Действующее значение переменного напряжения имеет следующее выражение – » :

Содержание

2.3. Действующее значение переменного тока

Понятие действующего значения тока вводится в связи с необходимостью производства измерений. Что измерять у переменного тока? Если бы мы имели дело только с синусоидами – кривыми одной формы, то можно было бы измерять амплитуды. Но на практике встречаются самые разные кривые, и может оказаться так, что два различных по форме тока имеют одинаковые амплитуды, хотя очевидно, что на электрическую цепь они будут оказывать разное воздействие.

Поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. При такой оценке действие переменного тока сравнивается с аналогичным действием постоянного тока. Например, если некоторый переменный ток выделяет на участке цепи такое же количество тепла, что и постоянный ток силой 10 ампер, то говорят, что величина этого переменного тока составляет 10 ампер. Это значение тока и называют действующим.

Итак, действующим значением переменного тока называется численное значение такого постоянного тока, который за время, равное одному периоду, выделяет в сопротивлении такое же количество тепла, что и ток переменный

.

Таким образом, для оценки величины переменного тока мы должны сделать следующее.

1. Определить количество теплоты, выделяющейся в сопротивлении R за время Т при протекании переменного тока i. Это количество теплоты равно .

2. Подобрать такой постоянный ток I, который за то же время Т в том же сопротивлении R выделяет такое же количество тепла. При постоянном токе оно равно .

3. Приравнять Wи

W=:

,

откуда

. (2.5)

Последняя формула и определяет действующее значение переменного тока.

Пример 2.1. На вход некоторой цепи подается импульсное напряжение треугольной формы (рис. 2.4, а). Чему равно его действующее значение?

Р е ш е н и е.

.

а)

б)

Рис. 2.4. Переменные напряжения различной формы

Пример 2.2. На рис. 2.4, б показана кривая напряжения на выходе схемы однофазного однополупериодного выпрямления. Чему равно действующее значение напряжения, если его амплитудное значение Um составляет 311 В?

Р е ш е н и е.

155,5 В.

Пример 2.3. Определить действующее значение синусоидального тока .

Р е ш е н и е.

.

Рассмотренные примеры показывают, что действующее значение переменного тока зависит от его формы.

У синусоидального тока оно равно амплитуде, деленной на .

2.4. Представление синусоидальной функции времени вращающимся вектором. Векторные диаграммы

Пусть в прямоугольной системе координат имеется вектор длиной Im, расположенный под углом к горизонтальной оси (рис. 2.5). Заставим этот вектор вращаться против часовой стрелки c угловой скоростью . Тогда за время t он повернется на угол t.

Рис. 2.5. Вращающийся вектор

Проекцию вектора на вертикальную ось обозначим i. Из треугольника oab она равна , т.е. представляет собой функцию, определяющую мгновенное значение тока. Таким образом, последняя может быть представлена как проекция на вертикальную ось вращающегося вектора. Изображение тока с помощью вектора называется его векторной диаграммой. Длина вектора может быть равна амплитудному Im, либо действующему значению I. Обычно вектор при этом показывается не в произвольный момент времени t, а в начальный (t = 0), когда его угол наклона к горизонтальной оси равен начальной фазе.

Теперь по уравнениям (2.3) построим векторную диаграмму двух векторов – тока и напряжения (рис. 2.6).

Д

Рис. 2.6. Векторная диаграмма тока и напряжения

лины векторов равны действующим значениям, углы их наклона к горизонтальной оси – начальным фазам, а угол между векторами, равный разности начальных фазu и i, в соответствии с уравнением (2.4) определяет сдвиг фаз напряжения и тока.

Подчеркиваем, что на диаграмме стрелка, отмечающая угол , всегда направляется от вектора тока к вектору напряжения. Сейчас она направлена в положительном направлении – против часовой стрелки. Векторная диаграмма дает наглядное представление об отставании одних величин и опережении других. Если вращать картинку, показанную на рис. 2.6, против часовой стрелки, то вектор тока будет отставать от напряжения на угол

. Так как при вращении длины векторов и угол между ними не меняются, то в том случае, когда начальные фазы напряжения и тока нас не интересуют, мы можем изображать диаграмму без осей и располагать ее так, как нам удобно (рис. 2.7).

Рис. 2.7. Варианты построения векторной диаграммы

studfile.net

Метод измерения действующего значения напряжения с применением МК / Habr

    В данном посте речь пойдет об одном из вариантов измерения действующего значения напряжения и частоты сети на 8-ми битном микроконтроллере PIC18. При желании, можно метод перенести на любой другой МК, вплоть до всеми любимых ARDUINO (если они поддерживают реализацию прерываний по таймеру с частотой 5-10 кГц).
    Также, рассматриваемый метод позволяет измерять частоту сетевого напряжения без использования внешних дополнительных средств, таких как компараторы. Но, при этом приходится жертвовать либо временными ресурсами МК, либо точностью измерения частоты.
    Почему важно измерять действующее значение, а не какое либо другое, например, средневыпрямленное? Большинство “китайских” электронных вольтметров измеряют сетевое напряжение по средневыпрямленному значению. Методика измерения следующая: за период сетевого напряжения делается выборка из N значений амплитуды напряжения, результаты суммируются (без знака), делятся на N (усредняются), после чего полученный результат умножается на коэффициент

    Указанный коэффициент определяет зависимость действующего значения синусоидального (!) сигнала от средневыпрямленного.
    Такая методика измерения проста, не требует много ресурсов микроконтроллера (как временных, так и ресурсов памяти). Основным недостатком такой методики измерения является большая ошибка измерения на несинусоидальных сигналах.
    Как все знают, изменение сигнала сетевого напряжения подчиняется синусоидальному закону (вследствие применения синхронных генераторов на электростанции), с частотой изменения сигнала 50 Гц (60 Гц). Однако, на практике вследствие влияния сторонних факторов (в основном подключение к сети мощных нелинейных нагрузок), а также применения инверторов с квазисинусоидальным выходным напряжением (см. рисунок), синусоида напряжения либо значительно искажается, либо заменятся прямоугольными импульсами. В таких случаях указанный выше метод измерения даст очень большую погрешность (например, в квазисинусоидальных инверторах выходное напряжение, измеренное “китайским» вольтметром может быть равно 180-200В, в то время как действующее напряжение будет равно 220В ).

    Например, напряжение у меня дома

    Почему важно измерять именно действующее значение напряжения (тока)? Потому что именно действующие (еще называют его эффективными) значения напряжения и тока определяют работу электрической системы (грубо говоря, электронагреватель выделяет тепло в прямой зависимости от действующих значений напряжения и тока сети).
    Действующее значение измеряемой периодической величины рассчитывается по формуле

    Или после дискретизации получим

    Т.е. нам нужно делать выборку ряда значений за период сетевого напряжения, просуммировать значения квадратов точек выборки, поделить на количество точек за период (при определении количества точек выборки не забываем про теорему Котельникова-Шеннона), и взять квадратный корень из полученного результата.

    Вроде бы ничего сложного, если бы не но:
      1)  Каждый период точки выборки набираются заново, что увеличивает погрешность измерения;
      2)  В реальной сети, около нуля напряжения, могут встречаться как “нулевые полки”, так и повторные переходы через ноль напряжения, что значительно внесет погрешность в измерение.
    С первым пунктом будем бороться измерением измерением суммы квадратов точек выборки за каждый полупериод, после чего суммируя n-ую сумму квадратов с (n+1)-й и откидывая (n-1)-ую.
    Со вторым пунктом будем бороться введением зон нечувствительности по напряжению (введем границы напряжения перехода через ноль с положительной и отрицательной сторон) обычно 5-10 В в обе стороны, а также зон нечувствительности по частоте (ограничим допустимую частоту сигнала напряжения).

    Таким образом, мы получим рассчитанное значение действующего значения сетевого напряжения за период на каждом полупериоде сетевого напряжения.


    Частота напряжения вычисляется по формуле:

где Fд — частота дискретизации (для удобства и увеличения точности измерения частоты выбрана равной 10 кГц (период выборки — 100 мкс)).
    Теперь рассмотрим структурную схему измерительной части (в реальной схеме следует добавить фильтрующие и защитные элементы).

Внимание! В данном методе измерения не реализована гальваническая развязка микроконтроллера от сети.     Гальваноразвязка реализуется на стороне цифрового интерфейса передачи данных от микроконтроллера.
    На входе установлен дифференциальный операционный усилитель с делителем напряжения, опертым на половину опорного напряжения (2,048 В). Поскольку, для уменьшения размеров лучше применять маломощные резисторы, устанавливаем их минимум 3 шт. равными по сопротивлению — чтобы увеличить суммарное пробивное напряжения резисторов. При этом нужно подсчитать мощность потерь при максимальном входном напряжении (P=U^2/R) — чтобы не превышала допустимой мощности резисторов. Плечи дифференциального усилителя тоже делаем равными. Тогда, напряжение в точке 1 рассчитывается по формуле:

А напряжение в точке 1 будет иметь вид:

    Также, половина опорного напряжения подается на один из каналов АЦП. Это позволяет в постоянном режиме (например, один раз за период) определять положение уровня нуля измеряемого напряжения.
Т.е. мы обошлись операционным усилителем с однополярным питанием, и наш входной сигнал в точке 1 изменяется от 0 до Uоп. Такой способ дает достаточно точные результаты, по сравнению, например, с выпрямлением напряжения с помощью диодов.
    Расчет делителя и коэффициента АЦП сводится к следующему:

где A и В — замеры АЦП (за вычетом измеренного значения нуля сигнала — AN1) для текущего и предыдущего полупериодов; N1, N2 — число замеров для текущего и предыдущего полупериодов; Nadс — разрядность АЦП; U’оп — опорное напряжение за вычетом зон нелинейности (нечувствительности) операционного усилителя (обычно 0,6 В).
    Расчет делителя удобно проводить считая сигнал постоянным, приведенным к амплитуде синусоидального, а не синусоидальным. Тогда действующее значение сигнала равно амплитудному и равно значению каждого замера.
Например, нужно рассчитать делитель для измерения максимального значения 420В переменного тока:

Сопротивление Ra выбирается в диапазоне от 500 кОм до 1500 кОм. По выбранному сопротивлению Ra рассчитывается Rb.
    В итоге, алгоритм расчета действующего значения напряжения и частоты примет вид:

При этом часть затратных расчетов (деление, извлечение корня) можно перенести из прерывания в основную программу.

    При расчете действующих значений на 8-ми битном МК целесообразно пользоваться целочисленными методами (с использованием масштабных коэффициентов) не прибегая к расчетам с плавающей запятой, а также упрощать по возможности арифметические операции (деление, изъятие квадратного корня и проч.). Это значительно экономит ресурсы МК.

habr.com

Переменное напряжение и его параметры

Всем доброго времени суток! В прошлой статье я рассказал, как рассчитать индуктивность катушки выполненной на разомкнутом сердечнике (например, ферритовой антенны, контурных катушек радиоприёмников, катушек с построечными сердечниками и т. д.). Сегодняшняя статья посвящена переменному напряжению и параметрам, которые его характеризуют.

Что такое переменное напряжение?

Как известно электрическим током называется упорядоченное движение заряженных частиц, которое возникает под действием разности потенциалов или напряжения. Одной из основных характеристик любого типа напряжения является его зависимость от времени. В зависимости от данной характеристики различают постоянной напряжение, значение которого с течением времени практически не изменяется и переменное напряжение, изменяющееся во времени.

Переменное напряжение в свою очередь бывает периодическим и непериодическим. Периодическим называется такое напряжение, значения которого повторяются через равные промежутки времени. Непериодическое напряжение может изменять своё значение в любой период времени. Данная статья посвящена периодическому переменному напряжению.


Постоянное (слева), периодическое (в центре) и непериодическое (справа) переменное напряжение.

Минимальное время, за которое значение переменного напряжения повторяется, называется периодом. Любое периодическое переменное напряжение можно описать какой-либо функциональной зависимостью. Если время обозначить через t, то такая зависимость будет иметь вид F(t), тогда в любой период времени зависимость будет иметь вид

Виды напряженийВиды напряжений

где Т – период.

Величина обратная периоду Т, называется частотой f. Единицей измерения частоты является Герц, а единицей измерения периода является Секунда

Виды напряженийВиды напряжений

Наиболее часто встречающаяся функциональная зависимость периодического переменного напряжения является синусоидальная зависимость, график которой представлен ниже

Синусоидальное переменное напряжение.

Из математики известно, что синусоида является простейшей периодической функцией, и все другие периодические функции, возможно, представить в виде некоторого количества таких синусоид, имеющих кратные частоты. Поэтому необходимо изначально рассмотреть особенности синусоидального напряжения.

Таким образом, синусоидальное напряжение в любой момент времени, мгновенное напряжение, описывается следующим выражением

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

где Um – максимальное значение напряжения или амплитуда,

ω –угловая частота, скорость изменения аргумента (угла),

φ – начальная фаза, определяемая смещением синусоиды относительно начала координат, определяется точкой перехода отрицательной полуволны в положительную полуволну.

Величина (ωt + φ) называется фазой, характеризующая значение напряжения в данный момент времени.

Таким образом, амплитуда Um, угловая частота ω и начальная фаза φ являются основными параметрами переменного напряжения и определяют его значение в каждый момент времени.

Обычно, при рассмотрении синусоидального напряжения считают, что начальная фаза равна нулю, тогда

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

В практической деятельности, довольно часто, используют ещё ряд параметров переменного напряжения, такие как, действующее напряжение, среднее напряжение и коэффициент формы, которые мы рассмотрим ниже.

Что такое действующее напряжение переменного тока?

Как я писал выше, одним из основных параметров переменного напряжения является амплитуда Um, однако использовать в расчётах данную величину не удобно, так как временной интервал в течение, которого значение напряжения u равно амплитудному Um ничтожно мал, по сравнению с периодом Т напряжения. Использовать мгновенное значение напряжения u, также не очень удобно, вследствие больших объёмов расчётов. Тогда возникает вопрос, какое значение переменного напряжения использовать при расчётах?

Для решения данного вопроса необходимо обратиться к энергии, которая выделяется под воздействием переменного напряжения, и сравнить её с энергией, которая выделяется под воздействием постоянного напряжения. Для решения данного вопроса обратимся к закону Джоуля – Ленца для постоянного напряжения

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

Для переменного напряжения мгновенное значение выделяемой энергии составит

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

где u – мгновенное значение напряжения

Тогда количество энергии за полный период от t0 = 0 до t1 = T составит

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

Приравняв выражения для количества энергии при переменном напряжении и постоянном напряжении и выразив полученное выражение через постоянное напряжение, получим действующее значение переменного напряжения

Синусоидальное переменное напряжениеСинусоидальное переменное напряжение

Получившееся выражение, позволяет вычислить действующее значение напряжение U для периодического переменного напряжения любой формы. Из выше изложенного можно сделать вывод, что действующее значение переменного напряжения называется такое постоянное напряжение, которое за такое же время и на таком же сопротивлении выделяет такую же энергию, которая выделяется данным переменным напряжением.


Действующее значение синусоидального напряжения.

Вычислим действующее значение синусоидального напряжения

Действующее значение синусоидального напряженияДействующее значение синусоидального напряжения

Стоит отметить, все напряжения электротехнических устройств определяются, как правило, действующим значением напряжения.

Для определения амплитудного значения синусоидального напряжения необходимо преобразовать полученное выражение

Действующее значение синусоидального напряженияДействующее значение синусоидального напряжения

Таким образом если в розетке у нас U = 230 В, следовательно, амплитудное значение данного напряжения

Действующее значение синусоидального напряженияДействующее значение синусоидального напряжения

Действующее напряжение также имеет название эффективного напряжения и среднеквадратичного напряжения.

С действующим напряжением разобрались, теперь рассмотрим среднее значение напряжение.

Что такое среднее значение переменного напряжения?

Ещё одним параметром переменного напряжения, который его характеризует, является средним значением переменного напряжения. В отличие от действующего значения переменного напряжения, которое характеризует работу переменного напряжения, среднее значение напряжения характеризует количество электричества, которое перемещается из одной точки цепи в другую, под действием переменного напряжения. Среднее значение напряжения за период определяется следующим выражением

Действующее значение синусоидального напряженияДействующее значение синусоидального напряжения

где Т – период переменного напряжения,

fu(t) – функциональная зависимость напряжения от времени.

Таким образом, среднее значение переменного напряжения численно будет равно высоте прямоугольника с основанием T, площадь которого равна площади, ограниченной функцией fu(t) и осью Ox за период Т.


Среднее значение переменного напряжения.

В случае синусоидальной функции, можно говорить только о среднем значении за полупериод, так как в течение всего периода положительная полуволна компенсируется отрицательной полуволной, и тогда среднее за период напряжение будет равно нулю.

Таким образом, среднее за полупериод Т/2 значение переменного напряжения синусоидальной формы будет равно

Среднее значение переменного напряженияСреднее значение переменного напряжения

где Um – максимальное значение напряжения или амплитуда,

ω –угловая частота, скорость изменения аргумента (угла).

Какие коэффициенты, характеризуют переменное напряжение?

Иногда возникает необходимость охарактеризовать форму переменного напряжения. Для этой цели существует ряд параметров данного переменного напряжения:

1. Коэффициент формы переменного напряжения kф – показывает как относится действующее значение переменного напряжения U к его среднему значению Ucp.

Среднее значение переменного напряженияСреднее значение переменного напряжения

Так для синусоидального напряжения коэффициент формы составит

Среднее значение переменного напряженияСреднее значение переменного напряжения

2. Коэффициент амплитуды переменного напряжения kа – показывает как относится амплитудное значение переменного напряжения Um к его действующему значению U

Среднее значение переменного напряженияСреднее значение переменного напряжения

Так для синусоидального напряжения коэффициент амплитуды составит

Среднее значение переменного напряженияСреднее значение переменного напряжения

На сегодня всё, в следующей статье я рассмотрю прохождение переменного напряжения через сопротивление, индуктивность и емкость.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Ответы@Mail.Ru: что такое ДЕЙСТВУЮЩЕЕ напряжение?

Действующее напряжение можно определить и как среднеквадратичное значение мгновенного напряжения U(t). Также можно сказать, что это напряжение постоянного тока, при котором на активной нагрузке будет выделяться такая же мощность, как и для переменного тока. Однако не хватает одной важной оговорки. За какое время? Кроме того, понятие действующего напряжения в основном используют для переменного тока, зависящего от времени по закону синуса. Окончательно должно выглядеть приблизительно так:<br>Действующее напряжение можно определить и как среднеквадратичное значение мгновенного напряжения U(t) за период для электрического тока, зависящего от времени по закону синуса.<br>

Днйствующее напряжение — это значение напряжения в реальный момент времени.

Как в книге не знаю. Могу как в голове.<br><br>(Кстати дейтсвующее значение)<br>Это среднеквадратичное значение (т.е. квадратный корень из среднего значения квадрата).<br><br>Для переменного напряжения, изменяющегося по гармоническому закону это A/корень(2), где А — амплитуда.<br><br>Отличай от мгновенного значения — это как раз значение в данный момент времени.<br><br>P.S. Не забывай закрывать вопросы 🙂

Нет! Действующее напряжение — эквивалентное постоянное напряжение для переменного тока, при котором на нагрузке будет выделяться такая же мощность. Например — 220 вольт — действующее напряжение в сети, а на самом деле там предельное напряжение гораздо больше, но оно меняется по синусу…

в электричестве на самом деле существует полный бардак. В разных учебниках одно и то же называют по-разному разными словами, и этим задуривают мозг нормальному человеку. Запомните: действующее, эффективное, среднеквадратичное напряжение — это ОДНО и ТО ЖЕ и это равно максимальному значению напряжения делённому на корень из двух для синусоидальной формы напряжения. Максимальное значение напряжения — это если подключить осциллограф, то на экране осциллографа будет видна полная синусоида. От синусоиды нужно взять ровно половинку. Величина этой половинки — это и есть максимальное напряжение, его чаще называют амплитудой, или амплитудным напряжением. Делим амплитудное напряжение на корень из двух = действующее, эффективное, среднеквадратичное напряжение

touch.otvet.mail.ru

Действующие значения тока — Знаешь как

Действующие значения токаРасчет цепей переменного тока упрощается, если пользоваться понятием действующего (эффективного) значения переменного тока.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период переменного тока то же количество тепла.

Согласно ГОСТ действующие значения обозначаются прописными буквами, т. е ток I, напряжение U.

На шкалах измерительных приборов всегда наносятся действующие значения тока или напряжения.

Если ток изменяется по синусоидальному закону, то действующее значение его составляет 0,707 амплитудного значения тока, т. е.

I = (Iм : √2) = Iм: 1,41 = 0,707Iм

То же соотношение имеет место и для синусоидального напряжения, т. е.

U = (Uм : √2) = 0,707Uм

Докажем правильность приведенных соотношений. Количество тепла, выделенного постоянным током I в сопротивлении r за период переменного тока Т:

Q’ I2rT

Количество тепла, выделенного переменным током в том же сопротивлении за период Т, может быть выражено через среднее значение мощности Р переменного тока

Q» = PT

Если Q’= Q», то

 I2rT=РТ.

В последнем выражении согласно данному выше определению значение эквивалентного постоянного тока I равно действующему значению переменного тока. Таким образом, действующее значение тока

= √ (P : r)

Мгновенная мощность при синусоидальном токе  p = i2r = I2мr sin2ωt

или, приняв во внимание, что sin2 α = (11 : 2) — (1 : 2) cos 2α, получим:

p = (I2м: 2) — (I2м: 2) cos 2ωt

Мгновенная мощность при синусоидальном токе может быть представлена суммой двух слагаемых постоянной ½ I2мr и переменной, изменяющейся по периодическому синусоидальному закону.

Среднее значение мощности синусоидального тока будет равно постоянной слагаемой

P = ½I2мr

так как среднее значение за пер и синусоидальной слагаемой ½I2мr cos 2ωравно нулю.

Действующее значение переменного синусоидального тока

I = √(P : r) = √ (½I2м: r) = Iм : √2 = 0,707Iм

Так как действующие значения синусоидальных токов и

напряжений в √2 раз меньше амплитудных значений, то вектор, выражающий в одном масштабе амплитудное значение, в другом масштабе представляет действующее значение той же величины. В дальнейшем выбор масштабов векторов будет производиться, исходя из действующих значений.

Пример 5-4. Вольтметр,, включенный в сеть, показал напряжение 380 в.

Определить амплитуду напряжения сети:

UM = √2 U = 1,41 • 380=536 в.

ОБЩИЕ ЗАМЕЧАНИЯ О ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

Любая электрическая цепь обладает параметрами: .сопротивлением r, индуктивностью и емкостью С,

В цепи постоянного тока при неизменном напряжении будут неизмененными: ток, мощность и запас энергии в электрическом и магнитном полях.

При переменном напряжении на зажимах цепи в ней будет проходить переменный ток, будет изменяться и энергия электрического и магнитного полей. В технике встречаются цели, физические явления в которых определяются наличием одного из параметров rL или С, тогда как другие параметры выявлены слабо и влиянием их можно пренебречь.

Например, лампу накаливания, нагревательный прибор, реостат можно рассматривать как цепь с сопротивлением r, влиянием емкости и индуктивности которой можно пренебречь.

Цепь ненагруженного трансформатора можно рассматривать как индуктивность, пренебрегая влиянием сопротивления и емкости этой цепи.

Наконец, кабель, работающий вхолостую, можно рассматривать как емкость, так как влияние индуктивности и сопротивления этой цепи незначительны.

 

Статья на тему Действующие значения тока

znaesh-kak.com

Действующее и среднее значения переменного тока

Действующее значение переменного тока численно равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, выделяет за время, равное 1 периоду, одинаковое количество тепла. Все приборы показывают действующее значение .

Если левые части уравнения равны, то и правые будут тоже равны. Приравняв правые части и выполнив операцию интегрирования, получим:

Среднее арифметическое значение переменного тока определяется в течении полупериода; если через поперечное сечение проводника в течении 1 полупериода будет протекать один и тот же заряд при постоянном и переменном токе, то такое значение постоянного тока будет равно среднему значению переменного тока .

Среднее значение тока за период равно нулю.

Коэффициенты формы и амплитуды

Отношение действующего значения переменного тока (напряжения или ЭДС) к среднему значению называется коэффициентом формы, а отношение амплитудного значения к действующему –коэффициентом амплитуды.

Для синусоидального тока:

, а .

Для кривых, имеющих более острую форму, чем синусоида: ;.

Начальная фаза. Сдвиг фаз

Предположим, что в магнитном поле генератора находится два одинаковых витка, сдвинутых в пространстве друг относительно друга на угол . При вращении в них буду находится ЭДС одинаковой частоты и амплитуды.

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы иназываютсяфазными, илифазой. Углыиназываютсяначальной фазой. Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Если угол сдвига фаз составляет 1800, то такие ЭДС находятся в противофазе

Графическое изображение синусоидальных величин

Синусоидальные величины можно изображать графически при помощи синусоид или вращающихся векторов.

Любая синусоидальная величина характеризуется:

  1. амплитудой;

  2. угловой частотой;

  3. начальной фазой.

При изображении величины с помощью синусоиды ординаты синусоиды в масштабе представляют собой мгновенное значение, абсциссы – промежутки времени.

При этом длина вектора равна амплитудному значению величины, угол между положительным направлением оси абсцисс и векторов даст начальную фазу. Вектор вращается против часовой стрелки с угловой скоростью. Проекция конца вектора на ось ординат даст мгновенное значение синусоидальной величины.

Совокупность нескольких синусоид называется синусоидальной (волновой) диаграммой.

Совокупность нескольких векторов называется векторной диаграммой.

Сложение и вычитание синусоидальных величин

.

Для сложения двух синусоидальных величин с помощью синусоид необходимо сложить их ординаты в каждый момент времени.

Для того, чтобы сложить две величины с помощью векторов, необходимо к концу первого вектора добавить второй, не изменяя его величины и направления. Соединив начало первого вектора с концом второго, получим суммарный вектор.

studfile.net

что берется за действующее значение силы переменного тока и переменного напряжения

Переменный ток, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю.

Переменные токи и переменные напряжения постоянно изменяются по величине. В каждое другое мгновение у них другая величина. Возникает вопрос, как же их измерять? Для их измерения введено понятие действующее значение. Действующим или эффективным значением переменного тока называют величину такого постоянного тока, который по своему тепловому действию равноценен данному переменному току. Действующим или эффективным значением переменного напряжения называют величину такого постоянного напряжения, которое по своему тепловому действию равноценно данному переменному напряжению. Все переменные токи и напряжения в технике измеряются в действующих значениях. Приборы измеряющие переменные величины показывают их действующее значение. Вопрос: напряжение в электросети 220 В, что это значит? Это значит, что источник постоянного напряжения с напряжением 220 В оказывает такое же тепловое действие как и электросеть. Действующее значение тока или напряжения синусоидальной формы в 1,41 раз меньше амплитуды этого тока или напряжения. Пример: Определить амплитуду напряжения электросети с напряжением 220 В. Амплитуда равна 220 * 1,41=310,2 В.

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *