Диод анод катод: анод катод, подключение на схеме, где плюс и минус, полярность

Содержание

для чего нужны, катоды и аноды, классификация и назначение


Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Электровакуумные диоды

Вакуумный диод – это устройство в виде стеклянной лампы или металлокерамического баллона. Из него откачивают воздух и помещают внутрь два электрода с нитью накаливания – проводником. Она соединяется с катодом и нагревается внешним током.

Принцип работы

У диода принцип работы основан на односторонней проводимости. В электровакуумных приборах это достигается следующим образом:

  1. Нить накаливания нагревается, передавая тепло катоду, который начинает испускать электроны.
  2. Анод притягивает частицы только на «плюсе».
  3. Анод, подключенный к «минусу»,начнет отталкивать электроны, и тока в цепи не будет.

Благодаря принципу действия диода, основанному на управлении потоком электронов, такие устройства также называют ламповыми.

Конструкция прибора предполагает наличие выводов электродов, соединенных с контактными областями. У диода может быть два состояния: открытое и закрытое.

Полярность светодиодов


Полярность светодиодов
При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

Полярность моно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

Прямое включение диода

Принцип работы УЗО

К аноду диода подают положительное напряжение, на катод – отрицательное. Что получается:

  • электроны двигаются к месту p-n границы;
  • сопротивление в месте перехода уменьшается, проводимость увеличивается;
  • как следствие возникает прямой ток.

При соблюдении полярности диод будет считаться включенным прямо.


Прямое включение диода

Виды напряжения

Принцип работы синхронного генератора

Соответственно состояниям различают два типа напряжения: прямое и обратное. Главный определяющий параметр – сопротивление границы областей электродов.

Вольт-амперная характеристика (ВАХ)

Один из ответов на вопрос о том, что такое диод, – зависимость проходящего через границу p-n тока от полярности подаваемого напряжения и его величины.

Ее показывают на графике:

  • вертикальная ось – прямой и обратный ток (верхняя и нижняя часть) в Амперах;
  • горизонтальная – обратное и прямое напряжение (левая и правая сторона).

Образуется кривая, показывающая значения пропускного и обратного тока.

Полупроводниковые диоды

Как работает диод полупроводник? Его работа основана на взаимодействии заряда с электромагнитным полем. Условная конструкция:

  • элемент из полупроводникового материала;
  • сторона, принимающая электроны, – анод, проводимость p-типа;
  • катод, отдающий частицы (проводимость n-типа).

Между двумя слоями формируется граница – p-n переход.


Полупроводниковый диод

Вольт-амперная характеристика

На графике кривая имеет ветви в обеих его частях:

  1. Прямая – в правой части графика. Направлена вверх, показывает возрастание прямого тока при увеличении напряжения.
  2. Обратная – в левой стороне. Показывает рост обратного тока – меньше, чем прямого, поэтому ветвь расположена близко к оси напряжения.

Чем ближе ветвь к вертикальной оси справа и к горизонтальной слева, тем лучше выпрямительные свойства.

Предельные значения параметров

На графике каждого прибора есть момент, когда ток нарастает сильнее. Это зависит от устройства диода – разные материалы «открываются» при разных показателях. Ток возрастает, и происходит нагревание кристалла полупроводника.

Тепло либо рассеивается само по себе, либо отводится при помощи радиаторов. Если ток превышает допустимый параметр, проводник разрушается под воздействием высокой температуры. Поэтому по назначению диода, а также материалу определяют максимально допустимые параметры.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Виды полупроводниковых диодов

Полупроводниковый – широкое определение, оно описывает саму идею и общее устройство. На практике существует множество узкоспециализированных разновидностей.

Выпрямители и их свойства

Иногда нужно преобразовать ток в цепи, для чего нужен диод с выпрямительными свойствами либо диодный мост. Благодаря принципу работы, переменный ток на входе прибора даст лишь одну полуволну – в открытом состоянии.

Полупроводниковые стабилитроны

Задача этих устройств – стабилизация напряжения. Как это происходит:

  • в обычном состоянии у перехода высокое сопротивление, ток почти не проходит;
  • если наступает пробой, проходимость увеличивается, сопротивление падает.

Устройства работают в условиях пробоя и часто применяются для профилактики перенапряжения.


Диод-стабилитрон

Диод Зенера

Часто можно встретить название «диод Зенера», что это такое? Это лишь еще одно название стабилитрона – в честь ученого Кларенса Зенера, открывшего туннельный пробой. Это эффект прохождения заряженных частиц через p-n барьер, когда перекрываются зоны электродов. Открытие позволило разработать первые стабилитроны, отсюда название.

Принцип работы детекторов

На основе обычного выпрямителя можно собрать простейший амплитудный детектор. Как устроена работа диода (например, с барьером Шоттки):

  • если полупериоды выше напряжения на конденсаторе, начинается зарядка;
  • как только амплитуда становится меньше его значения, диод закрывается.

Конденсатор разряжается, происходит восстановление низкочастотного сигнала.

Светодиод

В отличие от обычного прибора, СД создают оптическое излучение при прохождении тока. Это происходит при рекомбинации носителей заряда с излучением фотонов на границе электродов. Впервые эффект был открыт в 1907 году, технология продолжает совершенствоваться до сих пор.

Особенности светодиода

Спектр оптического излучения узкий – нужный цвет изначально заложен в кристалле диода. Однако диапазон может отличаться в зависимости от состава материала-полупроводника:

  • зеленый – фосфид галлия;
  • синий – карбид кремния;
  • красный – арсенид галлия.

При этом светодиоды обладают высокой световой отдачей, спектральной чистотой, прочностью и долговечностью.


Обычные светодиоды

Туннельный

Работает на основе одноименного эффекта. При изготовлении применяют вырожденные полупроводники. Встречается в качестве усилителя.

Обращенный диод

Обладают высокими показателями обратного тока, превосходящими прямой. Отличаются низкой чувствительностью к ионизирующему излучению.

Варикап

Проще всего объяснить на примере конденсатора с переменной толщиной диэлектрического слоя. При низком напряжении на p-n переходе толщина слоя при высокой емкости мала, при высоком – слой должен увеличиваться. Для чего нужны такие диоды? Их используют как элементы с управляемой емкостью, например, в системах автонастройки частоты в радиоприборах.

Фотодиод

Устройства, в которых обратный ток возникает при попадании фотонов. По принципу действия схожи с обычным солнечным элементом.

Маркировка

Современная маркировка диодов содержит четыре элемента:

  • материал изготовления;
  • обозначение класса диода;
  • назначение или свойства;
  • номер разработки.

Например, КД202А – кремниевый (К), выпрямительный (Д) диод.

Триоды

Раньше использовались вместо транзисторов; в современной электротехнике почти не используются. Состоят из трех электродов: катода прямого либо косвенного накала, анода и сетки. В зависимости от напряжения, регулируется поток электронов, создавая эффект усилителя.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Плюсы и минусы

Полупроводниковые диоды имеют как преимущества, так и недостатки. К первым можно отнести:

  • доступность – элементы стоят недорого;
  • взаимозаменяемость – при выходе из строя легко подобрать и установить аналогичный;
  • высокая пропускная способность;
  • простой принцип работы.

Из недостатков – уязвимость к внешним воздействиям и возможные неисправности. Это могут быть:

  • обрыв перехода;
  • нарушение герметичности;
  • пробой перехода.

Однако устранить повреждения и заменить устройство несложно, поэтому минусы можно считать несущественными.

Основные неисправности диодов

Главная проблема, с которой сталкиваются при использовании диодов, – эффект пробоя. Есть несколько видов неисправности.


Пробой на графике ВАХ

Пробой p-n-перехода

При пробое происходит уменьшение сопротивления, образуется обратный ток. Различают лавинный пробой, которой сопровождается цепочкой прорывов, и полевой.

Электрический пробой

Главное в электрических пробоях – они обладают обратимой природой (состояние возвращается к нормальному). Это значит, что переход не повреждается. Это позволяет использовать пробой как основополагающий принцип работы – как в стабилитронах.

Тепловой пробой

Возникает при повышении температуры. Отличается возникновением необратимых повреждений: разрушается кристаллическая решетка полупроводника.

Несмотря на простоту конструкции, диод по-прежнему используется в современных устройствах. Найти ему альтернативу удается не всегда. Тем более продолжаются работы по технологическому совершенствованию диодов для различных задач.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Как работает диод? Применение диодов

Как работает полупроводниковый диод

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми тебе в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая типа n. На рис. 1, а дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т. е. положительным электродом, является область типа р, а катодом, т. е. отрицательным электродом, — область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода.

Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т. е. с областью типа р, а отрицательный — с катодом, т. е. с областью типа n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи пойдет ток, значение которого зависит от приложенного к нему напряжения и свойств диода/ При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу.

Встречаясь на границе областей, называемой электронно-дырочным переходом или, короче, р-n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование.

Рис. 1. Схематическое устройство и работа полупроводникового диода

Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок. В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.

Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.

А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.

001

Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом.

В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.

На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току. Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Так, например, уже при прямом напряжении Uпр = 0,5 В ток Iпр равен 50 мА (точка а на характеристике), при Uпр = 1 В он возрастает до 150 мА (точка б на характеристике), а при обратном напряжении Uобр = 100 В обратный ток Iобр не превышает 0,5 мА (500 мкА). Подсчитай, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видишь, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов.

Примерно такие вольт-амперные характеристики имеют все германиевые диоды. Вольт-амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1–0,2 В, а кремниевый при 0,5–0,6 В.

Прибор, на примере которого я рассказал тебе о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности.

Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2–4 мм2 и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р-n переход. Контактами электродов диода служат капелька индия и металлический диск (или стержень) с выводными проводниками.

Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на рис. 3, б.

Рис. 3. Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б)

Приборы заключены в цельнометаллические корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности.

Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств.

Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, — заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными диодами.

Схему простейшего выпрямителя переменного тока ты видишь на рис. 4, а. На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямленного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке

Рис. 4. Схемы однополупериодного выпрямителя



При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диод закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть выпрямление переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока.

Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутки между импульсами, поэтому никаких мерцаний света мы не заметим.

А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор большой емкости, как это показано на рис. 4, б. Заряжаясь от импульсов тока, конденсатор Сф в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на рис. 4, б сплошной волнистой линией. Но и таким, несколько приглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы.

В выпрямителе, с работой которого ты сейчас познакомился, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление.

Рис. 5 Двухполупериодный выпрямитель с сетевым трансформатором

В выпрямителе на рис. 5 четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1–2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Следи внимательно! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40 %. Именно такой выпрямитель я позже буду рекомендовать тебе для питания транзисторных конструкций.

Теперь о точечном диоде

Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на рис. 6.

Рис. 6. Схематическое устройство и внешний вид точечного диода серии Д9

Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Такой или ему подобный диод, например Д2, тебе уже знаком — я рекомендовал использовать его в твоем первом приемнике в качестве детектора.

Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм2) пластина полупроводника германия или кремния n типа и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов.

После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно-дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50 мкм2. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами.

Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р-n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В.

Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.

А теперь, чтобы лучше закрепить в памяти твое представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л и лампочки накаливания, рассчитанной на напряжение 3,5 В и ток накала 0,28 А, включи любой плоскостной диод из серии Д226 или Д7, но так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод с отрицательным выводом (рис. 7, а). Лампочка должна гореть почти так же, как если бы диода не было в цени. Измени порядок включения электродов диода в цепь на обратный (рис. 7, б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р-n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался.

Рис. 7. Опыты с плоскостным диодом

Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпр, сопротивление диода было мало и через него протекал прямой ток Iпр, значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр, равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр, который не мог накалить нить лампочки.

В этом опыте лампочка выполняла двоякую функцию. Она, во-первых, была индикатором наличия тока в цепи, а во-вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

См. также:

Электровакуумный диод — это… Что такое Электровакуумный диод?

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

ВАХ

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика электровакуумного диода имеет 3 участка:

  1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.
  2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается , где первеанс g — постоянная, зависящая от конфигурации и размеров электродов. В простейшей модели первеанс не зависит от состава и температуры катода, в действительности первеанс растёт с ростом температуры из-за неравномерного его нагрева.
  3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся в этом режиме анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана: , где  — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ:  — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление:
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Способны кратковременно выдерживать большие перегрузки (полупроводниковые «выгорают» сразу[источник не указан 1008 дней]). Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Катод и анод — единство и борьба противоположностей

Катод и анод – это две составляющие одного процесса: протекания электрического тока. Все материалы можно разделить на два типа – это проводники, в структуре которых большой избыток свободных электронов, и диэлектрики (в них свободных электронов практически нет).

Понятие электрического тока

Электрический ток – это упорядоченное перемещение заряженных элементарных частиц в структуре вещества под воздействием электромагнитного напряжения. Если приложить к проводнику постоянное напряжение, то свободные электроны, имеющие отрицательный заряд, начнут упорядоченно двигаться в сторону анода (положительно заряженного электрода) от катода (отрицательно заряженного электрода). Ток же, соответственно, будет течь в обратном направлении. А катод и анод – это два электрода, между которыми образовался перепад (разница) электромагнитного напряжения.

Проводники и диэлектрики

Проводники и диэлектрики могут быть твердыми, жидкими и газообразными веществами. Это для протекания электрического тока совсем не принципиально. При длительном приложении электромагнитного напряжении к материалу на катоде будет образовываться избыток электронов, а на аноде – его недостача. Если напряжение прилагается достаточно долго, то из структуры материала, из которого сделан анод, будут вырываться связанные электроны вместе с атомами, а сам материал начнет вступать в химическую реакцию с химически активными веществами из окружающей среды. Такой процесс носит название электролиза.

Электролиз

Катод и анод в электрохимии являются двумя полюсами приложенного к солевым растворам или расплавам постоянного электромагнитного напряжения. При возникновении тока от избытка электронов анод начинает разрушаться, т.е. сами положительно заряженные атомы вещества будут попадать в соляной раствор (окружающую среду) и переноситься на катод, где оседать в очищенном виде. Этот процесс носит название гальванического. С помощью гальваники покрывают тонким слоем цинка, меди, золота, серебра и других металлов различные изделия.

Что такое катод и каковы задачи, которые он выполняет в электролизе? Это можно понять при выполнении следующих действий: если сделать анод из бронзы или олова, то на катоде получится печатная плата, покрытая тонким слоем меди или олова (используется в радиоэлектронной промышленности). Этим же способом получают позолоченные ювелирные украшения, омедненные и даже позолоченные алюминиевые наконечники для электротехники в целях повышения электропроводности.

Ответы на вопросы о том, что такое анод и катод, при электролизе очевидны: анод в результате протекания постоянного тока через соляной раствор разрушается, а катод принимает на себя анодный материал. Даже термин такой возник в среде гальваников – «анодирование катода». Физического смысла он не несет, но фактическую суть вопроса отображает прекрасно.

Полупроводники

Полупроводники представляют собой материалы, которые в структуре не имеют свободных электронов, а атомные держатся на своих местах плохо. Если такой материал в жидком или газообразном состоянии поместить в магнитное поле, а затем дать ему затвердеть, то получится электрически структурированный полупроводник, который будет пропускать ток только в одну сторону. Из этого материала, используя вышеназванное свойство, делают диоды. Они бывают двух видов:

а) с «p-n-p» проводимостью;

б) с «n-p-n» проводимостью.

На практике эта тонкость структуры диодов значения не имеет. Важно правильно подключить в электрическую схему диод. Где анод, где катод – вопрос, которым многие озадачены. На диоде есть специальные обозначения: или А и К, или + и –. Можно подключить диод только двумя способами к электрической схеме постоянного тока. В одном случае исправный диод будет проводить ток, а в другом – не будет. Поэтому необходимо взять прибор, на котором заведомо известно, где катод, а где анод, и подключить его к диоду. Если устройство покажет наличие тока, то диод подключен правильно. Значит, катод прибора и катод диода, а также анод прибора и анод диода совпали. В противном случае нужно поменять соединения местами.

1. Если диод не пропускает ток в обе стороны, то он перегоревший, ремонту не подлежит.

2. Если наоборот, пропускает, то он пробитый. Его необходимо выбросить.

Проверяются диоды тестерами и пробниками. В диодах катод и анод жестко привязаны к их материальному исполнению в отличие от гальванических источников питания (аккумуляторов, батареек и т. п.).

Катодом в полупроводниковых элементах (диодах) электрической схемы является электрод (ножка), из которого выходит положительный (+) потенциал. Через схему он связан с отрицательным потенциалом источника питания. Значит, ток непосредственно в полупроводнике диода протекает по направлению от анода к катоду. На электрических схемах этот процесс символически так и обозначается.

Если диод одной ножкой (электродом) подключить к переменному напряжению, то на втором электроде мы получим положительную или отрицательную полусинусоиду. Если соединить два диода в мост, то будем наблюдать выпрямленный электрический практически постоянный ток.

Гальванические источники постоянного тока – аккумуляторы (батареи)

Катод и анод в этих изделиях меняются местами в зависимости от направления протекания электрического тока, потому что в одном случае к ним напряжение не приходит, а они сами за счет химической реакции служат источниками постоянного тока. Тут отрицательным электродом уже будет анод, а положительным – катод. В другом же случае в аккумуляторе происходит обычный процесс электролиза.

Когда аккумулятор разрядился и химическая реакция, которая служила источником электрического тока, прекратилась, его необходимо зарядить с помощью внешнего источника питания. Таким образом, мы запускаем процесс электролиза, т.е. восстановления первоначальных свойств гальванической батареи. На катод аккумулятора необходимо приложить уже отрицательный заряд, а на анод – положительный, тогда батарея будет заряжаться.

Таким образом, ответ на вопрос о том, как определить катод и анод в гальваническом элементе, зависит от того, заряжается он или служит источником питания электрическим током.

Вывод

Как суммирование всего вышесказанного, катод – это электрод, на котором появляется избыток электронов, а анод – это электрод, на котором появляется недостача электронов. Но плюс или минус на конкретном электроде элемента электрической схемы определяется направлением протекания электрического тока.

Анод какой заряд имеет. Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод. Электрохимия и гальваника

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Анод в электрохимии

Аноды — множественное число слова «анод»; эта форма применяется преимущественно в металлургии, где применяются аноды для гальваники, используемые для нанесения на поверхность изделия слоя металла электрохимическим способом, либо для электрорафинирования, где металл с примесями растворяется на аноде и осаждается в очищенном виде на катоде . Основное распространение получили аноды из цинка (бывают сферические, литые и катаные, чаще используются последние), никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия (применение которых сокращается из-за экологической вредности), бронзы, олова (применяются при производстве печатных плат в радиоэлектронной промышленности), сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах

Знак анода и катода

В литературе встречается различное обозначение знака анода — «+» или «-», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод — тот, где протекает окисление . При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.

В электротехнике анод — положительный электрод, ток течет от анода к катоду, электроны , соответственно, наоборот.

См. также

  • Мнемонические правила запоминания знака анода

Литература

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). — СПб. , 1890-1907.
  • Рекомендации ИЮПАК по выбору знака для величин анодного и катодного токов

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое «Анод» в других словарях:

    — (греч. anodos восходящая дорога). В гальваническом элементе, одна из двух пластинок или проволок, по которой вступает или выходит из жидкости электрический ток. Противоположность катоду. Словарь иностранных слов, вошедших в состав русского языка … Словарь иностранных слов русского языка

    анод — а, м. anode f., англ. anode <гр. anodos путь вверх, восхождение. физ. Положительно заряженный электрод. В действии таких приборов, как гальваническая батарея, полярности нет и быть не может.. <положительный и отрицательный полюс..… … Исторический словарь галлицизмов русского языка

    Отрицательный электрод Словарь русских синонимов. анод сущ., кол во синонимов: 1 электрод (10) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    анод — электровакуумного прибора; анод; отрасл. коллектор Электрод, основным назначением которого обычно является прием основного потока электронов при электрическом разряде … Политехнический терминологический толковый словарь

    анод — (устройства) электрод, через который электрический ток входит в среду, имеющую удельную проводимость, отличную от удельной проводимости анода [СТ МЭК50(151) 78] анод EN anode electrode capable of emitting positive charge… … Справочник технического переводчика

    — (от греческого anodos движение вверх, восхождение), электрод электронного или электротехнического прибора (например, электронной лампы, гальванического элемента, электролитической ванны), характеризующийся тем, что движение электронов во внешней… … Современная энциклопедия Толковый словарь Ожегова

    — (от греч. anodos движение вверх), 1) электрод электронного или ионного прибора, соединяемый с положит. полюсом источника. 2) Положит. электрод источника электрич. тока (гальванич. элемента, аккумулятора). 3) Положит. электрод электрич. дуги.… … Физическая энциклопедия

Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

Применение в электрохимии

В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

  • цинковые;
  • кадмиевые;
  • медные;
  • никелевые;
  • оловянные;
  • золотые;
  • серебряные;
  • платиновые.

Чаще всего на производстве используют цинковые аноды. Они бывают:

  • катанные;
  • литые;
  • сферические.

Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

Применение в вакуумных электронных приборах

Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

Двухэлектродные лампы — Рабочий режим. Применение диода для выпрямления переменного тока

Режим работы диода с нагрузкой графоаналитически рассчитывается так же, как и для полупроводникового диода. Однако обычно нельзя пренебрегать падением напряжения на вакуумном диоде, так как оно в зависимости от типа диода составляет единицы, десятки и даже сотни вольт.

Все сказанное о работе выпрямительных схем с полупроводниковыми диодами можно повторить для схем выпрямления с помощью вакуумных диодов. Особенность вакуумных диодов — отсутствие обратного тока. Вакуумные диоды для выпрямления переменного тока электросети (кенотроны) могут работать при высоких обратных напряжениях — сотни и тысячи вольт. Поэтому нет необходимости в последовательном соединении кенотронов.

Для кенотронов, работающих в выпрямителях, опасно короткое замыкание нагрузки. В этом случае все напряжение источника будет приложено к кенотрону и анодный ток станет недопустимо большим. Происходит перегрев катода и его разрушение. Анод также перегревается. Ухудшается вакуум за счет выделения газов из перегретых электродов. Газ ионизируется. Положительные ионы бомбардируют катод, способствуя его перегреву и разрушению.

При выпрямлении токов очень высокой частоты вредно влияет емкость анод — катод диода Са-к. Она состоит из емкости между электродами и емкости между выводными проводниками. Значение Са-к достигает единиц пикофарад у маломощных диодов. На низких частотах эта емкость шунтирующего влияния не оказывает, так как ее сопротивление составляет миллионы Ом. А на частотах в десятки мегагерц и выше сопротивление емкости становится соизмеримым с внутренним сопротивлением диода и даже меньше его. Тогда переменный ток проходит через эту емкость и выпрямляющее действие диода ухудшается.

Например, если диод имеет Ri = = 500 Ом и Са-к = 4 пФ, то при частоте 200 Гц сопротивление емкости

хс = 1/(ω Са-к) = 1012/(2π·200·4) ≈ ≈200·106 Ом = 200 МОм.

Практически через такое сопротивление ток не проходит. Зато при f = 200 МГц сопротивление хсстанет равным 200 Ом и будет сильно шунтировать диод.

Для диодов надо учитывать максимальные допустимые значения их параметров.

Если в секунду на анод попадает N электронов и каждый из них обладает энергией mv2/2, то мощность, отдаваемая электронным потоком на нагрев анода,

Ра = Nmv2/2. (16.9)

Энергию электроны получают от ускоряющего поля. Пренебрегая их начальной энергией, можно считать, что mv2/2 qua. Тогда

Ра = Nqua. (16.10)

Произведение Nq есть количество электричества, попадающее за 1 с на анод, т. е. анодный ток iа. Поэтому окончательно

Ра = iaua. (16.11)

Мощность Ра — это потерянная мощность, так как нагрев анода бесполезен и даже вреден. Принято называть Ра мощностью, выделяемой на аноде, или мощностью потерь на аноде. Не следует эту мощность считать максимальным допустимым параметром лампы, так как она может иметь самые различные значения в зависимости от анодного напряжения. Анод нагревается также за счет теплового излучения катода, но Ра есть только мощность электронной бомбардировки. Чем больше Ра, тем сильнее нагрев анода. Он может накалиться докрасна и даже расплавиться.

Максимальная допустимая мощность Pamax зависит от размеров, конструкции, материала анода и способа его охлаждения и составляет от долей ватта до многих киловатт. Чтобы анод не перегревался, должно соблюдаться условие

Pa ≤ Pamax (16.12)

При импульсном режиме мгновенная мощность, выделяемая на аноде, может быть очень большой, но средняя мощность не должна превышать Pamax.

Анодный ток диодов обычно состоит из отдельных импульсов. Максимальное допустимое значение тока для диодов с оксидным катодом обусловлено разрушением оксидного слоя. Для каждого типа диодов характерен максимальный допустимый импульс анодного тока Iamax В диодах для импульсной работы значение Iamax весьма велико, тем больше, чем меньше длительность импульсов и чем больше паузы между ними.

Пульсирующий анодный ток диодов имеет постоянную составляющую Ia ср, которую называют постоянным выпрямленным током. Важным параметром диода является максимальный допустимый постоянный выпрямленный ток Ia срmax.

При работе диода в выпрямителе в течение некоторого времени (часть периода) к диоду приложено отрицательное анодное напряжение, называемое обратным. Важным параметром является максимальное допустимое обратное напряжение Uобрmax. Обратное напряжение не должно превышать максимального допустимого:

UобрUобрmax (16.13)

Если Uобр больше Uобрmax, то возможен пробой изоляции, электростатическая эмиссия из анода и выход диода из строя. Кенотроны для высоковольтных выпрямителей имеют Uобрmax до десятков киловольт, маломощные диоды — не более 500 В.

 

Электровакуумный диод | Основы электроакустики

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц

Диод — двухэлектродный прибор, состоящий из катода и анода. Одна группа диодов предназначена для детектирования, т.е. для выделения напряжения низкой частоты из модулированных высокочастотных колебаний. Они выпускаются с катодами косвенного накала и имеют электроды небольшого размера, рассчитанные на малые анодные токи, малую допустимую мощность потерь на аноде и сравнительно невысокое обратное напряжение. Вторая группа диодов (диоды большой мощности) предназначена для выпрямления переменного напряжения, в основном, тока промышленной частоты.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).
Принцип работы При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает. Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка ?1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).
Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при U_a = 0 очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.
2. Участок закона степени трёх вторых.2}} — универсальная термоэлектронная постоянная Зоммерфельда.
ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.
К основным параметрам электровакуумного диода относятся:

  •     Крутизна ВАХ: S={dI_a \over dU_a} — изменение анодного тока в мА на 1 В изменения напряжения.
  •     Дифференциальное сопротивление: R_i={1 \over S}
  •     Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  •     Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  •     Максимально допустимая рассеиваемая мощность.
  • Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Они выпускаются как с катодами прямого, так и подогревного (косвенного) накала и делятся на два класса: низковольтные и высоковольтные. К маломощным высокочастотным диодам, предназначенным для детектирования высокочастотных колебаний, относятся диоды типа 6Х6С, 6Х2П, 6Х7Б, а также диоды в комбинации с триодами и пентодами: 1Б1П, 1Б2П, 6Б2П, 6Б8С, 6Г2 и 6Г7. К кенотронам, предназначенным для выпрямления напряжения промышленной частоты в выпрямителях радиоаппаратуры, относятся: 5Ц3С, 5Ц4С, 5Ц9С, 6Ц4П и 6Ц5С.

Обозначения диодов

  • Первый элемент — число, обозначающее (округленно) напряжение накала.
  • Второй элемент — буква, обозначающая тип лампы: Д — одинарные диоды. Х — двойные диоды. Ц — кенотроны (назависимо от числа анодов).
  • Третий элемент — число, указывающее порядковый номер типа прибора с одинаковыми остальными элементами обозначения.
  • Четвертый элемент — буква, указывающая на конструктивное оформление. Лампы в металлическом баллоне этой буквы не имеют. С — стеклянный баллон; П- пальчиковая лампа; Б — миниатюрная лампа диаметром 6 мм; Ж — лампы типа «желудь», специально для УКВ; Л — лампы с замковым цоколем, устраняющим возможность выпадения из гнезда при тряске.

Вакуумный диод

В В 1904 году сэр Джон Эмброуз Флеминг изобрел первую вакуумную лампу. диод. Его еще называют клапаном Флеминга или термоэлектронной трубкой. Вакуумный диод — это электронное устройство, которое позволяет электрическому ток в одном направлении (от катода к аноду) и блокирует электрический ток в другом направлении (от анода к катоду).

Два электрода вакуумного диода


Вакуумный диод — это простейшая форма вакуумной лампы. Он состоит из двух электродов, катода и анода или пластины. В катод излучает свободный электроны. Следовательно, он называется эмиттером. Анод собирает свободные электроны. Следовательно, он называется коллектором.

Катод и анод заключены в пустой стеклянный колпак.Анод представляет собой полый цилиндр из молибдена или никеля. а катод представляет собой никелевый цилиндр, покрытый стронцием и оксид бария. Анод окружает катод. Между катод и анод пустое пространство, через которое свободные электроны или электрический ток.

Что такое электрод?


Электрод является проводником, по которому свободные электроны или электрические текущий уходит или входит.В вакуумном диоде катодом является электрод или проводник, из которого свободны электроны выбрасывается в вакуум. С другой стороны, анод — это электрод, который собирает свободные электроны, испускаемые катод. Другими словами, свободные электроны покидают катод и войти в анод.

Электрон эмиссия зависит от количества приложенного тепла и рабочая функция


Количество свободных электронов, испускаемых катодом, зависит от от двух факторов: количества приложенного тепла и работы выхода.

Если прикладывается больше тепла, больше свободных электронов испускается. Точно так же, если применяется меньшее количество тепла, меньше испускается количество свободных электронов.

минимальное количество энергии, необходимое для удаления свободных электронов из металла называется работой выхода. Металлы с низкой работой функция потребует меньшего количества тепловой энергии для выделения свободные электроны.С другой стороны, металлы с высокой работой функция потребует большого количества энергии испускать свободные электроны.

Следовательно, выбор хорошего материала увеличит эмиссию электронов эффективность. Наиболее часто используемые термоэлектронные эмиттеры включают: катод с оксидным покрытием, вольфрам и торированный вольфрам.

Напрямую и катод косвенного нагрева


Когда катод косвенно или напрямую нагревается, свободные электроны излучаются из него.

В катоде с прямым нагревом подводится тепловая энергия. прямо на катод. Следовательно, небольшое количество тепловой энергии достаточно, чтобы испустить свободные электроны с катода. Когда тепловая энергия подается непосредственно на катод, большое количество свободных электронов набирает достаточную энергию и разрывает связь с катодом.Свободные электроны, которые разорвать связь с катодом, выбрасываются в вакуум. Эти испущенные свободные электроны притягиваются к анод.

В катод косвенного нагрева, электрическое соединение не между катодом и нагревателем. Следовательно, катод не нагревается напрямую. Тепловая энергия подается в нагреватель, и нагреватель будет передавать свою тепловую энергию катод.Когда тепловая энергия, подаваемая на катод, увеличивается до желаемый уровень, свободные электроны в катоде получают достаточно энергии и разорвать связь с катодом. В свободные электроны, которые разрывают связь с катодом, выбрасывается в вакуум. Эти испущенные свободные электроны привлечено к аноду.

Вакуум диод с прямым напряжением


Когда тепло поступает в нагреватель, он получает тепловую энергию.Этот тепловая энергия передается катоду. Когда бесплатно электроны в катоде набирают достаточную энергию, они ломаются соединение с катодом и переходит в вакуум. Свобода электронам в вакууме требуется достаточная кинетическая энергия для добраться до анода.

Если напряжение подается на вакуумный диод таким образом, чтобы что анод подключен к положительному выводу, а катод подключен к отрицательной клемме (анод более положительный с относительно катода) свободные электроны в вакууме получает достаточно кинетической энергии, чтобы достичь анода.

ср знайте, что если две противоположно заряженные частицы расположены близко друг к другу они привлекаются. В этом случае анод положительно заряженные и свободные электроны, испускаемые катодом заряжены отрицательно. Следовательно, свободные электроны, которые получают достаточно кинетический энергия будет двигаться или притягиваться к аноду. Эти свободные электроны переносят электрический ток при движении от катод к аноду.

Если положительное напряжение, приложенное к пластине или аноду, увеличилось, количество свободных электронов, привлеченных к анод тоже увеличен. Таким образом, электрический ток в вакуумный диод увеличивается с увеличением анода или пластины Напряжение.

Вакуум диод с обратным напряжением

Если напряжение подается на вакуумный диод таким образом, чтобы анод подключен к отрицательной клемме, а катод подключен к положительной клемме (анод более отрицательный относительно катода) свободные электроны в вакууме получает достаточно кинетической энергии, чтобы достичь анода.Однако анод отталкивает свободные электроны, которые пытаются двигаться к нему.

ср знайте, что если две одинаковые заряженные частицы размещенные близко друг к другу, они отталкиваются. В этом В этом случае анод заряжен отрицательно, а свободные электроны испускаемые катодом, также имеют отрицательный заряд. Следовательно, анод отталкивает свободные электроны, испускаемые катод.Следовательно, в вакууме не течет электрический ток. диод.

Вакуум диод с участием нулевое напряжение

Если на вакуумный диод, анод или пластину не подается напряжение действует как нейтральный. Он не привлекает и не отталкивает свободных электроны, испускаемые катодом. Следовательно, свободные электроны испускаемые катодом, не перемещаются и не притягиваются к анод.

Следовательно, в вакуумном диоде отсутствует электрический ток. Однако большое количество свободных электронов, эмитируемых катодом, накапливается в одном месте возле катода и образует облако свободные электроны. Это облако свободных электронов возле катода называется пространственным зарядом.

Заключение


Следовательно, вакуумный диод пропускает электрический ток от катода к анод и не позволяйте электрическому току от анода к катод.Это одностороннее направление электрического тока позволяет вакуумному диоду действовать как переключатель. Если анод или пластина положительна по отношению к катоду, вакуумный диод действовать как замкнутый переключатель. С другой стороны, если анод отрицательный по отношению к катоду, действует как открытый выключатель.


% PDF-1.4 % 6 0 obj > эндобдж xref 6 180 0000000016 00000 н. 0000004376 00000 п. 0000004453 00000 п. 0000004632 00000 н. 0000006128 00000 н. 0000006423 00000 н. 0000006687 00000 н. 0000006822 00000 н. 0000007108 00000 н. 0000007608 00000 н. 0000008307 00000 н. 0000008793 00000 н. 0000008925 00000 н. 0000009305 00000 н. 0000009353 00000 п. 0000009401 00000 п. 0000009449 00000 н. 0000009497 00000 н. 0000009545 00000 н. 0000009593 00000 н. 0000009641 00000 п. 0000009689 00000 н. 0000009737 00000 н. 0000009785 00000 п. 0000009833 00000 п. 0000009881 00000 н. 0000009929 00000 н. 0000009977 00000 н. 0000010025 00000 п. 0000010073 00000 п. 0000013757 00000 п. 0000013896 00000 п. 0000014059 00000 п. 0000014193 00000 п. 0000017681 00000 п. 0000021554 00000 п. 0000024729 00000 п. 0000028011 00000 п. 0000031403 00000 п. 0000031860 00000 п. 0000032198 00000 п. 0000035475 00000 п. 0000039125 00000 п. 0000039836 00000 п. 0000040670 00000 п. 0000041468 00000 п. 0000042233 00000 п. 0000043058 00000 п. 0000043805 00000 п. 0000044618 00000 п. 0000045365 00000 п. 0000046151 00000 п. 0000046967 00000 п. 0000047801 00000 п. 0000048635 00000 п. 0000049424 00000 п. 0000049964 00000 н. 0000050790 00000 н. 0000051642 00000 п. 0000051744 00000 п. 0000051836 00000 п. 0000064225 00000 п. 0000064499 00000 н. 0000064721 00000 п. 0000065026 00000 п. 0000075317 00000 п. 0000075580 00000 п. 0000088528 00000 п. 0000088801 00000 п. 0000088886 00000 п. 0000101411 00000 н. 0000101679 00000 п. 0000101887 00000 н. 0000102173 00000 п. 0000117542 00000 н. 0000117797 00000 н. 0000130752 00000 п. 0000131015 00000 н. 0000149558 00000 н. 0000149826 00000 н. 0000171069 00000 н. 0000171330 00000 н. 0000182373 00000 н. 0000182632 00000 н. 0000182722 00000 н. 0000194652 00000 н. 0000194920 00000 н. 0000195137 00000 н. 0000195435 00000 н. 0000220375 00000 н. 0000220630 00000 н. 0000242216 00000 н. 0000242484 00000 н. 0000242573 00000 н. 0000256035 00000 н. 0000256298 00000 н. 0000256511 00000 н. 0000256809 00000 н. 0000276729 00000 н. 0000276980 00000 н. 0000295446 00000 н. 0000296379 00000 н. 0000298014 00000 н. 0000299830 00000 н. 0000301620 00000 н. 0000303246 00000 н. 0000304833 00000 н. 0000306547 00000 н. 0000308342 00000 п. 0000310308 00000 н. 0000312330 00000 н. 0000328905 00000 н. 0000330947 00000 н. 0000332763 00000 н. 0000334012 00000 н. 0000334533 00000 н. 0000338405 00000 н. 0000339433 00000 н. 0000340790 00000 н. 0000342696 00000 н. 0000344879 00000 н. 0000347030 00000 п. 0000407227 00000 н. 0000409412 00000 н. 0000411737 00000 н. 0000413885 00000 н. 0000415481 00000 н. 0000417653 00000 н. 0000419820 00000 н. 0000422067 00000 н. 0000424383 00000 п. 0000426688 00000 н. 0000428840 00000 н. 0000454683 00000 н. 0000456722 00000 н. 0000458787 00000 н. 0000461001 00000 н. 0000463031 00000 н. 0000464408 00000 п. 0000466395 00000 н. 0000468529 00000 н. 0000470677 00000 н. 0000472641 00000 п. 0000474286 00000 н. 0000488516 00000 н. 0000489677 00000 н. 0000490811 00000 н. 0000492557 00000 н. 0000494446 00000 н. 0000496514 00000 н. 0000498753 00000 н. 0000500717 00000 н. 0000502076 00000 н. 0000504173 00000 н. 0000506427 00000 н. 0000509532 00000 н. 0000511803 00000 н. 0000513751 00000 н. 0000515920 00000 н. 0000518262 00000 н. 0000520569 00000 н. 0000522832 00000 н. 0000525019 00000 н. 0000527045 00000 н. 0000528634 00000 н. 0000530717 00000 н. 0000556400 00000 н. 0000558596 00000 н. 0000560811 00000 н. 0000563039 00000 н. 0000565269 00000 н. 0000567247 00000 н. 0000568615 00000 н. 0000569715 00000 н. 0000576249 00000 н. 0000611735 00000 н. 0000648593 00000 н. 0000669992 00000 н. 0000676695 00000 н. 0000003896 00000 н. трейлер ] / Назад 739146 >> startxref 0 %% EOF 185 0 объект > поток h ބ K (a3 # Rn1I3 # PlJM \ ۂ ,, d64bC) Bj6n% ir %% dBz:

Что такое диод? Подробное руководство по диоду.

Сегодня в этом посте я подробно расскажу о диоде, включая определение диода, символ, работу, характеристики, типы и приложения.

Давайте начнем.

Определение:

Диод — это электрическое устройство, которое позволяет току течь только в одном направлении и показывает максимальное сопротивление для тока, протекающего в противоположном направлении. Диод имеет две клеммы, называемые анодом и катодом. Анод — это положительный вывод, а катод — отрицательный вывод, и ток будет течь только от вывода анода к выводу катода.

Символ:

На следующем рисунке показан электрический символ диода.

Рабочие:

Работа диода зависит от взаимодействия между P- и N-переходами. P-переход — это область с высокой концентрацией дырок, а N-переход — это область с высокой концентрацией электронов.

Чтобы понять работу диода, возьмем три следующих условия.

A: диод с прямым смещением:

Состояние прямого смещения возникает, когда материал P-типа диода соединен с положительной клеммой источника, а материал N-типа соединен с отрицательной клеммой источника.

Сначала, когда мы увеличиваем напряжение от нуля, через диод не будет протекать ток из-за наличия потенциального барьера. Однако, когда приложенное напряжение превышает прямой потенциальный барьер, диод будет вести себя как короткозамкнутый путь, и протеканию тока будут препятствовать внешние резисторы.

Диод с обратным смещением:

Это состояние возникает, когда материал P-типа диода подключен к отрицательной клемме источника, а материал N-типа подключен к положительной клемме источника.

В этом состоянии дырки, присутствующие в P-области, будут смещаться дальше от обедненной области из-за электростатического притяжения. В результате останется больше открытых отрицательных ионов. В этом случае в цепи не будет протекания тока.

Несмещенный диод на PN-переходе:

В несмещенных условиях не будет подаваться напряжение от внешнего источника энергии. Когда P- и N-переходы присоединены, это приводит к потоку электронов от материала n-типа к материалу p-типа и потоку дырок от материала p-типа к материалу n-типа.

Этот поток носителей заряда будет генерировать третью область, где носителей заряда нет, эта третья область называется областью истощения.

Характеристики:

Характеристики диодов можно продемонстрировать с помощью вольт-амперной характеристики. Это означает, что для определенного значения тока мы будем измерять соответствующее напряжение на нем. Резисторы показывают линейное соотношение V-I, однако в случае диодов это соотношение иное.На следующем рисунке показана кривая V-I диода.

Диод работает в трех различных областях в зависимости от приложенного к нему напряжения.

  • Область прямого смещения: Когда на диод подается положительное напряжение, диод включается и через него проходит ток. Для протекания тока через диод в области прямого смещения положительное напряжение должно превышать прямое напряжение Vf.
  • Область обратного смещения: В этой области диод будет выключен, и приложенное напряжение будет меньше прямого напряжения Vf и больше напряжения пробоя Vbr.В этом состоянии устройство показывает максимальное сопротивление для тока, однако через диод будет протекать очень небольшое количество тока, называемого током обратного насыщения.
  • Область пробоя: Когда на диод подается очень большое отрицательное напряжение, это позволяет току течь в обратном направлении от катода к аноду. Эта область называется областью пробоя.

Типы:

Диоды делятся на следующие типы.

Стабилитроны:
Стабилитроны

— это сильно легированные полупроводниковые приборы, которые проводят в условиях обратного смещения. Они также известны как диоды обратного пробоя и имеют напряжение пробоя ниже 5 В. Из-за наличия сильно легированного полупроводникового материала стабилитрон представляет собой очень тонкую обедненную область для увеличения напряженности электрического поля.

Фотодиоды:
Фотодиоды

идеально подходят для солнечных батарей и приложений оптической связи, потому что они могут воспринимать свет и в основном упакованы в материал, который позволяет свету проходить через него.Ряд фотодиодов может быть встроен в одно устройство либо в виде двумерной матрицы, либо в виде линейной матрицы.

Лавинные диоды:

Лавинные диоды похожи на стабилитроны с одним отличием, то есть оба имеют температурный коэффициент разной полярности. Эти диоды начинают проводить в обратном направлении, когда напряжение обратного смещения превышает напряжение пробоя. При определенном обратном напряжении эти диоды выходят из строя, но не разрушаются.

Кристаллические диоды:

Это диоды с точечным контактом.Они содержат полупроводниковый кристаллический материал для катода, а анод состоит из тонкого металла. Эти диоды также называются кошачьими усами-диодами, и их нелегко найти на рынке.

Светодиодные диоды:
Светодиодные диоды

содержат кристаллическое вещество, которое может излучать свет разных цветов, включая оранжевый, красный, зеленый и синий, в зависимости от кристаллического вещества, используемого в диоде. Эти диоды широко используются в сигнальных приложениях и называются устройствами с низким КПД.

PIN диоды:
PIN-диоды

широко используются в силовой электронике, поскольку они могут выдерживать высокие напряжения. PIN-диод содержит структуру p-типа / внутреннего / n-типа из-за нелегированного центрального слоя. Их часто используют в качестве аттенюаторов и переключателей частоты.

Приложения:

Диоды используются в следующих приложениях.

  • Используется как ограничитель формы сигнала
  • Используется для управления протеканием тока
  • Встроенный для демодуляции амплитудного сигнала
  • Используется для измерения температуры
  • Используется в конструкции выпрямителей для преобразования сигнала переменного тока в сигнал постоянного тока

Надеюсь, эта статья оказалась для вас полезной.Если у вас есть вопросы, вы можете оставить свой комментарий в разделе ниже. Я хотел бы помочь вам как можно лучше. Спасибо, что прочитали статью.

анодно-катодный диод, анодно-катодный диод Поставщики и производители на Alibaba.com

$ 0,02- $ 0,07 / шт.

10000 шт. (Минимальный заказ)

Красный и чистый зеленый общий катод / анод 3 ножки Двухцветный светодиодный диод 10 мм Технические характеристики : Красный и чистый зеленый общий катод / анод 3 ножки 10-миллиметровый двухцветный светодиод 1.Материал микросхемы: InGaN / Gaasp 2. Форма: круглый светодиод, овальный светодиод, соломенная шляпа, светодиодный шлем, квадратный светодиод, светодиод с плоским верхом, светодиодный индикатор, вогнутый светодиод, прямоугольный светодиод 3. Доступный размер: 3 мм, 5 мм, 8 мм, 10 мм 4.Тип линз: прозрачная вода, прозрачный цвет, рассеянный цвет 5. Излучаемый цвет: красный, белый, желтый, оранжевый, желто-зеленый, зеленый, синий 6. Доступны разные углы наклона 7. Низкое энергопотребление, высокая интенсивность, равномерное освещение 8 .Твердотельный, устойчивый к ударам и вибрации 9. Значительное снижение затрат на электроэнергию 10. Отсутствие радиочастотных помех 11. Не требует обслуживания, простая установка 12.Длительный срок службы 100000 + часов 13. Превосходная защита от электростатических разрядов: энергосберегающая лампа, светодиодный чип, диодный чип 3 мм / 5 мм / 8 мм / 10 мм, материал чипа InGaN / GaAsp, круглый светодиод, овальный светодиод, светодиод в соломенной шляпе, светодиодный индикатор для шлема, квадратный светодиод, светодиод с плоским верхом, светодиодная пуля, вогнутый светодиод, прямоугольный светодиод другие цвета красный, зеленый, желтый, синий, белый, теплый белый, холодный белый, двухцветный, rgb и т. д. Доступный угол 60,90,120,140,160,175 градусов Доступный размер 3 мм, 5 мм, 8 мм, 10 мм , печатная плата, компьютер, монитор, портативное оборудование, здание проекта, индикатор состояния, телефон, светофоры и автомобильные, буквенное освещение преимущества нашей компании опыт технического персонала, профессиональное производство светодиодов, быстрая доставка, международное одобрение, превосходная защита SED и т. д. Преимущество нашего продукта: сырье высшего качества, низкое энергопотребление, отличная производительность, хорошее обслуживание, возможность небольшого заказа, большой заказ с бесплатной доставкой экспресс-чипом Epistar, Cree, Bridgelux, Epiled, Huga, Genesis Photonics Фото продукта s show: Рабочий процесс: Применение Применение: уличный фонарь, фонари, автомобильный экстерьер, вывески с боковым освещением, декоративные, освещение бухты, рекламные вывески, монтажная плата, компьютер, монитор, переносное оборудование, проектное здание, индикатор состояния, телефон, трафик сигнальные огни и автомобильные, буквенное освещение и т. д. Сертификат: упаковка и упаковка; Доставка на наши рынки & amp; оплата и упаковка: Наша компания: Как заказатьСвяжитесь с нами: Свяжитесь с нами:

ESD Protection Diode, Dual Common Anode

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / Название (NZL5V6AXV3T1 — Диод для защиты от электростатических разрядов, двойной общий анод) >> эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf

  • ON Semiconductor
  • NZL5V6AXV3T1 — Диод для защиты от электростатического разряда, двойной общий анод
  • Эти двойные монолитные кремниевые диоды защиты от электростатических разрядов предназначены для использование в оборудовании, чувствительном к напряжению и электростатическому разряду, например, в компьютерах, принтеры, бизнес-машины, системы связи, медицинские оборудование и другие приложения.Их общий анод с двойным переходом конструкция защищает две отдельные линии, используя только одну упаковку. Эти устройства идеально подходят для ситуаций, когда пространство на плате ограничено.
  • 2018-10-15T14: 39: 47-07: 00BroadVision, Inc.2020-10-05T11: 35: 55 + 02: 002020-10-05T11: 35: 55 + 02: 00Acrobat Distiller 18.0 (Windows) uuid: ec091b8c- b762-41a1-8d1a-dc402b665e29uuid: 93e9b2e0-deb2-4f73-b75f-3887a9541594 Распечатать конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > транслировать HlUn6GҼE4 $ ID 室 (w (Ju3gfΜ6b

    Произошла ошибка при установке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Анод / Катод / Диод Том 3 | SKELLUM

    Анод / Катод / Диод Vol.3 | СКЕЛЛУМ ••• показывай меньше

    Получайте свежие музыкальные рекомендации, которые будут приходить на ваш почтовый ящик каждую пятницу.

    Анод / Катод / Диод Том 3

    пользователя СКЕЛЛУМ

    • Цифровой альбом

      потоковое + скачать

      Включает высококачественную загрузку в форматах MP3, FLAC и др.Платные сторонники также получают неограниченное количество потоковых трансляций через бесплатное приложение Bandcamp.

      Можно приобрести с подарочной картой

      Купить цифровой альбом
      Отправить как подарок

    • Поделиться / Встроить

    кредитов

    выпущено 13 апреля 2020 г.

    лицензия

    все права защищены

    теги

    Если вам нравится SKELLUM, вам также могут понравиться:

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.