эпоксидным клеем.

Для источника звуковых сигналов следует применить высокоомные головные телефоны с возможно большим сопротивлением (около 2000 Ом). Подойдет, например, широко известный телефон ТА-4 или ТОН-2.

В качестве источника питания В1 можно использовать, например, батарейку «Крона» или две батарейки типа 3336Л, соединенные последовательно.

В стабилизаторе напряжения емкость электролитического конденсатора С6 может составлять от 20 до 50 мкФ, а конденсатора С7 — от 3 300 до 68 000 пФ. Напряжение на выходе стабилизатора, равное 5 В, устанавливается подстроечным резистором R4. Такое напряжение будет поддерживаться неизменным даже при значительной разрядке батарей.

Необходимо отметить, что микросхема К155ЛАЗ рассчитана на питание от источника постоянного тока напряжением 5 В. Поэтому при желании из схемы можно исключить блок стабилизатора напряжения и использовать качестве источника питания одну батарейку типа 3336Л или аналогичную ей, что позволяет собрать компактную конструкцию. Однако разрядка этой батарейки очень быстро отразится на функциональных возможностях данного металлодетектора. Именно поэтому необходим блок питания, обеспечивающий формирование стабильного напряжения 5 В.

Следует признать, что в качестве источника питания автор использовал четыре большие круглые батарейки импортного производства, соединенные последовательно. При этом напряжение 5 В формировалось интегральным стабилизатором типа 7805.

Плата с расположенными на ней элементами и источник питания размещаются в любом подходящем пластмассовом или деревянном корпусе. На крышке корпуса устанавливаются переменный конденсатор С2, выключатель S1, а также разъемы для подключения поисковой катушки L2 и головных телефонов BF1 (эти разъемы и выключатель S1 на принципиальной схеме не указаны).

Налаживание

Как и при регулировке других металлоискателей, данный прибор следует настраивать в условиях, когда металлические предметы удалены от поисковой катушки L2 на расстояние не менее одного метра.

Сначала с помощью частотомера или осциллографа необходимо настроить рабочие частоты опорного и измерительного генераторов. Частота опорного генератора устанавливается равной примерно 465 кГц регулировкой сердечника катушки L1 и, при необходимости, подбором емкости конденсатора С1. Перед регулировкой потребуется отсоединить соответствующий вывод конденсатора С3 от диодов детектора и конденсатора С4. Далее нужно отсоединить соответствующий вывод конденсатора С4 от диодов детектора и от конденсатора С3 и регулировкой конденсатора С2 установить частоту измерительного генератора так, чтобы ее значение отличалось от частоты опорного генератора примерно на 1 кГц. После восстановления всех соединений металлоискатель готов к работе.

Порядок работы

Проведение поисковых работ с помощью рассмотренного металлодетектора не имеет каких-либо особенностей. При практическом использовании прибора следует переменным конденсатором С2 поддерживать необходимую частоту сигнала биений, которая изменяется при разряде батареи, изменении температуры окружающей среды или девиации магнитных свойств грунта.

Если в процессе работы частота сигнала в головных телефонах изменится, то это свидетельствует о наличии в зоне действия поисковой катушки L2 какого-либо металлического предмета. При приближении к некоторым металлам частота сигнала биений будет увеличиваться, а при приближении к другим — уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.

У каждого настоящего радиолюбителя имеется микросхема К155ЛА3. Но обычно их считают сильно устаревшими и не могут найти им серьезного использования, так как во многих радиолюбительских сайтах и журналах обычно описаны только схемы мигалок, игрушек. В рамках этой статьи постараемся расширить радиолюбительский кругозор в рамках применения схем с использованием микросхемы К155ЛА3.

Эту схему можно использовать для зарядки мобильного телефона от прикуривателя бортовой сети автомобиля.

На вход радиолюбительской конструкции можно подавать до 23 Вольт. Вместо устаревшего транзистора П213 можно использовать более современный аналог КТ814.

Вместо диодов Д9 можно применить д18, д10. Тумблеры SA1 и SA2 используются для проверки транзисторов с прямой и обратной проводимостью.

Для того чтобы исключить перегрев фар можно установить реле времени, которое будет выключать стоп-сигналы если они горят более 40-60 секунд, время можно изменить подбором конденсатора и резистора. При отпускании и следующем нажатии педали фонари снова включаются, так что на безопасность вождения это никак не влияет

Для повышения КПД преобразователя напряжения и предотвращения сильного перегрева, в выходном каскаде схемы инвертора применены полевые транзисторы с низким сопротивлением


Сирена используется для подачи мощного и сильного звукового сигнала для привлечения внимания людей и эффективно защищает ваш оставленный и пристегнутый на короткое время байк.

Если вы хозяин дачи, виноградника или домика в деревне, то вы знаете, какой огромный ущерб могут создать мыши, крысы и другие грызуны, и какой затратной неэффективной, а иногда и опасной является борьба с грызунами стандартными способами

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Кроме микросхемы в имеется яркий светодиод и несколько компонентов обвязки. После сборки устройство начинает работать сразу. Регулировка не требуется, кроме подстройки длительности вспышек.

Напомним, что конденсатор C1 номиналом 470 микрофарад впаиваем в схему строго с соблюдением полярности.


С помощью номинала сопротивления резистора R1 можно изменять длительность вспышки светодиода.

ЦМУ – цветомузыкальные устройства | Техника и Программы

 

А. Г. Зызюк,г. Луцк

   Предлагаю две простые схемы ЦМУ. Первая (рис.1) собрана много лет тому назад, повторялась несколькими радиолюбителями и не нуждалась в каком-либо налаживании. Схема собрана всего на шести транзисторах типа КТ315, их, конечно же, можно заменить на другие транзисторы n-p-n проводимости, например КТ301, КТ312, КТ102, КТ503 и др. Транзисторы управляют работой тиристоров, кроме того, являются фильтрами звуковых частот.

 

   Транзисторы VT1 и VT2 – низких частот, VT3, VT4 -средних частот и VT5, VT6 – высоких частот.

   Поскольку схема гальванически соединена с сетью, то необходимо соблюдать меры техники безопасности. Чтобы

   отделить сеть от источника музыкального сигнала, применен разделительный трансформатор. Можно использовать готовый трансформатор фабричного производства, например, выходной от лампового телевизора (выходной НЧ трансформатор). Роль первичной обмотки выполняет вторичная, чтобы получить необходимую чувствительность. Если ЦМУ подключено не к выходу УМЗЧ, а к линейному выходу магнитофона или к другому источнику сигнала с высоким выходным сопротивлением, тогда схему необходимо дополнить усилителем мощности любой конструкции, например, усилителем, изображенном на рис.2. Микросхема К174УН14 выбрана из-за простоты реализации навесным монтажом. Но в случае подключения

 

 

 

 

 

 

   ЦМУ к выходу УМЗЧ или непосредственно к громкоговорителю, усилитель мощности не нужен.

   Назначение элементов. R1 – общий уровень входного сигнала, R2, R5, R8 – соответственно регуляторы красного, желтого и зеленого цветов каналов свечения ламп. О транзисторах уже сказано, конденсаторы образуют фильтры среза в каналах ЦМУ, диоды VD1, VD3 и стабилитрон VD2, а также конденсатор С8 необходимы для запитки схемы от сети без силового трансформатора.

   Схема ЦМУ довольно проста, но работает хорошо и надежно. Несколько слов о тиристорах. Если тиристоры работают на лампы до 100 Вт, то применять теплоотводы нет никакой необходимости. Если же мощность ламп более 100 Вт, то необходимо установить теплоотводы. Кроме того, тиристоры должны быть высоковольтными, например, КУ201 (К, Л, М), КУ202 (К, Л, М, Н). В порядке алфавита

   увеличивается их допустимое рабочее напряжение.

   В качестве разделительного трансформатора можно

   использовать также

   трансформатор от “радиоточки”. Обмотка для подключения к громкоговорителю будет первичной обмоткой для ЦМУ, а обмотка, подключенная к регулятору громкости “радиоточки”, вторичной в схеме ЦМУ. Можно также использовать и трансформаторы

   выходных УМЗЧ транзисторных схем устаревших конструкций приемников, поскольку в современных конструкциях трансформаторы на выходе УМЗЧ почти не применяются.

   Вместо ламп HL1…HL3 прекрасно работают елочные гирлянды. Резистор Рдоб на входе схемы имеет то же назначение, что и резистор R5 в схеме УМЗЧ на рис.2, т.е. для предотвращения выхода из строя УМЗЧ, к которому подключают трансформаторный вход ЦМУ.

   Изготовить такое сопротивление не составляет особого труда. Достаточно приобрести проволочную спираль для электроплиток устаревшего образца и, измерив общее сопротивление спирали обычным омметром, отрезать требуемую часть этой спирали. Паять спираль очень просто: облудить ее припоем с помощью лимонной кислоты, а потом использовать обычную канифоль.

   Печатные платы показаны на рис. 3. Монтаж можно выполнить и со стороны деталей. Несколько экземпляров этой схемы были собраны таким способом, но лучший вид будет иметь схема, если детали расположить с одной стороны, а все или почти все соединения – с другой.

   Имея симисторы КУ208Г, очень легко собрать другую ЦМУ. Достаточно приобрести всего 18 деталей и разделительный трансформатор. Схема ЦМУ очень проста (рис. 4). Она трехканальная. Сигнал звуковой частоты

   поступает на вход через повышающий трансформатор Т1. Он же играет роль разделительного элемента между ЦМУ и источником звукового сигнала, одновременно повышая амплитуду (напряжение) входного сигнала до необходимого для срабатывания симисторов уровня.

   В схеме применяются простейшие пассивные фильтры: на низких частотах R3, С1; на средних частотах R5, С2 и на высоких частотах R7, С3. Резисторы R2, R4 и R6-регуляторы чувствительности каналов соответствующих им симисторов VS1, VS2, VS3. В оригинале использованы резисторы типа МЛТ 0,5 Вт тех же номиналов, что указаны на схеме. Трансформатор Т1 – выходной от ламповых приемников старого образца. Вполне подходит трансформатор от абонентского громкоговорителя (“радиоточки”). Схема будет работать и с силовым трансформатором, имеющим накальную обмотку, но лучше в этом случае найти обмотку с коэффициентом

 

 

   трансформации не более 10. Самодельный трансформатор содержит: I обмотка 300 витков ПЭЛ 0,2 мм; II обмотка – 2000 витков 0,08 мм, сердечник ШЛ 14×20.

   Вид печатной платы со стороны деталей и со стороны печатных проводников показан на рис. 5.

 

Своими руками цветомузыка. Простые схемы цветомузыки на светодиодах и светодиодных лентах для сборки своими руками

Конкурс начинающих радиолюбителей
“Моя радиолюбительская конструкция”

Конкурсная конструкция начинающего радиолюбителя
“Пятиканальная светодиодная цветомузыка”

Здравствуйте уважаемые друзья и гости сайта!
Представляю вашему вниманию третью конкурсную работу (второго конкурса сайта) начинающего радиолюбителя. Автор конструкции: Морозас Игорь Анатольевич :

Пятиканальная светодиодная цветомузыка

Здравствуйте радиолюбители!

Как и у многих новичков основная проблема была с чего начать, какой будет мое первое изделие. Начал с того, чтобы я хотел приобрести домой в первую очередь. Первое – это цветомузыка, второе – это высококачественный усилитель для наушников. Начал с первого. Цветомузыка на тиристорах вроде как избитый вариант, решил собрать цветомузыку для светодиодных RGB лент. Предоставляю Вам первую свою работу.

Схема цветомузыки взята из интернета. Цветомузыка простая, на 5 каналов (один канал –белый фоновый). К каждому каналу можно подключить светодиодную ленту, но для ее работы на входе необходим усилитель сигнала не высокой мощности. Автор предлагает применить усилитель с компьютерных колонок. Я пошел из сложного, собрать схему усилителя по даташиту на микросхеме ТДА2005 2х10 Вт. Этой мощности мне кажется достаточно, даже с запасом. Прилежно перечерчиваю все схемы в программе sPLAN 7.0

Рис.1 Схема цветомузыки с усилителем входного сигнала.

В схеме цветомузыки все конденсаторы электролитические, напряжением 16-25v. Где необходимо соблюдать полярность стоит знак «+», в остальных случаях изменение полярности не влияет на мигание светодиодов. По крайне мере я этого не заметил. Транзисторы КТ819 можно заменить на КТ815. Резисторы мощностью 0,25 Вт.

В схеме усилителя микросхему обязательно надо ставить на радиатор не менее 100см2. Конденсаторы электролитические напряжением 16-25v. Конденсаторы С8,С9,С12 пленочные, напряжением 63v. Резисторы R6,R7 мощностью 1 Вт, остальные 0,25Вт. Переменный резистор R0- сдвоенный, сопротивлением 10-50 ком.

Блок питания я взял заводской импульсный мощностью 100Вт, 2х12v, 7А

В выходной день как и полагается поездка на радио рынок для приобретения радиодеталей. Следующая задача нарисовать печатную плату. Для этого выбрал программу Sprint-Layout 6.0. Её советуют радиоспециалисты для начинающих. Изучается она легко, я в этом убедился.

Рис 2. Плата цветомузыки.

Рис 3. Плата усилителя мощности.

Платы изготавливал по ЛУТ технологии. Об этой технологии много информации в интернете. Мне нравиться, когда выглядит по заводскому, поэтому ЛУТ сделал и со стороны деталей тоже.


Рис 3,4 Сборка радиодеталей на плату

Рис 5. Проверяю работоспособность после сборки

Как всегда самое «сложное» при собирании радиосхемы – это укомплектовать все в корпус. Корпус я купил готовый в радиомагазине.


Лицевую панель я сделал таким образом. В программе Фотошоп нарисовал внешний вид лицевой панели где должны быть установлены переменные резисторы, выключатель и светодиоды по одному с каждого канала. Готовый рисунок распечатал струйным принтером на тонкой глянцевой фотобумаге.


На обезжиренную приготовленную панель с отверстиями наклеиваю столярным клеем фотобумагу:


После чего ложу панели под так называемый пресс. На сутки. В качестве пресса у меня блин от штанги на 15 кг:


Окончательная сборка:


Вот что получилось:

Приложения к статье:

(2.9 MiB, 2,716 hits)

Уважаемые друзья и гости сайта!

Не забывайте высказывать свое мнение по конкурсным работам и принимайте участие в голосовании за понравившуюся конструкцию на форуме сайта. Спасибо.

Некоторые предложения для тех, кто будет повторять конструкцию:
1. К такому мощному стереоусилителю можно подключить колонки, тогда получится два устройства в одном – цветомузыка и качественный усилитель низкой частоты.
2. Даже если полярность включения электролитических конденсаторов в схеме цветомузыки не влияет на ее работу, наверное лучше соблюдать полярность.
3. На входе цветомузыки, наверное лучше поставить входной узел для суммирования сигналов с левого и правого каналов (). У автора, судя по схеме, на высокочастотный канал цветомузыки (синий) подается сигнал с правого канала усилителя, а на остальные каналы цветомузыки подается сигнал с левого канала усилителя, но наверное лучше подавать сигнал на все каналы с сумматора звуковых сигналов.
4. Замена транзистора КТ819 на КТ815 подразумевает уменьшение количества возможного подключения светодиодов.

Цветомузыка своими руками – что может быть приятней и интересней для радиолюбителя, ведь собрать ее несложно, имея хорошую схему.

В современной радиотехнике существует огромное разнообразие радиоэлементов и светодиодов, преимущество которых трудно подвергнуть сомнению. Большой диапазон цветов, яркий и насыщенный свет, высокая скорость срабатывания различных элементов, низкое потребление энергии. Этот список достоинств можно продолжать бесконечно.

Принцип работы цветомузыки: светодиоды, собранные по схеме, моргают от имеющегося источника звука (это может быть плеер или магнитола и колонки) с определенной частотой.

Преимущества использования светодиодов перед используемыми ранее в ЦМУ:

  • световая насыщенность света и обширный цветовой диапазон;
  • хорошая скорость;
  • малая энергоемкость.

Простейшие схемы

Простая цветомузыка, которую можно собрать, имеет один светодиод, питается от источника постоянного тока напряжением 6–12 В.

Можно собрать вышеприведенную схему, используя светодиодную ленту и подобрав необходимый транзистор. Недостатком является то, что существует зависимость от уровня звука. Другими словами, полноценный эффект можно наблюдать только при одном уровне звучания. Если снизить громкость, то будет редкое мигание, а при повышении громкости останется постоянное свечение.

Убрать этот недостаток можно при помощи трехканального преобразователя звука. Ниже приведена простейшая схема, собрать ее своими руками на транзисторах несложно.

Схема цветомузыки с трехканальным преобразователем звука

Для данной схемы необходим источник питания на 9 вольт, который позволит светиться светодиодам в каналах. Чтобы собрать три усилительных каскада, понадобятся транзисторы КТ315 (аналог КТ3102). В качестве нагрузки используются разноцветные светодиоды. Для усиления использован понижающий трансформатор. Резисторы выполняют функцию регулировки вспышек светодиодов. В схеме стоят фильтры для пропускания частот.

Можно улучшить схему. Для этого надо добавить яркость лампочками накаливания на 12 В. Понадобятся тиристоры управления. Все устройство необходимо запитать от трансформатора. По такой наипростейшей схеме можно уже работать. Цветомузыка на тиристорах может быть собрана даже начинающим радиотехником.

Как сделать цветомузыку на светодиодах своими руками? Первое, что необходимо сделать – это подобрать электрическую схему.

Ниже приведена схема светомузыки с RGB-лентой. Для подобной установки необходим источник питания на 12 вольт. Она может работать в двух режимах: как светильник и как цветомузыка. Режим выбирается переключателем, установленным на плате.

Этапы изготовления

Необходимо сделать печатную плату. Для этого нужно взять фольгированный стеклотекстолит размерами 50 х 90 мм и толщиной 0,5 мм. Процесс изготовления платы состоит из нескольких этапов:

  • подготовка фольгированного текстолита;
  • сверление отверстий под детали;
  • нанесение дорожек;
  • травление.

Плата готова, комплектующие закуплены. Теперь начинается самый ответственный момент – распайка радиоэлементов. От того, как аккуратно они будут установлены и запаяны, будет зависеть окончательный результат.

Собираем нашу печатную плату с напаянными на ней компонентами вот в такой доступный плафон.

Краткое описание радиоэлементов

Радиоэлементы для электрической схемы вполне доступны, приобрести их в ближайшем магазине электротоваров не составит труда.

Для цветомузыкального сопровождения подойдут проволочные резисторы мощностью 0,25–0,125 Вт. Величину сопротивления всегда можно определить по цветным полоскам на корпусе, зная порядок их нанесения. Подстроечные резисторы бывают как отечественные, так и импортные.

Конденсаторы, выпускаемые промышленностью, делятся на оксидные и электролитические. Подобрать нужные не составит труда, проделав элементарные расчеты. Некоторые оксидные конденсаторы могут иметь полярность, которую необходимо соблюдать при монтаже.

Диодный мост можно взять уже готовый, но если его нет, то выпрямительный мост несложно собрать, используя диоды серии КД или 1N4007. Светодиоды берутся обычные, с разноцветным свечением. Использование cветодиодных RGB-лент – перспективное направление в радиоэлектронике.

Светодиодная RGB-лента

Возможность сборки цветомузыкальной приставки для автомобиля

Если получилось порадовать цветомузыкой из светодиодной ленты, сделанной своими руками, то подобную установку со встроенной магнитолой можно изготовить для автомобиля. Ее легко собрать и быстро настроить. Предлагается разместить приставку в пластиковом корпусе, который можно купить в отделе электрорадиотехники. Установка надежно защищена от влаги и пыли. Ее несложно установить за приборной панелью автомобиля.

Также подобный корпус можно изготовить самостоятельно, используя оргстекло.

Подбираются пластины нужных габаритов, в первой из деталей делаются два отверстия (для питания), зашкуриваются все детали. Собираем все с помощью термопистолета.

Отличный световой эффект достигается, если использовать разноцветную (RGB) ленту.

Вывод

Известная поговорка «не боги горшки обжигают» остается актуальной и в наши дни. Разнообразный ассортимент электронных компонентов дает народным умельцам широкий простор для фантазии. Цветомузыка на светодиодах, сделанная своими руками, – это одно из проявлений безграничного творчества.

Представляем вам простую версию цветомузыкальной установки, что была собрана в необычном корпусе. Недавно попали в руки отходы металлических профилей 20×80 — их и применили. В проекте она собрана на светодиодах разных цветов 10W (зеленый, синий и красный).

Схема цветомузыки LED


Схема цветомузыки LED 3 канала по 10 ватт

Теперь стробоскоп — он сделан на таймере NE555. Что касается проблемы ограничения тока LED — используем самое простое решение, ограничения тока через подобранные резисторы. Резисторы болтами к профилю прикручены для теплоотвода и совсем не перегреваются, работают с температурой максимум 60С. Ток для каждого светодиода ограничили на уровне 800 мА.

Схема LED стробоскопа на таймере NE555

Конструкция устройства

Тороидальный трансформатор 14В 50VA. Стробоскоп на NE555 вместе с MOSFET IRF540 управляет двумя диодами 10W холодного белого цвета через 5W резисторы 1.5 Ома.


Корпус ЦМУ из алюминия

Все светодиоды закреплены на полосках алюминия, который крепится в общий алюминиевый профиль. После 3-х часов теста конструкция остаётся холодная.


ЦМУ на светодиодах со стробоскопом в корпусе

Органы управления приставкой

В корпусе были установлены потенциометры для регулировки уровней, вход на микрофон, выключатель питания, предохранитель, гнездо сети 220 В и переключатель режима работы (стробоскоп-ЦМУ). Весь корпус имеет длину 700 мм. Эффект очень даже красивый и мощный. Можно без проблем осветить зал хоть 200 квадратных метров.

Большинство людей с огромным удовольствием слушают музыку, используя для этого различную аппаратуру. Нередко возникает желание усилить ее положительное воздействие. Одним из таких способов является цветомузыка на диодах, выполненная в виде специальных приставок. С помощью диодов звуковые эффекты приобретают совершенно другую окраску, оказывая положительное влияние на эмоциональный настрой слушателей. Подобная радиоэлектронная техника обычно приобретается в готовом виде, но при наличии схемы, определенных знаний и навыков она вполне может быть изготовлена своими руками.

Принцип действия цветомузыки на светодиодах

Основой работы каждой схемы цветомузыкальной установки лежит физический принцип, связанный с частотным преобразованием музыки. Далее она передается через отдельные каналы и осуществляет управление подключенными световыми приборами. Данная цепочка связывает основные музыкальные характеристики с цветовыми элементами, которые соответствуют друг другу и работают во взаимной связи. Этот принцип служит основой всех радиоэлектронных схем из области цветомузыки, в том числе и созданных самостоятельно.

Чаще всего цветовая гамма включает в себя как минимум три разных цвета, например, красный, зеленый и синий. Существует множество комбинаций, создаваемых в результате их смешивания, поэтому, если схема собрана нормально, она обязательно даст желаемый эффект. Для его достижения сигнал разделяется и работает на низких, средних и высоких частотах. Разделение осуществляется с помощью специальных фильтров LC и RC, устанавливаемых в общую цепочку светодиодной цветомузыкальной системы.

Существуют определенные параметры, используемые при настройке фильтров, работающих в собственной узкой частотной полосе и пропускающих колебания лишь на этом отрезке диапазона звучания:

  • ФНЧ — фильтры низких частот. Частота колебаний, проходящих через них, достигает 300 Гц, а световой источник должен быть красного цвета.
  • ФСЧ — фильтры средних частот. Способны пропускать колебания частотой от 250 до 2500 Гц, цвет источника света — желтый или зеленый.
  • ФВЧ — фильтры высоких частот, пропускающие более 2500 Гц и работающие совместно с синим источником света.

Разделенные частоты схемы немного перекрывают друг друга, что дает возможность получать разнообразные цветовые оттенки в процессе работы. Основные цвета, перечисленные выше, не имеют принципиального значения, их вполне возможно заменить другими — наиболее подходящими для конкретной ситуации. В некоторых случаях конечный результат значительно превосходит ожидания, благодаря использованию нестандартных цветовых решений.

Схемы простые и сложные

Знакомство с цветомузыкой открывает наиболее простейшая схема. Как правило, такие устройства используют минимальное количество элементов — всего один светодиод, и по одному резистору и транзистору. Питание осуществляется через постоянный источник тока на 6-12В.

В собранном виде цветомузыка на светодиодах представляет собой усилительный каскад, дополняемый общим эмиттером. Основное действие оказывает сигнал с изменяющейся амплитудой и частотой, поступающий на базу. При превышение частоты установленного порогового значения, происходит открытие транзистора. В этот момент на светодиод поступает питание и он сразу же загорается.

Такая простая цветомузыка может быть собрана с применением , к которой потребуется соответствующий транзистор. Существенный недостаток данной сборки заключается в прямой зависимости между уровнем звука и частотой мигания светодиодных лампочек. То есть, наиболее эффективно система будет работать при поддержке лишь одного, наиболее подходящего уровня звучания. При пониженной громкости мигание будет происходит реже, а на высоком уровне звука свет станет постоянным.

Данный недостаток легко убирается трехканальным звуковым преобразователем, который применяется в более сложных схемах. В этом случае потребуется питание напряжением 9 вольт, обеспечивающее нормальное свечение лампочек в соответствующих каналах.

Для сборки схемы трех каскадов усиления необходимо запастись транзисторами КТ315 или их аналогами КТ3102. Нагрузкой служат светодиоды разных цветов. Усиливающая функция выполняется понижающим трансформатором, с помощью резисторов регулируются светодиодные вспышки, а вышеупомянутые фильтры пропускают через себя различные частоты.

Данную схему цветомузыки на светодиодах можно еще больше усовершенствовать. В первую очередь это касается яркости свечения, добавляемой за счет включения в цепочку маленьких лампочек накаливания на 12 вольт. В этом случае схема дополняется тиристорами управления, а питание всего устройства осуществляется через трансформатор.

Использование светодиодных лент

Схема цветомузыки со светодиодной лентой RGB работает от напряжения 12 вольт. В ней наилучшим образом совмещаются основные параметры обычных вариантов. Данное устройство может работать в разных режимах — в качестве осветительного прибора или цветомузыкального сопровождения.

Включение режима цветомузыки производится с помощью микрофона, бесконтактным способом. В случае перехода на режим освещения, все имеющиеся светодиоды одновременно запускаются на полную мощность. Переход из одного состояния в другое выполняется специальным переключателем, для которого предусмотрена отдельная плата.

Порядок работы данной схемы осуществляется следующим образом:

  • Основной сигнал поступает через микрофон, выполняющий преобразования звуковых колебаний фонограммы. Поскольку сила полученного сигнала, поступающего в цветомузыкальную схему, незначительная, его необходимо усилить. Для этой цели используется транзистор или специальный усилитель.
  • Далее происходит запуск автоматического регулятора, удерживающего звуковые колебания в установленных рамках. Одновременно звук готовится к дальнейшей обработке.
  • С помощью встроенных фильтров сигнал разделяется на три составляющие, для каждой из которых предусмотрен отдельный диапазон частоты.
  • В конце всех действий выполняется усиление токового сигнала после его предварительной подготовки с применением транзисторов, функционирующих в режиме ключа.

Основные детали и компоненты

Перед тем как изготавливать аппаратуру для цветомузыки своими руками, необходимо заранее приготовить все детали и компоненты. В схеме следует пользоваться лишь постоянными резисторами с диапазоном мощности 0,125-0,25 Ом. Корпуса элементов схемы промаркированы специальными полосками, указывающими на значение сопротивления. Дополнительно используются подстроечные резисторы R7, R10, R14, R18. Они могут быть разных типов, но единственным требованием к ним является возможность монтажа на плату, используемую для сборки.

Конденсаторы рассчитываются на рабочее напряжение от 16В и выше. В цветомузыке также могут использоваться любые типы этих устройств. Если невозможно найти конденсатор с нужными параметрами, допускается параллельное соединение двух других, с меньшими емкостями, составляющих в сумме требуемые показатели.

Сделанная цветомузыкальная схема не может обойтись без диодного моста. Обычно он рассчитывается на рабочий ток до 200 мА и напряжение 50 вольт. При отсутствии готового устройства можно воспользоваться несколькими отдельно взятыми выпрямительными диодами и смонтировать их для удобства на отдельной небольшой плате.

Основные цвета светодиодов — красный, зеленый и синий. Их общее количество определяется из расчета на один канал — 6 штук. Будут нужны стандартные транзисторы с любым индексом обозначения. Стабилизатор напряжения с артикулом 7805 рассчитывается на 5В, а устройство на 9В имеет обозначение 7809. При наличии опыта, цветомузыка собирается на плате Arduino и светодиодах.

Соединение музыкального центра с цветомузыкой осуществляется различными типами разъемов с тремя контактами. Последней деталью сборки служит трансформатор, который должен иметь наиболее подходящие параметры напряжения.

Оборудование цветомузыки в автомобиле

Цветомузыкальное оборудование используется не только в домашних условиях. Многие владельцы автомобилей устанавливают их совместно с магнитолами. В случае необходимости данная система работает в качестве подсветки внутри салона. Для устройства подобного типа освещения также применяются светодиоды, размещаемые на потолке в конфигурации «Звездное небо». Такой вариант часто применяется не только в автомобилях, но и в конструкциях подвесных потолков квартир и частных домов.

Данная схема размещения при решении задачи, как спмостоятельно сделать цветомузыку из светодиодов, может быть использована в разных вариантах. В первую очередь, это равномерное распределение светодиодов в определенной конфигурации или в произвольной форме. Лампочки, применяемые в схеме, могут обладать различной мощностью свечения. То есть звездочки, имитируемые светодиодами, бывают яркими и неяркими. Эффективность подсветки во многом зависит от фона потолочного покрытия салона автомобиля или квартиры.

В случае установки системы цветомузыки на светодиодах своими руками, в процессе монтажа придется перетягивать потолок. В связи с этим, необходимо внимательно выбирать необходимые детали и затем тщательно монтировать их в единое целое. При каких-либо нарушений придется разбирать покрытие салона и исправлять ошибки. Поэтому, по окончании сборки, следует обязательно проверить работоспособность установленной аппаратуры.

После того как собрана цветомузыка, светодиоды вставляются в отверстия потолка и фиксируются с обратной стороны с помощью клея. Также необходимо заранее продумать надежное крепление стабилизатора напряжения и выключателя.

В этой статье мы поговорим о цветомузыке. Наверное, у каждого начинающего радиолюбителя, да и не только, в своё время возникало желание собрать цветомузыку. Что это такое, думаю, известно всем — говоря проще, это создание визуальных эффектов, изменяющихся в такт музыке.

Та часть цветомузыки, которая излучает свет, может быть выполнена на мощных лампах, например в концертной установке, в случае если цветомузыка нужна для домашних дискотек, её можно сделать на обычных лампах накаливания 220 вольт, а если цветомузыка планируется, например, как моддинг компьютера, для повседневного использования, её можно выполнить на светодиодах.

В последнее время, с появлением в продаже светодиодных лент, находят все большее применение цветомузыкальные приставки с использованием таких led-лент. В любом случае, для сборки Цвето Музыкальных Установок (ЦМУ сокращенно) требуется источник сигнала, в роли его может выступать микрофон с собранными несколькими каскадами усилителя.

Также сигнал может браться с линейного выхода устройства, звуковой карты компьютера, с выхода mp3 плейера и т. д., в этом случае также потребуется усилитель, например два каскада на транзисторах, я для этой цели воспользовался транзисторами КТ3102. Схема предусилителя изображена на следующем рисунке:

Далее приведена схема одноканальной цветомузыки с фильтром, работающей совместно с предусилителем (выше). В этой схеме светодиод мигает под басы (низкие частоты). Для согласования уровня сигнала в схеме цветомузыки предусмотрен переменный резистор R6.

Существуют и более простые схемы цветомузыки, которые может собрать любой начинающий, на 1 транзисторе, к тому же не нуждающиеся в предусилителе, одна из таких схем изображена на картинке ниже:

Цветомузыка на транзисторе

Схема распайки выводов штекера Джек 3.5 приведена на следующем рисунке:

Если по каким-то причинам нет возможности собрать предварительный усилитель на транзисторах, можно заменить его трансформатором, включённым как повышающий. Такой трансформатор должен выдавать напряжения на обмотках 220/5 Вольт. Обмотка трансформатора с меньшим количеством витков подключается в источнике звука, например, магнитоле, параллельно динамику, усилитель при этом должен выдавать мощность как минимум 3-5 ватт. Обмотка с большим количеством витков подключается ко входу цветомузыки .

Разумеется, цветомузыка бывает не только одноканальной, она может быть 3, 5 и более многоканальной, когда каждый светодиод или лампа накаливания мигает при воспроизведении частот своего диапазона. При этом диапазон частот задается путем использования фильтров. В следующей схеме, трехканальной цветомузыки (которую сам недавно собирал) в качестве фильтров стоят конденсаторы:

Если мы захотели использовать в последней схеме не отдельные светодиоды, а светодиодную ленту, то в схеме следует убрать токоограничивающие резисторы R1, R2, R3. Если лента или светодиод используется RGB, то должна быть выполнена с общим анодом. Если планируется подключать светодиодные ленты большой длины, то для управления лентой следует применить мощные транзисторы, установленные на радиаторы.

Так как светодиодные ленты рассчитаны на питание 12 Вольт, соответственно и питание в схеме нам следует поднять до 12 Вольт, причем питание должно быть стабилизированным.

Тиристоры в цветомузыке

До сих пор в статье рассказывалось только про цветомузыкальные устройства на светодиодах. Если возникнет надобность собрать ЦМУ на лампах накаливания, тогда для управления яркостью ламп нужно будет применить тиристоры. Что такое вообще тиристор? Это трехэлектродный полупроводниковый прибор, который соответственно имеет Анод , Катод и Управляющий электрод .

КУ202 Тиристор

На рисунке выше изображен советский тиристор КУ202. Тиристоры, в случае, если планируется использовать с мощной нагрузкой, также необходимо крепить на теплоотвод (радиатор). Как мы видим на рисунке, тиристор имеет резьбу с гайкой и крепится аналогично мощным диодам. Современные импортные просто снабжены фланцем с отверстием.

Одна из подобных схем на тиристорах приведена выше. Это схема трехканальной цветомузыки с повышающим трансформатором на входе. В случае подбора аналогов тиристоров, следует смотреть на максимальное допустимое напряжение тиристоров, в нашем случае у КУ202Н — это 400 вольт.

На рисунке приведена подобная схема цветомузыки приведенной выше, главное отличие в нижней схеме — отсутствует диодный мост. Также цветомузыку на светодиодах можно встроить в системный блок. Мной была собрана такая трехканальная цветомузыка с предусилителем в корпусе от сидирома. При этом сигнал брался со звуковой карты компьютера с помощью делителя сигнала, в выходы которого подключались активная акустика и цветомузыка. Предусмотрена регулировка уровня сигнала, как общего, так и отдельно по каналам. Запитывались предусилитель и цветомузыка от разъема Молекс 12 Вольт (желтый и черный провода). Схемы предусилителя и трехканальной цветомузыки по которым собирались приведены выше. Существуют и другие схемы цветомузыки на светодиодах, например эта, также трехканальная:

В этой схеме, в отличие от той, что собирал я, используется в канале средних частот индуктивность. Для тех, кто захочет сперва собрать что-нибудь попроще, привожу следующую схему на 2 канала:

Если собирать цветомузыку на лампах, то придется использовать использовать светофильтры, которые могут быть в свою очередь, как самодельными так и покупными. На рисунке ниже изображены светофильтры, которые есть в продаже:

Некоторые любители цветомузыкальных эффектов собирают устройства на основе микроконтроллеров. Ниже приведена схема четырехканальной цветомузыки на МК AVR tiny 15:

Микроконтроллер Тiny 15 в этой схеме можно заменить на tiny 13V, tiny 25V. И под конец обзора от себя хочу сказать, что цветомузыка на лампах проигрывает по зрелищности цветомузыке на LED, так как лампы более инерционные, чем светодиоды. А для самостоятельного повторения можно рекомендовать вот такую

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Цветомузыка своими руками. Различные схемы цветомузыкальных автоматов

Схема двухтонального звонка на микросхемах собран на двух микросхемах и одном транзисторе.

Схема устройства

Логические элементы D1.1—D1.3, резистор R1 и конденсатор С1 образуют переключающий генератор. При включении питания конденсатор С1 начинает заряжаться через резистор R1.

По мере заряда конденсатора повышается напряжение на его обкладке, соединенной с выводами 1, 2 логического элемента DL2. Когда оно достигнет 1,2… 1,5 В, на выходе 6 элемента D1.3 появится сигнал логической «1» (« 4 В), а на выходе 11 элемента D1.1 — сигнал логического «0» (« 0,4 В).

После этого конденсатор С1 начинает разряжаться через резистор R1 и элемент DLL . В итоге на выходе 6 элемента D1.3 будут формироваться прямоугольные импульсы напряжения. Такие же импульсы, но сдвинутые по фазе на 180°, будут на выводе 11 элемента D1.1, выполняющего роль инвертора.

Продолжительность заряда и разряда конденсатора С1, а значит, частота переключающего генератора, зависит от емкости конденсатора С1 и сопротивления резистора R1. При указанных на схеме номиналах этих элементов частота переключающего генератора составляет 0,7…0,8 Гц.

Рис. 1. Принципиальная схема двухтонального звонка на двух микросхемах К155ЛА3.

Импульсы переключающего генератора подаются на генераторы тона. Один из них выполнен на элементах D1.4, D2.2, D2.3, другой — на элементах D2.4, D2.3. Частота первого генератора — 600 Гц (ее можно изменять подбором элементов С2, R2), частота второго — 1000 Гц (эту частоту можно изменять подбором элементов СЗ, R3).

При работающем переключающем генераторе на выходе генераторов тона (вывод 6 элемента D2.3) будет периодически появляться то сигнал одного генератора, то сигнал другого. Затем эти сигналы поступают на усилитель мощности (транзистор VI) и преобразуются головкой В1 в звук. Резистор R4 необходим для ограничения тока базы транзистора.

Настройка и детали

Подстроечным резистором R5 можно подобрать нужную громкость_звучания.

Постоянные резисторы — МЛТ-0,125, подстроечный—СПЗ-1Б, конденсаторы С1—СЗ — К50-6. Логические микросхемы К155ЛАЗ можно заменить на КІЗЗЛАЗ, К158ЛАЗ, транзистор КТ603В — на,КТ608 с любым буквенным индексом. Источником питания служат четыре последовательно соединенных аккумулятора Д-0,1, батарея «3336Л или стабилизированный выпрямитель на 5 В.

У каждого настоящего радиолюбителя имеется микросхема К155ЛА3. Но обычно их считают сильно устаревшими и не могут найти им серьезного использования, так как во многих радиолюбительских сайтах и журналах обычно описаны только схемы мигалок, игрушек. В рамках этой статьи постараемся расширить радиолюбительский кругозор в рамках применения схем с использованием микросхемы К155ЛА3.

Эту схему можно использовать для зарядки мобильного телефона от прикуривателя бортовой сети автомобиля.

На вход радиолюбительской конструкции можно подавать до 23 Вольт. Вместо устаревшего транзистора П213 можно использовать более современный аналог КТ814.

Вместо диодов Д9 можно применить д18, д10. Тумблеры SA1 и SA2 используются для проверки транзисторов с прямой и обратной проводимостью.

Для того чтобы исключить перегрев фар можно установить реле времени, которое будет выключать стоп-сигналы если они горят более 40-60 секунд, время можно изменить подбором конденсатора и резистора. При отпускании и следующем нажатии педали фонари снова включаются, так что на безопасность вождения это никак не влияет

Для повышения КПД преобразователя напряжения и предотвращения сильного перегрева, в выходном каскаде схемы инвертора применены полевые транзисторы с низким сопротивлением


Сирена используется для подачи мощного и сильного звукового сигнала для привлечения внимания людей и эффективно защищает ваш оставленный и пристегнутый на короткое время байк.

Если вы хозяин дачи, виноградника или домика в деревне, то вы знаете, какой огромный ущерб могут создать мыши, крысы и другие грызуны, и какой затратной неэффективной, а иногда и опасной является борьба с грызунами стандартными способами

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Кроме микросхемы в имеется яркий светодиод и несколько компонентов обвязки. После сборки устройство начинает работать сразу. Регулировка не требуется, кроме подстройки длительности вспышек.

Напомним, что конденсатор C1 номиналом 470 микрофарад впаиваем в схему строго с соблюдением полярности.


С помощью номинала сопротивления резистора R1 можно изменять длительность вспышки светодиода.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия — прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности — это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум — одного, а максимум — группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой — либо заданной программе, то цветомузыкальная установка считается — автоматической.
Именно такого рода «цветомузыки» обычно собирают своими руками начинающие конструкторы — радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое — звенящее и пищащее.

Недостаток один — необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику» для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыки» на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте — на три канала. По первому каналу идет самая низкочастотная составляющая сигнала — фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны — 1 мкФ, но как показала практика — их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту — примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны — 0,015 мкФ, но их емкость следует увеличить, до 0,33 — 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны — 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае — это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы — до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум — 2А. Если количество ламп на каждый канал увеличить — соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум — 250 мА(а лучше — больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, — собирают активный фильтр. Далее — проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем — реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после «чистовой» сборки на монтажной плате, если работа проведена без ошибок и с применением «испытанных» деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом — поможет избавиться от навесных проводов-перемычек.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Схему, приведённую ниже, собирал в юности, на занятиях кружка радиоконструирования. Причём безуспешно. Возможно, микросхема К155ЛА3 всё-таки не подходит для подобного металлоискателя, возможно частота 465 кГц не самая подходящая для подобных устройств, а возможно надо было экранировать поисковую катушку как в остальных схемах раздела «Металлоискатели»

В общем получившаяся «писчалка» реагировала не только на металлы но и на руку и прочие неметаллические предметы. К тому же микросхемы 155-ой серии слишком не экономичны для переносных приборов.

Радио 1985 — 2 стр. 61. Простой металлоискатель

Простой металлоискатель

Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомных (2 кОм) головных телефонов BF1 изменение тональности звучания которых и свидетельствует о наличии под катушкой-антенной металлического предмета.

Генератор, собранный на элементах DD1.1 и DD1.2, само возбуждается на частоте резонанса последовательного колебательного контура L1C1, настроенного на частоту 465 кГц (использованы элементы фильтра ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью катушки-антенны 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью конденсатора переменной емкости С2. позволяющего перед поиском настроить металлоискатель на обнаружение предметов определенной массы. Биения, возникшие в результате смешения колебаний обоих генераторов, детектируются диодами VD1, VD2. фильтруются конденсатором С5 и поступают на головные телефоны BF1.

Все устройство собрано на небольшой печатной плате, что позволяет при питании от плоской батареи для карманного фонаря сделать его очень компактным и удобным в обращении

Janeczek A Prosty wykrywacz melali. — Radioelektromk, 1984, № 9 стр. 5.

Примечание редакции. При повторении металлоискателя можно использовать микросхему К155ЛA3, любые высокочастотные германиевые диоды н КПЕ от радиоприемника «Альпинист».

Эта же схема более подробно рассмотрена в сборнике Адаменко М.В. «Металлоискатели» М.2006 (Скачать). Далее статья из этой книги

3.1 Простой металлоискатель на микросхеме К155ЛА3

Начинающим радиолюбителям можно рекомендовать для повторения конструкцию простого металлоискателя, основой для которого послужила схема, неоднократно публиковавшаяся в конце 70-х годов прошлого столетия в различных отечественных и зарубежных специализированных изданиях. Этот металлодетектор, выполненный всего на одной микросхеме типа К155ЛА3, можно собрать за несколько минут.

Принципиальная схема

Предлагаемая конструкция представляет собой один из многочисленных вариантов ме-таллодетекторов типа BFO (Beat Frequency Oscillator), то есть является устройством, в основу которого положен принцип анализа биений двух сигналов, близких по частоте (рис. 3.1). При этом в данной конструкции оценка изменения частоты биений осуществляется на слух.

Основу прибора составляют измерительный и опорный генераторы, детектор колебаний ВЧ, схема индикации, а также стабилизатор питающего напряжения.

В рассматриваемой конструкции использованы два простых LC-генератора, выполненные на микросхеме IC1. Схемотехнические решения этих генераторов практически идентичны. При этом первый генератор, который является опорным, собран на элементах IC1.1 и IC1.2, а второй, измерительный или перестраиваемый генератор, выполнен на элементах IC1.3 и IC1.4.

Контур опорного генератора образован конденсатором С1 емкостью 200 пФ и катушкой L1. В контуре измерительного генератора используются конденсатор переменной емкости С2 с максимальной емкостью примерно 300 пФ, а также поисковая катушка L2. При этом оба генератора настроены на рабочую частоту примерно 465 кГц.


Рис. 3.1.
Принципиальная схема металлоискателя на микросхеме К155ЛА3

Выходы генераторов через развязывающие конденсаторы СЗ и С4 подключены к детектору колебаний ВЧ, выполненному на диодах D1 и D2 по схеме удвоения выпрямленного напряжения. Нагрузкой детектора являются головные телефоны BF1, на которых выделяется сигнал низкочастотной составляющей. При этом конденсатор С5 шунтирует нагрузку по высшим частотам.

При приближении поисковой катушки L2 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты данного генератора. При этом, если вблизи катушки L2 находится предмет из черного металла (ферромагнетика), ее индуктивность увеличивается, что приводит к уменьшению частоты перестраиваемого генератора. Цветной же металл уменьшает индуктивность катушки L2, а рабочую частоту генератора увеличивает.

ВЧ-сигнал, сформированный в результате смешивания сигналов измерительного и опорного генераторов после прохождения через конденсаторы С3 и С4, подается на детектор. При этом амплитуда сигнала ВЧ изменяется с частотой биений.

Низкочастотная огибающая ВЧ-сигнала выделяется детектором, выполненным на диодах D1 и D2. Конденсатор С5 обеспечивает фильтрацию высокочастотной составляющей сигнала. Далее сигнал биений поступает на головные телефоны BF1.

Питание на микросхему IC1 подается от источника В1 напряжением 9 В через стабилизатор напряжения, образованный стабилитроном D3, балластным резистором R3 и регулирующим транзистором T1.

Детали и конструкция

Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому к используемым деталям не предъявляются какие-либо ограничения, связанные с габаритными размерами. Монтаж может быть как навесной, так и печатный.

При повторении металлодетектора можно использовать микросхему К155ЛА3, состоящую из четырех логических элементов 2И-НЕ, питающихся от общего источника постоянного тока. В качестве конденсатора С2 можно использовать конденсатор настройки от переносного радиоприемника (например от радиоприемника «Альпинист»). Диоды D1 и D2 можно заменить любыми высокочастотными германиевыми диодами.

Катушка L1 контура опорного генератора должна иметь индуктивность около 500 мкГ. В качестве такой катушки рекомендуется использовать, например, катушку фильтра ПЧ супергетеродинного приемника.

Измерительная катушка L2 содержит 30 витков провода ПЭЛ диаметром 0,4 мм и выполнена в виде тора диаметром 200 мм. Эту катушку проще изготовить на жестком каркасе, однако можно обойтись и без него. В этом случае в качестве временного каркаса можно использовать любой подходящий по размерам круглый предмет, например банку. Витки катушки наматываются внавал, после чего снимаются с каркаса и экранируются электростатическим экраном, который представляет собой незамкнутую ленту из алюминиевой фольги, намотанную поверх жгута витков. Щель между началом и концом намотки ленты (зазор между концами экрана) должна составлять не менее 15 мм.

При изготовлении катушки L2 нужно особенно следить за тем, чтобы не произошло — замыкание концов экранирующей ленты, поскольку в этом случае образуется коротко-замкнутый виток. В целях повышения механической прочности катушку можно пропитать эпоксидным клеем.

Для источника звуковых сигналов следует применить высокоомные головные телефоны с возможно большим сопротивлением (около 2000 Ом). Подойдет, например, широко известный телефон ТА-4 или ТОН-2.

В качестве источника питания В1 можно использовать, например, батарейку «Крона» или две батарейки типа 3336Л, соединенные последовательно.

В стабилизаторе напряжения емкость электролитического конденсатора С6 может составлять от 20 до 50 мкФ, а конденсатора С7 — от 3 300 до 68 000 пФ. Напряжение на выходе стабилизатора, равное 5 В, устанавливается подстроечным резистором R4. Такое напряжение будет поддерживаться неизменным даже при значительной разрядке батарей.

Необходимо отметить, что микросхема К155ЛАЗ рассчитана на питание от источника постоянного тока напряжением 5 В. Поэтому при желании из схемы можно исключить блок стабилизатора напряжения и использовать качестве источника питания одну батарейку типа 3336Л или аналогичную ей, что позволяет собрать компактную конструкцию. Однако разрядка этой батарейки очень быстро отразится на функциональных возможностях данного металлодетектора. Именно поэтому необходим блок питания, обеспечивающий формирование стабильного напряжения 5 В.

Следует признать, что в качестве источника питания автор использовал четыре большие круглые батарейки импортного производства, соединенные последовательно. При этом напряжение 5 В формировалось интегральным стабилизатором типа 7805.

Плата с расположенными на ней элементами и источник питания размещаются в любом подходящем пластмассовом или деревянном корпусе. На крышке корпуса устанавливаются переменный конденсатор С2, выключатель S1, а также разъемы для подключения поисковой катушки L2 и головных телефонов BF1 (эти разъемы и выключатель S1 на принципиальной схеме не указаны).

Налаживание

Как и при регулировке других металлоискателей, данный прибор следует настраивать в условиях, когда металлические предметы удалены от поисковой катушки L2 на расстояние не менее одного метра.

Сначала с помощью частотомера или осциллографа необходимо настроить рабочие частоты опорного и измерительного генераторов. Частота опорного генератора устанавливается равной примерно 465 кГц регулировкой сердечника катушки L1 и, при необходимости, подбором емкости конденсатора С1. Перед регулировкой потребуется отсоединить соответствующий вывод конденсатора С3 от диодов детектора и конденсатора С4. Далее нужно отсоединить соответствующий вывод конденсатора С4 от диодов детектора и от конденсатора С3 и регулировкой конденсатора С2 установить частоту измерительного генератора так, чтобы ее значение отличалось от частоты опорного генератора примерно на 1 кГц. После восстановления всех соединений металлоискатель готов к работе.

Порядок работы

Проведение поисковых работ с помощью рассмотренного металлодетектора не имеет каких-либо особенностей. При практическом использовании прибора следует переменным конденсатором С2 поддерживать необходимую частоту сигнала биений, которая изменяется при разряде батареи, изменении температуры окружающей среды или девиации магнитных свойств грунта.

Если в процессе работы частота сигнала в головных телефонах изменится, то это свидетельствует о наличии в зоне действия поисковой катушки L2 какого-либо металлического предмета. При приближении к некоторым металлам частота сигнала биений будет увеличиваться, а при приближении к другим — уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.

Микросхема К155ЛА3 является, по сути, базовым элементом 155-ой серии интегральных микросхем. Внешне по исполнению она выполнена в 14 выводном DIP корпусе, на внешней стороне которого выполнена маркировка и ключ, позволяющий определить начало нумерации выводов (при виде сверху — от точки и против часовой стрелки).

В функциональной структуре микросхемы К155ЛА3 имеется 4 самостоятельных логических элементов . Одно лишь их объединяет, а это линии питания (общий вывод — 7, вывод 14 – положительный полюс питания) Как правило, контакты питания микросхем не изображаются на принципиальных схемах.

Каждый отдельный 2И-НЕ элемент микросхемы К155ЛА3 на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. По правую сторону элементов находятся выходы, по левую сторону входы. Аналогом отечественной микросхемы К155ЛА3 является зарубежная микросхема SN7400, а все серия К155 аналогична зарубежной SN74.

Таблица истинности микросхемы К155ЛА3

Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

Опыты с микросхемой К155ЛА3

На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.

После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.

Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.

Опыт первый (рис.1): Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)

Вывод первый : Если на одном из входов лог.0, а на другом лог.1, то на выходе К155ЛА3 обязательно будет лог.1

Опыт второй (рис.2): Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.

Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.

Вывод второй: Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1

Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.

Опыт третий (рис.3): Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.

Радиолюбительские схемы цветомузыки. Цветомузыка на мощных светодиодах. Цветомузыка с RGB светодиодной лентой

Всем нам время от времени хочется праздника. Иногда хочется погрустить или испытать другие эмоции. Самый простой и эффективный способ добиться желаемого результата – послушать музыку. Но одной лишь музыки часто бывает недостаточно – нужна визуализация звукового потока, спецэффекты. Иначе говоря – нужна цветомузыка (или светомузыка как её иногда называют). Но где же её взять, если подобная аппаратура в специализированных магазинах стоит недешево? Сделать своими руками, конечно же. Все, что для этого нужно, это наличие компьютера (или блока питания отдельно), нескольких метров светодиодной RGB ленты мощностью потребления в 12в, макетная плата USB (AVR-USB-MEGA16 – пожалуй, самый дешевый и простой вариант), а также схема того, что и куда подключать.

Немного о ленте

Прежде чем перейти к самим работам, необходимо определить, что же собой представляет эта светодиодная RGB лента мощностью именно 12в. А является она простым, но одновременно очень хитроумным изобретением.

Светодиоды известны уже не первое десятилетие, но благодаря инновационным разработкам стали действительно универсальным решением для множества проблем в сфере электроники. Они сейчас применяются повсеместно – как индикаторы в бытовой технике, самостоятельно в виде энергосберегающей лампы, в космической отрасли, а также в сфере спецэффектов. К последней можно отнести и цветомузыку. Когда светодиоды трех типов – красный (Red), зеленый (Green) и синий (Blue) объединяются на одной ленте, то получается светодиодная RGB лента. В современных RGB диодах имеется миниатюрный контроллер. Это позволяет им испускать все три цвета.

Особенностью такой является ленты то, что все диоды сгруппированы и соединены в общую цепочку , управляемую общим контроллером (им может оказаться также и компьютер в случае подключения через USB, либо специальный блок питания с пультом управления для автономных модификаций). Все это позволяет создать практически бесконечную ленту с минимумом проводов. Её толщина может достигать буквально нескольких миллиметров (если не учитывать варианты с резиновой или силиконовой защитой от физических повреждений, влаги и температуры). До изобретения такого типа микроконтроллеров самая простая модель имела, по крайней мере, три провода. И чем выше была функциональность таких гирлянд – тем больше было проводов. В западной культуре фраза «распутать гирлянду» давно уже стало нарицательным для всех долгих, нудных и крайне запутанных дел. И вот сейчас это перестало быть проблемой (еще и потому, что светодиодную ленту предусмотрительно накручивают на специальный небольшой барабан).

Что нам нужно?

Цветомузыка своими руками из ленты GE60RGB2811C

В идеале, для организации цветомузыки своими руками нам подойдет уже готовая светодиодная лента с питанием от USB порта компьютера. Все, что нам надо – скачать необходимое приложение на для того же компьютера, настроить ассоциации файлов с нужным аудио-проигрывателем, и наслаждаться результатом. Но это если нам очень повезет, и если у нас есть деньги, чтобы все это приобрести. В ином случае все выглядит несколько сложнее.

В продаже магазинов электронных комплектующих есть различные по длине и мощности светодиодные ленты, но нам нужна только 12в. Она является наилучшим вариантом для подключения к компьютеру посредством USB. Так, например, можно найти модель GE60RGB2811C, которая представляет собой последовательно подключенных 300 RGB светодиодов. Один из плюсов любой такой ленты в том, что её можно нарезать как кому удобно – любой длины. Все что нужно после этого – соединить контакты, чтобы электрическая цепь не была разомкнутой, и схема была целостной (это надо сделать обязательно).

Схема настройки цветомузыки

Также нам может понадобиться макетная плата для подключения USB. Самым популярным, дешевым, но при этом функциональным вариантом для подключения является модель AVR-USB-MEGA16 под USB 1.1. Эта версия USB считается уже несколько устаревшей т.к. передает сигнал к светодиодам со скоростью 8 миллисекунд, что для современной техники слишком медленно, но, поскольку человеческий глаз и эту скорость воспринимает как «мгновение ока», то нам она вполне подойдет.

Если опустить большинство сложнейших технических тонкостей и нюансов, то все, что требует от нас схема такого подключения, это взять ленту нужной длины, высвободить и зачистить контакты на одной стороне, подключить и припаять их к выходу на макетной плате (на самой плате указаны символы, какой разъем и для чего нужен) и, собственно, всё. Для полной длины ленты в 12в может не хватить питания, поэтому можно их запитать от старого блока питания компьютера (это потребует параллельного подключения), или просто обрезать ленту. Звук при просто этом варианте будет идти из компьютерных динамиков. Для особо искушенных в электронике мастеров, можно порекомендовать присоединить микрофонный усилитель и маленький «динамик-пищалку» прямо к AVR-USB-MEGA16.

Схема крепления контактов ленты к USB шнуру от смартфона

Если эту плату раздобыть не удалось, то на самый крайний случай подключение можно сделать через светодиодную RGB ленту 12в к USB кабелю от смартфона или планшетного компьютера (схема по настройке цветомузыки своими руками это допускает). Важно только убедиться, что шнур даст необходимые 5 ватт мощности. В завершение всех этих манипуляций устанавливаем программу SLP (или прописываем все шаги в txt файле, если позволяют познания в программировании и понятна схема и алгоритм всех действий), выбираем нужный режим (по количеству диодов), и наслаждаемся работой, проделанной своими руками.

Вывод

Цветомузыка не является предметом первой необходимости, но зато делает нашу жизнь гораздо интереснее, и не только из-за того, что мы теперь можем смотреть на мигающие разноцветные огоньки, загорающимися и тухнущими в такт любимой мелодии. Нет, мы о другом. Сделав нечто подобное своими руками, а не купив в магазине, каждый почувствует прилив сил от удовлетворения, присущего каждому мастеру и творцу, и осознания, что он тоже чего-то стоит. А по сути вопроса – цветомузыка установлена, мигает и радует глаз с минимальными расходами и максимальным удовольствием – чего еще надо?..


Освещение на кухне малогабаритной квартиры
Подбираем светильники для зеркал, возможные варианты
Люстра для детской комнаты в виде самолетика

В этой статье мы поговорим о цветомузыке. Наверное, у каждого начинающего радиолюбителя, да и не только, в своё время возникало желание собрать цветомузыку. Что это такое, думаю, известно всем — говоря проще, это создание визуальных эффектов, изменяющихся в такт музыке.

Та часть цветомузыки, которая излучает свет, может быть выполнена на мощных лампах, например в концертной установке, в случае если цветомузыка нужна для домашних дискотек, её можно сделать на обычных лампах накаливания 220 вольт, а если цветомузыка планируется, например, как моддинг компьютера, для повседневного использования, её можно выполнить на светодиодах.

В последнее время, с появлением в продаже светодиодных лент, находят все большее применение цветомузыкальные приставки с использованием таких led-лент. В любом случае, для сборки Цвето Музыкальных Установок (ЦМУ сокращенно) требуется источник сигнала, в роли его может выступать микрофон с собранными несколькими каскадами усилителя.

Также сигнал может браться с линейного выхода устройства, звуковой карты компьютера, с выхода mp3 плейера и т. д., в этом случае также потребуется усилитель, например два каскада на транзисторах, я для этой цели воспользовался транзисторами КТ3102. Схема предусилителя изображена на следующем рисунке:

Предусилитель — схема

Далее приведена схема одноканальной цветомузыки с фильтром, работающей совместно с предусилителем (выше). В этой схеме светодиод мигает под басы (низкие частоты). Для согласования уровня сигнала в схеме цветомузыки предусмотрен переменный резистор R6.

Существуют и более простые схемы цветомузыки, которые может собрать любой начинающий, на 1 транзисторе, к тому же не нуждающиеся в предусилителе, одна из таких схем изображена на картинке ниже:

Цветомузыка на транзисторе

Схема распайки выводов штекера Джек 3.5 приведена на следующем рисунке:

Если по каким-то причинам нет возможности собрать предварительный усилитель на транзисторах, можно заменить его трансформатором, включённым как повышающий. Такой трансформатор должен выдавать напряжения на обмотках 220/5 Вольт. Обмотка трансформатора с меньшим количеством витков подключается в источнике звука, например, магнитоле, параллельно динамику, усилитель при этом должен выдавать мощность как минимум 3-5 ватт. Обмотка с большим количеством витков подключается ко входу цветомузыки .

Разумеется, цветомузыка бывает не только одноканальной, она может быть 3, 5 и более многоканальной, когда каждый светодиод или лампа накаливания мигает при воспроизведении частот своего диапазона. При этом диапазон частот задается путем использования фильтров. В следующей схеме, трехканальной цветомузыки (которую сам недавно собирал) в качестве фильтров стоят конденсаторы:

Если мы захотели использовать в последней схеме не отдельные светодиоды, а светодиодную ленту, то в схеме следует убрать токоограничивающие резисторы R1, R2, R3. Если лента или светодиод используется RGB, то должна быть выполнена с общим анодом. Если планируется подключать светодиодные ленты большой длины, то для управления лентой следует применить мощные транзисторы, установленные на радиаторы.

Так как светодиодные ленты рассчитаны на питание 12 Вольт, соответственно и питание в схеме нам следует поднять до 12 Вольт, причем питание должно быть стабилизированным.

Тиристоры в цветомузыке

До сих пор в статье рассказывалось только про цветомузыкальные устройства на светодиодах. Если возникнет надобность собрать ЦМУ на лампах накаливания, тогда для управления яркостью ламп нужно будет применить тиристоры. Что такое вообще тиристор? Это трехэлектродный полупроводниковый прибор, который соответственно имеет Анод , Катод и Управляющий электрод .

КУ202 Тиристор

На рисунке выше изображен советский тиристор КУ202. Тиристоры, в случае, если планируется использовать с мощной нагрузкой, также необходимо крепить на теплоотвод (радиатор). Как мы видим на рисунке, тиристор имеет резьбу с гайкой и крепится аналогично мощным диодам. Современные импортные просто снабжены фланцем с отверстием.

Одна из подобных схем на тиристорах приведена выше. Это схема трехканальной цветомузыки с повышающим трансформатором на входе. В случае подбора аналогов тиристоров, следует смотреть на максимальное допустимое напряжение тиристоров, в нашем случае у КУ202Н — это 400 вольт.

На рисунке приведена подобная схема цветомузыки приведенной выше, главное отличие в нижней схеме — отсутствует диодный мост. Также цветомузыку на светодиодах можно встроить в системный блок. Мной была собрана такая трехканальная цветомузыка с предусилителем в корпусе от сидирома. При этом сигнал брался со звуковой карты компьютера с помощью делителя сигнала, в выходы которого подключались активная акустика и цветомузыка. Предусмотрена регулировка уровня сигнала, как общего, так и отдельно по каналам. Запитывались предусилитель и цветомузыка от разъема Молекс 12 Вольт (желтый и черный провода). Схемы предусилителя и трехканальной цветомузыки по которым собирались приведены выше. Существуют и другие схемы цветомузыки на светодиодах, например эта, также трехканальная:

Цветомузыка на 3 светодиодах — схема

В этой схеме, в отличие от той, что собирал я, используется в канале средних частот индуктивность. Для тех, кто захочет сперва собрать что-нибудь попроще, привожу следующую схему на 2 канала:

Если собирать цветомузыку на лампах, то придется использовать использовать светофильтры, которые могут быть в свою очередь, как самодельными так и покупными. На рисунке ниже изображены светофильтры, которые есть в продаже:

Некоторые любители цветомузыкальных эффектов собирают устройства на основе микроконтроллеров. Ниже приведена схема четырехканальной цветомузыки на МК AVR tiny 15:

Микроконтроллер Тiny 15 в этой схеме можно заменить на tiny 13V, tiny 25V. И под конец обзора от себя хочу сказать, что цветомузыка на лампах проигрывает по зрелищности цветомузыке на LED, так как лампы более инерционные, чем светодиоды. А для самостоятельного повторения можно рекомендовать вот такую

Чтобы собрать цветомузыку на светодиодах своими руками необходимо обладать базовыми знаниями электроники, уметь читать схемы и работать с паяльником. В статье мы рассмотрим, как работает цветомузыка на светодиодах, основные рабочие схемы, на основе которых можно собрать самостоятельно готовые устройства, а в конце пошагово соберем готовое устройство на примере.

В основе цветомузыкальных установок, используется способ частотного преобразования музыки и его передачи, посредством отдельных каналов, для управления источниками света. В результате получается, что в зависимости от основных музыкальных параметров, работа цветовой системы будет ей соответствовать. На этом прицепе основана схема, по которой собирается цветомузыка на светодиодах своими руками.

Как правило, для создания цветовых эффектов используется не менее трёх различных цветов. Это может быть синий, зелёный и красный. Смешиваясь в различных комбинациях, с разной продолжительностью, они способны создать поразительную атмосферу веселья.

Разделять сигнал на низкие, средние и высокие чистоты, способны LC и RC-фильтры, именно они устанавливаются и настраиваются в цветомузыкальную систему с применением светодиодов.

Настройки фильтров устанавливаются на следующие параметры:

  • до 300 Гц на низкочастотный фильтр, как правило, его цвет красный;
  • 250-2500 Гц для средних, цвет зелёный;
  • все что выше 2000 Гц преобразует высокочастотный фильтр, как правило, от него зависит работа синего светодиода.

Деление на частоты, проводится с небольшим перекрытием, это необходимо, для получения различных цветовых оттенков, при работе прибора.

Выбор цвета, в данной схеме цветомузыки не принципиален, и при желании можно использовать светодиоды разных цветов на своё усмотрение, менять местами и экспериментировать, запретить не может никто. Различные частотные колебания в сочетании с применением нестандартного цветового решения, могут существенно повлиять на качество результата.

Для регулировки доступны и такие параметры схемы, как количество каналов и их частота, из чего можно сделать вывод, что цветомузыка может использовать большое количество светодиодов разных цветов, и возможна индивидуальная регулировка каждого из них по частоте и ширине канала.

Что необходимо, для изготовления цветомузыки

Резисторы для цветомузыкальной установки, собственного производства, могут использоваться только постоянные, с мощностью 0.25-0.125. Подходящие резисторы, можно увидеть на рисунке ниже. Полоски на корпусе показывают величину сопротивления.

Также в схеме применяются R3 резисторы, и подстроечные R — 10, 14, 7 и R 18 вне зависимости от типа. Главное требование, возможность установки на плату, применяемую при сборке. Первый вариант светодиодной цветомузыки, собирался с применением резистора переменного типа с обозначением СПЗ-4ВМ и импортными — подстроечными.

Что касается конденсаторов, то использовать нужно детали с рабочим напряжением на 16 вольт, не менее. Тип, может быть любой. При затруднениях в поиске конденсатора С7, можно соединить параллельно, два меньших по ёмкости, для получения требуемых параметров.

Применяемые в схеме светодиодной цветомузыки конденсаторы С1, С6 должны быть способны работать на 10 вольтах, соответственно С9–16В, С8–25В. Если вместо старых советских конденсаторов, планируется использовать новые, импортные то стоит помнить, что они имеют различие в обозначении, нужно заранее определить полярность конденсаторов, которые будут устанавливаться, иначе можно перепутать и испортить схему.

Ещё для изготовления цветомузыки потребуется диодный мост, с напряжением 50В и рабочим током, около 200 миллиампер. В случае, когда нет возможности установить готовый диодный мост, можно сделать его из нескольких выпрямительных диодов, для удобства их можно убрать с платы и смонтировать отдельно с применением платы меньшего размера.

Параметры диодов, выбираются аналогично применяемых в заводском исполнение моста, диодов.

Светодиоды, должны быть красного, синего и зёленого цвета свечения. Для одного канала их понадобится шесть штук.

Ещё один необходимый элемент, стабилизатор напряжения. Используется пятивольтовый стабилизатор, импортного производства, с артикулом 7805. Также можно применять 7809 (девятивольтовый), но тогда из схемы нужно исключить резистор R22, а вместо него ставится перемычка, соединяющая минусовую шину и средний вывод.

Соединить цветомузыку с музыкальным центром, можно при помощи трехконтактного разъёма «джек».

И последнее, что необходимо иметь для сборки, это трансформатор с подходящими параметрами напряжения.

Общая схема для проведения сборки цветомузыки, в которой используются описанные детали на фото ниже.

Несколько рабочих схем

Ниже будет предложено несколько рабочих схем цветомузыки на светодиодах.

Вариант №1

Для данной схемы можно использовать светодиоды любого типа. Главное, чтобы они были сверхяркими и разными по свечению. Схема работает по следующему принципу, сигнал с источника передаётся на вход, где сигналы каналов суммируются и далее направляются на переменное сопротивление.(R6,R7,R8) При помощи этого сопротивления уровень сигнала для каждого канала регулируется, после чего поступает на фильтры. Различие фильтров, в ёмкости конденсаторов, используемых для их сборки. Их смысл, как и в других устройствах, преобразовывать и очищать звуковой диапазон в определённых границах. Это верхние, средние и низкие частоты. Для регулировки в схеме цветомузыки установлены резисторы подстройки. Пройдя всё это, сигнал поступает на микросхему, которая позволяет устанавливать различные светодиоды.

Вариант №2

Второй вариант цветомузыки на светодиодах отличается своей простотой и подойдёт для начинающих любителей. В схеме участвует усилитель и три канала для обработки частоты. Установлен трансформатор, без которого можно обойтись, если сигнала на входе достаточно для открытия светодиодов. Как и в аналогичных схемах, применяются регулировочные резисторы, обозначенные как R4 – 6. Транзисторы можно использовать любые, главное, чтобы передавали более 50% тока. По сути, больше ничего не требуется. Схему при желании можно улучшить, для получения более мощной цветомузыкальной установки.

Пошаговая сборка наипростейшей модели цветомузыки

Для сборки простой цветомузыки на светодиодах потребуются следующие материалы:

  • светодиоды размером пять миллиметров;
  • провод от старых наушников;
  • оригинал либо аналог транзистора КТ817;
  • блок питания на 12 вольт;
  • несколько проводов;
  • кусок оргстекла;
  • клеевой пистолет.

Первое с чего нужно начать, это изготовить, корпус будущей цветомузыки из оргстекла. Для этого оно разрезается по размерам и склеивается, клеевым пистолетом. Короб лучше сделать прямоугольной формы. Размеры можно корректировать под себя.

Для расчёта количества светодиодов, разделим напряжение адаптера (12В), на рабочее светодиодов (3В). Получается нам необходимо в короб, установить 4 светодиода.

Кабель от наушников зачищаем, в нём три провода, мы будем использовать один левого или правого канала, и один общего.

Один провод нам не понадобится и его можно изолировать.

Схема простой цветомузыки на светодиодах выглядит следующим образом:

Перед сборкой, кабель прокладываем внутрь короба.

светодиоды имеют полярность, соответственно при подключении, её необходимо учитывать.

В процессе сборки, нужно постараться не нагревать транзистор, т. к. это может привести к его поломке, и учитывайте маркировку на ножках. Эмиттер обозначается как (Э), база и коллектор соответственно (Б) и (К). После сборки и проверки можно установить верхнюю крышку.

Готовый вариант цветомузыки на светодиодах

В заключении хочется сказать, что собрать цветомузыку на светодиодах не так сложно, как может показаться на первых порах. Конечно, если Вам нужно устройство с красивым дизайном, то тут уже придется потратить много времени и сил. А вот для изготовления простой цветомузыки в ознакомительных или развлекательных целях достаточно собрать одну из представленных схем в статье.

простая схема цветомузыки на лампах 220в

Все знают и почти каждый собирает это устройство мерцающее и мигающее под музыку-цветомузыка.В интернете многие ищут по разным запросам схемы цветомузыки и везде они разные.Вашему вниманию я представляю схему ниже внешний вид которой вы видите на картинки.И так, схема рабочей цветомузыки на 220 Вольт на теристорах

Простая схема цветомузыки


Деталей для неё понадобится самый минимум.

Покупаем цветные лампы накаливания на 220В
Учитывая, что выходной каскад у цветомузыки выполнен на тиристорах, то он обладает большой мощностью. Если тиристоры поставить на теплоотводы, то можно нагрузить на каждый канал по 1000 ватт. Но для дома вполне хватит ламп по 60-100 ватт.

Рисунок печатной платы для светомузыки

Я не стал использовать лазерно-утюжную технологию для такого простого рисунка платы. Я просто распечатал картинку зеркально и наложил её на фольгу.


Что бы бумага не смещалась, закрепляем ее скотчем или еще чем то фиксируем и накерниваем места будущих отверстий

Сами дорожки рисуем нитрокраской


В качестве трансформатора подойдет любой трансформатор из китайского блока питания, хоть от радиотелефона, хоть еще от чего то.

И смотрим полностью спаянную плату


Патроны прикрепляем к алюминиевому уголку



В дополнение фото присланное

Конкурс начинающих радиолюбителей
“Моя радиолюбительская конструкция”

Конкурсная конструкция начинающего радиолюбителя
“Пятиканальная светодиодная цветомузыка”

Здравствуйте уважаемые друзья и гости сайта!
Представляю вашему вниманию третью конкурсную работу (второго конкурса сайта) начинающего радиолюбителя. Автор конструкции: Морозас Игорь Анатольевич :

Пятиканальная светодиодная цветомузыка

Здравствуйте радиолюбители!

Как и у многих новичков основная проблема была с чего начать, какой будет мое первое изделие. Начал с того, чтобы я хотел приобрести домой в первую очередь. Первое – это цветомузыка, второе – это высококачественный усилитель для наушников. Начал с первого. Цветомузыка на тиристорах вроде как избитый вариант, решил собрать цветомузыку для светодиодных RGB лент. Предоставляю Вам первую свою работу.

Схема цветомузыки взята из интернета. Цветомузыка простая, на 5 каналов (один канал –белый фоновый). К каждому каналу можно подключить светодиодную ленту, но для ее работы на входе необходим усилитель сигнала не высокой мощности. Автор предлагает применить усилитель с компьютерных колонок. Я пошел из сложного, собрать схему усилителя по даташиту на микросхеме ТДА2005 2х10 Вт. Этой мощности мне кажется достаточно, даже с запасом. Прилежно перечерчиваю все схемы в программе sPLAN 7.0

Рис.1 Схема цветомузыки с усилителем входного сигнала.

В схеме цветомузыки все конденсаторы электролитические, напряжением 16-25v. Где необходимо соблюдать полярность стоит знак «+», в остальных случаях изменение полярности не влияет на мигание светодиодов. По крайне мере я этого не заметил. Транзисторы КТ819 можно заменить на КТ815. Резисторы мощностью 0,25 Вт.

В схеме усилителя микросхему обязательно надо ставить на радиатор не менее 100см2. Конденсаторы электролитические напряжением 16-25v. Конденсаторы С8,С9,С12 пленочные, напряжением 63v. Резисторы R6,R7 мощностью 1 Вт, остальные 0,25Вт. Переменный резистор R0- сдвоенный, сопротивлением 10-50 ком.

Блок питания я взял заводской импульсный мощностью 100Вт, 2х12v, 7А

В выходной день как и полагается поездка на радио рынок для приобретения радиодеталей. Следующая задача нарисовать печатную плату. Для этого выбрал программу Sprint-Layout 6.0. Её советуют радиоспециалисты для начинающих. Изучается она легко, я в этом убедился.

Рис 2. Плата цветомузыки.

Рис 3. Плата усилителя мощности.

Платы изготавливал по ЛУТ технологии. Об этой технологии много информации в интернете. Мне нравиться, когда выглядит по заводскому, поэтому ЛУТ сделал и со стороны деталей тоже.


Рис 3,4 Сборка радиодеталей на плату

Рис 5. Проверяю работоспособность после сборки

Как всегда самое «сложное» при собирании радиосхемы – это укомплектовать все в корпус. Корпус я купил готовый в радиомагазине.


Лицевую панель я сделал таким образом. В программе Фотошоп нарисовал внешний вид лицевой панели где должны быть установлены переменные резисторы, выключатель и светодиоды по одному с каждого канала. Готовый рисунок распечатал струйным принтером на тонкой глянцевой фотобумаге.


На обезжиренную приготовленную панель с отверстиями наклеиваю столярным клеем фотобумагу:


После чего ложу панели под так называемый пресс. На сутки. В качестве пресса у меня блин от штанги на 15 кг:


Окончательная сборка:


Вот что получилось:

Приложения к статье:

(2.9 MiB, 2,958 hits)

Уважаемые друзья и гости сайта!

Не забывайте высказывать свое мнение по конкурсным работам и принимайте участие в голосовании за понравившуюся конструкцию на форуме сайта. Спасибо.

Некоторые предложения для тех, кто будет повторять конструкцию:
1. К такому мощному стереоусилителю можно подключить колонки, тогда получится два устройства в одном – цветомузыка и качественный усилитель низкой частоты.
2. Даже если полярность включения электролитических конденсаторов в схеме цветомузыки не влияет на ее работу, наверное лучше соблюдать полярность.
3. На входе цветомузыки, наверное лучше поставить входной узел для суммирования сигналов с левого и правого каналов (). У автора, судя по схеме, на высокочастотный канал цветомузыки (синий) подается сигнал с правого канала усилителя, а на остальные каналы цветомузыки подается сигнал с левого канала усилителя, но наверное лучше подавать сигнал на все каналы с сумматора звуковых сигналов.
4. Замена транзистора КТ819 на КТ815 подразумевает уменьшение количества возможного подключения светодиодов.

Как собрать цветомузыку. Цветомузыка на светодиодах своими руками: схемы работы

В этой статье мы поговорим о цветомузыке. Наверное, у каждого начинающего радиолюбителя и не только в свое время было желание собрать цветомузыку. Что это, я думаю, всем известно — проще говоря, это создание визуальных эффектов, которые меняются во времени под музыку.

Та часть цветомузыки, которая излучает свет, может исполняться на мощных лампах, например в концертной инсталляции, если цветомузыка нужна для домашних дискотек, то на обычных лампах накаливания 220 вольт, а если планируется цветомузыка , например, как компьютерный моддинг, для повседневного использования это можно делать на светодиодах.

В последнее время, с появлением в продаже светодиодных лент, все чаще используются цветомузыкальные консоли, в которых используются такие светодиодные ленты. В любом случае, для сборки цветных музыкальных инсталляций (сокращенно CMU) требуется источник сигнала, которым может быть микрофон с собранными несколькими каскадами усилителя.

Также сигнал можно снимать с линейного выхода устройства, звуковой карты компьютера, с выхода мп3 плеера и т. Д., В этом случае также потребуется усилитель, например, два каскада на транзисторы, для этого я использовал транзисторы КТ3102.Схема предусилителя показана на следующем рисунке:

Ниже представлена ​​схема одноканальной цветомузыки с фильтром, работающей совместно с предусилителем (вверху). В этой схеме светодиод мигает под басом (басом). Для согласования уровня сигнала в цветомузыкальной схеме предусмотрен переменный резистор R6.

Существуют и более простые цветомузыкальные схемы, которые любой новичок может собрать на 1 транзисторе, к тому же для них не нужен предусилитель, одна из этих схем представлена ​​на картинке ниже:

Цветомузыка на транзисторе

Распиновка Jack 3.5 показан на следующем рисунке:

Если по каким-либо причинам невозможно собрать предусилитель на транзисторах, можно заменить его трансформатором, включенным в качестве повышающего. Такой трансформатор должен выдавать на обмотках напряжения 220/5 Вольт. Обмотка трансформатора с меньшим количеством витков подключается к источнику звука, например, магнитоле, параллельно с динамиком, при этом усилитель должен выдавать мощность не менее 3-5 Вт. К цветомузыкальному входу подключается обмотка с большим количеством витков.

Конечно, цветомузыка не только одноканальная, она может быть 3, 5 и более многоканальной, когда каждый светодиод или лампа накаливания мигает, воспроизводя частоты своего диапазона. В этом случае частотный диапазон задается с помощью фильтров. На следующей схеме трехканальная цветомузыка (которую он сам недавно собрал), конденсаторы используются в качестве фильтров:

Если мы хотели использовать в последней схеме не отдельные светодиоды, а светодиодную ленту, то токоограничивающие резисторы R1, R2, R3 в схеме нужно убрать.Если используется лента RGB или светодиод, то это нужно делать с общим анодом. Если вы планируете подключать светодиодные ленты большой длины, то для управления лентой следует использовать мощные транзисторы, установленные на радиаторах.

Так как светодиодные ленты рассчитаны на питание 12 Вольт, соответственно следует поднять напряжение питания в цепи до 12 Вольт, причем питание должно быть стабилизировано.

Тиристоры в цветомузыке

Пока что в статье говорилось только о цветомузыкальных устройствах на светодиодах.Если возникнет необходимость собрать ЦМУ на лампах накаливания, то для регулирования яркости ламп потребуется использовать тиристоры. Что вообще такое тиристор? Это трехэлектродное полупроводниковое устройство, которое имеет соответственно анод , катод и управляющий электрод соответственно.

КУ202 Тиристор

На рисунке выше изображен советский тиристор КУ202. Тиристоры, если вы планируете использовать их с мощной нагрузкой, также необходимо установить на радиатор (радиатор).Как видно на рисунке, тиристор имеет резьбу с гайкой и крепится аналогично мощным диодам. Современные импортные просто комплектуются фланцем с отверстием.

Одна из этих тиристорных схем показана выше. Это трехканальная цветомузыкальная схема с повышающим трансформатором на входе. В случае выбора аналогов тиристоров следует ориентироваться на максимально допустимое напряжение тиристоров, в нашем случае для КУ202Н оно составляет 400 вольт.

На рисунке показана аналогичная цветомузыкальная схема, приведенная выше, основное отличие нижней схемы в отсутствии диодного моста.Также в системный блок может быть встроена светодиодная цветная музыка. Собрал вот такую ​​трехканальную цветомузыку с предусилителем в корпусе от сидирома. В данном случае сигнал снимался со звуковой карты компьютера с помощью делителя сигналов, на выходы которого были подключены активная акустика и цветомузыка. Есть регулировка уровня сигнала, как общего, так и отдельно по каналам. Предусилитель и цветомузыка питались от 12-вольтового разъема Molex (желтый и черный провода).Предварительный усилитель и трехканальные цветомузыкальные схемы, для которых они были собраны, приведены выше. Существуют и другие светодиодные цветомузыкальные схемы, например эта, тоже трехканальная:

В этой схеме, в отличие от той, которую я собрал, в среднечастотном канале используется индуктивность. Для тех, кто хочет сначала построить что-то попроще, я даю следующую схему на 2 канала:

Если вы собираете цветомузыку на лампах, вам придется использовать светофильтры, которые, в свою очередь, могут быть как самодельными, так и покупными.На картинке ниже показаны доступные фильтры:

Некоторые любители цветомузыкальных эффектов собирают устройства на базе микроконтроллеров. Ниже представлена ​​схема четырехканальной цветомузыки на MC AVR tiny 15:

.

Микроконтроллер Tiny 15 в этой схеме можно заменить крошечным 13V, крошечным 25V. И в завершение обзора от себя хочу сказать, что цветомузыка на лампах проигрывает по зрелищности цветомузыке на светодиодах, так как лампы инерционнее светодиодов.А для повторения можно порекомендовать этот

.

Конструктивно любая цветомузыкальная (светомузыкальная) инсталляция состоит из трех элементов. Блок управления, блок усиления мощности и выходное оптическое устройство.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить в виде экрана (классический вариант) или использовать направленные электрические лампы — прожекторы, фары.
То есть подходят любые средства, позволяющие создать определенный набор красочных световых эффектов.

Блок усиления мощности представляет собой транзисторный усилитель (усилители) с тиристорными регуляторами на выходе. Напряжение и мощность источников света выходного оптического устройства зависят от параметров используемых в нем элементов.

Блок управления регулирует интенсивность света и чередование цветов. В сложных специальных инсталляциях, предназначенных для декорации сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений, эта установка управляется вручную.
Соответственно, требуется участие хотя бы одного, а максимум — группы светотехников.

Если блок управления напрямую управляется музыкой, работает по любой заданной программе, то установка цветомузыки считается автоматической.
Именно такую ​​«цветомузыку» обычно собирают своими руками начинающие дизайнеры — радиолюбители на протяжении последних 50 лет.

Самая простая (и самая популярная) «цветомузыкальная» схема на тиристорах КУ202Н.


Это наиболее простая и, пожалуй, самая популярная схема цветомузыкального пульта на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценно работающую «светомузыку». Его собрал мой одноклассник с помощью моего старшего брата. Это была именно такая схема. Несомненное преимущество — простота, с достаточно четким разделением режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот постоянно мигает в ритме с перкуссией, средний — зеленый отвечает в диапазоне человеческого голоса, высокочастотный синий отвечает на все остальное еле уловимо — звон и писк .

Недостаток только один — требуется предусилитель мощностью 1-2 Вт. Моему другу пришлось включить свою «Электронику» практически «на полную», чтобы добиться достаточно стабильной работы устройства. В качестве входного трансформатора использовался понижающий трансформатор от радиоточки. Вместо этого можно использовать любой малогабаритный сетевой транзистор нисходящего потока. Например, от 220 до 12 вольт. Только нужно подключить наоборот — низковольтной обмоткой на вход усилителя. Любые резисторы, мощностью 0.5 Вт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока.

Схема рассчитана на работу от линейного аудиовыхода (яркость ламп не зависит от уровня громкости).
Давайте подробнее рассмотрим, как это работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку изолирующего трансформатора.С вторичной обмотки трансформатора сигнал поступает на активные фильтры через резисторы R1, R2, R3, которые регулируют его уровень.
Отдельная регулировка необходима для качественной работы устройства путем выравнивания уровня яркости каждого из трех каналов.

С помощью фильтров сигналы разделяются по частоте — на три канала. Первый канал — это самая низкочастотная составляющая сигнала — фильтр отсекает все частоты выше 800 Гц.Фильтр регулируется с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 на схеме указаны — 1 мкФ, но как показала практика, их емкость следует увеличить, как минимум, до 5 мкФ.

Фильтр второго канала настроен на среднюю частоту — примерно от 500 до 2000 Гц. Фильтр регулируется с помощью подстроечного резистора R15. Номиналы конденсаторов C5 и C7 на схеме указаны как 0,015 мкФ, но их емкость следует увеличить до 0.33 — 0,47 мкФ.

Все, что выше 1500 (до 5000) Гц, проходит через третий, высокочастотный канал. Фильтр настраивается подстроечным резистором R22. На схеме указаны номиналы конденсаторов С8 и С10 — 1000пФ, но их емкость следует увеличить до 0,01 мкФ.

Далее сигналы каждого канала отдельно детектируются (используются германиевые транзисторы серии d9), усиливаются и поступают на оконечный каскад.
Заключительный каскад выполняется на мощных транзисторах или тиристорах.В данном случае это тиристоры КУ202Н.

Далее идет оптическое устройство, конструкция и внешний вид которого зависит от фантазии дизайнера, а начинка (лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае это лампы накаливания 220В, 60Вт (при установке тиристоров на радиаторы — до 10 шт. На канал).

Порядок сборки схемы.

По поводу реквизитов приставки.Транзисторы
КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим усилением не менее 50. Постоянные резисторы — МЛТ-0,5, переменные и подстроечные — СП-1, СПО-0,5. Конденсаторы — любого типа.
Трансформатор T1 с соотношением 1: 1, поэтому можно использовать любой трансформатор с подходящим числом витков. В случае самостоятельного изготовления можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15, по 150-300 витков.

Диодный мост для питания тиристоров (220в) выбирается исходя из ожидаемой мощности нагрузки, не менее 2А.Если количество ламп для каждого канала увеличится, потребление тока соответственно увеличится.
Для питания транзисторов (12В) можно использовать любой стабилизированный блок питания, рассчитанный на рабочий ток не менее 250 мА (а лучше, больше).

Во-первых, каждый цветомузыкальный канал собирается отдельно на макетной плате.
Причем сборка начинается с выходного каскада. Собрав выходной каскад, проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад работает нормально, собран активный фильтр. Затем они снова проверяют работоспособность произошедшего.
В итоге после тестирования у нас действительно рабочий канал.

Аналогично необходимо собрать и перестроить все три канала. Такая кропотливость гарантирует безоговорочную работоспособность устройства после «окончательной» сборки на плате, если работа была проведена без ошибок и с использованием «проверенных» деталей.

Возможный вариант печатной разводки (для печатной платы с односторонней фольгой).Если вы используете конденсатор большего размера в канале с самой низкой частотой, расстояния между отверстиями и проводниками придется изменить. Использование печатной платы с двусторонней фольгой может быть более технологичным вариантом — это поможет избавиться от накладных проводов-перемычек.

Использование любых материалов на этой странице разрешено при наличии ссылки на сайт.

Чтобы сделать цветомузыка на светодиодах своими руками, нужно иметь хотя бы базовые представления об электронике, знать, как обращаться с паяльником и правильно разбирать чертежи.

Принцип действия

В основе такого устройства лежит метод частного преобразования звука и его передачи в определенные каналы для управления источником света. В итоге получается, что в зависимости от музыкальных параметров работа схемы будет полностью на это реагировать. Именно на этих принципах строится схема сбора.

Обычно для создания цветовых эффектов используются три или более разных цвета. Чаще используются красный, синий и зеленый.Смешивая определенные комбинации с четкой продолжительностью, они создают настоящий праздник.

Разделение частот на высокие, средние и низкие связано с RC- и LC-фильтрами, которые устанавливаются и настраиваются в систему, в которой используются светодиоды.

Фильтры настраиваются по следующим параметрам:

  • Для низкочастотных частей отводится до 300 герц, причем он чаще обычного красный;
  • Medium — 250 — 2500 Гц, зеленый;
  • Все, что выше отметки 2000 герц, преобразуется высокочастотными фильтрами, и именно этот элемент определяет, как будет работать синий светодиод.

Для получения в процессе работы разнообразия цветовых оттенков деление на частоты следует проводить с небольшим перекрытием. В рассматриваемой схеме выбор цвета не так важен, ведь при желании можно использовать различные светодиоды, переставлять их расположение и экспериментировать, здесь все зависит от пожелания мастера. Необычная цветовая программа вкупе с колебаниями может существенно повлиять на конечный результат. Для настройки также есть такие показатели, как частота или количество каналов.

Основываясь на этой информации, можно понять, что в цветовую музыку может быть вовлечено значительное количество различных оттенков, а также прямое программирование каждого из них.

Что нужно для создания цветомузыки

Для создания такой установки можно использовать только постоянные резисторы, мощность которых составляет 0,25-0,125. Чтобы узнать величину сопротивления, смотрим на полоски, расположенные на основании.

В схему также входят резисторы R3 и подрезанные R. Главное условие — возможность их установки на плате, на которой производится установка.Если говорить о конденсаторах, то при работе берутся изделия, рабочее напряжение которых не менее 16 вольт (подойдет любой тип). Если найти конденсаторы С7 проблематично, то допускается параллельное включение пары меньших емкостей, тогда вы получите нужные значения. Конденсаторы С6, а также С1, используемые в исследуемом варианте, должны начинаться с 10 вольт, а остальные — с 25. В случае, когда устаревшие советские детали необходимо заменить на импортные, нужно понимать, что они такие. все обозначено по-разному.Поэтому заранее позаботьтесь об определении полярности устанавливаемых элементов. В противном случае схема может выйти из строя.

Также для создания цветомузыки своими руками понадобится диодный мост, рабочий ток которого составляет 200 миллиампер, а напряжение — 50В. В ситуации, когда установка готового моста невозможна, его можно создать с помощью выпрямительных диодов. Для удобства их можно снять с доски и установить отдельно, используя меньшее рабочее пространство.

Для создания одного канала требуется 6 светодиодов всех цветов. Если говорить о транзисторах, то вполне подойдут VT2 и VT1, здесь индекс особой роли не играет.

Пошаговая сборка простой конструкции светодиодной цветомузыки с сопутствующим изучением радиолюбительских программ.

Доброго времени суток уважаемые радиолюбители!
Добро пожаловать на сайт «

»

Собираем светодиодную светомузыку (цветомузыка).
Часть 1.

В сегодняшнем классе в Школа для начинающего радиолюбителя мы начнем собирать LED светомузыку … На этом уроке мы не только собираем свет и музыку, но и разучиваем еще одну радиолюбительскую программу «Cadsoft Eagle» — простой, но в то же время мощный комплексный инструмент для разработки печатных плат и мы научимся делать печатные платы с использованием пленочного фоторезиста. Сегодня мы выберем схему, посмотрим, как она работает, и подберем детали.

Светомузыкальные (цветомузыкальные) устройства были очень популярны во времена Советского Союза. В основном они были трехцветными (красный, зеленый или желто-синий) и собирались чаще всего по простейшим схемам на более-менее доступных тиристорах КУ202Н (которые, если мне не изменяет память, в магазинах стоили более 2 рублей, т.е. были довольно дороги) и простейшие входные звуковые фильтры на катушках, намотанных на участки ферритовых стержней от радиоприемников. Выполнялись они в основном в двух вариантах — в виде трехцветных точечных светильников на лампах освещения 220 вольт, либо специальный корпус был выполнен в виде короба, где внутри располагалось по количеству лампочек каждого цвета, и спереди — Ящик был покрыт матовым стеклом, что позволяло получить причудливое легкое сопровождение музыки.Также для экрана использовалось обычное стекло, а поверх него были наклеены небольшие фрагменты автомобильного стекла для лучшего рассеивания света. Это было такое тяжелое детство. Но сегодня, в эпоху развития непонятного капитализма в нашей стране, есть возможность собрать светомузыкальный прибор на любой вкус, чем мы и займемся.

Возьмем за основу LED светомузыкальную схему опубликованную на сайте:

Мы добавим к этой диаграмме еще два элемента:

1.. Поскольку на входе у нас будет стереосигнал, и чтобы не терять звук с какого-то канала или не соединять два канала напрямую друг с другом, воспользуемся вот таким входным узлом (взятым из другой светомузыкальной схемы):

2. Источник питания устройства … Дополним светомузыкальную схему блоком питания, собранным на стабилизаторе микросхемы КР142ЕН8:

Вот примерно следующий набор деталей, которые мы должны собрать:

светодиода для этого устройства могут использоваться любого типа, но всегда сверхъяркие и разного цвета свечения.Я буду использовать сверхъяркие узконаправленные светодиоды, которые направляют свет на потолок. Вы, конечно, можете использовать другой вариант светового отображения звукового сигнала и использовать светодиоды другого типа:

Как работает эта схема? … Стереосигнал от источника звука поступает во входной узел, который суммирует сигналы из левого и правого каналов и подает его на переменные сопротивления R6, R7, R8, которые регулируют уровень сигнала для каждого канала. Далее сигнал поступает на три активных фильтра, собранных по идентичной схеме на транзисторах VT1-VT3, которые различаются только номиналами конденсаторов.Смысл этих фильтров в том, что они пропускают через себя только строго определенную полосу звукового сигнала, отсекая ненужный частотный диапазон звукового сигнала сверху и снизу. Верхний (по схеме) фильтр пропускает полосу 100-800 Гц, средний — 500-2000 Гц, нижний — 1500-5000 Гц. С помощью подстроечных резисторов R5, R12 и R16 можно сместить полосу пропускания в любую сторону. Если вы хотите получить другую полосу пропускания сигнала фильтра, вы можете поэкспериментировать со значениями конденсаторов, включенных в фильтры.Далее сигналы с фильтров поступают на микросхемы A1-A3 — LM3915. Что это за микросхемы.

Микросхемы

LM3914, LM3915 и LM3916 от National Semiconductors позволяют создавать светодиодные индикаторы с разными характеристиками — линейными, растянутыми линейными, логарифмическими, специальными для управления аудиосигналом. В этом случае LM3914 соответствует линейной шкале, LM3915 — логарифмической шкале, а LM3916 — специальной шкале. Используем микросхемы LM3915 — с логарифмической шкалой управления звуковым сигналом.

Начальная страница листа данных микросхемы:

(327,0 КБ, 3,977 обращений)

В общем, советую, столкнувшись с новым, неизвестным радиокомпонентом, поискать его даташит в интернете и изучить его, тем более, что есть еще даташиты с переводом на русский язык.

Например, что мы можем почерпнуть из первого листа даташита LM3915 (даже при минимальном знании английского языка, а в крайнем случае используя словарь):
— данная микросхема представляет собой аналоговый индикатор уровня сигнала с логарифмической шкалой отображения и шаг 3 дБ;
— можно подключить как светодиоды, так и ЖК-индикаторы;
— индикация может осуществляться в двух режимах: «точка» и «столбец»;
— максимальный выходной ток для каждого светодиода — 30 мА;
— и т.д…

Кстати, чем отличаются «точка» от «столбца».В режиме «точка» при включении следующего светодиода предыдущий гаснет, а в режиме «столбец» предыдущие светодиоды не гаснут. Для перехода в «точечный» режим достаточно отсоединить вывод 9 микросхемы от «+» питания или подключить к «массе». Кстати, на этих микросхемах можно собрать очень полезные и интересные схемы.

Продолжим. Поскольку на входы микросхем подается переменное напряжение, световой столб светодиодов будет иметь неравномерную яркость, т.е.е. при повышении уровня входного сигнала не только загорятся следующие светодиоды, но и изменится яркость их свечения. Ниже приведена таблица порога включения каждого светодиода для разных микросхем в вольтах и ​​децибелах:

Характеристики и распиновка транзистора КТ315:

На этом завершается первая часть урока по сборке светодиодной светомузыки и начинается сборка деталей. В следующей части урока мы изучим программу проектирования печатных плат Cadsoft Eagle и изготовим печатную плату для нашего устройства с использованием пленочного фоторезиста.

Дополнительно

  • V: Купил ленту с контактами G, R, B, 12. Как подключить?
    A: Это не та лента, можно выкинуть

    V: Прошивка загружается, но появляется ошибка «Сообщение Pragma…». Обозначается красными буквами.
    A: Это не ошибка, а информация о версии библиотеки

    V: Что мне делать, чтобы соединить ленту собственной длины?
    О: Подсчитайте количество светодиодов, перед загрузкой прошивки измените самую первую настройку NUM_LEDS в скетче (по умолчанию 120, замените на свою). Да просто заменить и все !!!

    V: Сколько светодиодов поддерживает система?
    A: Версия 1.1: максимум 450 штук, версия 2.0: 350 штук

    V: Как увеличить эту сумму?
    A: Есть два варианта: оптимизировать код, взять другую библиотеку для ленты (но придется переписывать часть). Или возьмите Arduino MEGA, у него больше памяти.

    В: Какой конденсатор поставить на ленту БП?
    A: Электролитический.Напряжение минимум 6.3 Вольт (можно больше, но сам кондер будет больше). Емкость не менее 1000 мкФ, и чем больше, тем лучше.

    V: Как проверить ленту без Ардуино? Лента горит без Ардуино?
    A: Адресная лента управляется специальным протоколом и работает ТОЛЬКО при подключении к драйверу (микроконтроллеру)

  • СБОРКА СХЕМЫ БЕЗ ПОТЕНЦИОМЕТРА! Для этого параметру ПОТЕНТ (на скетче в блоке настроек в настройках сигнала ) присвоить 0.Будет использоваться внутреннее опорное напряжение 1,1 В. Но ни при каких объемах работать не будет! Чтобы система работала правильно, вам нужно будет выбрать громкость входящего аудиосигнала так, чтобы все было красиво, используя две предыдущие настройки.

  • Версия 2.0 и выше можно использовать БЕЗ ИК-УПРАВЛЕНИЯ, режимы переключаются кнопкой, все остальное настраивается вручную перед загрузкой прошивки.

  • Как мне настроить другой пульт?
    Для других пультов дистанционного управления кнопки имеют другой код, используйте эскиз, чтобы определить код кнопки IR_test (версия 2.0-2.4) или IRtest_2.0 (для версий 2.5+), находится в архиве проекта. Скетч отправляет коды нажатых кнопок на монитор порта. Далее в основном скетче в разделе для разработчиков есть блок определений кнопок пульта ДУ, просто измените коды на свои. Калибровать пульт можно, но честно говоря уже довольно лениво.

  • Как сделать две шкалы объема на канал?
    Для этого вовсе не обязательно переписывать прошивку, достаточно разрезать длинный кусок ленты на два коротких и восстановить разорванные электрические соединения тремя проводами (GND, 5V, DO-DI).Лента будет продолжать двигаться как одно целое, но теперь у вас есть две части. Разумеется, аудиоразъем должен быть подключен тремя проводами, а режим моно (MONO 0) отключен в настройках, а количество светодиодов должно быть равно общему количеству двух сегментов.
    П.С. Посмотрите на первую диаграмму на диаграммах!

  • Как сбросить настройки, хранящиеся в памяти?
    Если поигрались с настройками и что-то пошло не так, можно сбросить настройки до «заводских».Начиная с версии 2.4 есть настройка RESET_SETTINGS , установите ее на 1, шейте, установите 0 и снова прошейте. Настройки из эскиза будут записаны в память. Если у вас 2.3, то смело обновляйтесь до 2.4, версии отличаются только новой настройкой, что никак не повлияет на работу системы. В версии 2.9 была настройка SETTINGS_LOG , которая выводит в порт значения настроек, хранящиеся в памяти. Итак, для отладки и понимания.

Схема и подключение сирены.Схема и подключение сирены Вот схемы с использованием микросхемы k155la3

Конструктивно любая цветомузыкальная (светомузыкальная) инсталляция состоит из трех элементов. Блок управления, блок усиления мощности и выходное оптическое устройство.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить в виде экрана (классический вариант) или использовать электрические лампы направленного действия — прожекторы, фары.
То есть подходят любые средства, позволяющие создать определенный набор красочных световых эффектов.

Блок усиления мощности представляет собой транзисторный усилитель (усилители) с тиристорными регуляторами на выходе. Напряжение и мощность источников света выходного оптического устройства зависят от параметров используемых в нем элементов.

Блок управления регулирует интенсивность света и чередование цветов. В сложных специальных инсталляциях, предназначенных для декорации сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений, эта установка управляется вручную.
Соответственно, требуется участие хотя бы одного, а максимум — группы светотехников.

Если блок управления напрямую управляется музыкой, работает по любой заданной программе, то установка цветомузыки считается автоматической.
Именно такую ​​«цветомузыку» обычно собирают своими руками начинающие дизайнеры — радиолюбители на протяжении последних 50 лет.

Самая простая (и самая популярная) «цветомузыкальная» схема на тиристорах КУ202Н.


Это наиболее простая и, пожалуй, самая популярная схема цветомузыкального пульта на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценно работающую «светомузыку». Его собрал мой одноклассник с помощью моего старшего брата. Это была именно такая схема. Несомненное преимущество — простота, с достаточно четким разделением режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот постоянно мигает в ритме с перкуссией, средний — зеленый отвечает в диапазоне человеческого голоса, высокочастотный синий отвечает на все остальное еле уловимо — звон и писк .

Недостаток только один — требуется предусилитель мощностью 1-2 Вт. Моему другу пришлось включить свою «Электронику» практически «на полную», чтобы добиться достаточно стабильной работы устройства. В качестве входного трансформатора использовался понижающий трансформатор от радиоточки. Вместо этого можно использовать любой малогабаритный сетевой транзистор нисходящего потока. Например, от 220 до 12 вольт. Только нужно подключить наоборот — низковольтной обмоткой на вход усилителя. Любые резисторы, мощностью 0.5 Вт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока.

Схема рассчитана на работу от линейного аудиовыхода (яркость ламп не зависит от уровня громкости).
Давайте подробнее рассмотрим, как это работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку изолирующего трансформатора.С вторичной обмотки трансформатора сигнал поступает на активные фильтры через резисторы R1, R2, R3, которые регулируют его уровень.
Отдельная регулировка необходима для качественной работы устройства путем выравнивания уровня яркости каждого из трех каналов.

С помощью фильтров сигналы разделяются по частоте — на три канала. Первый канал — это самая низкочастотная составляющая сигнала — фильтр отсекает все частоты выше 800 Гц.Фильтр регулируется с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 на схеме указаны — 1 мкФ, но как показала практика, их емкость следует увеличить, как минимум, до 5 мкФ.

Фильтр второго канала настроен на среднюю частоту — примерно от 500 до 2000 Гц. Фильтр регулируется с помощью подстроечного резистора R15. На схеме указаны номиналы конденсаторов С5 и С7 — 0,015 мкФ, но их емкость следует увеличить, до 0.33 — 0,47 мкФ.

Все, что выше 1500 (до 5000) Гц, проходит через третий, высокочастотный канал. Фильтр настраивается подстроечным резистором R22. На схеме указаны номиналы конденсаторов С8 и С10 — 1000пФ, но их емкость следует увеличить до 0,01 мкФ.

Далее сигналы каждого канала отдельно детектируются (используются германиевые транзисторы серии d9), усиливаются и поступают на оконечный каскад.
Заключительный каскад выполняется на мощных транзисторах или тиристорах.В данном случае это тиристоры КУ202Н.

Далее идет оптическое устройство, конструкция и внешний вид которого зависит от фантазии дизайнера, а начинка (лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае это лампы накаливания 220В, 60Вт (при установке тиристоров на радиаторы — до 10 шт. На канал).

Порядок сборки схемы.

По поводу реквизитов приставки.Транзисторы
КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим усилением не менее 50. Постоянные резисторы — МЛТ-0,5, переменные и подстроечные — СП-1, СПО-0,5. Конденсаторы — любого типа.
Трансформатор T1 с соотношением 1: 1, поэтому можно использовать любой трансформатор с подходящим числом витков. В случае самостоятельного изготовления можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15, по 150-300 витков.

Диодный мост для питания тиристоров (220в) выбирается исходя из ожидаемой мощности нагрузки, не менее 2А.Если количество ламп для каждого канала увеличится, потребление тока соответственно увеличится.
Для питания транзисторов (12В) можно использовать любой стабилизированный блок питания, рассчитанный на рабочий ток не менее 250 мА (а лучше, больше).

Во-первых, каждый цветомузыкальный канал собирается отдельно на макетной плате.
Причем сборка начинается с выходного каскада. Собрав выходной каскад, проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад работает нормально, собран активный фильтр. Затем они снова проверяют работоспособность произошедшего.
В итоге после тестирования у нас действительно рабочий канал.

Аналогично необходимо собрать и перестроить все три канала. Такая кропотливость гарантирует безоговорочную работоспособность устройства после «окончательной» сборки на плате, если работа была проведена без ошибок и с использованием «проверенных» деталей.

Возможный вариант печатной разводки (для печатной платы с односторонней фольгой).Если вы используете конденсатор большего размера в канале с самой низкой частотой, расстояния между отверстиями и проводниками придется изменить. Использование печатной платы с двусторонней фольгой может быть более технологичным вариантом — это поможет избавиться от накладных проводов-перемычек.

Использование любых материалов на этой странице разрешено при наличии ссылки на сайт.

Схема двухтонального звонка на микросхемах собрана на двух микросхемах и одном транзисторе.

Схема устройства

Логические элементы D1.1-D1.3, резистор R1 и конденсатор C1 образуют импульсный генератор. При включении питания конденсатор С1 начинает заряжаться через резистор R1.

По мере зарядки конденсатора напряжение на его пластине, подключенной к выводам 1, 2 логического элемента DL2, повышается. При достижении 1,2 … 1,5 В на выходе 6 элемента D1.3 появится сигнал логической «1» («4 В»), а на выходе 6 элемента D1.3 — сигнал логического «0» («0, 4 В).

После этого конденсатор С1 начинает разряжаться через резистор R1 и элемент DLL.В результате на выходе 6 элемента D1.3 будут формироваться прямоугольные импульсы напряжения. Такие же импульсы, но сдвинутые по фазе на 180 °, будут на выводе 11 элемента D1.1, который действует как инвертор.

Продолжительность заряда и разряда конденсатора C1 и, следовательно, частота переключения генератора зависит от емкости конденсатора C1 и сопротивления резистора R1. При номиналах этих элементов, указанных на схеме, частота коммутирующего генератора равна 0.7 … 0,8 Гц.

Рис. 1. Принципиальная схема двухтонального звонка на двух микросхемах К155ЛА3.

Импульсы импульсного генератора подаются на тональные генераторы. Один из них выполнен на элементах D1.4, D2.2, D2.3, другой — на элементах D2.4, D2.3. Частота первого генератора — 600 Гц (ее можно изменить, выбрав элементы C2, R2), частота второго — 1000 Гц (эту частоту можно изменить, выбрав элементы SZ, R3).

При работе импульсного генератора выход тональных генераторов (вывод 6 элемента D2.3) периодически будет появляться то сигнал одного генератора, то сигнал другого. Затем эти сигналы поступают на усилитель мощности (транзистор VI) и преобразуются головкой B1 в звук. Резистор R4 нужен для ограничения тока базы транзистора.

Настройка и детали

Подстроечный резистор R5 можно использовать для выбора желаемой громкости звука.

Постоянные резисторы — МЛТ-0,125, подстроечные — СПЗ-1Б, конденсаторы С1-СЗ — К50-6. Логические микросхемы К155ЛАЗ можно заменить на КИЗЗЛАЗ, К158ЛАЗ, транзистор КТ603В — на, КТ608 с любым буквенным индексом.Источником питания служат четыре последовательно соединенных аккумулятора Д-0,1, аккумулятор 3336Л или стабилизированный выпрямитель на 5 В.

Сирена предназначена для подачи мощного и сильного звукового сигнала для привлечения внимания людей и применяется в системах пожарной сигнализации и автоматизации, а также в сочетании с устройствами сигнализации на различных охраняемых объектах.

Генераторы на схеме отмечены желтой рамкой. Первый G1 задает частоту смены тона, а второй G2 — это сам тон, который плавно меняется на транзисторе VT1, включенном последовательно с сопротивлением R2.Для выбора необходимого звука можно использовать подстроечные резисторы того же номинала вместо сопротивлений R1, R2.

При включении напряжения питания эхолот начинает генерировать тональный акустический сигнал, высота тона меняется с высокого на низкий и наоборот. Сигнал звучит непрерывно, меняется только тон звука, который переключается с частотой 3-4 Гц.

В цепи сирены используются два мультивибратора на элементах D1.1 и D1.2 микросхемы К561LN2, регулирующей тон, и мультивибратор на D1.3 и D1.4 элементы той же микросхемы, которая генерирует тональные сигналы. Частота импульсов, генерируемая первым мультивибратором на элементах D1.3 и D1.4, зависит от элементов C2, R2 и C3, R4. Можно изменить частоту следования импульсов и, следовательно, тон звукового сигнала, как с помощью сопротивлений, так и с помощью мощности.

Предположим, что в начальный момент на выходе мультивибратора на элементах D1.1 и D1.2 присутствует уровень логической единицы. Поскольку на катоды диодов VD1 и VD2 подается плюс, диоды будут заперты.Сопротивления R4 и R5, в работе схемы не участвуют и частота на выходе мультивибратора минимальная, звучит сигнал низкого тона.

Как только на выходе этих элементов будет установлен логический ноль, диоды VD1 и VD2 откроются и соединят сопротивления R4 и R5. В результате частота на выходе мультивибратора увеличится.

Используемые в схеме транзисторы КТ815 можно заменить на КТ817, а КТ814 — на КТ816.Диоды — КД521, КД522, КД503, КД102.

Следующее устройство можно использовать в качестве будильника или звукового сигнала для горного велосипеда. Она представляет собой двухтональную сирену и состоит из тактового генератора на элементах DD1.1-DD1.3, двух тональных генераторов (первый на элементах DD2.1, DD2.2 и второй на элементах DD2.3, DD2.4), согласующий каскад с усилителем мощности на элементе DD1.4 и транзисторе VT1.

Схема состоит из двух генераторов. Первый используется для генерации тона, второй — для изменения и модуляции.

Для максимального уровня громкости необходимо, чтобы пьезоэлектрический элемент получал частоту, эквивалентную его резонансной частоте в мостовой схеме.

Основа конструкции — мощный мультивибратор 4047, работающий в нестабильном режиме. Все это управляется мощным полевым МОП-транзистором VT1, который управляется таймером NE555, путем генерации соответствующих низкочастотных прямоугольных импульсов, что приводит к срабатыванию пожарной сирены. Переключение режимов работы непрерывное или прерывистое устанавливается тумблером.

Контакты 10 и 11 микросборки 4047 обеспечивают противофазные сигналы, сигналы от которых управляют мостом на четырех полевых МОП-транзисторах. Для получения максимальной громкости, то есть для установки резонансной частоты пьезоэлемента, в конструкцию добавлено подстроечное сопротивление R6.

Схема представляет собой комбинацию музыкального синтезатора на микросхеме УМС-8-08 с мощным выходным каскадом электронной сирены. Для запуска схемы используется реле, обмотка которого гальванически изолирована от остальной схемы.


Микросхема UMS имеет стандартную схему подключения. Три кнопочных переключателя S1-S3 позволяют настроить микросхему на воспроизведение одной из мелодий. Когда вы нажимаете первую кнопку, начинается воспроизведение мелодии, а нажав третью вы можете циклически переключаться между мелодиями и выбирать нужную.


Подборка нескольких схем сирены на микроконтроллерах PIC

Схема представляет собой простую многотональную сирену на микросборке UM3561

.

В схеме используется динамик на 8 Ом и мощностью 0.5 Вт. Два переключателя используются для выбора и воспроизведения различных сигналов будильника. Каждая позиция генерирует свой звуковой эффект.

Микросхема К155ЛА3 является, по сути, базовым элементом 155-й серии интегральных схем. Внешне по конструкции он выполнен в 14-контактном DIP корпусе, на внешней стороне которого имеется маркировка и ключ, позволяющий определить начало нумерации выводов (при взгляде сверху — от точку и против часовой стрелки).

Функциональная структура микросхемы К155ЛА3 содержит 4 независимых логических элемента.Объединяет их только одно — линии питания (общий вывод — 7, вывод 14 — положительный полюс питания). Как правило, силовые контакты микросхем на принципиальных схемах не показаны.

Каждый отдельный элемент 2И-НЕ микросхемы К155ЛА3 на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. Справа от элементов есть выходы, с левой стороны входы. Аналог отечественной микросхемы К155ЛА3 — зарубежная микросхема СН7400, а вся серия К155 аналогична зарубежной СН74.

Таблица истинности микросхемы К155ЛА3

Материал: АБС + металл + акриловые линзы. Неоновые огни …

Эксперименты с микросхемой К155ЛА3

На макетной плате установить микросхему К155ЛА3 на выводы, подключить питание (вывод 7 минус, вывод 14 плюс 5 вольт). Для проведения измерений лучше использовать наборный вольтметр с сопротивлением более 10 кОм на вольт. Спросите, зачем вам нужен указатель? Потому что по движению стрелки можно определить наличие низкочастотных импульсов.

После подачи питания измерьте напряжение на всех ножках K155LA3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольта, а на выводах (1, 2, 4, 5, 9, 10, 12, 13) в область 1,4 IN.

Для изучения функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как упоминалось выше, его вход — контакты 1 и 2, а выход — 3. Сигнал логической 1 будет служить плюсом источника питания через токоограничивающий резистор 1.5 кОм, а с минуса блока питания будет взят логический 0.

Первый эксперимент (рис. 1): Подаем логический 0 на ножку 2 (подключаем к минусу блока питания), а на ножку 1 логическую единицу (плюс питание через резистор 1,5 кОм) . Замеряем напряжение на выходе 3, оно должно быть около 3,5 В (лог.1)

Вывод первый: Если на одном из входов лог.0, а на другом лог.1, то на выходе K155LA3 обязательно будет лог.1

Второй эксперимент (рис. 2): Теперь подадим лог.1 на оба входа 1 и 2 и, помимо одного из входов (пусть будет 2), подключим перемычку, другой конец из которых будет подключен к минусу питания. Подведем питание к схеме и замерим выходное напряжение.

Должен быть равен log.1. Теперь снимаем перемычку, и стрелка вольтметра покажет напряжение не более 0,4 вольта, что соответствует логарифмическому уровню.0. Установив и сняв перемычку, можно наблюдать, как «прыгает» стрелка вольтметра, указывая на изменение сигнала на выходе микросхемы К155ЛА3.

Вывод второй: Журнал сигналов. 0 на выходе элемента 2И-НЕ будет только при наличии логического уровня на обоих его входах.

Следует отметить, что неподключенные входы элемента 2И-НЕ («висящие в воздухе») приводят к появлению низкого логического уровня на входе К155ЛА3.

Третий эксперимент (рис.3): Если соединить оба входа 1 и 2, то вентиль НЕ (инвертор) получится из элемента 2И-НЕ. Применив log.0 ко входу, на выходе будет log.1 и наоборот.

Схема цветомузыки на светодиодах своими руками. Как сделать цветомузыку на диодах

Конструктивно любая цветомузыкальная (светомузыкальная) инсталляция состоит из трех элементов. Блок управления, блок усиления мощности и выходное оптическое устройство.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить в виде экрана (классический вариант) или использовать электрические лампы направленного действия — прожекторы, фары.
То есть подходят любые средства, позволяющие создать определенный набор красочных световых эффектов.

Блок усиления мощности представляет собой транзисторный усилитель (усилители) с тиристорными регуляторами на выходе. Напряжение и мощность источников света выходного оптического устройства зависят от параметров используемых в нем элементов.

Блок управления регулирует интенсивность света и чередование цветов. В сложных специальных инсталляциях, предназначенных для декорации сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений, эта установка управляется вручную.
Соответственно, требуется участие хотя бы одного, а максимум — группы светотехников.

Если блок управления напрямую управляется музыкой, работает по любой заданной программе, то установка цветомузыки считается автоматической.
Именно такую ​​«цветомузыку» обычно собирают своими руками начинающие дизайнеры — радиолюбители на протяжении последних 50 лет.

Самая простая (и самая популярная) схема «цветомузыки» на тиристорах КУ202Н.


Это наиболее простая и, пожалуй, самая популярная схема цветомузыкального пульта на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценно работающую «легкую музыку». Его собрал мой одноклассник с помощью моего старшего брата. Это была именно такая схема. Несомненное преимущество — простота, с достаточно четким разделением режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот постоянно мигает в ритме с перкуссией, средний — зеленый отвечает в диапазоне человеческого голоса, высокочастотный синий отвечает на все остальное еле уловимо — звон и писк .

Недостаток только один — требуется предусилитель мощностью 1-2 Вт. Моему другу пришлось включить свою «Электронику» практически «на полную», чтобы добиться достаточно стабильной работы устройства. В качестве входного трансформатора использовался понижающий трансформатор от радиоточки. Вместо этого можно использовать любой малогабаритный сетевой транзистор нисходящего потока. Например, от 220 до 12 вольт. Только нужно подключить наоборот — низковольтной обмоткой на вход усилителя. Любые резисторы, мощностью 0.5 Вт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока.

Схема рассчитана на работу от линейного аудиовыхода (яркость ламп не зависит от уровня громкости).
Давайте подробнее рассмотрим, как это работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку изолирующего трансформатора.С вторичной обмотки трансформатора сигнал поступает на активные фильтры через резисторы R1, R2, R3, которые регулируют его уровень.
Отдельная регулировка необходима для качественной работы устройства путем выравнивания уровня яркости каждого из трех каналов.

С помощью фильтров сигналы разделяются по частоте — на три канала. Первый канал — это самая низкочастотная составляющая сигнала — фильтр отсекает все частоты выше 800 Гц.Фильтр регулируется с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 на схеме указаны — 1 мкФ, но как показала практика, их емкость следует увеличить, как минимум, до 5 мкФ.

Фильтр второго канала настроен на среднюю частоту — примерно от 500 до 2000 Гц. Фильтр регулируется с помощью подстроечного резистора R15. Номиналы конденсаторов C5 и C7 на схеме указаны как 0,015 мкФ, но их емкость следует увеличить до 0.33 — 0,47 мкФ.

Все, что выше 1500 (до 5000) Гц, проходит через третий, высокочастотный канал. Фильтр настраивается подстроечным резистором R22. На схеме указаны номиналы конденсаторов С8 и С10 — 1000пФ, но их емкость следует увеличить до 0,01 мкФ.

Далее сигналы каждого канала отдельно детектируются (используются германиевые транзисторы серии d9), усиливаются и поступают на оконечный каскад.
Заключительный каскад выполняется на мощных транзисторах или тиристорах.В данном случае это тиристоры КУ202Н.

Далее идет оптическое устройство, конструкция и внешний вид которого зависит от фантазии конструктора, а начинка (лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае это лампы накаливания 220В, 60Вт (при установке тиристоров на радиаторы — до 10 шт. На канал).

Порядок сборки схемы.

По поводу реквизитов приставки.Транзисторы
КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим усилением не менее 50. Постоянные резисторы — МЛТ-0,5, переменные и подстроечные — СП-1, СПО-0,5. Конденсаторы — любого типа.
Трансформатор T1 с соотношением 1: 1, поэтому можно использовать любой трансформатор с подходящим числом витков. В случае самостоятельного изготовления можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15, по 150-300 витков.

Диодный мост для питания тиристоров (220в) выбирается исходя из ожидаемой мощности нагрузки, не менее 2А.Если количество ламп для каждого канала увеличится, потребление тока соответственно увеличится.
Для питания транзисторов (12В) можно использовать любой стабилизированный блок питания, рассчитанный на рабочий ток не менее 250 мА (а лучше, больше).

Во-первых, каждый цветомузыкальный канал собирается отдельно на макетной плате.
Причем сборка начинается с выходного каскада. Собрав выходной каскад, проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад работает нормально, собран активный фильтр. Затем они снова проверяют работоспособность произошедшего.
В итоге после тестирования у нас действительно рабочий канал.

Аналогично необходимо собрать и перестроить все три канала. Такая кропотливость гарантирует безоговорочную работоспособность устройства после «окончательной» сборки на плате, если работа была проведена без ошибок и с использованием «проверенных» деталей.

Возможный вариант печатной разводки (для печатной платы с односторонней фольгой).Если вы используете конденсатор большего размера в канале с самой низкой частотой, расстояния между отверстиями и проводниками придется изменить. Использование печатной платы с двусторонней фольгой может быть более технологичным вариантом — это поможет избавиться от накладных проводов-перемычек.

Использование любых материалов на этой странице разрешено при наличии ссылки на сайт.

Почти все цветомузыкальные устройства достаточной мощности предназначены для использования обычных ламп накаливания.В Интернете есть схемы CMU и на светодиодах, но обычно они находятся под светодиодами малой мощности. Как подключить к такому устройству светодиоды мощностью 50-100 ватт? Можно взять за основу одну очень удачную цветомузыкальную схему (к тому же с управлением звуком через микрофон) и немного изменить выходную часть — для получения желаемого результата.

Схема ЦМУ для мощных светодиодов


Принципиальная схема ЦМУ на 220В
Принципиальная схема ЦМУ на 12В

Питание входной части частотной обработки выполнено на куске универсальной платы.Трансформатор снят с какого-то радио. Он идеален, потому что он симметричен и имеет обмотки 10 В. Тиристоры ВТ151 / 600 использовались как мощные переключатели, с запасом, чтобы они не перегорели от больших токов.

Схема может быть сделана полностью изолированной от сети, если использовать исполнительную часть на симисторах и оптопарах.

При тестировании вместо светодиодов временно установить резисторы номинальным сопротивлением и мощностью от 10 Вт.

ЦМУ со светодиодной лентой 12 В

Если вы хотите использовать светодиодные ленты 12 В постоянного тока в ЦБ, то вы можете запитать всю схему теми же 12 В от импульсного сетевого драйвера и собрать выходную часть, используя полевые транзисторы.

Вариант схемы показан выше. Здесь резистор R2 устанавливает ограничение тока светодиодной ленты (или мощного одиночного светодиода).

Кстати, при установке отдельных мощных светодиодов, например, на 100 Вт (32 В при 3 А) — подайте напряжение питания с драйвера через светодиод на сток полевого транзистора (убедившись, что согласно паспорту, что он может выдерживать такие параметры U / I), и указанным установите требуемый уровень тока над резистором.

Корпус сделан из дерева (легче найти материал и легче обращаться). Отверстия для светильников просверливаются крупными фрезами. Естественно, на передней панели есть все необходимые ручки для регулировки уровней сигналов и каналов HF-MF-LF и кнопка включения.

Представляем вашему вниманию простой вариант цветомузыкальной инсталляции, собранный в необычном футляре. Недавно в руки попали отходы металлических профилей 20х80 — их использовали.В проекте он собран на светодиодах разного цвета 10Вт (зеленый, синий и красный).

Светодиодная цветная музыкальная схема


Цветомузыкальная схема LED 3 канала по 10 Вт

Сейчас стробоскоп выполнен на таймере NE555. Что касается проблемы ограничения тока светодиода, мы используем простейшее решение, ограничивая ток через выбранные резисторы. Резисторы прикручены к профилю для отвода тепла и совершенно не перегреваются, работают при температуре не выше 60С.Ток для каждого светодиода был ограничен до 800 мА.

Схема светодиодного стробоскопа на таймере NE555

Конструкция устройства

Трансформатор тороидальный 14В 50ВА. Строб на NE555 вместе с МОП-транзистором IRF540 управляет двумя холодными белыми диодами мощностью 10 Вт через резисторы 5 Вт и 1,5 Ом.


Корпус КМУ из алюминия

Все светодиоды закреплены на алюминиевых полосах, которые монтируются в общий алюминиевый профиль. После 3 часов испытаний конструкция остается холодной.


Светодиодный блок управления со стробоскопом в корпусе

Органы управления навесным оборудованием

В корпусе установлены потенциометры регулировки уровня, микрофонный вход, выключатель питания, предохранитель, сетевую розетку 220 В и переключатель режимов работы (стробоскоп-КМУ).Длина всего тела 700 мм. Эффект очень красивый и мощный. Без проблем можно осветить зал даже 200 квадратных метров.

Чтобы сделать цветомузыка на светодиодах своими руками, нужно иметь хотя бы базовые представления об электронике, знать, как обращаться с паяльником и правильно разбирать чертежи.

Принцип действия

В основе такого устройства лежит метод частной трансформации звука и его передачи в определенные каналы для управления источником света.В итоге получается, что в зависимости от музыкальных параметров работа схемы будет полностью на это реагировать. Именно на этих принципах строится схема сбора.

Обычно для создания цветовых эффектов используются три или более разных цвета. Чаще используются красный, синий и зеленый. Смешивая определенные комбинации с четкой продолжительностью, они создают настоящий праздник.

Разделение частот на высокие, средние и низкие связано с RC- и LC-фильтрами, которые устанавливаются и настраиваются в систему, в которой используются светодиоды.

Фильтры настраиваются по следующим параметрам:

  • Для низкочастотных частей отводится до 300 герц, причем он чаще обычного красный;
  • Medium — 250 — 2500 Гц, зеленый;
  • Все, что выше отметки 2000 герц, преобразуется высокочастотными фильтрами, и именно этот элемент определяет, как будет работать синий светодиод.

Для получения в процессе работы разнообразия цветовых оттенков деление на частоты следует проводить с небольшим перекрытием.В рассматриваемой схеме выбор цвета не так важен, ведь при желании можно использовать различные светодиоды, переставлять их расположение и экспериментировать, здесь все зависит от пожелания мастера. Необычная цветовая программа вкупе с колебаниями может существенно повлиять на конечный результат. Для настройки также есть такие показатели, как частота или количество каналов.

Основываясь на этой информации, можно понять, что в цветовую музыку может быть вовлечено значительное количество различных оттенков, а также прямое программирование каждого из них.

Что нужно для создания цветомузыки

Для создания такой установки можно использовать только постоянные резисторы, мощность которых составляет 0,25-0,125. Чтобы узнать величину сопротивления, смотрим на полоски, расположенные на основании.

В схему также входят резисторы R3 и подрезанные R. Главное условие — возможность их установки на плате, на которой производится установка. Если говорить о конденсаторах, то при работе изделия берут с рабочим напряжением не менее 16 вольт (подойдет любой тип).Если найти конденсаторы С7 проблематично, то допускается параллельное включение пары меньших емкостей, тогда вы получите нужные значения. Конденсаторы С6, а также С1, используемые в исследуемом варианте, должны начинаться с 10 вольт, а остальные — с 25. В случае, когда устаревшие советские детали необходимо заменить на импортные, нужно понимать, что они такие. все обозначено по-разному. Поэтому заранее позаботьтесь об определении полярности устанавливаемых элементов.В противном случае схема может выйти из строя.

Также для создания цветомузыки своими руками понадобится диодный мост, рабочий ток которого составляет 200 миллиампер, а напряжение — 50В. В ситуации, когда установка готового моста невозможна, его можно создать с помощью выпрямительных диодов. Для удобства их можно снять с платы и установить отдельно, используя меньшее рабочее пространство.

Для создания одного канала требуется 6 светодиодов всех цветов.Если говорить о транзисторах, то вполне подойдут VT2 и VT1, здесь индекс особой роли не играет.

Цветомузыкальные на RGB-светодиодах

Пик популярности цветомузыкальных инсталляций приходится на 80-е годы прошлого века. Теперь о них как-то почти забыли. И все же время не стоит на месте, и появляются новые технологии, способные возродить «цветомузыку» в новом виде. Например, трехцветные светодиодные ленты или гирлянды RGB, они могут быть значительной длины и даже работать как осветительный прибор.Только они обычно управляются по программе, как елочные гирлянды или реклама, ну а можно с их помощью менять цвет освещения в комнате. А если все это привязано к музыке? Представьте себе экран CMU размером с потолок! Но для этого нужно соответствующее устройство управления.

На рисунке показана экспериментальная схема CMU, работающая со светодиодной лентой или гирляндой RGB. Все как у «типового» ЦМУ — три частотных канала, три выходных ключа, к которым соответственно подключены три цвета RGB-светодиодной ленты (или гирлянды).
Схема полосового фильтра построена на микросхемах LM567.

LM567 — это декодер тонов с ФАПЧ, разработанный для систем управления с частотным кодированием и активный фильтр с очень узкой полосой захвата ФАПЧ. В этом случае, чтобы охватить весь звуковой диапазон от 50 Гц до 12000 Гц на три полосы, необходимо расширить полосы захвата микросхем ФАПЧ. Полоса пропускания системы ФАПЧ LM567 зависит от конденсатора на выводе 2, чем больше его емкость, тем уже полоса пропускания.Обычно их несколько микрофарад, но здесь емкости этих конденсаторов уменьшены до 0,047 мкФ, в результате полоса захвата сильно расширилась, и стала достаточной для использования микросхем LM567 в качестве фильтров в цветомузыкальной установке.

Диапазон входного напряжения AF на входе микросхемы LM567 составляет 20-200 мВ, на частоте, соответствующей полосе настройки фильтра, происходит захват. Если частота входного сигнала находится в пределах диапазона на выходе LM567 IC, открывается ключ между контактом 8 и общим минусом источника питания.

Входной сигнал поступает на разъем Х1, номинальное значение входного напряжения АФ должно быть в районе 100-300 мВ. Это напряжение подается на три регулятора с переменными резисторами R1, R6, R11. В процессе работы устройства эти переменные резисторы устанавливают оптимальные уровни сигналов ЗЧ по частотным каналам специально для каждого случая воспроизведения, чтобы получить желаемый эффект.

Средние значения диапазонов устанавливаются RC-цепями, подключенными между контактами 5 и 6 LM567.Вы можете рассчитать их по формуле:

F = 1 / (1,1 * R * C)


F — частота в кГц, R — сопротивление в кОм, C — емкость в мкФ.

Соответственно, центральные частоты выбраны равными 150 Гц, 900 Гц и 9000 Гц. При желании, используя приведенную выше формулу, вы можете выбрать другие центральные частоты полос. В этом случае вы можете выбрать не только конденсаторы, но и резисторы (подключенные между контактами 5 и 6 микросхемы LM567).

Рассмотрим работу на примере низкочастотного канала на А1.Пока нет сигнала с частотой в полосе фильтра или его уровень небольшой, на выходе 8 A1 будет напряжение логической единицы (выходной переключатель замкнут, выход подтянут до положительный источник питания через резистор R2). На элементах D1.1-D1.2 выполняется триггер Шмитта, его выход является выходом элемента D1.1, поэтому, когда выход A1 равен единице, выход D1.1 имеет логический ноль. Ключ на силовом полевом транзисторе VT1 закрыт, и питание на R-часть светодиодной ленты RGB не подается.
Если на входе А1 присутствует напряжение НЧ с частотой в полосе фильтра, и его уровень достаточен для захвата, то на выходе на выводе 8 А1 будет напряжение логического нуля (выходной переключатель разомкнут). На выходе D1.1 в данном случае — логическая единица. Транзистор VT1 открывается и включает питание R-части светодиодной ленты RGB.

Остальные два канала работают аналогично, среднечастотный на A2 и высокочастотный на A3, разница только в частоте входного напряжения AF.

В принципе, затворы полевых транзисторов можно напрямую подключать к выходам LM567, но, во-первых, схема будет работать наоборот, то есть при отсутствии сигнала светодиодная лента будет быть включенным, и когда есть, он погаснет. А во-вторых, транзисторы будут перегреваться, потому что процесс их открытия будет задерживаться во времени, и значительное время они будут находиться в среднем состоянии при значительном падении напряжения и мощности на канале.Триггер Шмитта устраняет эти проблемы.
Монтаж производится на макетной плате.

LED цветная музыкальная консоль. Как сделать цветомузыку на светодиодах. Что нужно для создания цветомузыки

Чтобы сделать цветомузыка на светодиодах своими руками, нужно иметь хотя бы базовые представления об электронике, знать, как обращаться с паяльником и правильно разбирать чертежи.

Принцип действия

В основе такого устройства лежит метод частной трансформации звука и его передачи в определенные каналы для управления источником света.В итоге получается, что в зависимости от музыкальных параметров работа схемы будет полностью на это реагировать. Именно на этих принципах строится схема сбора.

Обычно для создания цветовых эффектов используются три или более разных цвета. Чаще используются красный, синий и зеленый цвета. Смешивая определенные комбинации с четкой продолжительностью, они создают настоящий праздник.

Разделение частот на высокие, средние и низкие происходит благодаря RC- и LC-фильтрам, которые монтируются и настраиваются в систему, в которой используются светодиоды.

Фильтры настраиваются по следующим параметрам:

  • Для низкочастотных частей отводится до 300 герц, причем он чаще обычного красный;
  • Medium — 250 — 2500 Гц, зеленый;
  • Все, что выше отметки 2000 герц, преобразуется высокочастотными фильтрами, и именно этот элемент определяет, как будет работать синий светодиод.

Для получения в процессе работы разнообразия цветовых оттенков деление на частоты следует проводить с небольшим перекрытием.В рассматриваемой схеме выбор цвета не так важен, ведь при желании можно использовать различные светодиоды, переставлять их расположение и экспериментировать, здесь все зависит от пожелания мастера. Необычная цветовая программа вкупе с колебаниями может существенно повлиять на конечный результат. Для настройки также есть такие показатели, как частота или количество каналов.

Основываясь на этой информации, можно понять, что в цветовую музыку может быть вовлечено значительное количество различных оттенков, а также прямое программирование каждого из них.

Что нужно для создания цветомузыки

Для создания такой установки можно использовать только постоянные резисторы, мощность которых составляет 0,25-0,125. Чтобы узнать величину сопротивления, смотрим на полоски, расположенные на основании.

В схему также входят резисторы R3 и подрезанные R. Главное условие — возможность их установки на плате, на которой производится установка. Если говорить о конденсаторах, то при работе берутся изделия, рабочее напряжение которых не менее 16 вольт (подойдет любой тип).Если найти конденсаторы С7 проблематично, то допускается параллельное соединение пар меньшей емкости, тогда вы получите требуемые значения. Конденсаторы С6, а также С1, используемые в исследуемом варианте, должны начинаться с 10 вольт, а остальные — с 25. В случае, когда устаревшие советские детали необходимо заменить на импортные, нужно понимать, что они такие. все обозначено по-разному. Поэтому заранее позаботьтесь об определении полярности устанавливаемых элементов. В противном случае схема может выйти из строя.

Также для создания цветомузыки своими руками понадобится диодный мост, рабочий ток которого составляет 200 миллиампер, а напряжение — 50В. В ситуации, когда установка готового моста невозможна, его можно создать с помощью выпрямительных диодов. Для удобства их можно снять с платы и установить отдельно, используя меньшее рабочее пространство.

Для создания одного канала требуется 6 светодиодов всех цветов. Если говорить о транзисторах, то вполне подойдут VT2 и VT1, здесь индекс особой роли не играет.

Практически у каждого начинающего радиолюбителя и не только возникло желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздники. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах , которую сможет собрать даже начинающий радиолюбитель.

1. Принцип работы цветомузыкальных приставок.

Работа цветомузыкальных приставок ( CMP , CMU или SDU ) основана на частотном разделении спектра аудиосигнала с последующей его передачей по отдельным каналам low , mid и high частот, где каждый из каналов управляет собственным источником света, яркость которого определяется колебаниями звукового сигнала.Конечным результатом работы приставки является получение цветовой схемы, соответствующей воспроизводимой музыке.

Для получения полной цветовой гаммы и максимального количества цветовых оттенков в цветомузыкальных консолях используются не менее трех цветов:

Разделение частотного спектра звукового сигнала происходит с использованием LC- и RC-фильтров , где каждый фильтр настроен на свою относительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:

1 . Фильтр низких частот (LPF) передает колебания с частотой до 300 Гц, а цвет его источника света выбран красным;
2 . Среднечастотный фильтр (FSF) передает 250 — 2500 Гц, а цвет его источника света выбирается зеленым или желтым;
3 . Фильтр высоких частот (HPF) передает с частотой 2500 Гц и выше, а цвет его источника света выбран синим.

Нет принципиальных правил выбора полосы пропускания или цвета свечения ламп, поэтому каждый радиолюбитель может применять цвета исходя из характеристик своего восприятия цвета, а также изменять количество каналов и полосу пропускания по своему усмотрению. .

2. Принципиальная схема цветомузыкальной приставки.

На рисунке ниже показана схема простой четырехканальной цветомузыкальной консоли, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, который подает питание на приставку от сети переменного тока.

Сигнал звуковой частоты подается на контакты ПК , ОК и Общий разъем Х1 , а через резисторы R1 и R2 попадает на переменный резистор R3 , который является регулятором входного уровня.От среднего вывода переменного резистора R3 гудок через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2 … Применение усилителя дала возможность использовать приставку практически с любым источником аудиосигнала.

С выхода усилителя аудиосигнал поступает на верхние выводы подстроечных резисторов R7 , R10 , R14 , R18 , которые являются нагрузкой усилителя и выполняют функцию регулировки (настраивая) входной сигнал отдельно для каждого канала, а также выставляем желаемую яркость светодиодов каналов.С средних выводов подстроечных резисторов аудиосигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаковыми и отличаются только RC-фильтрами.

На канал выше R7 .
Канальный полосовой фильтр, образованный конденсатором C2 и пропускающий только высокочастотный спектр звукового сигнала. Низкие и средние частоты не проходят через фильтр, так как сопротивление конденсатора для этих частот велико.

Проходя через конденсатор, высокочастотный сигнал обнаруживается диодом VD1 и подается на базу транзистора VT3 … Отрицательное напряжение, возникающее на базе транзистора, открывает его, и группа синих светодиодов HL1 HL6 , включенные в его коллекторную цепь, воспламеняются. И чем больше амплитуда входного сигнала, чем больше открывается транзистор, тем ярче загораются светодиоды. Для ограничения максимального тока через светодиоды последовательно с ними подключены резисторы R8 и R9 … Если эти резисторы отсутствуют, светодиоды могут быть повреждены.

На канал сигнал средней частоты подается от среднего вывода резистора R10 .
Канальный полосовой фильтр образован контуром С3R11С4 , который для низких и высоких частот имеет значительное сопротивление, поэтому на базе транзистора VT4 принимаются только среднечастотные колебания. Светодиоды включены в коллекторную цепь транзистора HL7 HL12 зеленого цвета.

На канал сигнал низкой частоты подается от среднего вывода резистора R18 .
Канальный фильтр образован контуром С6R19С7 , который ослабляет сигналы средних и высоких частот и поэтому на базу транзистора VT6 принимаются только низкочастотные колебания. Канал загружается светодиодами HL19 HL24 Red.

Для различных цветов добавлен канал цветомузыкального префикса желтый цвета.Канальный фильтр образован контуром R15C5 и работает в частотном диапазоне, близком к низким частотам. Входной сигнал на фильтр поступает с резистора R14 .

Питается от цветомузыкальной приставки постоянного напряжения … Блок питания приставки состоит из трансформатора Т1 , диодного моста на диодах VD5 VD8 , микросхемы регулятора напряжения типа DA1 КРЕН5, резистор R22 и два оксидных конденсатора C8 и C9 .

Переменное напряжение

, выпрямленное диодным мостом, сглаживается оксидным конденсатором С8 и поступает на стабилизатор напряжения КРЕН5. Из заключения 3 микросхемы на схему приставки подается стабилизированное напряжение 9В.

Для получения выходного напряжения 9В между минусовой шиной источника питания и выводом 2 В микросхему включен резистор R22 … Изменяя величину сопротивления этого резистора, добиваются нужного выходного напряжения на выходе 3 микросхемы.

3. Детали.

В приставке можно использовать любые постоянные резисторы мощностью 0,25 — 0,125 Вт. На рисунке ниже показаны номиналы резисторов, в которых используются цветные полосы для обозначения значения сопротивления:

Переменный резистор R3 и подстроечные резисторы R7, R10, R14, R18 любого типа, если только они подходят по размеру печатной платы. В авторском варианте конструкции использован отечественный переменный резистор типа СП3-4ВМ, подстроечные резисторы импортного производства.

Конденсаторы постоянной емкости могут быть любого типа и рассчитаны на рабочее напряжение не менее 16 В. Если у вас возникли трудности с приобретением конденсатора C7 емкостью 0,3 мкФ, его можно составить из двух конденсаторов емкостью 0,22 мкФ и 0,1 мкФ, соединенных параллельно.

Оксидные конденсаторы C1 и C6 должны иметь рабочее напряжение не менее 10 В, конденсатор C9 — не менее 16 В, а конденсатор C8 — не менее 25 В.

Оксидные конденсаторы С1, С6, С8 и С9 имеют полярность , поэтому при установке на макетной или печатной плате это необходимо учитывать: для конденсаторов советского производства на корпусе указывается положительный вывод, для современных отечественные и импортные конденсаторы, указывается минусовой вывод.

Диоды VD1 — VD4 любые из серии D9. На корпус диода со стороны анода нанесена цветная полоса, определяющая букву диода.

В качестве выпрямителя, собранного на диодах VD5 — VD8, используется готовый миниатюрный диодный мост, рассчитанный на напряжение 50В и ток не менее 200 мА.

Если вместо готового моста используются выпрямительные диоды, придется немного подправить печатную плату, либо диодный мост нужно вынуть из основной платы приставки и собрать на отдельной небольшая доска.

Для самостоятельной сборки моста диоды взяты с такими же параметрами, что и у заводского моста. Также подойдут любые выпрямительные диоды из серий КД105, КД106, КД208, КД209, КД221, Д229, КД204, КД205, 1N4001 — 1N4007. Если использовать диоды из серии КД209 или 1N4001 — 1N4007, то мост можно собрать прямо со стороны печатной разводки прямо на контактных площадках платы.

Светодиоды

бывают стандартными с желтым, красным, синим и зеленым светом.На каждом канале используется 6 штук:

Транзисторы VT1 и VT2 из серии КТ361 с любым буквенным индексом.

Транзисторы VT3, VT4, VT5, VT6 из серии КТ502 с любым буквенным индексом.

Стабилизатор напряжения типа КРЕН5А с любым буквенным индексом (импортный аналог 7805). Если использовать девятивольтовый КРЕН8А или КРЕН8Г (импортный аналог 7809), то резистор R22 не устанавливается. Вместо резистора на плате устанавливается перемычка, соединяющая средний вывод микросхемы с отрицательной шиной, либо этот резистор вообще не предусмотрен при изготовлении платы.

Для подключения приставки к источнику звукового сигнала используется разъем jack-типа на три контакта. Кабель взят от компьютерной мыши.

Трансформатор силовой — готовый или самодельный мощностью не менее 5 Вт с напряжением на вторичной обмотке 12-15 В при токе нагрузки 200 мА.

Помимо статьи посмотрите первую часть видео, где показан начальный этап сборки цветомузыкальной приставки.

На этом первая часть завершена.
Если вас соблазняет сделать цветомузыку на светодиодах , то выберите детали и обязательно проверьте исправность диодов и транзисторов, например,. А в производстве финальная сборка и настройка цветомузыкальной приставки.
Удачи!

Литература:
1. Андрианов И. «Приставки для радиоприемников».
2. Радио 1990 №8, Сергеев Б. Простые цветомузыкальные приставки.
3. Руководство по эксплуатации радиоконструктора «Старт».

Мы все время от времени хотим отдыхать. Иногда хочется грустить или испытать другие эмоции. Самый простой и эффективный способ добиться желаемого результата — послушать музыку. Но одной музыки часто бывает недостаточно — нужна визуализация звукового потока, спецэффекты. Другими словами, нам нужна цветная музыка (или светомузыка, как ее иногда называют). Но где взять, если такое оборудование в специализированных магазинах стоит недешево? Конечно, сделай сам.Все, что для этого понадобится — компьютер (или отдельный блок питания), несколько метров светодиодной ленты RGB с потребляемой мощностью 12В, плата прототипа USB (AVR-USB-MEGA16, пожалуй, самый дешевый и простой вариант), а также принципиальная схема что и где подключать.

Немного о ленте

Перед тем, как перейти к самой работе, необходимо определиться, что именно это за светодиодная лента на 12В. И это простое, но в то же время очень гениальное изобретение.

Светодиоды

известны не один десяток лет, но благодаря инновационным разработкам они стали поистине универсальным решением многих проблем в области электроники. Их теперь используют повсеместно — как индикаторы в бытовой технике, самостоятельно в виде энергосберегающих ламп, в космической отрасли, а также в области спецэффектов. К последнему относится цветомузыка. Когда три типа светодиодов — красный, зеленый и синий объединяются на одной полосе, в результате получается светодиодная лента RGB.Современные светодиоды RGB имеют миниатюрный контроллер. Это позволяет им излучать все три цвета.

Особенностью этой ленты является то, что все диоды сгруппированы и соединены в общую цепочку. управляется общим контроллером (это также может быть компьютер, если он подключен по USB, либо специальный блок питания с панелью управления для автономных модификаций). Все это позволяет создать практически бесконечную ленту с минимумом проводов. Его толщина может достигать буквально нескольких миллиметров (если не брать во внимание варианты с резиновой или силиконовой защитой от физических повреждений, влаги и температуры).До изобретения этого типа микроконтроллера простейшая модель имела не менее трех проводов. И чем выше функционал таких гирлянд, тем больше было проводов. В западной культуре фраза «распутать гирлянду» давно стала нарицательным для всех длинных, утомительных и крайне запутанных дел. И теперь это перестало быть проблемой (еще и потому, что светодиодная лента предусмотрительно наматывается на специальный небольшой барабан).

Что нам нужно?

Цветомузыка своими руками из ленты GE60RGB2811C

Идеально для организации цветомузыки своими руками готовая светодиодная лента с питанием от USB-порта компьютера.Все, что нам нужно, это загрузить необходимое приложение для того же компьютера, настроить ассоциации файлов с желаемым аудиоплеером и наслаждаться результатом. Но это если нам очень повезет, и если у нас будут деньги, чтобы все это купить. В остальном все выглядит немного сложнее.

В продаже есть магазины электронных компонентов различной длины и вместимости. светодиодная лента, а нам нужно только 12в. Оптимальный вариант для подключения к компьютеру по USB. Так, например, вы можете найти модель GE60RGB2811C, которая представляет собой подключенные светодиоды RGB серии 300… Одно из преимуществ любой такой ленты в том, что ее можно разрезать как угодно — любой длины. Все, что нужно после этого, — это соединить контакты, чтобы электрическая цепь не была разомкнутой, а цепь была цельной (это необходимо сделать).

Схема настройки цветомузыки

Еще нам может понадобиться макет для подключения по USB … Самым популярным, дешевым, но функциональным вариантом подключения является модель AVR-USB-MEGA16 для USB 1.1. Эта версия USB считается несколько устаревшей, поскольку передает сигнал на светодиоды со скоростью 8 миллисекунд, что слишком медленно для современных технологий, но поскольку человеческий глаз воспринимает эту скорость как «мгновение ока», то это вполне подходит для нас.

Если опустить большинство самых сложных технических тонкостей и нюансов, то все, что от нас требует схема такого подключения, — это взять ленту необходимой длины, освободить и зачистить контакты с одной стороны, соединить и припаять их к вывод на макетную плату (на самой плате обозначены символы, какой разъем нужен и для чего) и собственно все. Для полной длины ленты 12 В может не хватить мощности, поэтому вы можете запитать их от старого компьютерного блока питания (для этого потребуется параллельное соединение) или просто разрезать ленту.Звук с этой опцией будет воспроизводиться через динамики компьютера. Тем, кто особенно разбирается в электронике, мы можем порекомендовать подключить микрофонный усилитель и небольшой «динамик-зуммер» непосредственно к AVR-USB-MEGA16.

Схема крепления ленточных контактов к USB кабелю от смартфона

Если достать данную плату не удалось, то в самом крайнем случае подключение можно произвести через LED RGB лента 12v USB кабель от смартфона или планшета (Схема настройки цветомузыки своими руками это позволяет ).Важно только убедиться, что шнур будет давать необходимые 5 Вт мощности. По окончании всех этих манипуляций, устанавливаем программу SLP (или записываем все шаги в txt файл, если знания в программировании позволяют и схема и алгоритм всех действий понятны), выбираем желаемый режим (по количеству диодов) , и наслаждайтесь работой, сделанной своими руками.

Выход

Цветная музыка не обязательна, но она делает нашу жизнь намного интереснее, и не только потому, что теперь мы можем смотреть на мигающие цветные огни, которые загораются и гаснут в такт нашей любимой мелодии.Нет, мы говорим о другом. Сделав что-то подобное своими руками, а не купив в магазине, каждый ощутит прилив сил от присущего каждому мастеру и творцу удовлетворения и осознания того, что он тоже чего-то стоит. Но по сути цветомузыка установлена, моргает и радует глаз минимальными затратами и максимумом удовольствия — а что еще нужно? ..


Освещение на кухне малогабаритной квартиры
Подбираем лампы для зеркал, возможные варианты
Самолетная люстра для детской комнаты

Конструктивно любая цветомузыкальная (светомузыкальная) инсталляция состоит из трех элементов.Блок управления, блок усиления мощности и выходное оптическое устройство.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить в виде экрана (классический вариант) или использовать направленные электрические лампы — прожекторы, фары.
То есть подходят любые средства, позволяющие создать определенный набор красочных световых эффектов.

Блок усиления мощности представляет собой транзисторный усилитель (усилители) с тиристорными регуляторами на выходе. Напряжение и мощность источников света выходного оптического устройства зависят от параметров используемых в нем элементов.

Блок управления регулирует интенсивность света и чередование цветов. В сложных специальных инсталляциях, предназначенных для декорации сцены во время различных видов шоу — цирковых, театральных и эстрадных представлений, эта установка управляется вручную.
Соответственно, требуется участие хотя бы одного, а максимум — группа операторов освещения.

Если блок управления напрямую управляется музыкой, работает по любой заданной программе, то установка цветомузыки считается автоматической.
Именно такую ​​«цветомузыку» обычно собирают своими руками начинающие дизайнеры — радиолюбители на протяжении последних 50 лет.

Самая простая (и самая популярная) «цветомузыкальная» схема на тиристорах КУ202Н.


Это наиболее простая и, пожалуй, самая популярная схема цветомузыкального пульта на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценно работающую «светомузыку». Его собрал мой одноклассник с помощью моего старшего брата.Это была именно такая схема. Несомненное преимущество — простота, с достаточно четким разделением режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот постоянно мигает в ритме с перкуссией, средний — зеленый отвечает в диапазоне человеческого голоса, высокочастотный синий отвечает на все остальное еле уловимо — звон и писк .

Есть только один недостаток — необходима мощность предусилителя на 1-2 Вт.Моему другу пришлось включить свою «Электронику» почти «на полную», чтобы добиться достаточно стабильной работы устройства … В качестве входного трансформатора использовался понижающий трансформатор от радиоточки. Вместо этого можно использовать любой малогабаритный сетевой транзистор нисходящего потока. Например, от 220 до 12 вольт. Только нужно подключить наоборот — низковольтной обмоткой на вход усилителя. Любые резисторы, мощностью 0,5 Вт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема «цветомузыка» на тиристорах КУ202Н, с активными фильтрами частоты и усилителем тока.

Схема рассчитана на работу от линейного аудиовыхода (яркость ламп не зависит от уровня громкости).
Давайте подробнее рассмотрим, как это работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку изолирующего трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры через резисторы R1, R2, R3, которые регулируют его уровень.
Отдельная регулировка необходима для качественной настройки устройства путем выравнивания уровня яркости каждого из трех каналов.

С помощью фильтров сигналы разделяются по частоте — на три канала. Первый канал — это самая низкочастотная составляющая сигнала — фильтр отсекает все частоты выше 800 Гц. Фильтр регулируется с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 на схеме указаны — 1 мкФ, но как показала практика, их емкость следует увеличить, как минимум, до 5 мкФ.

Фильтр второго канала настроен на среднюю частоту — примерно от 500 до 2000 Гц. Фильтр регулируется с помощью подстроечного резистора R15. Номиналы конденсаторов C5 и C7 на схеме указаны как 0,015 мкФ, но их емкость следует увеличить до 0,33 — 0,47 мкФ.

Все, что выше 1500 (до 5000) Гц, проходит через третий, высокочастотный канал. Фильтр настраивается подстроечным резистором R22. Номиналы конденсаторов С8 и С10 на схеме указаны — 1000пФ, но их емкость следует увеличить до 0.01 мкФ.

Далее сигналы каждого канала детектируются отдельно (используются германиевые транзисторы серии d9), усиливаются и поступают на оконечный каскад.
Заключительный каскад выполнен на мощных транзисторах, либо на тиристорах. В данном случае это тиристоры КУ202Н.

Далее идет оптическое устройство, конструкция и внешний вид которого зависит от фантазии конструктора, а начинка (лампы, светодиоды) — от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае это лампы накаливания 220В, 60Вт (при установке тиристоров на радиаторы — до 10 шт. На канал).

Порядок сборки схемы.

По поводу реквизитов приставки. Транзисторы
КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим усилением не менее 50. Постоянные резисторы — МЛТ-0,5, переменные и подстроечные — СП-1, СПО-0,5. Конденсаторы — любого типа.
Трансформатор T1 с соотношением 1: 1, поэтому можно использовать любой трансформатор с подходящим числом витков.При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15, по 150-300 витков.

Диодный мост для питания тиристоров (220в) выбирается исходя из ожидаемой мощности нагрузки, не менее 2А. Если количество ламп для каждого канала увеличится, потребление тока соответственно увеличится.
Для питания транзисторов (12В) можно использовать любой стабилизированный блок питания, рассчитанный на рабочий ток не менее 250 мА (а лучше, больше).

Во-первых, каждый цветомузыкальный канал собирается отдельно на макетной плате.
Причем сборка начинается с выходного каскада. Собрав выходной каскад, проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад работает нормально, собран активный фильтр. Затем они снова проверяют работоспособность произошедшего.
В итоге после тестирования у нас действительно рабочий канал.

Аналогично необходимо собрать и перестроить все три канала.Такая утомительность гарантирует безоговорочную работоспособность устройства после «чистой» сборки на плате, если работа проводилась без ошибок и с использованием «проверенных» деталей.

Возможный вариант печатной разводки (для печатной платы с односторонней фольгой). Если вы используете конденсатор большего размера в канале с самой низкой частотой, расстояния между отверстиями и проводниками придется изменить. Использование печатной платы с двусторонней фольгой может быть более технологичным вариантом — это поможет избавиться от накладных проводов-перемычек.

Использование любых материалов на этой странице разрешено при наличии ссылки на сайт.

Цветомузыкальное оборудование, меняющее цвет, интенсивность, эффекты и ритм, — неотъемлемый атрибут хорошего праздника, способный поднять и двигать в такт музыке самых ленивых и самых меланхоличных участников мероприятия. В этой статье мы обсудим нюансы светодиодной цветомузыки, возможности изготовления своими руками и варианты использования в различных условиях.

С насыщением рынка светодиодным осветительным оборудованием сфера его применения стремительно расширяется и больше не ограничивается исключительно дизайнерскими изысками внутреннего освещения, краткостью и эффективностью освещения офисов и рабочего освещения или желанием сделать прочное и качественное освещение фасада зданий. Светодиодные лампы проникли во все сферы, где их колоссальный технологический разрыв, энергоэффективность, минимальные размеры при максимальной отдаче могут хорошо поработать и принести пользу или эстетическое удовольствие — тюнинг автомобилей, фитолампы для выращивания приусадебных участков и, конечно же, цветомузыка.

Цветная музыка на led-компонентах имеет ряд существенных преимуществ перед аналогами на устаревших лампах:

  • Небольшие размеры светодиодов в сочетании с энергоэффективностью порождают множество возможных форм для создания светомузыкального оборудования, и мы говорят не только о внешних форм-факторах, но и о возможностях использования светодиодов в различных эффектах при работе со светом и его различными цветами, ведь светодиодный элемент может давать точечный поток света.Стробоскопы, прожекторы, диско-шары и многое другое доступны для использования даже дома.
  • Безопасность использования цветомузыки или светодиодных излучателей максимальна, по сравнению с устаревшими лампами — диапазон рабочих температур светодиодных элементов не превышает 60 градусов по Цельсию, а это значит, что не должно быть опасения возгорания каких-либо элементов домашнего декора или материалов. . Пусть цвета наполнят ваш дом вместе с музыкой, не беспокоясь об использовании светового и музыкального оборудования.
  • Большой срок службы цветомузыки для дома делает покупку такой техники целесообразной, ведь она рассчитана на 8000–10000 тысяч часов работы, то есть на целый год бесперебойной работы.А с учетом того, что количество включений и выключателей не влияет на потребительские свойства светодиодных элементов, а большинство людей не устраивают круглосуточные вечеринки каждый день, домашняя цветомузыка может радовать своего хозяина и его гостей долгие годы. .
  • Качество цветопередачи и светопередачи. Светодиодное освещение имеет широчайший диапазон цветов и оттенков, что является одним из основных преимуществ цветовой музыки как таковой, поскольку разнообразие цветов играет важную роль в создании атмосферы.Также, в отличие от лазерной цветомузыки, светодиодное оборудование безвредно для глаз и не способно повредить зрение при прямом попадании светового потока на сетчатку.

Варианты создания светомузыкального освещения в доме

  1. Самый простой вариант — купить специальную переносную лампу или лампу, которая будет менять цвет или использовать сразу несколько цветов с одним или несколькими эффектами. Таких вариантов очень много, они очень распространены и бюджетны. Для начального уровня, чтобы порадовать себя и своих друзей простенькой, но приятной игрой с яркими огнями и красками под музыку, будет вполне достаточно.
  1. Самый качественный вариант, если не делать своими руками по самым сложным схемам, — это приобрести готовое решение, так называемые CMU (Color Music Installations). Это готовое решение, включающее в себя контроллер, который будет обрабатывать звуковой сигнал, превращая его в светомузыкальный перформанс, изменяя интенсивность и цвета световых потоков, создавая эффект полноценной дискотеки, и непосредственно панно. с диодами. КМУ просты в установке, и если вы хотите создать дома дискотеку своими руками, это вполне удачный вариант… Эти CMU могут быть основаны на разложении спектральной частоты, когда каждая частота будет соответствовать цвету, или предустановленных настройках со всевозможными эффектами и их чередованием, которые можно регулировать с помощью полного пульта дистанционного управления.
  1. Третий вариант — собрать цветомузыку самостоятельно. Существует множество подробных схем, по которым человек, имеющий опыт работы с электроникой, сможет своими руками составить цветомузыку для дома. Без схем можно обойтись, если использовать отдельно приобретаемый контроллер цветомузыки и, скажем, несколько отрезков ленты RGB.На самом деле, когда дело доходит до осветительных приборов для дискотек, сделанных своими руками, их может быть огромное множество. Схем очень много, а также видеоинструкций, как собрать оборудование по этим схемам. Есть схемы с использованием внешних микрофонов, собранные по этим схемам осветительные приборы будут менять цвет и эффекты именно в соответствии с воспроизводимой мелодией.

Предлагаемые в Интернете схемы для создания цветомузыки своими руками максимально разнообразны — от самых простых, когда цвет ленты RGB изменится, до самых сложных, со множеством эффектов, выцветанием и переливом.В зависимости от ваших навыков вы сможете выбрать подходящий вариант, найти подходящую схему и создать что-то уникальное, осветительное оборудование, которое порадует вас и ваших гостей переливом всех цветов. Если вы не готовы самостоятельно, своими руками делать цветомузыку на светодиодах, то можете обратиться к рынку готовых решений и наполнить свой дом разнообразием красок и радости.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *