Дифференциальный закон ома: Закон Ома в дифференциальной форме

Содержание

Закон Ома в дифференциальной форме

Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)

  (7.6.1) 

Для однородного линейного проводника выразим R через ρ:

  , (7.6.2) 

ρ – удельное объемное сопротивление; [ρ] = [Ом·м].

      Найдем связь между  и  в бесконечно малом объеме проводника – закон Ома в дифференциальной форме.

      В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока  и вектор напряженности поля  коллинеарны (рис. 7.6).

Рис. 7.6

      Исходя из закона Ома (7.6.1), имеем:

      А мы знаем, что  или . Отсюда можно записать

  , (7.6.3) 

      это запись закона Ома в дифференциальной форме.

Здесь  – удельная электропроводность.

Размерность σ – [].

      Плотность тока можно выразить через заряд электрона е, количество зарядов n и дрейфовую скорость :

.

      Обозначим , тогда ;

  (7.6.4) 

Теперь, если удельную электропроводность σ выразить через е, n и b:  то вновь получим выражение закона Ома в дифференциальной форме:

.


Закон Ома для неоднородного участка цепи     Работа и мощность тока. Закон Джоуля – Ленца

Закон Ома в дифференциальной форме

    \[ \]

Закон Ома в дифференциальной форме — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника.

    \[ \Large j=\sigma E \]

Закон ома в дифференциальной форме

Вывод формулы Закона Ома в дифференциальной форме

Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное

    \[ \large a=\frac{F}{m}=\frac{eE}{m}\]

К концу пробега скорость упорядоченного движения достигнет значения

    \[ \large \upsilon _{max}=at=\frac{eE}{m}t \]

Тут t — среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости. В этом приближении

    \[t=\frac{\overrightarrow{\lambda} }{\overrightarrow{\upsilon} }\]

    \[ \large \upsilon _{max}=\frac{eE\overline{\lambda}}{m\overline{\upsilon}}\]

Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального

    \[\large\overline{\upsilon}=\frac{1}{2}\overline{\upsilon}=\frac{eE\overline{\lambda}}{2m\overline{\upsilon}}\]

Полученную формулу подставим в

    \[\large j=ne\overline{\upsilon} \]

И у нас получилось

    \[\large j=\frac{ne^2\overline{\lambda}}{2m\overline{\upsilon}}E =\sigma E\]

В Формуле мы использовали :

j — Вектор плотности тока

    \[ \sigma \]

— Удельная проводимость

E — Вектор напряжённости электрического поля

    \[\overline{\lambda}\]

— среднее значение длины свободного пробега

    \[ \overline{\upsilon}\]

— скорость теплового движения электронов

Закон Ома кратко и понятно для чайников

Закон Ома является одним из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Его важно знать и понимать. Понятное объяснение вы найдёте в статье.

Закон Ома официально и абсолютно оправдано можно отнести к ряду основополагающих в физике по нескольким признакам. Данный закон объясняют в школе на базовом уровне, а после, более углубленно, в учреждениях, специализирующихся на изучении технических аспектов технологий.

Закон Ома – определение

Впервые данный закон был официально зафиксирован и сформулирован в восемнадцатом веке, благодаря сделанному сейчас уже широко известным всем Георгом Симоном Омом открытию. Благодаря данному закону получило грамотное и исчерпывающее объяснение наличие количественной связи между тремя фигурирующими в определении параметрами. Зависимость рассматривается как пропорциональная. Когда данное явление только было выявлено, закон несколько раз формулировали. В итоге сейчас всем известно данное определение: «величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению».

Для лучшего понимания разделим определение на две части и разберём отдельно более понятным языком смысл каждой.

  1. Первая часть определения указывает на то, что если на определенной отрезке цепи происходит количественный скачок напряжения, то величина тока также увеличивается на данном участке. Важно упомянуть, что становится больше и величина тока на заданном участке цепи.
  2. Концовка определения расшифровывается также просто. Выше напряжение – меньше сила тока.

Закон Ома – формула

Иллюстрация связи сопротивленияИллюстрация связи сопротивленияИллюстрация связи сопротивления

Рисунок наглядно демонстрирует связь фигурирующих в понятии «участников». Таким образом, вытекают простые выводы:

1. При данных условиях: на конкретном отрезке увеличивается напряжение, но при том сопротивление остаётся прежним, ток резко возрастает;

2. Иная ситуация: наоборот, изменяется сопротивление, а точнее возрастает, при том что уровень напряжения не меняется вовсе, тока становится меньше.

В итоге в законе Ома участвуют всего три величины.

Готовая формула выглядит так:

I = U/R

Фигурируют и другие две переменные, их также можно вычислить, при условии, что другие два значения известны. Видоизменив формулу, получим:

Формула сопротивленияR = U/I
Формула напряженияU = I × R
Формула силы токаI = U/R

Важно!

Шпаргалка для закона ОмаШпаргалка для закона ОмаШпаргалка для закона Ома

На начальном этапе, когда составлять формулы ещё сложно, можно воспользоваться небольшой шпаргалкой.

На треугольнике просто нужно закрыть то значение, которое необходимо найти.

Закон Ома для участка цепи

Итоговая формула не видоизменяется вовсе. Обычно сопротивление в данном законе является явной характеристикой проводника, потому что это значение не постоянная величина: в зависимости от материала и других параметров число может увеличиваться или уменьшаться. Закон применим как при расчёте с использованием металлов, так и растворов электролитов, однако существует важный нюанс: в цепи не должно быть реального источника тока, или же источник должен быть идеальным, то есть он не должен создавать дополнительное сопротивление.

Шпаргалка для использования закона ОмаШпаргалка для использования закона ОмаШпаргалка для использования закона Ома

С ЭДС

Обобщённый закон Ома формулируется так:

I = (Uab+E)/R

Также формулу можно выразить через проводимость:

I = (Uab + E) × G, как понятно, G – проводимость участка электрической цепи. Эти формулы можно использовать, если сохраняются условия, зафиксированные на рисунке.

Участок цепи с ЭДСУчасток цепи с ЭДСУчасток цепи с ЭДС

Без ЭДС

Для начала определим, что положительное направление – это то, что слева направо. Только в этом случае напряжение на участке будет равняться разности потенциалов.

Разность потенциаловРазность потенциаловРазность потенциалов

Если сохраняется условие и потенциал конечный меньше потенциала начального, то напряжение будет больше нуля. Значит, как и полагается, направление линий напряженности в проводнике будет от начала к концу, следовательно, направление тока будет идентичным. Именно такое направление тока принято считать положительным, I > O. Данный вариант самый простой для расчётов. Формула действительна с любыми числами.

Закон Ома для полной (замкнутой) цепи

При данной вариации закона выявляется значение тока при реальных условиях, то есть в настоящей полной цепи. Важно учитывать то, что получившееся в результате расчетов число зависит от нескольких параметров, а не только от сопротивления нагрузки.

Сопротивление нагрузки – внешнее сопротивление, а сопротивление самого источника тока – внутреннее сопротивление (обозначается маленькой r).

Вывод формулы закона Ома для замкнутой цепи

Если к цепи подключено напряжение и в цепи замечено напряжение (ток), то, чтобы поддержать его во внешней цепи, необходимо создать условия, при которых между её концами возникнет разность потенциалов. Это число будет равняться I × R. Однако важно помнить о том, что вышеупомянутый ток будет и во внутренней цепи и его также необходимо поддерживать, поэтому нужно создать разность потенциалов между концами сопротивления r. Эта разность равняется I × r.

Чтобы поддержать ток в цепи, электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

E = I × r + I × R

Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

E = I(r + R)

или

I = E / (r + R)

Две последние формулы выражают закона Ома для полной цепи.

Закон Ома в дифференциальной форме

Дифференциальная форма закона ОмаДифференциальная форма закона ОмаДифференциальная форма закона Ома

Закон можно представить таким образом, чтобы он не был привязан к размерам проводника. Для этого выделим участок проводника Δl, на концах которой расположены ф1 и ф2. Среднюю площадь проводника обозначают ΔS , а плотность тока j, при таких условиях сила тока будет равняться:

I = jΔS = (ф1- ф2) / R = -(((ф1 — ф2)ΔS) / pΔl , отсюда следует, что j = -y × (Δф/Δl)

При условии, что Δl будет равен 0, то, взяв предел отношения:

lim (-(Δф/Δl)) = -(dф/dl) = Е

,

окончательное выражение будет выглядеть так:

j = yE

Данное выражение закона находит силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон Ома в интегральной форме

В данной интерпретации закона не содержится в условиях ЭДС, то есть формула выглядит так:

I = U/R

Чтобы найти значение для однородного линейного проводника, выразим R через p и получим:

R = p (l/S), где за р принимаем удельное объёмное сопротивление.

Линией тока принято называть кривую, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. При таких условиях вектор плотности находится из отношения J = jt, где t – это единичный вектор касательной к линии тока.

Для лучшего понимания предположим, что удельное сопротивление, а также напряженность поля движущих сил на поперечном сечении проводника однородны. При таком условии

Е однородна, а значит, и j также однородная величина. Примем произвольное значение поперечного сечения цепи S, тогда pl/s = E. Получившееся равенство умножим на dl. Тогда Edl = (Е эл.ст.+Е стор.) dl = Е эл.ст. dl + Е стор. dl = -dф + dE. Отсюда получим (pI/S) dl = -dф + dE. Возьмём в учёт, что p/s dl = dR и запишем закон Ома в интегральной форме:

IdR = -dф + dE.

Закон Ома в комплексной форме

Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.

Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:

i = U/Z, i = UY

В данной формуле

Z – комплексное сопротивление, Y – комплексная проводимость.

Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:

Z = ze = z cosф + jz sinф = r + jx

Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb

Закон Ома для переменного тока

После того как Фарадей открыл электромагнитную индукцию, стали активно использовать генераторы сперва постоянного, а после и переменного тока.

Используется уже известная формула:

I = U/Z

Полное сопротивление тока – это совокупность активного, а также индуктивного и емкостного сопротивлений. Проще говоря, ток в цепи переменного тока зависит от многих параметров, в том числе от величины ёмкости и индуктивности. Полное сопротивление вычисляется по формуле.

Формула полного сопротивления
Формула полного сопротивленияФормула полного сопротивления

Полное сопротивление можно изобразить как гипотенузу прямоугольного треугольника, катетами которого является активное и индуктивное сопротивление.

Треугольник полного сопротивленияТреугольник полного сопротивленияТреугольник полного сопротивления

Итак, формула амплитудного значения силы тока будет выглядеть так:

Im = Um/ ((R^2 + (ωL — (1/ωC)^2

ЦепьЦепьЦепь

В такой цепи колебания тока и напряжения разные по фазе, а разность фаз зависит от индуктивности катушки и ёмкости конденсатора:

U = Um sin (ωt)

I = Im sin (ωt + ф)

Закон Ома для постоянного тока

В данном случае частота будет равняться нулевому значению, поэтому остальные показатели также будут нулевыми соответственно, в то время как значение ёмкости достигнет бесконечности. Цепь разорвётся. Поэтому отсюда вытекает логичный вывод: реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для однородного участка цепи

Формула выглядит уже известным образом:

I = U/R

В данном случае главной характеристикой проводника остаётся сопротивление. От того, как выглядит проводник, зависит количество узлов кристаллической решётки и атомов примесей. Поэтому электроны могут замедляться или ускоряться.

Сопротивление будет зависеть от вида проводника, а именно от его сечения, материала и длины:

R = p (L/S)

Закон Ома для неоднородного участка цепи

При решении задачи становится понятным, что для того, чтобы поддерживался стабильный ток в замкнутой цепи, нужны силы совершенной другой природы, а не кулоновские. В этом случае можно заметить такую закономерность: заряды, которые никак не соприкасаются друг с другом, выступают в двух ролях одновременно, то есть они являются силами электрического поля и силами иного вида – сторонними в это же время. Участок, на котором замечена данная закономерность, называется неоднородным.

Неоднородный участок цепиНеоднородный участок цепиНеоднородный участок цепи

Формула принимает вид:

E = Eq + Est

Закон Ома в данном подразделе был сформулирован таким образом: сила тока прямо пропорциональна напряжению на данном участке и обратно пропорциональна его полному сопротивлению.

Итак, готовая формула:

I = U12/R, где U12

Закон Ома для магнитной цепи

В каждом электромагните совмещены несколько важных элементов: стальной сердечник и катушка. По последней протекает ток. При совмещении нескольких участков образуется магнитная цепь.

При кольцевом магнитопроводе все поле находится внутри кольца. Тогда поток в магнитопроводе равен:

Ф = Вср S = μHср S

Формула закона для магнитной цепи:

Формула закона ома для магнитной цепиФормула закона ома для магнитной цепиФормула закона ома для магнитной цепи

Задачи с решениями на закон Ома

Задача №1

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 127 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 127 В,
  • p = 1,1 Ом*мм2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 127 В : 264 Ом = 0,48 А.

Ответ: I = 0,48 Ом

Задача №2

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 220 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 220 В,
  • p = 1,1 Ом*мм2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 220 В : 264 Ом = 0,83 А.

Ответ: I = 0,83 Ом

Задача №3

Дано:

  • U = 15 В,
  • R1 = 3 Ом,
  • R2 = R3 = 4 Ом.

Найти: I — ?

Решение:

  • R2 и R3 соединены параллельно R2 = R3, R2.3 = R2 / 2 = 2 Ом, составим эквивалентную схему:
Формула закона ома для магнитной цепиФормула закона ома для магнитной цепи
  • R = R1 + R2,3
  • R = 3 Ом + 2 Ом = 5 Ом
  • Найдем силу тока на участке цепи по закону Ома I = U / R
  • I = 15 В / 5 Ом = 3 А

Ответ: I = 3 A.

Интегральные и дифференциальные форма закона Ома: содержание и формулы

Обычно для расчётов электрического тока пользуются законом Ома для участка цепи: I=U/R, где I – ток в цепи, U – напряжение, R – суммарное сопротивление. Ток в этой цепи может протекать через различные участки из разных проводов. Поэтому для расчётов силы тока в определённом участке проводника лучше применить закон Ома в дифференциальной форме. Так как плотность тока Ī – векторная величина, то формула закона имеет вид: Ī = γĒ, где γ – удельная проводимость, обратная удельному сопротивлению γ=1/R, а Ē – напряжённость электрического поля. Может выражаться закон Ома также в интегральных формах.

Закон Ома

Закон Ома

Действие электродвижущих сил

Электродвижущая сила (ЭДС) является скалярной величиной, характеризующей работу не электрических сил, заставляющих производить разность потенциалов на выходе.

Дополнительная информация. Скалярная величина – это когда она может быть выражена только определённым значением. В отличие от векторной величины, которая определяется не только значением, но и направлением.

Используется ЭДС в генераторах, преобразующих какую либо работу А (джоуль) в электрическую. Для этого могут быть использованы такие виды энергии по их происхождению:

  • Механическая индукционная. Вывод ЭДС возникает при пересечении проводником линий магнитного поля;
  • Механическая пьезоэлектрическая. Возникновение ЭДС происходит при деформации некоторых веществ;
  • Световая энергия. Здесь ЭДС появляется в полупроводниках при действии на них световых лучей;
  • Термическая энергия. ЭДС образуется, когда контакты из разнородных проводников находятся под разными температурами;
  • Химическая энергия. Возникновение ЭДС происходит вследствие химических реакций.

В зависимости от характера энергии и устройства генератора ЭДС может возникать как переменная, так и постоянная. Переменная может быть как синусоидальная (магнитные индукционные генераторы), так и импульсная (пьезозажигалки). Постоянную ЭДС преобразуют в основном из химической (элементы питания, аккумуляторы), световой (фотоэлементы) энергий и температуры (элементы Пельтье).

Генераторы тока

Генераторы тока

ЭДС образует на разноименных проводниках разность потенциалов. Если не соединять проводником клеммы, на которых имеется разность потенциалов, то тока в цепи не будет. Следовательно, никакой энергии не будет израсходовано. На клеммах будет оставаться разность потенциалов. Работу для поддержания этой разности совершать не надо.

Если к клеммам с разностью потенциалов подключить проводник с нагрузкой, то через него будет протекать электрический ток, выполняя работу в нагрузке. При этом разность потенциалов на клеммах будет стремиться к 0, что приведёт к падению тока до 0. Для поддержания разности потенциалов стабильной величиной необходимо, чтобы ЭДС получала энергию. Эта энергия затрачивает работу, равную той, которая совершается в нагрузке.

Движение тока по неоднородным проводникам

Разность потенциалов, вызванная ЭДС, будет производить напряжение на клеммах генератора. ЭДС – это скалярная величина. При подключении к клеммам проводника через него потечёт ток, плотность которого выражается, например, Ī. Это уже векторная величина. Если ток создан только разностью потенциалов на клеммах, то векторы потенциала и плотности тока будут совпадать. Такой проводник называют однородным. Закон Ома для однородного участка цепи:

I=U/R.

Вектор напряжённости

Вектор напряжённости

Неоднородный проводник, кроме сил, которые образованы разностями потенциалов, имеет сторонние силы. Для определения плотности тока Ī пользуются законом Ома в дифференциальной форме для неоднородных проводников:

Ī=γ(E+Ē₁+ Ē₂+ Ēn).

Векторы и каждый участок проводника складываются, E – напряжённость, созданная разностью потенциалов на клеммах проводника (скалярная величина). Ē₁, Ē₂, Ēn – векторные величины напряжённости первой, второй и энной сторонних сил.

Так как γ – удельная проводимость проводника, обратная сопротивлению, ϕ₁ – потенциал на 1-ой точке, ϕ₂ – потенциал на 2-ой точке, то закон Ома для неоднородного участка цепи от 1-ой до 2-ой точки будет записываться так:

Ī =(ϕ₁ – ϕ₂+ Ē)/R.

Для ознакомления металлы и их удельное сопротивление:

  • Серебро – 1,6×10ˉ⁸Ом×м;
  • Медь – 1,72×10ˉ⁸ Ом×м;
  • Алюминий – 2,6×10ˉ⁸ Ом×м;
  • Латунь – 3…7,0×10ˉ⁸ Ом×м;
  • Бронза – 8,0×10ˉ⁸ Ом×м;
  • Железо – 9,8×10ˉ⁸ Ом×м;
  • Свинец – 2.0×10ˉ⁶Ом×м;
  • Графит – 3…5,0×10ˉ⁵Ом×м.

Трактовка и пределы применимости закона Ома

Если необходимо определить одну из величин: ток, напряжение или сопротивление для однородной цепи, то пользуются формулой, формулировка которой изображена на рисунке.

Закон Ома в треугольнике

Закон Ома в треугольнике

Для удобства решения тождества величины изображены в треугольнике. Теперь, пользуясь первой формулой, зная сопротивление цепи и ток, можно высчитать напряжение, которое действует на замкнутый контур. Зная напряжение и сопротивление цепи, можно определить ток по 2-ой формуле. По 3-ей формуле высчитывают сопротивление нагрузки, зная напряжение и ток.

Существуют исключения, когда закон Ома не соблюдается. Примеры:

  • В переменных ЭДС, если нагрузка имеет индукционный или ёмкостный характер. При повышении частоты из-за инерционности носителей заряда вступают в силу законы электродинамики. Конденсаторы и катушки индуктивности в качестве сопротивления для переменного тока, колебательный контур.
  • Для веществ, обладающих сверхпроводимостью при низких температурах. Датчики измерительных приборов высокой точности, сверхпроводящие соленоиды, сверхпроводящие кабели с током 5 000 А.
  • При высоких температурах, когда проводник начинает проявлять нелинейную характеристику сопротивления. Вольфрамовая нить лампы накаливания, спирали нагревательных элементов.
  • При высоких напряжениях, когда происходит пробой диэлектрика. Свечи зажигания карбюраторных двигателей, наконечники для защиты от тлеющего разряда высоковольтных ЛЭП.
  • В наполненных газом люминесцентных и вакуумных лампах. Люминесцентные лампы, вакуумные индикаторы, индикаторы тлеющего разряда.
  • В полупроводниковых приборах с p-n переходами и в нелинейных полупроводниках. Это светодиоды, стабилитроны, транзисторы, электронные приборы.

Интересно. Используется закон Ома в дифференциальной форме, когда имеется несколько ЭДС, или цепь проводников находится под воздействием сторонних сил. К примеру, при зарядке аккумуляторов солнечными батареями или другими ЭДС, также в генераторах с обмотками возбуждения, если их дифференцировать.

Измерительный мост

Измерительный мост

Материалы проводников, к которым применяется закон Ома, названы оммическими или линейными проводниками. Те, у которых сопротивление имеет функциональную зависимость от интенсивности тока, – нелинейными. Так могут вести себя металлы при крайне низких или высоких температурах.

Видео

Закон Ома в дифференциальной форме

При детальном изучении силы тока в сильно неоднородном проводнике закон Ома в обычной форме не подходит, так как он не учитывает локальные параметры проводника. Рассмотрим, например, проводник у которого вдоль оси значительно изменяется электрическое сопротивление и его поперечное сечение. Очевидно, что такой проводник можно представить, как один резистор с интегральным сопротивлением (такое, которое одновременно учитывает все неравномерности), однако если встает вопрос как именно течет ток в таком резисторе, то обычная формулировка закона Ома не применима.

Давайте выведем закон Ома в дифференциальной форме. Рассмотрим проводник с переменным поперечным сечением и сопротивлением вдоль оси z (см. рисунок 1). Разделим этот проводник по середине на две части. Затем полученные два кусочка разделим ещё на две части. Заметим, что при разбиении, каждая часть становится более однородной, нежели проводник в совокупности (см. рис. 2).

Проводник с переменным поперечным сечением и сопротивлением вдоль оси

Рис.1. Проводник с переменным поперечным сечением и сопротивлением вдоль оси

Разбиение неоднородного проводника на части

Рис. 2. Разбиение неоднородного проводника на части

А теперь, внимание! Делим полученные кусочки на две части и так далее до бесконечности! Т.е. проводник теперь состоит из бесконечного числа бесконечно малых проводников. Интерес представляет такой бесконечно малый кусочек, ведь он строго однороден. У него постоянная толщина и постоянное сопротивление. Вообще такой кусочек проводника разумно было бы показать в виде тонкой вертикальной линии, но для наглядности покажем, что проводник толщину имеет хоть она бесконечно мала (см. рис. 3).

Разбиение неоднородного проводника на части

Рис. 3. Бесконечно малый проводник

Итак, закон Ома в дифференциальной форме связывает плотность тока, с удельной проводимостью и напряженностью для бесконечно малого участка проводника.

Строгая формулировка закона Ома в дифференциальной может быть записана так: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

Выведем формулу закона Ома в дифференциальной форме. Запишем связь между потенциальном и напряжённостью

Закон Ома ? для участка цепи, формула. Закон Ома ? в дифференциальной форме для полной цепи и её участка

Автор Даниил Леонидович На чтение 5 мин. Просмотров 2.2k. Опубликовано

Физический закон ома получен путём экспериментов. 3 формулировки ома – одни из основополагающих в физике, устанавливающие связь между электротоком, сопротивлением и энергонапряжением. Год открытия – 1826. Впервые все 3 физических закона ома сформулировал физик-экспериментатор немецкого происхождения Георг Ом, с фамилией которого связано их определение.

Мнемоническая схема

Согласно мнемосхеме, чтобы высчитать электросопротивление по закону ома для участка цепи постоянного тока, необходимо комплексное напряжение на участке цепи разделить на силу тока для полной цепи. Однако, с физико-математической точки зрения, формулу ома для участка цепи для вычисления только по первому закону ома принято считать неполной.

Альтернативный способ вычислить токовое сопротивление по закону ома кратко подразумевает умножение электросопротивления материи, из которой выполнен проводник, на длину с последующим делением на площадь пересекающегося сечения.

Для выполнения вычислений сформулируйте по закону ома для участка цепи уравнение, исходя из имеющихся числовых данных:

формула закона Ома

Применение на линии электропередач

В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.

Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.

Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.

формулировка

Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.

Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.

Внимание!

Поведение линии электропередач в пространстве подобно антенне, ввиду чего берётся во внимание потеря на излучение.

Отображение в дифференциальной форме

На подсчёт сопротивления влияет тип материи, по которой протекает электроток, а также геометрические габариты проводника.

Дифференциальная форма формулировки Ома, записывающаяся достаточно кратко, отображает электропроводящие характеристики изотропных материалов и заключается в умножении удельной проводимости на вектор напряжённости электрополя с целью вычисления вектора плотности энерготока.

Для выполнения требуемых вычислений, уравнение сформулируйте по закону ома:

формула

Интересно!

Если исходить из научных данных, следует сделать вывод о законе ома в дифференциальной форме об отсутствии зависимого соотношения геометрических габаритов.

При использовании анизотропеновых электроэлементов нередко встречается несовпадение вектора плотности токового энергонапряжения. Данное суждение справедливо для закона ома в интегральной и дифференциальной формах.

Переменный ток

Величины являются комплексными, если речь идёт о синусоидальных формах энерготока с циклической частотой, в цепях которых присутствуют активная ёмкость с индуктивностью.

Переменный ток

В перечень комплексных величин входят:

  • разность между потенциалами;
  • сила тока;
  • комплексное электросопротивление;
  • модуль импеданса;
  • разность индуктивного и ёмкостного сопротивлений;
  • омическое электросопротивление;
  • фаза импеданса.

Если несинусоидальный энерготок допустимо измерить временными показателями, закон ома для неполной электрической цепи может быть представлен в виде сложенных синусоидальных Фурье-компонентов. В линейной цепи составные элементы фурье-разложения являются независимо функционирующими. В нелинейных цепях образуются гармоники и множество колебаний. Таким образом, можно сделать вывод о невозможности выполнения правила Ома для нелинейной электроцепи.

Внимание!

Гармоника – это колебание, частота которого кратна частоте напряжения.

Как трактуется правило Ома

Так как обобщённая формула ома не считается основополагающей, правило применяется для описания разновидностей проводников в условиях приближения незначительной частоты, плотности тока и напряжения электрополя. Следует отметить, что в ряде случаев как первый закон, так и второй закон, применяемый для полной цепи, не соблюдаются.

сила сопротивления

Существует теория Друде, для выражения которой используются следующие величины:

  • удельная электропроводимость;
  • концентрированное размещение электронов;
  • показатель элементарного заряда;
  • время затихания по импульсам;
  • эффективная масса электрона.

Внимание!

Все формулы Ома – первый, второй физический закон ома и третий распространяются на омические компоненты.

Перечень условий, при которых становится невозможным соблюдения правила Ома:

  1. высокие частоты с чрезмерно большой скоростью изменения электротока;
  2. пониженная температура сверхпроводимого вещества;
  3. перегрев проводника проходящим электротоком;
  4. в ситуации пробоя, возникшего в результате подсоединения к проводниковому элементу высокого напряжения;
  5. в вакуумной или газонаполненной электролампе;
  6. для гетерогенного полупроводникового прибора;
  7. при образовании пространственного диэлектрического заряда в контакте металлического диэлектрика.

Интерпретация

Определяющаяся действием приложенного напряжения мощностная сила тока является пропорциональной показателю его напряжения. К примеру, при двойном увеличении приложенного напряжения, интенсивность постоянного тока также удваивается.

Интересно!

Наиболее часто правило Ома применяется для металла и керамики.

для электрической цепи

Методы запоминания формулы

Чтобы легче запомнить формулу расчёта напряжения на участке цепи, следует выписать на бумажном листе все величины, из которых она состоит, в которую также входит сопротивление и сила тока. Искомую величину закрыть пальцем, вследствие чего соотношение оставшихся величин будет отображать действие, которое необходимо совершить для её вычисления.

Ниже будет представлено видео с подробным объяснением всех правил и формул, относящихся к рассматриваемой теме.

Закон Ома – один из самых несложных для понимания, который входит в программу школьных учебников физики начального уровня. Пользуясь графическим приёмом расчёта величин – при необходимости или для самопроверки, можно получить безошибочные результаты вычислений.

Дифференциальная форма закона Ома — Студопедия

Если проводник неоднороден по своему составу и/или имеет неодинаковое сечение, то для характеристики тока в различных частях проводника используют закон Ома в дифференциальной форме. Для его вывода выделим внутри проводника элементарный цилиндрический объем с образующими, параллельными вектору плотности тока . Если выделенный объем достаточно мал, его можно считать однородным и применить к нему закон Ома:

, где

, откуда

Или в векторном виде:

Величина  называется коэффициентом электропроводности или проводимостью материала. Единицей измерения σ в СИ является (Ом?м)-1 = См (сименс).

Работа и мощность постоянного тока. Закон Джоуля – Ленца.

При протекании по проводнику электрического тока проводник нагревается. Нагревание происходит за счет работы, совершаемой силами поля над носителями заряда:

,

Джоуль (Joule J., 1818-1889) и независимо от него Э.Х. Ленц (1804-1865) установили экспериментально, что количество теплоты, выделяющейся в проводнике, пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока:

Если сила тока изменяется со временем, то за промежуток времени Δt = t2 – t1 выделится теплота:

Написанные соотношения выражают собой закон Джоуля – Ленца.

Если теплоту измерять в калориях, то: .

Количество теплоты, выделяющееся в единице объема проводника за единицу времени, называется удельной мощностью:

, где — плотность тока.

Это соотношение представляет собой закон Джоуля-Ленца в дифференциальной форме:


Работа, производимая током за единицу времени, называется мощностью:

.

Размерность мощности в СИ: (ватт).

Закон

Ома — Простая английская Википедия, бесплатная энциклопедия

Закон Ома гласит, что в электрической цепи ток, проходящий через резистор между двумя точками, связан с разностью напряжений между двумя точками и связан с электрическое сопротивление между двумя точками.

Пример) р знак равно В я {\ displaystyle R = {\ frac {V} {I}}}

Где I — ток в амперах, В, — разность потенциалов в вольтах, а R — постоянная, измеряемая в омах, называемая сопротивлением.

Ток прямо пропорционален потере напряжения через резистор. То есть, если ток удваивается, то увеличивается и напряжение. Чтобы ток проходил через сопротивление, на этом сопротивлении должно быть напряжение. Закон Ома показывает взаимосвязь между напряжением (V), током (I) и сопротивлением (R). Это можно записать тремя способами:

я знак равно В р или В знак равно я р или р знак равно В я {\ displaystyle I = {\ frac {V} {R}} \ quad {\ text {or}} \ quad V = IR \ quad {\ text {or}} \ quad R = {\ frac {V} {I }}} ,

Изложение закона Ома — закона Ома гласит, что «ток, протекающий в проводнике, прямо пропорционален разности потенциалов, приложенной к его концам, при условии, что физические условия и температура проводника остаются постоянными».

Напряжение [изменить | изменить источник]

Напряжение — это количество энергии между двумя точками цепи. Эти две точки имеют разные заряды, одна выше, а другая ниже. Разница между этими двумя точками заряда заключается в том, как мы измеряем напряжение.Единица измерения «вольт» — это имя итальянского физика Алессандро Вольта, создавшего первую химическую батарею. Буква «V» обозначает напряжение.

Текущее [изменение | изменить источник]

Ток — это скорость прохождения заряда. Чем выше заряд, тем быстрее ток. Ток связан с движением электронов по цепи. Ток измеряет скорость движения электронов. Единица измерения тока — «ампер», и обычно человек записывает ее как «амперы». Букву «I» можно представить как ток.

Сопротивление [изменение | изменить источник]

Сопротивление — это то, насколько цепь сопротивляется потоку заряда. Это гарантирует, что заряд не будет течь слишком быстро и не повредит компоненты. В цепи лампочка может быть резистором. Если электроны проходят через лампочку, то лампочка загорается. Если сопротивление велико, то лампа будет тусклее. Единицей измерения сопротивления является «Ом», которая называется омега, и произносится как «ом», это имя изобретателя закона Ома.18 электронов. [2]

Circuit 1

Например, ученый знает, что значение напряжения составляет 20 В. Как известно, сопротивление, которое есть в лампочке, составляет 10 Ом. Теперь нам нужно найти другую неизвестную переменную, которая является текущей. Для ее решения можно использовать формулу закона Ома. С двумя известными переменными, V (напряжение) и R (сопротивление), единственная переменная, которую нужно найти, — это I (ток).

20 В = 10 Ом * I

I = 2A

В задаче ученый всегда получает достаточно информации для решения других значений, единственное, что ученый должен запомнить, — это формула закона Ома.Затем он используется с тем, что дано, для решения неизвестной части. В приведенном выше примере сила тока составляет 2 ампера.

[1]

  1. ↑ Ссылка , Get; facebook; Twitter; Pinterest; Эл. адрес; Приложения, Другое. «Калькулятор закона Ома | Расчет сопротивления и силы напряжения и тока». Проверено 21 августа 2019.
,

Закон Ома

Закон

Ома показывает линейную зависимость между напряжением и током в электрической цепи.

Падение напряжения и сопротивление резистора определяют протекание постоянного тока через резистор.

Используя аналогию с потоком воды, мы можем представить электрический ток как ток воды через трубу, резистор как тонкую трубу, которая ограничивает расход воды, напряжение как разница высот воды, которая обеспечивает течение воды.

Формула закона Ома

Ток I резистора в амперах (A) равен току резистора напряжение V в вольтах (В), деленное на сопротивление R в омах (Ом):

В — падение напряжения на резисторе, измеренное в вольтах (В).В некоторых случаях в законе Ома для обозначения напряжения используется буква E . E обозначает электродвижущую силу.

I — электрический ток, протекающий через резистор, измеренный в амперах (A)

R — сопротивление резистора, измеренное в Ом (Ом)

Расчет напряжения

Зная ток и сопротивление, мы можем рассчитать напряжение.

Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

Расчет сопротивления

Зная напряжение и ток, мы можем рассчитать сопротивление.

Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):

Поскольку ток задается значениями напряжения и сопротивления, формула закона Ома может показать, что:

  • Если мы увеличим напряжение, ток увеличится.
  • Если мы увеличим сопротивление, ток уменьшится.
Пример # 1

Найдите ток в электрической цепи с сопротивлением 50 Ом и напряжением питания 5 Вольт.

Решение:

В = 5 В

R = 50 Ом

I = В / R = 5 В / 50 Ом = 0,1 А = 100 мА

Пример # 2

Найдите сопротивление электрической цепи, имеющей напряжение питания 10 В и ток 5 мА.

Решение:

В = 10 В

I = 5 мА = 0,005 А

R = В / I = 10 В / 0,005 A = 2000 Ом = 2 кОм

Закон Ома для цепи переменного тока

Ток нагрузки I в амперах (A) равен напряжению нагрузки V Z = V в вольтах (В), деленному на полное сопротивление Z в омах (Ом):

В — падение напряжения на нагрузке, измеренное в вольтах (В)

I — электрический ток, измеренный в амперах (A)

Z — полное сопротивление нагрузки, измеренное в Ом (Ом)

, пример # 3

Найдите ток в цепи переменного тока с напряжением питания 110 В ± 70 ° и нагрузкой 0.5kΩ∟20 °.

Решение:

В = 110 В∟70 °

Z = 0,5 кОм∟20 ° = 500 Ом∟20 °

I = В / Z = 110 В 70 ° / 500 Ом 20 ° = (110 В / 500 Ом) ∟ (70 ° -20 °) = 0,22 А 50 °

Калькулятор закона Ома (краткая форма)

Калькулятор закона

Ома: вычисляет соотношение между напряжением, током и сопротивлением.

Введите 2 значений, чтобы получить третье значение, и нажмите кнопку Рассчитать :

Калькулятор закона Ома II ►


См. Также

,

закон Ома | физика | Britannica

Закон Ома , описание взаимосвязи между током, напряжением и сопротивлением. Величина постоянного тока через большое количество материалов прямо пропорциональна разности потенциалов или напряжению на материалах. Таким образом, если напряжение В (в единицах вольт) между двумя концами провода, сделанного из одного из этих материалов, утроится, ток I (амперы) также утроится; и отношение V / I остается постоянным.Частное V / I для данного куска материала называется его сопротивлением, R, , измеренным в единицах, называемых омами. Сопротивление материалов, для которых действует закон Ома, не изменяется в огромных диапазонах напряжения и тока. Математически закон Ома может быть выражен как V / I = R . То, что сопротивление или отношение напряжения к току для всей или части электрической цепи при фиксированной температуре обычно является постоянным, было установлено к 1827 году в результате исследований немецкого физика Георга Симона Ома.

Альтернативные утверждения закона Ома заключаются в том, что ток I в проводнике равен разности потенциалов В на проводнике, деленной на сопротивление проводника, или просто I = В / R , и что разность потенциалов в проводнике равна произведению тока в проводнике и его сопротивления, В = IR . В цепи, в которой разность потенциалов или напряжение постоянна, ток можно уменьшить, добавив большее сопротивление, или увеличить, удалив некоторое сопротивление.Закон Ома также может быть выражен в терминах электродвижущей силы или напряжения E источника электроэнергии, такого как батарея. Например, I = E / R .

С изменениями закон Ома применяется также к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянного тока. Именно из-за того, что ток меняется, помимо сопротивления, возникают другие формы противодействия току, называемые реактивным сопротивлением.Комбинация сопротивления и реактивного сопротивления называется импедансом, Z. Когда импеданс, эквивалентный отношению напряжения к току, в цепи переменного тока является постоянным, обычно применяется закон Ома. Например, V / I = Z .

С дальнейшими изменениями закон Ома был расширен до постоянного отношения магнитодвижущей силы к магнитному потоку в магнитной цепи.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской.Подпишитесь сегодня ,

Законов постоянного тока. Электрический ток. Мощность и плотность тока. ЭДС и напряжение. Закон Ома. Закон Ома для однородного участка цепи. Закон Ома для неоднородной области цепи в интегрированной форме. Закон Ома для всей цепочки. Закон Ома в дифференциальной форме.

ЗАКОНЫ ПРЯМОГО ТОКА

§ 1 Электрический ток .

Мощность и плотность тока.

ЭДС и напряжение

I. Любое упорядоченное (направленное) движение электрических зарядов называется электрическое текущее . При внешнем электрическом поле E в проводнике начинает движение зарядов, т.е. генерируется электрический ток. С положительными зарядами движутся по полю, а с отрицательными — по полю. Примите направление текущего направления движения положительных зарядов.Для возникновения и существования электрического тока требуется два условия:

1) наличие свободных носителей заряда (т.е. вещество должно быть проводником или полупроводником при высоких температурах),

2) Наличие внешнего электрического поля.

Для количественного описания электрического тока вводится — сила тока — скалярная физическая величина, равная количеству электрического заряда, переносимого в единицу времени через поперечное сечение S .

— на постоянный ток и

— для переменного тока.

Ток, сила и направление которого не меняются со временем, называют постоянным.
Плотность тока — векторная физическая величина, численно равная силе тока, протекающего через единицу площади, перпендикулярной току.

— на постоянный ток и

— для переменного тока.

II. К рассматриваемой части проводника идет ток I , необходимый для поддержания постоянной разности потенциалов между этими точками проводника. Для того чтобы поддерживать постоянную разность потенциалов на концах проводника, он должен быть подключен к источнику питания. Источник тока действительно перемещает электрические заряды по цепи. Эта работа совершается за счет внешних сил — сил не электростатического происхождения, действующих на заряды стороны источника питания.Характер внешних сил может быть

различных (кроме фиксированных сборов):
1) химическая реакция — в гальванических элементах (батареях), аккумуляторных батареях,
2) Электромагнитный — в генераторах. Генератор может использовать а) механическую энергию — гидро, б) ядерную — ядерный реактор) тепло — ТЭС, г) приливы — ПЭС, Г) ветер — ветряную электростанцию ​​и т. Д.
3) использование фотоэффекта — фотоэдс в калькуляторах и солнечной энергии; 4) пьезоэлектрик — пьезоЭДС, например, пьезоэлемент,
5) контактный потенциал — термоЭДС в термопарах и т. Д.
В поле внешних сил электрические заряды движутся внутри источника питания против сил электростатического поля, в результате чего на клеммах источника тока и поддерживается разность потенциалов, в цепи протекает ток.

Источник тока характеризуется электродвижущей силой — ЭДС.

ЭДС определяется работой, совершаемой внешними силами по перемещению единицы положительного заряда по замкнутой цепи.

Сторона силы равна:

где поле внешних сил. Работа внешних сил по перемещению заряда q на замкнутом участке цепи составляет:

т.е. ЭДС циркуляции равна вектору интенсивности внешних сил. На участке 1 — 2 (см. Рисунок) кроме внешних сил, действующих на электростатическое поле

т.е. равнодействующая сила на участке 1-2 равна

, затем

Для замкнутого контура

Напряжение U на участке 1-2 называется физической величиной, определяемой работой, совершаемой суммарным электростатическим (кулоновским) полем и внешними силами при перемещении единичного положительного заряда по этой части цепи

в

§ 2 Закон Ома

1.Закон Ома для однородного участка цепи.

Вызывается однородной зоной, свободной от ЭМП.

Ток в однородном участке цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению цепи

1 Ом — сопротивление проводника, по которому при напряжении 1 В протекает ток 1 А.

г

Электропроводность.(Сименс).

Сопротивление R проводника зависит от его размера и формы, а также от материала проводника.

,

где ρ — удельное сопротивление проводника — сопротивление на единицу длины проводника.

ℓ — длина провода; S — площадь поперечного сечения проводника.

2. Закон Ома для неоднородной области цепочки

Неоднородный называется участком цепи, содержащим ЭДС.

— Закон Ома для неоднородной области цепи в интегрированной форме

3. Закон Ома для замкнутой цепи (полная цепь).

где

где R — сопротивление внешней цепи,

r — импеданс ЭДС источника, то

— Закон Ома для полной цепи

4.Закон Ома в дифференциальной форме

σ — электропроводность;

Закон Ома в дифференциальной форме.

Плотность тока прямо пропорциональна электрическому полю E . Коэффициент пропорциональности σ — удельная электропроводность.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о