Диод характеристики: 231, 232, 233, 234, d231, d232, d233, d234 , ,

Содержание

Характеристики и параметры выпрямительных и универсальных диодов

Характеристики и параметры выпрямительных и универсальных диодов

 

Выпрямительные диоды служат для выпрямления переменного тока низкой частоты. В основе выпрямительных свойств этих диодов лежит принцип односторонней проводимости электронно-дырочных р-и-переходов.

Универсальные диоды используют в различной радиоэлектрон­ной аппаратуре в качестве выпрямителей переменного тока высоких и низких частот, умножителей и преобразователей частоты, детекто­ров больших и малых сигналов и т. д. Диапазон рабочих токов и напряжений выпрямительных и уни­версальных диодов очень широк, поэтому они выпускаются как с точечным так и плоскостным р-n-переходом в структуре полупроводника с площадями от десятых долей квад­ратного миллиметра до несколь­ких квадратных сантиметров. Обычно в универсальных диодах используются переходы с малыми площадями и емкостями, но с от­носительно высокими значениями прямых токов и обратных напря­жений.

Этим требованиям удовлет­воряют точечные, микросплавные плоскостные и мезапланарные дио­ды. Характеристики и параметры универсальных диодов те же, что и у выпрямительных диодов.

Вольтамперная характеристи­ка (ВАХ) выпрямительных диодов выражает зависимость тока, про­ходящего через диод, от значения и полярности приложенного к нему постоянного напряжения Прямая ветвь характеристики  показывает зависи­мость тока через диод при прямой пропускной полярности приложен­ного напряжения. Сила прямого тока  экспоненциаль­но зависит от приложенного к диоду прямого напряжения и может достигать больших значений при малом (порядка 0,3 — 1 В) падении напряжения на диоде. 

Обратная ветвь характеристики  соответствует не­проводящему направлению тока через диод при обратной полярно­сти приложенного к диоду напряжения. Обратный ток (участок. ОД) незначительно зависит от приложенного обратного напряжения. При относительно большом обратном напряжении (точка В на характе­ристике) наступает электрический пробой р-n-перехода, при кото­ром быстро увеличивается обратный ток, что может привести к теп­ловому пробою и повреждению диода. При повышении температуры возрастут тепловой ток и ток генерации носителей зарядов в пере­ходе, что приведет к увеличению прямого и обратного токов и сме­щению характеристик диода.

Свойства и взаимозаменяемость диодов оценивают по их пара­метрам. К основным параметрам относят токи и напряжения, свя­занные с ВАХ Диоды применяют в цепях как переменного, так и постоянного тока. Поэтому для оценки свойств диодов наряду с параметрами на постоянном токе пользуются дифференциальными параметрами, ха­рактеризующими их работу на переменном токе.

Выпрямленный (прямой) ток Iпр представляет собой ток (сред­нее значение за период), проходящий через диод, при котором обес­печивается его надежная и длительная работа. Сила этого тока ог­раничивается разогревом или максимальной мощностью Рмакс. Пре­вышение прямого тока ведет к тепловому пробою и повреждению диода.

  • Прямое падение напряжения UПр.Ср — среднее значение за пери­од на диоде при прохождении через него допустимого прямого тока.
  • Допустимое обратное напряжение U0бр —среднее значение за период, при котором обеспечивается надежная и длительная работа диода. Превышение обратного напряжения приводит к пробою и вы­ходу диодов из строя. При повышении температуры значения об-ратного напряжения и прямого тока снижаются.
  • Обратный ток Iобр — среднее значение за период обратного то­ка при допустимом Uобр. Чем меньше обратный ток, тем лучше

Вы­прямительные свойства диода. Повышение температуры на каждые 10 °С приводит к увеличению обратного тока у германиевых « крем­ниевых диодов, в 1,5 — 2 раза и более.

Максимальная постоянная, или средняя за период мощность Pмакс, рассеиваемая диодом, при которой диод может длительно ра­ботать, не изменяя своих параметров. Эта мощность складывается из суммы произведений токов и напряжений при прямом и обрат­ном смещениях перехода, т. е. за положительный и отрицательный полупериоды переменного тока. Для приборов большой мощности, работающих с хорошим теплоотводом, Pмакс=(Tп.макс — Тк)/Rпк. Для приборов малой мощности, работающих без теплоотвода,

Pмакс = (Tп.макс — Т с) /Rп.с.

Максимальная температура перехода Гп.макс зависит от мате­риала (ширины запрещенной зоны) полупроводника и степени его легирования, т. е. от удельного сопротивления области р-n-перехода — базы. Диапазон Гп.макс для германия лежит в пределах 80 — 110°С, а для кремния 150 — 220 °С.

Тепловое сопротивление Rп.к между переходом и корпусом оп­ределяется температурным перепадом между переходом Тпи кор­пусом Tк и средней выделяемой в переходе мощностью Ра и состав­ляет 1 — 3°С/Вт: Ra.K=(Ta — TK)/Pa. Тепловое сопротивление Rn c между переходом и окружающей средой зависит от температурного перепада между переходом Тп и окружающей средой Тс. Поскольку практически RПK<RK с, то Rn с определяется тепловым сопротивлением между корпусом при­бора и окружающей средой- Rnc=(Ta — Tc)/Pn=Rn K+RK c.

Для обычных широко распространенных корпусов Ra c=0,2 — 0,4 °С/мВт.

Предельный режим использования диодов характеризуют мак­симально допустимое обратное напряжение UОбр макс, максимальный выпрямительный ток IПр макс и максимальная темпера­тура перехода ТПмакс С повышением частоты переменного напряжения, подводимого к диоду, ухудшаются его выпрямительные свойства. Поэтому для определения свойств выпрямительных диодов обычно оговаривается диапазон рабочих частот Дf или максимальная частота выпрямле­ния fмакс На частотах, больших fмакс, не успевают скомпенсироваться накопленные за время прямого полупериода неосновные носите­ли заряда в базе, поэтому при обратном полупериоде выпрямляемо­го напряжения переход некоторое время остается прямосмещенным (т е теряет свои выпрямительные свойства). Это свойство прояв­ляется тем значительнее, чем больше импульс прямого тока или вы­ше частота подводимого переменного напряжения Кроме того, на высоких частотах начинает проявляться шунтирующее действие барьерной и диффузионной емкостей p-n-перехода, снижающих его выпрямительные свойства

При расчете режима выпрямителей используются статическое со­противление постоянному току и дифференциальное сопротивление диодов переменному току

  • Дифференциальное сопротивление переменному току rдиф=dU/dI или rДиф=ДU/ДI определяет изменение тока через диод при изменении напряжения вблизи выбранной рабочей точки на харак­теристике диода. При прямом включении напряжения rдиф Пр=0,026/ /IПр и токе IПр>10 мА оно составляет несколько омов При под­ключении обратного напряжения rДИф обр велико (от десятков ки-лоомов до нескольких мегаомов).
  • Статическое
    сопротивление диода постоянному току гпрд = UПр/Iпр, rобр д = Uобр/Iобр В Области прямых токов rПр д>rдиф пр, а в области обратных r0бр д<rдифобр Поскольку электрическое со­противление p-n-перехода в прямом направлении меньше, чем в об­ратном, диод обладает односторонней проводимостью и использует­ся для выпрямления переменного тока

Емкости диодов оказывают существенное влияние на их работу на высоких частотах и в импульсных режимах. В паспортных дан­ных диодов обычно приводится общая емкость диода Сд, которая помимо барьерной и диффузионной включает емкость корпуса при­бора Эту емкость измеряют между внешними токоотводами диода при заданных обратном напряжении смещения и частоте тока

Светоизлучающие диоды: Параметры светоизлучающих диодов

 

Свойства и эффективность работы светодиода оцениваются совокупностью электрических, световых и эксплуатационных характеристик. Основными из них являются мощность и яркость излучения, эффективность преобразования электрической энергии в световую, вольт-амперные, спектральные, динамические характеристики, пространственное распределение излучения и др. (таб. 2.9-1).

 

Сила света (\(I\)), яркость (\(L\)) и мощность излучения (\(P_{изл}\)). В оптоэлектронике для описания световых излучений используется несколько различных характеристик. Эти характеристики могут описывать энергетические параметры излучений (

энергетические характеристики) и их фотометрические параметры (фотометрические характеристики).

Сила света (\(I\)) — это отношение светового потока, распространяющегося от источника в рассматриваемом направлении внутри малого телесного угла, к этому телесному углу. Фотометрическая сила света (\(I_{\nu}\)) измеряется в канделах [кд], она является основной фотометрической единицей системы СИ. Существует специальный эталон, задающий силу света величиной в одну канделу. В системе энергетических характеристик используется

энергетическая сила света (сила излучения) (\(I_e\)) , измеряемая в ваттах на стерадиан [Вт/ср].

Световой поток (\(\Phi\)) — это произведение силы света на телесный угол, в котором распространяется поток. Фотометрической единицей светового потока (\(\Phi_{\nu}\)) является люмен [лм] — поток внутри телесного угла в один стерадиан при силе света в одну канделу. Соответствующие энергетические характеристики — поток (\(\Phi_e\)) или мощность излучения (\(P_{изл}\), \(P_e\)), измеряемые в ваттах [Вт].

Яркость (\(L\)) — отношение светового потока, проходящего в рассматриваемом направлении в пределах малого телесного угла через малый участок поверхности, к произведению этого телесного угла, площади участка и косинуса угла между рассматриваемым направлением и нормалью к плоскости участка. Для большинства светоизлучающих диодов данное определение может быть трансформировано следующим образом: яркость — это величина, равная отношению силы света светодиода к площади светящейся поверхности. Фотометрическая яркость (\(L_{\nu}\)) измеряется в канделах на метр квадратный [кд/м2], а энергетическая яркость (\(L_e\)) — в ваттах на метр квадратный стерадиан [Вт/(мср)]. В ряде случаев яркость не может служить определяющим параметром, например, для светодиодов с оптическими системами, изменяющими площадь наблюдаемых излучающих поверхностей. В этом случае более объективным параметром будет являться сила света.

Световая отдача (\(\eta\)) и квантовый выход (\(\eta_к\)). Световая отдача (\(\eta\)) полупроводниковых светоизлучающих диодов определяется как отношение светового потока, испускаемого диодом, к подводимой к нему электрической мощности (световая отдача обычно выражается в люменах на ватт). Часто используют другую характеристику — квантовую эффективность или квантовый выход (\(\eta_к\)), которая определяется как отношение числа излучаемых фотонов к числу электронов, проходящих через \(p\)-\(n\)-переход (выражается в процентах).

Время нарастания (\(t_{нар изл}\)) и время спада излучения (\(t_{сп изл}\)). Временные параметры нарастания и спада излучения характеризуют инерционные свойства светодиода. Они определяются как период времени после включения/выключения, в течение которого мощность излучения светодиода изменяется от 0,1 до 0,9 (или наоборот) максимального значения.

 

Таб. 2.9-1. Специальные параметры полупроводниковых светоизлучающих диодов

 

 

< Предыдущая   Следующая >

Полупроводниковые диоды — Пособие по электротехнике

            Полупроводниковым диодом называется электро преобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода.

            Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 2.2.

Рис. 2.2. Схема структуры полупроводникового диода (а)

и его графическое обозначение (б)

            Буквами  p  и  n  обозначены слои полупроводника с проводимостями соответственно  p-типа  и  n-типа. В контактирующих слоях полупроводника (область pn-перехода на рис. 2.2) имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n. В итоге в приграничных областях слоя p и слоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.

            Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют некомпенсированные объемные заряды, создающие электрическое поле с напряженностью Е. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n. Таким образом, в зависимости от полярности проходящего через диод тока, проводимость диода существенно изменяется, приводя к изменению величину проходящего тока.

            Основные характеристики полупроводникового диода представляются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика – это зависимость тока i, протекающего через диод, от напряжения u, приложенного к диоду. Вольт-амперной характеристикой называют и график этой зависимости (рис. 2.3).

Рис. 2.3. Вольт-амперная характеристика и основные параметры полупроводникового диода

Диоды обычно характеризуются следующими параметрами (рис. 2.3):

1.     обратный ток при некоторой величине обратного напряжения  Iобр, мкА;

2.      падение напряжения на диоде при некотором значении прямого тока через диод Uпр, в;

3.     емкость диода при подаче на него обратного напряжения некоторой величины С, пФ;

4.     диапазон частот, в котором возможна работа без снижения  выпрямленного тока fгр, кГц;

5.     рабочий диапазон температур.

            Техническими условиями задаются обычно максимальные (или минимальные) значения параметров для диодов каждого типа.

            Так, например, задается максимально возможное значение обратного тока, прямого падения напряжения и емкости диода. Диапазон частот задается минимальным значением граничной частоты  fгр. Это значит, что параметры всех диодов не превышает (а в случае частоты – не ниже) заданного техническими условиями значения. Общий вид диодов показан на рис 2.4.

Рис. 2.4. Конструкция диодов малой мощности (а) и средней мощности (б)

Диодные характеристики — CoderLessons.

com

Существуют различные текущие шкалы для операций прямого и обратного смещения. Передняя часть кривой показывает, что диод проводит просто, когда P-область становится положительной, а N-область отрицательной.

Диод почти не проводит ток в направлении высокого сопротивления, то есть когда прегион становится отрицательным, а N-область — положительным. Теперь дырки и электроны отводятся от соединения, что приводит к увеличению барьерного потенциала. Это условие обозначено частью кривой обратного тока.

Пунктирный участок кривой показывает идеальную кривую , которая получилась бы, если бы не было лавинного пробоя. На следующем рисунке показана статическая характеристика переходного диода.

ДИОД IV Характеристики

Характеристики прямого и обратного токового напряжения (IV) диода обычно сравниваются на одной характеристической кривой. Рисунок, изображенный в разделе «Прямая характеристика», показывает, что прямое напряжение и обратное напряжение обычно отображаются на горизонтальной линии графика.

Прямые и обратные значения тока показаны на вертикальной оси графика. Прямое напряжение отображается справа, а обратное напряжение слева. Точка начала или нулевого значения находится в центре графика. Прямой ток удлиняется над горизонтальной осью, а обратный ток распространяется вниз.

Объединенные значения прямого напряжения и прямого тока находятся в верхней правой части графика, а обратное напряжение и обратный ток — в левом нижнем углу. Различные шкалы обычно используются для отображения прямых и обратных значений.

Вперед Характеристика

Когда диод смещен в прямом направлении, он проводит ток (IF) в прямом направлении. Значение IF напрямую зависит от величины прямого напряжения. Соотношение прямого напряжения и прямого тока называется ампер-вольт или IV характеристикой диода. Типичная диодная прямая IV характеристика показана на следующем рисунке.

Ниже приведены наблюдения —

  • Прямое напряжение измеряется через диод, а прямой ток — это мера тока через диод.

  • Когда прямое напряжение на диоде равно 0 В, прямой ток (IF) равен 0 мА.

  • Когда значение начинается с начальной точки (0) графика, если VF постепенно увеличивается с шагом 0,1 В, IF начинает расти.

  • Когда значение VF достаточно велико для преодоления барьерного потенциала PN-перехода, происходит значительное увеличение IF. Точку, в которой это происходит, часто называют напряжением колена V K. Для германиевых диодов V K составляет приблизительно 0,3 В, а для кремния — 0,7 В.

  • Если значение IF значительно превышает V K , прямой ток становится довольно большим.

Прямое напряжение измеряется через диод, а прямой ток — это мера тока через диод.

Когда прямое напряжение на диоде равно 0 В, прямой ток (IF) равен 0 мА.

Когда значение начинается с начальной точки (0) графика, если VF постепенно увеличивается с шагом 0,1 В, IF начинает расти.

Когда значение VF достаточно велико для преодоления барьерного потенциала PN-перехода, происходит значительное увеличение IF. Точку, в которой это происходит, часто называют напряжением колена V K. Для германиевых диодов V K составляет приблизительно 0,3 В, а для кремния — 0,7 В.

Если значение IF значительно превышает V K , прямой ток становится довольно большим.

Эта операция вызывает чрезмерное нагревание через переход и может разрушить диод. Чтобы избежать этой ситуации, защитный резистор соединен последовательно с диодом. Этот резистор ограничивает прямой ток до максимального номинального значения. Обычно резистор ограничения тока используется, когда диоды работают в прямом направлении.

Обратная характеристика

Когда диод смещен в обратном направлении, он проводит обратный ток, который обычно довольно мал. Типичная обратная IV характеристика диода показана на рисунке выше.

Вертикальная линия обратного тока на этом графике имеет значения тока, выраженные в микроамперах. Количество неосновных носителей тока, которые принимают участие в проведении обратного тока, довольно мало. В общем, это означает, что обратный ток остается постоянным в течение большей части обратного напряжения. Когда обратное напряжение диода увеличивается с самого начала, наблюдается очень небольшое изменение обратного тока. В точке напряжения пробоя (VBR) ток очень быстро увеличивается. В это время напряжение на диоде остается достаточно постоянным.

Эта характеристика постоянного напряжения приводит к ряду применений диода в условиях обратного смещения. Процессы, которые отвечают за проводимость тока в диоде с обратным смещением, называются пробой лавины и пробой стабилитрона .

Диод Технические характеристики

Как и любой другой выбор, выбор диода для конкретного применения должен быть рассмотрен. Производитель обычно предоставляет этот тип информации. Спецификации, такие как максимальные значения напряжения и тока, обычные условия эксплуатации, механические характеристики, идентификация проводов, процедуры монтажа и т. Д.

Ниже приведены некоторые важные характеристики.

Максимальный прямой ток (IFM) — абсолютный максимальный повторяющийся прямой ток, который может проходить через диод.

Максимальное обратное напряжение (VRM) — Абсолютное максимальное или пиковое напряжение обратного смещения, которое может быть приложено к диоду.

Обратное напряжение пробоя (VBR) — минимальное установившееся обратное напряжение, при котором произойдет пробой.

Максимальный прямой импульсный ток (IFM-импульс) — максимальный ток, допустимый в течение короткого интервала времени. Это текущее значение намного больше, чем IFM.

Максимальный обратный ток (IR) — Абсолютный максимальный обратный ток, который допускается при рабочей температуре устройства.

Прямое напряжение (VF) — максимальное падение прямого напряжения для данного прямого тока при рабочей температуре устройства.

Рассеиваемая мощность (PD) — максимальная мощность, которую устройство может безопасно поглощать непрерывно в свободном воздухе при температуре 25 ° C.

Обратное время восстановления (Trr) — максимальное время, которое требуется устройству для включения и выключения стат.

Напряжение пробоя — это минимальное напряжение обратного смещения, при котором PN-переход размыкается при внезапном увеличении обратного тока.

Напряжение колена — это прямое напряжение, при котором ток через соединение начинает быстро увеличиваться.

Пиковое обратное напряжение — это максимальное обратное напряжение, которое можно приложить к PN-соединению, не повреждая его.

Maximum Forward Rating — максимальный мгновенный прямой ток, который может пройти PN-переход, не повредив его.

Максимальная мощность — это максимальная мощность, которая может рассеиваться от соединения без повреждения соединения.

Диоды старых типов: pogorily — LiveJournal

Помещаю свою подборку информации (сделанную еще в 2006 году, впрочем, с тех пор вряд ли что-то могло измениться) с параметрами диодов старых типов.
Размещение ее на интернет-сайтах разрешаю с указанием, что составитель — Погорилый А.И. http://pogorily.livejournal.com/
И желательно с оповещением меня об этом в комментах.

I. Сигнальные диоды старых типов

Самая первая советская система обозначений диодов явно происходит от СВЧ диодов.
Состояла из первой буквы Д, второй Г или К — германий или кремний, третьей — указывающей класс прибора, В — видеодетектор, С — смеситель, И — измерительный (детектор для измерителей СВЧ сигнала), и одна буква Ц означала все не-СВЧ диоды. За буквами — число, порядковый номер типа в классе.

Точечные диоды, обозначенные по этой системе. Материал — германий.
Iпр — прямой ток в миллиамперах (не менее) при прямом напряжении 1 В.
Uобр — обратное напряжение в вольтах, Iобр — обратный ток (мка, не более) при этом напряжении.
Iпрmax и Uобрmax — максимально допустимые прямой(выпрямленный) ток, ма и обратное напряжение, В, при комнатных условиях. При повышенной температуре обычно снижаются.
Емкость закрытого диода для точечных невелика, не более 1 пф, и либо не нормируется, либо не представляет особого интереса. Hу какая разница для практически любых применений, 1 пф, 0,7 пф или 0,5 пф.

Германиевые точечные диоды.
Тип       Iпр     Uобр     Iобр мка   Iпрmax   Uобрmax
ДГ-Ц1     2,5     50     1000           16         50
ДГ-Ц2     4,0     50       500           16         50
ДГ-Ц3     2,5     50       100           16         50
ДГ-Ц4     2,5     75       800           16         75
ДГ-Ц5     1,0     75       250           16         75
ДГ-Ц6     2,5     100     800           16         100
ДГ-Ц7     1,0     100     250           16         100
ДГ-Ц8     10       30       500           25         30
ДГ-Ц9     10       10     100           16         30
ДГ-Ц10   5,0     10         60           16         30
ДГ-Ц12   5,0     10       500           16         10
ДГ-Ц13   1,0     10       250           16         10
ДГ-Ц14   2,0     50     1000           16         50
ДГ-Ц15   1,5   150       800             8       150
ДГ-Ц16   1,5   150       250             8       150
ДГ-Ц17   1,5   200       800             8       150
Первоначально были выпущены диод ДГ-Ц1 — ДГ-Ц-8.
Затем были добавлены ДГ-Ц9 и ДГ-Ц-10.
Затем ДГ-Ц3 перестали выпускать (видимо, слишком мало получалось со столь малым обратным током), и были добавлены ДГ-Ц11 — ДГ-Ц14.
ДГ-Ц15 — ДГ-Ц17 появились прямо перед снятием ДГ-Ц с производства, неизвестно, дошли ли они до серийного выпуска.

Затем система была заменена на новую. Из трех элементов — буква Д, число —
порядковый номер типа и буква — разновидность внутри типа.
Вскоре эта система была модифицирована. Число стало характеризовать не только порядковый номер типа, но и класс диода.
Д1-Д99 — точечные германиевые диоды.
Д101-Д199 — точечные кремниевые диоды.
Д201-Д299 — плоскостные кремниевые диоды.
Д301-Д399 — плоскостные германиевые диоды.
Плоскостными считались сплавные, диффузионные, мезадиффузионные, в общем, любые кроме точечных.
Д401-Д499 — СВЧ смесительные диоды.
Д501-Д599 — СВЧ умножительные (умножение частоты) диоды.
Д601-Д699 — СВЧ детекторные диоды.
Д701-Д749 — СВЧ параметрические германиевые диоды.
Д750-Д799 — СВЧ параметрические кремниевые диоды.
Д801-Д899 — кремниевые стабилитроны. Причем последние две цифры обозначают для первых стабилитронов (Д808-Д813) примерное значение напряжения стабилизации в вольтах. Для более новых — порядковый номер разработки, начиная с Д814.
Д901-Д950 — варикапы
Д951-Д999 — туннельные диоды.
Д1001-Д1099 — выпрямительные столбы (несколько диодов, соединенных последовательно) и блоки (несколько имеющих отдельные выводы диодов или групп последовательно соединенных диодов в одном корпусе).

Тип       Iпр     Uобр     Iобр мка   Iпрmax   Uобрmax
Д1А       2,5       10       250           16         20
Д1Б       1,0       25       250           16         30
Д1В       7,5       25       250           25         30
Д1Г       5,0       50       250           16         50
Д1Д       2,5       75       250           16         75
Д1Е       1,0     100       250           12         100
Д1Ж       5,0     100       250           12         100
Д2А       <50       7       250           50         10
Д2Б       5,0       10       100           16         10
Д2В       9,0       30       250           25         30
Д2Г       2,0       50       250           16         50
Д2Д       4,5       50       250           16         50
Д2Е       4,5       100       250           16         100
Д2Ж       2,0       150       250           8         150
Д2И       2,0       100       250           16         100
Примечание. Д2А вскоре после начала выпуска снят с производства. Видимо, перестали получаться такие, на грани брака.
Видно что диоды ДГ-Ц, Д1 и Д2 — практически одно и то же. Hесколько разные параметры разбраковки, ну и в разных корпусах. Поэтому Д1 были довольно быстро сняты с производства, а Д2 выпускались десятилетиями.

Тип       Iпр     Uобр     Iобр мка   Iпрmax   Uобрmax
Д9А       10       10         250           25         10
Д9Б       90       10         250           40         10
Д9В       10       30         250           20         30
Д9Г       30       30         250           30         30
Д9Д       60       30         250           30         30
Д9Е       30       50         250           20         50
Д9Ж       10     100         250          15         100
Д9И       30       30         120           30         30
Д9К       60       30           60          30         30
Д9Л       30     100         250           15         100
Д9М       60       30         250           30         30
(у Д9М дополнительно нормируется обратный ток при напряжении 1В, не более 2,5 мка).

Д9 — сверхпопулярные в свое время диоды для транзисторной аппаратуры. Как детекторные в приемниках, маломощные выпрямительные и т.д., так и импульсные в логике на сплавных транзисторах.

У диодов Д10 нормируется не прямой ток при 1В, а выпрямленный ток при работе на нулевое сопротивление нагрузки при 1,5В переменного напряжения частотой 70 МГц
Тип       Iвыпр     Uобр     Iобр мка   Iпрmax   Uобрmax
Д10           3           10         100         16         10
Д10А         5           10         200         16         10
Д10Б         8           10         200         16         10

У Д11-Д14А нормируется прямой и обратный ток при двух значениях напряжений, что обозначено индексами 1 и 2.
Тип       Uпр1     Iпр1     Uпр2     Iпр2     Uобр1     Iобр1     Uобр2     Iобр2     Iпрmax     Uобрmax
Д11         0,5         5         1         100         10         100         30         250         20         30
Д12         0,5         2         1           50         10         70           50         250         20         50
Д12А       0,5         5         1         100         10         50           50         250         20         50
Д13         0,5         5         1         100         10         50           75         250         20         75
Д14         0,5         2         1           30         10         70         100         250         20         100
Д14А       0,5         5         1         100         10         70         100         250         20         100

Три типа маломощных точечных диодов поышенного быстродействия.
Trr — время восстановления при выключении.
Тип     Iпр     Uобр     Iобр,мка     Trr,нс     Iпрmax     Uобрmax
МД3         5         15         100         100         12         15
Д18         20         20         50         100         16         20
Д20         20         10           —           100         16         20
Все эти диоды в действительности очень близки и по параметрам, и по внутреннему устройству. МД3 сверхминиатюрный (диаметр 1,2 мм, длина 3 мм), применялся в основном в микромодулях.
МД3 и Д18 — для импульсных и логических схем.
Д20 — для видеодетекторов телевизоров.

Кремниевые точечные диоды.
Тип     Uпр     Iпр     Uобр     Iобр,мка     Trr,нс     Iпрmax     Uобрmax
Д101      2         2         75         10             —             30         75
Д101А   1         1         75         10             —             30         75
Д102       2       2         50         10             —             30         50
Д102А   1         1         50         10             —             30         50
Д103      2         2         30         10             —             30         30
Д103А   1         1         30         10             —             30         30
Д104      2         2       100         10           500           30         100
Д104А   1         1       100         10           500           30         100
Д105      2         2         75         10           500           30         75
Д105А   1         1         75         10           500           30         75
Д106      2         2         30         10           500           30         30
Д106А   1         1         30         10           500           30         30

Импульсные диоды на повышенные токи.
Кремниевые микросплавные Д219-Д220.
С — емкость в пикофарадах при U — обратном напряжении в вольтах.
Тип       Uпр     Iпр     Uобр     Iобр,мка     Trr,нс     C при U     Iпрmax     Uобрmax
Д219А     1       50       70             1           500       15       5         50         70
Д220     1,5       50       50             1           500       15       5         50         50
Д220А   1,5       50       70             1           500       15       5         50         70
Д220Б   1,5       50     100             1           500       15       5         50         100
Германиевые диффузионные Д310, меза-диффузионные Д311-Д312.
Тип       Uпр     Iпр     Uобр     Iобр,мка     Trr,нс     C при U     Iпрmax     Uобрmax
Д310   0,55       500     20             20         300       15       20         500         20
Д311     0,4       10       30           100           50       1,5       5         40         30
Д311А   0,4       10       30           100           50         3         5         80         30
Д311Б   0,5       10       30           100           50         2         5         20         30
Д312     0,5       10     100           100         500         3         5         50         100
Д312А   0,5       10       75           100         500         3         5         50         75
Д312Б   0,5       10     100             10         700         3         5         50         100

II. Выпрямительные диоды старых типов

Все выпрямительные диоды старых типов не рассчтаны на повышенные частоты.
Частотные свойства у них не нормированы. Практически до 400 или 1000 герц
работают.
Iпрmax — максимальный прямой (выпрямленный) ток в амперах
Uобрmax — максимальное обратное напряжение в вольтах.
При Т — при темпрературе, град. Цельсия.

Германиевые сплавные диоды.
Тип         Iпрmax     Uобрmax
ДГ-Ц21       0,3         50
ДГ-Ц22       0,3       100
ДГ-Ц23       0,3       150
ДГ-Ц24       0,3       200
ДГ-Ц25       0,1       300
ДГ-Ц26       0,1       350
ДГ-Ц27       0,1       400
ДГ-Ц21-27 выпускались в недостаточно герметичном паяном корпусе, подобном
корпусу транзисторов П1-П2. В этой связи довольно быстро были заменены на Д7А-Ж
в сварном корпусе, практически однотипные. Отмечу, что обозначение Д7 — по ранней системе, по более новой системе они как сплавные должны были бы быть Д3хх.
                T=+20C                     T=+50C                     T=+70C
Тип     Iпрmax   Uобрmax     Iпрmax   Uобрmax       Iпрmax   Uобрmax
Д7А       0,3           50             0,3         35                 0,2         25
Д7Б       0,3         100             0,3         80                 0,2         50
Д7В       0,3         150             0,3         90                 0,2         50
Д7Г       0,3         200             0,3       150                 0,2         100
Д7Д       0,3         300             0,3       200                 0,2         130
Д7Е       0,3         350             0,3       225                 0,2         140
Д7Ж       0,3         400             0,3       250                 0,2         150
Д302       1           200             1         120                 0,9         50
Д303       3           150             2,5       120                   2         50
Д304       5           100             3         100                 2,5         50
Д305       10           50             6,5         50                   5         50
Д302-Д305 — корпус с винтом, рассчитаны на крепление к радиатору.
В разное время Д7 и Д302-Д305 выпускались по разным ТУ, параметры незначительно
отличаются.

Кремниевые сплавные диоды
Тип     Iпрmax     Uобрmax
Д201А       0,2       25
Д201Б       0,2       50
Д201В       0,4       50
Д201Г       0,2       100
Д201Д       0,4       100
Д201Е       0,2       200
Д201Ж       0,4       200
Д202       0,4       100
Д203       0,4       200
Д204       0,4       300
Д205       0,4       400
Д202-Д205 корпус с винтом, рассчитаны на крепление к радиатору. Заменены на Д229.
Д201А-Ж являются ранним вариантом Д202-Д205 в таком же корпусе с винтом. Выпускались очень недолго, вскоре за счет совершенствования технологии параметры их стали лучше, и они стали выпускаться как Д202-Д205.
Д206       0,1       100
Д207       0,1       200
Д208       0,1       300
Д209       0,1       400
Д210       0,1       500
Д211       0,1       600
Заменены на Д237.

Кремниевые диффузионные диоды.
            T +75C       T +130C
Тип       Iпрmax       Iпрmax       Uобрmax
Д214         10             5               100
Д214А       10           10               100
Д214Б         5             2               100
Д215         10             5               200
Д215А       10           10               200
Д215Б         5             2               200
Корпус с винтом для крепления к радиатору.

T +85C T +100C T +125C
Тип Iпрmax Iпрmax Iпрmax Uобрmax
Д217 0,1 0,075 0,05 800
Д218 0,1 0,075 0,05 1000
Д218А 0,1 0,075 0,05 1200
МД217А 0,1 — — 800
МД218Б 0,1 — — 1000
МД218В 0,1 — — 1200
МД217А, МД218Б, МД218В — аналоги Д217, Д218, Д218А, но в другом, более миниатюрном корпусе (стеклянная бусина диаметром 3,3 мм, в отличие от металлического корпуса Д217-218).
Выпускает Томилинский электронный завод httр://www.nррtez. ru/

Кремниевые сплавные диоды
Тип Iпрmax Uобрmax
Д223 0,05 50
Д223А 0,05 100
Д223Б 0,05 150
Д226 0,3 400
Д226А 0,3 300
Д226Б 0,3 300
Д226В 0,3 200
Д226Г 0,3 100
Д226Д 0,3 50
Д226Е 0,3 200
Д226Ж 0,1 600
Д226, Д226А, Д226Е — для спецприменений.
Д226Б-Д226Д, Д226Ж — для ширпотерба.
Д217, Д218, Д226 выпускались как сплавные, так и диффузионные, с одинаковыми
параметрами, с обозначениями Д2хх сплавные, МД2хх диффузионные, в несколько отличающихся корпусах (ранние в герметизированных контактной сваркой, более поздние — холодной сваркой).

Кремниевые диффузионные диоды.
Тип Iпрmax Uобрmax
Д229А 0,4 200
Д229Б 0,4 400
Д229В 0,4 100
Д229Г 0,4 200
Д229Д 0,4 300
Д229Е 0,4 400
Д229Ж 0,7 100
Д229И 0,7 200
Д229К 0,7 300
Д229Л 0,7 400
Корпус с винтом. Д229А,Б — спецприменения, Д229В-Л — ширпотреб.
Д229 выпущены на замену Д202-Д205.

Д230А 0,3 200
Д230Б 0,3 400
Аналогичны Д229А,Б, но корпус как у Д226, без винта. Выпускались недолго, поскольку зачем еще один вариант Д226?

T +75C T +130C
Тип Iпрmax Iпрmax Uобрmax
Д231 10 5 300
Д231А 10 10 300
Д231Б 5 2 300
Д232 10 5 400
Д232А 10 10 400
Д232Б 5 2 400
Д233 10 5 500
Д233Б 5 2 500
Д234Б 5 2 600
Корпус с винтом. Продолжение Д214-Д215 на бОльшие напряжения.

Тип Iпрmax Uобрmax
Д237А 0,3 200
Д237Б 0,3 400
Д237В 0,1 600
Д237Г 0,1 500
Д237Д 0,3 300
Д237Е 0,4 200
Д237Ж 0,4 400
Д237И 0,3 200
Д237К 0,3 400
Д237Л 0,1 600
Д237М 0,4 200
Д237Н 0,4 400

Д237 — замена Д206-Д211, а также Д226 и Д226А, для спецприменений.
Д237 Г и Д — фактически Д237 В и Б, вариант сверхвысокой надежности, у них предельное обратное напряжение снижено для увеличения надежности.
Д237И-Н — аналоги Д237А-В, Е, Ж, но в другом, более миниатюрном корпусе (стеклянная бусина диаметром 3,3 мм, в отличие от металлического корпуса Д237А-Ж). Производитель http://www.npptez.ru/

T +75C T +125C
Тип Iпрmax Iпрmax Uобрmax
Д242 10 5 100
Д242А 10 10 100
Д242Б 5 2 100
Д243 10 5 200
Д243А 10 10 200
Д243Б 5 2 200
Д244 10 5 50
Д244А 10 10 50
Д244Б 5 2 50
Д245 10 5 300
Д245А 10 10 300
Д245Б 5 2 300
Д246 10 5 400
Д246А 10 10 400
Д246Б 5 2 400
Д247 10 5 500
Д247Б 5 2 500
Д248Б 5 2 600
Корпус с винтом. Д242-Д248Б — ширпотребовские аналоги диодов спецприменения
Д214-Д215Б,Д231-Д234Б.

III. Диоды старых типов — стабилитроны варикапы туннельные

Стабилитрон — кремниевый диод, работающий в режиме пробоя. При этом напряжение
на нем слабо зависит от тока.
У стабилитронов есть вполне заметная зависимость напряжения стабилизации от
температуры. При напряжениях стабилизации менее 5,5 В напряжение с ростом
температуры падает, при 7 В и более растет. Это связано с разными механизмами
пробоя. При малых пробивных напряжениях — туннельный, при больших — лавинная
ионизация. Также туннельный пробой отличается более сильной зависимостью
напряжения стабилизации от тока (т.е. бОльшим дифференциальным сопротивлением),
чем лавинный.
Чтобы сделать стабилитрон, в котором напряжение стабилизации слабо зависит от
температуры, применяют термокомпенсацию — последовательно с обратновключенным
диодом-стабилитроном включают в прямом направлении один или несколько диодов,
все это в одном корпусе, с хорошей тепловой связью. У стабилитрона напряжение с
ростом температуры растет, у прямовключенных диодов — падает. В сумме —
примерно постоянное. Однако теромокомпенсация зависит от тока, наилучшая
достигается при номинальном токе.

Основные параметры стабилитрона.
Uст — напряжение стабилизации, указывается при номинальном токе. Вольты.
Iстном — номинальный ток, миллиамперы.
Rд — дифференциальное сопротивление, характеризующее зависимость напряжения на
стабилитроне от тока через него. Указывается при номинальном токе. Омы.
Imin — минимальный ток стабилизации (при меньших токах характеристика может
стать нестабильной, растет как разброс напряжения, так и временной).
Imax — максимальный ток стабилизации. Ограничивается рассеиваемой мощностью.
Аt — температурный коэффициент напряжения стабилизации, в процентах на градус.
Если не указан знак Аt, то он положительный.

Тип Uст Iстном Rд Imin Imax At
Д808 7,0-8,5 5 6 3 33 0,07
Д809 8,0-9,5 5 10 3 29 0,08
Д810 9,0-10,5 5 12 3 26 0,09
Д811 10,0-12,0 5 15 3 23 0,095
Д813 11,5-14,0 5 18 3 20 0,095
Д814А 7,0-8,5 5 6 3 40 0,07
Д814Б 8,0-9,5 5 10 3 36 0,08
Д814В 9,0-10,5 5 12 3 32 0,09
Д814Г 10,0-12,0 5 15 3 29 0,095
Д814Д 11,5-14,0 5 18 3 24 0,095
Д808-Д813 и Д814А-Д — одно и то же, модернизированный вариант был выпущен как Д814.
Д808-Д813 выпускались в металлическом корпусе. Д814 — как в металлическом корпусе, так и опрессованные пластмассой.

Тип Uст Iстном Rд Imin Imax At
Д815А 5,0-6,2 1000 0,5 50 1400 0,045
Д815Б 6,1-7,5 1000 0,6 50 1150 0,05
Д815В 7,4-9,1 1000 0,8 50 950 0,07
Д815Г 9,0-11,0 500 1,8 25 800 0,08
Д815Д 9,8-13,3 500 2,0 25 650 0,09
Д815Е 13,3-16,4 500 2,5 25 550 0,1
Д815Ж 16,2-19,8 500 3,0 25 450 0,11
Д815И 4,2-5,2 1000 0,8 50 1400 0,14
Д816А 19,6-24,2 150 7,0 10 230 0,12
Д816Б 24,2-29,5 150 8,0 10 180 0,12
Д816В 29,5-36,0 150 10,0 10 150 0,12
Д816Г 35,0-43,0 150 12,0 10 130 0,12
Д816Д 42,5-51,5 150 15,0 10 110 0,12
Д817А 50,5-61,5 50 35,0 5 90 0,14
Д817Б 61-75 50 40,0 5 75 0,14
Д817В 74-90 50 45,0 5 60 0,14
Д817Г 90-110 50 50,0 5 50 0,14
Мощные стабилитроны, корпус с винтом для крепления к теплоотводу.

Тип Uст Iстном Rд Imin Imax At
Д818А 9 -0% +15% 10 18 3 33 +0,02
Д818Б 9 -15% +0% 10 18 3 33 -0,02
Д818В 9 -10% +10% 10 18 3 33 +-0,01
Д818Г 9 -5% +5% 10 18 3 33 +-0,005
Д818Д 9 -5% +5% 10 18 3 33 +-0,002
Д818Е 9 -5% +5% 10 18 3 33 +-0,001
Термокомпенсированные стабилитроны. Чтобы использовать их положительное
качество — термокомпенсацию, надо, чтобы ток не сильно отклонялся от
номинального, 10 миллиампер.
Hапряжение стабилизации указывается номинальное (9 вольт), а также на сколько
процентов оно может отличаться от номинального, в плюс и минус.
Для них гарантируется также, что временной дрейф напряжения стабилизации не
более 0,12%.

Стабисторы.
Стабистор — это диод, предназначенный для стабилизации малого напряжения за счет прямого падения на P-N переходе. Параметры и их обозначения — те же что у стабилитрона.

Тип Uст Iстном Rд Imin Imax At
Д219С <=1 50 — — 50 —
Д220С <=1,5 50 — — 50 —
Д223С <=1 50 — — 50 —

Варикапы. Варикап — кремниевый полупроводниковый диод, предназначенный для
рабооты в качестве переменного конденсатора. У любого диода емкость зависит от
обратного напряжения (падает с ростом обратного напряжения), у варикапов это
свойство используется.
Параметры варикапов.

Cном — емкость при минимальном рабочем напряжении, равном длля приведенных
типов 4 вольтам.

Kc — коэффициент перекрытия по емкости, т.е. во сколько раз емкость падает при
изменении отрицательного напряжения до максимального.

Q — добротность емкости варикапа при U=4В, частоте 50 Мгц, не менее. С ростом
обратного напряжения добротоность растет, так что это минимальная добротность.
С ростом частоты добротность падает.

Umax — максимальное обратное напряжение.

Тип Cном Kc Q Umax
Д901А 22-32 3,6-4,4 25 80
Д901Б 22-32 2,7-3,3 30 45
Д901В 28-38 3,6-4,4 25 80
Д901Г 28-38 2,7-3,3 30 45
Д901Д 34-44 3,6-4,4 25 80
Д901Е 34-44 2,7-3,3 30 45
Д902 6-12 >2,5 30 25
Д902 использовался в селекторах каналов ламповых телевиизоров для подстройки
частоты гетеродина. Это его единственное штатное применение.

Туннельные диоды.
Туннельный диод имеет столь узкий P-N переход, за счет сильного легирования
полупроводника по обе стороны перехода, что туннельный пробой у него происходит
даже при небольших положительных напряжениях.
Поэтому вольтамперная характеристика его имеет следующий вид. При обратно
напряжении он представляет собой малое сопротивление. При прямом — сперва ток
растет, а потом, достигнув максимума, начинает падать. Точка, в которой ток
минимален, называется впадиной. Затем ток растет уже как обычный прямой ток
диода.
Параметры.
Imax — ток максимума, миллиампер
Imax/Imin — отношение токов максимума и впадины
Umax — напряжение максимума, мииливольт.
C — емкость диода, пикофарад.

Германиевые туннельные диоды.
Тип Imax Imax/Imin Umax C
Д951А 1,7-2,3 >4,5 <60 80
Д951Б 4,3-5,8 >4,5 <60 150
Д951В 8,5-11,5 >4,5 <60 180
Д951Г 13-17 >4,5 <60 200
Эти же диоды выпускались в другом корпусе как 1И302А — 1И302Г.

Каталог продукции — Диоды Д104, Д204, Д304

Наименование параметра

Обозн. пара-метра

Един. изме-рения

Значение параметра

Класс диода

Условия измерения

Д104-20

Д204-20

Д104-25

Д204-25

Д104-35

Д204-35

Д104-50

Повторяющееся импульсное обратное напряжение

URRM

B

200

300

400

500

600

700

2

3

4

5

6

7

Тj = -60÷+175°С

Средний прямой ток

IF(AV)

A

20

 

25

 

 

35

 

50

 

Тс = 150°С

Тс = 140°С

Ударный неповторяющийся прямой ток

IFSM

A

300

300

400

500

 

Tj = 175°С

Импульсное прямое напряжение

UFM

В

1,35

 

Тj = 25°С

IF=3,14*IF(AV)

Повторяющийся импульсный обратный ток

IRRM

mA

3,0

2,5

 

Тj = 175°С

Тj = 160°С

Тепловое сопротивление переход-корпус

RTHJK

°С/Вт

1,0

1,0

0,8

0,7

 

Tj = 25°С

Защитный показатель

i2dt

A2*C

450

800

450

800

850

1250

 

Tj = 175°С

Tj = 25°С

Температура перехода

Tj

°С

175

 

 

Усилие запрессовки

P

kH

5,0

 

 

диодов — learn.

sparkfun.com Добавлено в избранное Любимый 63

Реальные характеристики диода

В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед. К сожалению, реальное поведение диодов не совсем идеальное. Диоды действительно потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток.Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

Соотношение тока и напряжения

Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется. Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, полностью не -линейна. Выглядит это примерно так:

Отношение тока к напряжению диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

  1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него. Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
  2. Обратное смещение : Это режим «выключения» диода, когда напряжение меньше, чем V F , но больше, чем -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень малый ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
  3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

прямое напряжение

Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ). Он также может называться напряжения включения или напряжения включения .

Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимозависимы.Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

Мультиметр с настройкой диода можно использовать для измерения (минимума) прямого падения напряжения на диоде.

V F конкретного диода зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь гораздо больший V F , в то время как диоды Шоттки разработаны специально для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

Напряжение пробоя

Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении.Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды действительно предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

Для обычных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

Таблицы данных диодов

Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

Таблица данных может даже представить вам очень знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода.Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v . Обратите внимание, как больший ток требует большего напряжения:

Эта диаграмма указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится…).

Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, такие как малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.


Этот 1N4148 — лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.


← Предыдущая страница
Идеальные диоды Стабилитрон

— определение, VI характеристики и пробой стабилитрона

А нормальный п-п переходной диод пропускает электрический ток только в прямом направлении. предвзятое состояние.Когда прямое смещенное напряжение подается на диод p-n перехода, он позволяет большое количество электрического ток и блокирует только небольшое количество электрического тока. Следовательно, нападающий смещенный диод на p-n переходе предлагает лишь небольшой сопротивление электрическому току.

Когда обратное смещенное напряжение подается на диод p-n перехода, он блокирует большое количество электрического тока и позволяет только небольшое количество электрического тока.Следовательно, обратное смещенный диод на p-n переходе обеспечивает большое сопротивление электрический ток.

Если Напряжение обратного смещения, приложенное к диоду с p-n переходом, равно сильно увеличивается, происходит внезапное повышение тока. На это точка, небольшое повышение напряжения быстро увеличивает электрический ток. Этот внезапное повышение электрического тока вызывает пробой перехода называется стабилитрон или лавинный пробой.Напряжение, при котором Пробой стабилитрона называется напряжением стабилитрона, и внезапное увеличение тока называется током стабилитрона.

А нормальный диод p-n перехода не работает при пробое области, потому что избыточный ток необратимо повреждает диод. Обычные диоды с p-n переходом не предназначены для работают в области обратного пробоя.Следовательно, нормальный p-n переходной диод не работает в области обратного пробоя.

Что такое стабилитрон?

А стабилитрон — это особый тип устройства, предназначенный для работы в области пробоя стабилитрона. Стабилитроны работают как обычно Диоды с p-n переходом в прямом смещении. Когда на стабилитрон подается напряжение прямого смещения. допускает большое количество электрического тока и блоков только небольшое количество электрического тока.

Стабилитрон

сильно перегружен. легированный, чем обычный диод с p-n переходом. Следовательно, у него очень тонкое истощение область. Следовательно, стабилитроны позволяют увеличить электрическую мощность. ток, чем нормальные диоды с p-n переходом.

Стабилитрон

позволяет электрический ток в прямом направлении, как обычный диод но также пропускает электрический ток в обратном направлении, если приложенное обратное напряжение больше стабилитрона Напряжение.Стабилитрон всегда подключен в обратном направлении направление, потому что он специально разработан для работы в обратное направление.

стабилитрон определение

А Стабилитрон — это полупроводниковый прибор с p-n переходом, разработанный работать в области обратного пробоя. Поломка напряжение стабилитрона тщательно настраивается путем управления уровень легирования при производстве.

название стабилитрон был назван в честь американского физика Кларенс Мелвин Зенер, открывший эффект Зенера. Зинер диоды являются основными строительными блоками электронных схем. Они широко используются во всех видах электронного оборудования. Стабилитроны в основном используются для защиты электронных схем. от перенапряжения.

Обрыв в стабилитрон

Там Есть два типа областей обратного пробоя в стабилитроне: лавинный пробой и пробой стабилитрона.

Лавина поломка

лавина пробой происходит как в нормальных диодах, так и в стабилитронах при высокое обратное напряжение. Когда приложено высокое обратное напряжение к диоду p-n перехода, свободный электроны (неосновные носители) получают большое количество энергии и разогнался до больших скоростей.

свободные электроны, движущиеся с высокой скоростью, будут сталкиваться с атомами и выбить больше электронов.Эти электроны снова ускоряется и сталкивается с другими атомами. Из-за этого непрерывное столкновение с атомами, большое количество свободных электроны генерируются. В результате электрический ток в диод быстро увеличивается. Это внезапное увеличение электрический ток может навсегда разрушить нормальный диод. Однако лавинные диоды нельзя разрушить, потому что они тщательно спроектированы для работы в лавинных условиях область.Лавинный пробой происходит в стабилитронах с напряжение стабилитрона (В z ) более 6 В.

стабилитрон поломка

Пробой стабилитрона происходит в сильно легированных диодах с p-n переходом из-за их узкой области истощения. При обратном смещенное напряжение, приложенное к диоду, увеличивается, узкая область истощения генерирует сильное электрическое поле.

Когда обратное смещенное напряжение, приложенное к диоду, достигает близко к напряжению Зенера, электрическое поле в область обеднения достаточно сильна, чтобы вытягивать электроны из их валентная группа. Валентные электроны, которые получают достаточная энергия от сильного электрического поля область истощения нарушит связь с родительским атомом.Балдахин электроны, которые разрывают связь с родительским атомом, будут становятся свободными электронами. Эти свободные электроны несут электрический ток. ток из одного места в другое. При пробое стабилитрона области, небольшое увеличение напряжения будет быстро увеличиваться электрический ток.

  • стабилитрон пробой происходит при низком обратном напряжении, тогда как лавинный пробой происходит при высоком обратном напряжении.
  • Зенера в стабилитронах происходит пробой, потому что у них очень тонкая область истощения.
  • Разбивка область — нормальная рабочая область для стабилитрона.
  • Зенера пробой происходит в стабилитронах при напряжении стабилитрона (В z ) менее 6В.

Символ стабилитрон

Символ стабилитрона показан на рисунке ниже.Стабилитрон состоит из двух выводов: катода и анода.

В стабилитрон, электрический ток течет от обоих анодов к катод и катод к аноду.

символ стабилитрона аналогичен нормальному p-n переходу диодный, но с загнутыми краями на вертикальной полосе.

VI характеристики стабилитрона

VI характеристики стабилитрона показаны ниже. фигура.При подаче напряжения прямого смещения на стабилитрон диод, работает как обычный диод. Однако при обратном на стабилитрон подается смещенное напряжение, он работает в по-разному.

Когда Обратно смещенное напряжение подается на стабилитрон, он допускает только небольшое количество тока утечки до тех пор, пока напряжение меньше напряжения стабилитрона.При обратном смещении напряжение, приложенное к стабилитрону, достигает напряжения стабилитрона, он начинает пропускать большое количество электрического тока. На это точка, небольшое увеличение обратного напряжения быстро увеличивает электрический ток. Из-за этого внезапного подъема в электрическом токе происходит пробой, называемый стабилитроном авария. Однако стабилитрон демонстрирует управляемый поломка, приводящая к повреждению устройства.

Напряжение пробоя стабилитрона зависит от количество примененного допинга. Если диод сильно легирован, Пробой стабилитрона происходит при малых обратных напряжениях. С другой стороны, если диод слабо легирован, пробой стабилитрона возникает при высоких обратных напряжениях. Доступны стабилитроны с напряжениями стабилитрона в диапазоне 1.От 8 В до 400 В.

Преимущества стабилитрона

  • Мощность рассеивающая способность очень высокая
  • Высокая точность
  • Малый размер
  • Низкая стоимость

Приложения стабилитрона

  • Обычно используется как источник опорного напряжения
  • Стабилитроны
  • используются в стабилизаторах напряжения или шунтах. регуляторы.
  • Стабилитроны используются в коммутационных операциях
  • Стабилитроны
  • используются в схемах отсечки и зажима.
  • Стабилитроны используются в различных схемах защиты

Типы диодов

различные типы диодов следующие:

  1. стабилитрон диод
  2. Лавинный диод
  3. Фотодиод
  4. Свет Излучающий диод
  5. Лазер диод
  6. Туннель диод
  7. Шоттки диод
  8. Варактор диод
  9. П-Н переходной диод

Типичные характеристики диода

и его кривая V-I

Ⅰ Введение

Диод — это двухконтактное устройство с однонаправленной проводимостью.Есть электронные диоды и кристаллические диоды. Чаще всего используются кристаллические диоды. Характеристики однонаправленной проводимости диодов используются почти во всех электронных схемах и играют важную роль во многих схемах. Это одно из первых полупроводниковых устройств, и его применение можно увидеть в очень широком диапазоне. Есть много характеристик диода , которые мы должны хорошо знать, давайте шаг за шагом проверим следующее содержание.

В этом видео представлены характеристики диодов при прямом и обратном смещении.

Каталог


Ⅱ Проводящие свойства

2.1 Положительный

Когда подается прямое напряжение , прямое напряжение вначале мало (германиевая трубка менее 0,1 В, кремниевая трубка менее 0,5 В), что недостаточно для преодоления блокирующего действия электрического поля в PN-переходе. В это время прямой ток близок к нулю, и этот сегмент называется зоной нечувствительности.Это прямое напряжение, при котором не включается диод, называется напряжением зоны нечувствительности. Когда прямое напряжение больше, чем напряжение зоны нечувствительности, электрическое поле в блоке PN-перехода преодолевается, другими словами, диод имеет прямую проводимость, и ток быстро растет по мере увеличения напряжения. При нормальном использовании напряжение на клеммах диода остается постоянным во время включения, и его также называют прямым напряжением диода.

2.2 Отрицательный

Когда приложенное обратное напряжение не превышает определенного диапазона, ток через диод представляет собой обратный ток, образованный дрейфовым движением неосновных носителей.Поскольку обратный ток небольшой, диод выключен. Этот обратный ток также называется обратным током насыщения или током утечки. Диоды из разных материалов имеют разные обратные токи. Силиконовая трубка имеет ток от 1 мА до десятков мА, а германиевые трубки могут достигать сотен мА. Кроме того, на обратный ток сильно влияет температура. Стабильность германиевых трубок хуже, чем у кремниевых.

2.3 Обратный пробой

Когда приложенное обратное напряжение превышает определенное значение, обратный ток внезапно увеличивается. Это явление называется электрическим пробоем. Пороговое напряжение, которое вызывает это, называется напряжением обратного пробоя диода. Кроме того, диод теряет однонаправленную проводимость при электрическом пробое. Если диод не перегревается из-за электрического пробоя, однонаправленная проводимость не может быть навсегда нарушена. После нормального восстановления напряжения диод может нормально работать, иначе диод выйдет из строя.Следовательно, обратное напряжение, подаваемое на диод, не должно превышать номинальное значение, указанное в таблице технических параметров.

1) Лавина

По мере увеличения обратного напряжения PN-перехода электрическое поле в области пространственного заряда усиливается. То есть через электроны и дырки в области пространственного заряда энергия, полученная электрическим полем, увеличивается, и электроны и дырки, движущиеся в кристалле, будут непрерывно сталкиваться с атомами кристалла.Когда энергия электронов и дырок достаточно велика, при таком столкновении электроны в ковалентной связи могут быть возбуждены с образованием свободной пары электрон-дырка. Это явление называется ударной ионизацией. Вновь сгенерированные электроны и дырки движутся в противоположном направлении под действием электрического поля, восстанавливают энергию и могут снова генерировать новые электронно-дырочные пары путем столкновения. Это эффект умножения текущей несущей. Когда обратное напряжение увеличивается до определенного значения, умножение несущих подобно лавине на крутом снежном склоне.Носители увеличиваются намного быстрее и быстрее, в результате чего обратный ток резко увеличивается, поэтому в конце происходит лавинный пробой.

Лавинный пробой происходит в основном в диодах с низкой концентрацией примесей, и требуется относительно высокое напряжение, кроме того, напряжение пробоя обратно пропорционально концентрации.

2) Пробой стабилитрона

Когда прикладывается более высокое обратное напряжение , в области пространственного заряда PN-перехода возникает сильное электрическое поле, которое может разрушить ковалентную связь, чтобы отделить захваченные электроны, и заставит электронно-дырочные пары образовать большой обратный ток. .Напряженность электрического поля, необходимая для пробоя стабилитрона, составляет около 2 * 105 В / см, что может быть достигнуто только в PN-переходе с особенно большой концентрацией примесей. Из-за большой концентрации примесей плотность заряда (т.е. примесных ионов) в области пространственного заряда также велика. Следовательно, область пространственного заряда становится узкой, а напряженность электрического поля может быть высокой. Так что пробой стабилитрона чаще всего происходит в диодах с более высокими концентрациями примесей. Если концентрация легирования мала, а область барьера широкая, пробой стабилитрона будет происходить редко.

Направленность тока большинства диодов часто называют «выпрямляющими». В диоде ток может проходить только в одном направлении (так называемое прямое смещение) и отключаться в обратном направлении (так называемое обратное смещение). Диод можно рассматривать как электронный обратный клапан. Однако в действительности диоды демонстрируют не такую ​​идеальную направленность включения-выключения, а довольно сложные нелинейные электронные характеристики, которые определяются конкретным типом диодов.

Напряжение и ток диода нелинейны, поэтому резисторы следует подключать, когда разные диоды подключены параллельно.

Ⅲ Частотная характеристика

Из-за наличия емкости перехода, когда частота в некоторой степени высока, емкостное реактивное сопротивление настолько мало, что вызывает короткое замыкание PN перехода. В этом случае диод потеряет однонаправленную проводимость и не сможет работать. Кроме того, чем больше площадь PN перехода, тем больше емкость перехода и тем больше невозможно работать на высокой частоте.

Ⅳ Региональные рабочие характеристики

1) Переднее рабочее пространство

Диод имеет прямую проводимость, и ток проводимости определяется внешним током, и максимальный ток не превышает максимального прямого рабочего тока диода, и прямое падение напряжения постепенно увеличивается с током, но изменение не большой.

2) Зона нечувствительности

Диод находится в состоянии положительного смещения, и его напряжение прямого смещения меньше, чем его напряжение включения, поэтому диод не может быть включен, и прямой ток равен нулю.

3) Обратное рабочее пространство

Когда диод находится в обратном рабочем состоянии, его обратный ток мал. Обычно силиконовая трубка имеет сопротивление от нескольких мкА до десятков мкА, а диод не проводящий. Вместе с передним рабочим пространством это рабочее пространство отражает однонаправленную проводимость диода, которая может использоваться для выпрямления и в других случаях.

4) Зона обратного пробоя

Диод тоже в обратном рабочем состоянии, но обратное напряжение большое. Хотя обратный рабочий ток диода быстро увеличивается, обратное рабочее напряжение остается практически неизменным. Эта характеристика может быть использована для стабилитрона.

Ⅴ Кривая VI (Вольт-амперная характеристическая кривая)

Металлический проводник, когда температура существенно не меняется, его сопротивление постоянно, поэтому его вольт-амперная характеристика представляет собой прямую линию, проходящую через начало координат.Электрический компонент, имеющий такие вольт-амперные характеристики, называется линейным элементом, потому что их температура может определять значения сопротивления.

Закон Ома — экспериментальный закон с металлическими проводниками. Применим ли этот вывод к другим проводникам, все еще требует экспериментальной проверки. Эксперименты показали, что, кроме металлов, закон Ома также применим к растворам электролитов, но не к газовым проводникам (таким как люминесцентные лампы, газы в неоновых трубках) и полупроводниковым компонентам.То есть в этих случаях ток не пропорционален напряжению, и такие электрические компоненты называются нелинейными компонентами.

Соотношение между напряжением, приложенным к PN-переходу, и током, протекающим через диод, называется вольт-амперной характеристической кривой, как показано на рисунке:

Примечание: Трубка падение напряжения диода: кремниевый диод (без подсветки) имеет прямое падение напряжения 0.7 В, а неоновая трубка — 0,3 В. Падение напряжения на передней трубке светодиодов зависит от цвета свечения. Существуют три контрольных значения основных цветов: падение напряжения красного светодиода составляет 2,0-2,2 В, желтого светодиода 1,8-2,0 В и зеленого светодиода 3,0-3,2 В. Номинальный ток при излучении света составляет примерно 20 мА.

Когда обратное напряжение превышает определенное значение U (BR), обратный ток резко увеличивается, что называется обратным пробоем.

Конденсатор, эквивалентный изменению ширины обедненного слоя, называется барьерной емкостью Cb.

Когда на PN переход подается обратное напряжение, Cb значительно изменяется с изменением u. В соответствии с этим могут изготавливаться различные варакторные диоды.

Меньшая часть PN-перехода в стабильном состоянии называется неосновной несущей.

Когда PN-переход находится в прямом смещении, дырки, которые диффундируют из области P в область N, и свободные электроны, которые диффундируют из области N в область P, называются неравновесными неосновными носителями.

Процесс накопления и высвобождения заряда в диффузионной области такой же, как процесс зарядки и разрядки конденсатора.Этот эффект называется диффузионной емкостью.

Часто задаваемые вопросы о характеристиках диодов и его кривой V-I

1. Какие характеристики диода?
Основными статическими характеристиками диодов являются прямое напряжение VF и прямой ток IF, а также обратное напряжение и ток VR и IR. Область, окруженная оранжевой пунктирной линией на диаграмме справа, указывает полезную площадь выпрямительных диодов.

2.Какие характеристики идеального диода? Характеристики идеального диода

Пороговое напряжение: Идеальные диоды не имеют порогового напряжения.
Прямой ток: Идеальные диоды включают неограниченный прямой ток, когда любое прямое напряжение приложено к их клеммам.
Напряжение пробоя: Идеальные диоды не имеют напряжения пробоя.
Обратный (утечка) Ток

3. Каковы характеристики диода с pn переходом?
Область PN-перехода переходного диода имеет следующие важные характеристики:
Полупроводники содержат два типа мобильных носителей заряда: «дырки» и «электроны».
Дырки заряжены положительно, а электроны — отрицательно.

4. Каковы параметры диода?
Пиковое обратное напряжение, PIV: Характеристики диода представляют собой максимальное напряжение, которое диод может выдерживать в обратном направлении. … Максимальный прямой ток: Для конструкции электронной схемы, которая пропускает любые уровни тока, необходимо обеспечить, чтобы максимальные уровни тока для диода не превышались.

5. Какова основная функция диода PN?
Диод с p-n переходом — это базовое полупроводниковое устройство, которое контролирует поток электрического тока в цепи.Он имеет положительную (p) сторону и отрицательную (n) сторону, создаваемую добавлением примесей с каждой стороны кремниевого полупроводника.

6. Является ли характеристика диода линейной?
Компонент схемы имеет нелинейную характеристику, если сопротивление не является постоянным на всем протяжении и является некоторой функцией напряжения или тока. Например, диод имеет разное сопротивление для разных значений напряжения. Однако он имеет линейную характеристику для узкой рабочей области.

7.Как температура влияет на кривую ВАХ диода?
Влияние повышенной температуры на характеристическую кривую диода с PN переходом показано на рисунке выше. Можно отметить, что прямая характеристика смещается вверх с повышением температуры. С другой стороны, обратная характеристика смещается вниз с повышением температуры.

8. Диоды переменного или постоянного тока?
Один или четыре диода преобразуют бытовую мощность 110 В в постоянный ток, образуя половинный (один диод) или двухполупериодный (четыре диода) выпрямитель.Диод пропускает только половину сигнала переменного тока.

9. Каковы VI характеристики диода?
VI характеристики диода с PN переходом при прямом смещении нелинейны, то есть не являются прямой линией. Эта нелинейная характеристика показывает, что во время работы N-перехода сопротивление не является постоянным. Наклон диода с PN-переходом при прямом смещении показывает, что сопротивление очень низкое.

10. Увеличивают ли диоды напряжение?
Прямое напряжение
Чтобы «включиться» и проводить ток в прямом направлении, диод требует приложения определенного количества положительного напряжения…. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения.

Вам также может понравиться

Характеристики диода Шоттки и его применение

Учебное пособие по стабилитронам

: каков принцип работы стабилитронов?

Учебное пособие по основам работы со светодиодами

Альтернативные модели

Деталь Сравнить Производителей Категория Описание
Производитель.Часть #: SN74LVCZ16245ADGGR Сравнить: 74LVC16245APAG8 VS SN74LVCZ16245ADGGR Изготовители: TI Категория: Логические ИС Описание: Приемопередатчик 16-битной шины с выходами с 3 состояниями 48-TSSOP от -40 ℃ до 85 ℃
Производитель.Номер детали: IDT74LVC16245APAG Сравнить: 74LVC16245APAG8 VS IDT74LVC16245APAG Производители: Технология интегрированных устройств Категория: Логические ИС Описание: 3.КМОП-трансивер 3 В, 16-битная шина, 3-х фазные выходы, 5 В, допускающий ввод / вывод
Производитель № детали: 74LVC16245APAG Сравнить: 74LVC16245APAG8 VS 74LVC16245APAG Производители: Технология интегрированных устройств Категория: Логические ИС Описание: 3.3-вольтовый CMOS-трансивер с 16-битной шиной, выходами с 3 состояниями и допустимым входом / выходом 5 В
Производитель № детали: 74LVC16245APAG8 Сравнить: Текущая часть Производители: Технология интегрированных устройств Категория: Логические ИС Описание: 3.3-вольтовый CMOS-трансивер с 16-битной шиной, выходами с 3 состояниями и допустимым входом / выходом 5 В

Каковы характеристики идеального кремниевого диода?

Диод — это электрический переключатель, обычно сделанный из полупроводникового материала, такого как кремний.Он состоит из двух выводов: положительного (анод) и отрицательного (катод). Его часто используют в качестве выпрямителя, который представляет собой устройство, преобразующее переменный ток в постоянный ток, протекающий в одном направлении. Выпрямители можно найти в электронных компонентах, таких как радиоприемники, источники питания постоянного тока и высоковольтные передатчики. Диоды бывают самых разных форм, таких как диоды для электронных ламп, полупроводниковые диоды и ртутно-дуговые клапаны. Диод работает вместе с резистором в цепи.

Направление напряжения Направление потока электронов в диоде характеризуется прямым и обратным режимами.В диоде с прямым смещением ток течет в положительном направлении, тогда как в диоде с обратным смещением ток течет в отрицательном направлении. Вот еще один способ понять это:

  • диод с прямым смещением = включен (или «включен»)
  • обратный диод = выключен (или «отключен»)

Идеальные диоды Диод с обратным смещением называется разомкнутой цепью. Но когда диод горит, он действует как короткое замыкание. В идеале диод работает как разомкнутая нелинейная цепь с фиксированным постоянным падением напряжения.Эта модель пользуется популярностью в инженерной сфере из-за ее простоты. Он основан на концепции, согласно которой «прямая проводка» имеет незначительное колеблющееся падение напряжения примерно от 0,6 до 0,8 вольт, с предположением, что величина напряжения постоянна и составляет 0,7 В.

Цепь может быть проанализирована как линейная, только если сигнал напряжения не превышает одну или несколько точек разрыва. Кроме того, идеальный диод имеет нулевое сопротивление току в одном направлении и высокое сопротивление в противоположном направлении.

Заключение Диоды позволяют току свободно течь в одном направлении, ограничивая поток в противоположном направлении. Назначение диода с прямым смещением — позволить току течь в прямом направлении, ограничивая ток в обратном направлении. Диод с обратным смещением отражает отрицательное напряжение. Наиболее распространены диоды на основе полупроводников.

Международный союз компонентов

Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы на заказ и трансформаторы на заказ.Мы стремимся предоставлять нашим клиентам продукцию высокого качества, обеспечивать своевременные поставки и предлагать конкурентоспособные цены.

Мы — растущее предприятие в магнитной промышленности с более чем 20-летним опытом.

P-N Junction Diode с рабочим, характеристиками, применением —

P-N переходной диод

Диод с P-N переходом представляет собой комбинацию двух полупроводниковых материалов, один из которых является полупроводником P-типа, а другой — полупроводником N-типа.Его также называют просто P-N переходом или полупроводниковым диодом.

Диод имеет два вывода: полупроводник P-типа называется анодом, а полупроводник N-типа называется катодом. Он пропускает ток в одном направлении и оказывает большое сопротивление в другом направлении. его также называют кристаллическим диодом, потому что он сделан в кристаллической (кремниевой или германиевой) форме. Клеммы диода можно определить по мультиметру.

Схема Условное обозначение диода

Диод

Когда диод используется в качестве элемента схемы, его удобно обозначать символом.

Символ диода

Анод и катод — это два вывода диода, где анодом является полупроводник P-типа, а катодом — полупроводник N-типа. Анод имеет положительное напряжение, а катод — отрицательное напряжение. Острие стрелки указывает от P-области к N-области. Это показывает, что направление обычного тока — от P-области к N-области, которая также является направлением потока отверстий.

Свойства соединения P-N

p-n-переход обладает некоторыми интересными свойствами, которые находят полезное применение в современной электронике.Легированный полупроводник p- относительно проводящий. То же самое верно и для полупроводника, легированного n , но переход между ними является непроводником. Этот непроводящий слой, называемый зоной обедненного слоя, возникает из-за того, что в легированном кремнии типа n и p -типа (электроны и дырки, соответственно) переносится электрический заряд, притягивая и устраняя друг друга в процессе, называемом рекомбинацией. Путем манипулирования этим непроводящим слоем p-n переходов обычно используются в качестве диодов: элементы схемы, которые пропускают электрический ток в одном направлении, но не в другом (противоположном) направлении.Это свойство объясняется в терминах эффектов прямого смещения и обратного смещения, где термин смещение относится к приложению электрического напряжения к p-n переходу.

V-I Характеристики P-N переходного диода или практического диода

Если диод используется в качестве элемента схемы в электрической цепи, может потребоваться знать, как он реагирует или ведет себя в электрической цепи. Этот тип информации может быть получен с помощью кривой, известной как вольт-амперная (V-I) характеристика практического диода.

ВАХ диода с P-N переходом — это просто кривая или график между напряжением, приложенным к его клеммам, и током, протекающим через диод из-за этого приложенного напряжения. Все характеристики V-I можно разделить на две части, а именно:

  1. Передние характеристики
  2. Обратные характеристики

Вперед Характеристика:

Схема, показанная на рисунке, используется для получения прямых характеристик диода.Диод в цепи находится в состоянии прямого смещения, потому что батарея Vf проталкивает ток в наконечнике стрелки.

Когда диод подключен к батарее или источнику питания, полупроводник или анод P-типа подключается к положительной клемме, а полупроводник или катод N-типа подключается к отрицательной клемме батареи. Такая конфигурация диода известна как прямое смещение диода.

В этом базисе или конфигурации диод работает как короткозамкнутый или замкнутый переключатель.Его прямое сопротивление очень низкое в диапазоне Ом. Это означает, что ток легко течет при прямом смещении диода.

Кривая ВАХ в переднем баисе

В V-I характеристиках напряжение на диоде увеличивается постепенно и соответственно увеличивается ток. На прямой характеристической кривой ток диода очень мал до фиксированной точки.

Приложенное напряжение пересекает потенциал барьера, тогда ток диода быстро увеличивается и диод проводит сильную проводимость.Это напряжение барьера, при котором ток начинает увеличиваться, называется напряжением колена. Значение напряжения колена для кремниевого диода 0,7 В, а для германиевого диода 0,3 В.

В этой конфигурации основными носителями заряда являются дырки или положительный заряд, а неосновными носителями заряда являются электроны или отрицательный заряд.

Реверс Характеристика:

Кривая V-I в обратном направлении

Теперь в конфигурации с обратным смещением диод подключается к батарее или источнику питания, полупроводник или анод P-типа подключается к отрицательной клемме, а полупроводник или катод N-типа подключается к положительной клемме батареи.

Эта конфигурация диода известна как обратное смещение диода. В этом базисе или конфигурации диод работает как разомкнутая цепь или разомкнутый переключатель. Его сопротивление обратному смещению высокое в диапазоне мегаом (МОм). Это означает, что через соединение диода будет проходить очень меньший ток или ток не будет проходить.

На ВАХ, напряжение на диоде отрицательное, поэтому будет течь очень слабый ток, близкий к нулю. Значение отрицательного напряжения увеличивается до определенного уровня, величина тока увеличиваться не будет.Ток, протекающий в обратном направлении, называется обратным током и возникает из-за неосновных переносов заряда.

значение обратного тока обычно меньше 1 мкА и может достигать 1 нА. для кремния и обратный ток может превышать 10 мкА в случае германия.

Диод Текущее уравнение

уравнение тока диода, связывающее напряжение V и ток I для прямого и области обратного смещения, может быть дано

Здесь я = Ток диода

I_ {0} = обратный ток насыщения диода при комнатной температуре

В = внешнее напряжение, приложенное к диоду

η = постоянная 1 для германия и 2 для кремния

Это 1 для германия и 2 для кремния.

V_ {T} = \ frac {kT} {q}

Где, k = Постоянная Больцмана = 1,38066 x 10 -23 Дж / Кельвин

q = Электронный заряд = 1,6 x 10 -19 Кулон

т = Температура диодного перехода, ( o K)

Важные условия P-N переходного диода

Разбивка напряжение

В случае обратного напряжения небольшое количество обратного тока будет протекать через переход P-N. После этого, при увеличении обратного напряжения, он достигнет точки, в которой соединение прорвется с неожиданным увеличением обратного тока.Напряжение пробоя определяется как «это обратное напряжение, при котором соединение P-N выходит из строя с неожиданным увеличением обратного напряжения».

Колено Напряжение

При прямом смещении P-N перехода очень небольшое количество тока будет проходить от перехода до тех пор, пока прямое напряжение не пересечет значение барьерного потенциала перехода, то есть 0,3 В для германия и 0,7 В для кремния. Прямое напряжение, при котором ток проходит через соединение P-N, начинается очень быстро, называется напряжением колена или сокращением напряжения.

Максимум Прямой ток

Это самый высокий прямой ток, при котором соединение P-N будет пропускать ток без каких-либо повреждение или проблема в стыке. Если прямой ток пересекает этот номинальный При значении силы тока переход будет раздавлен из-за перегрева.

Груша Обратное напряжение

Это максимальное обратное напряжение, при котором переход P-N будет нормально функционировать без каких-либо повреждений перехода. Если обратное напряжение превысит номинальное значение пикового обратного напряжения (PIV), переход может быть раздавлен из-за перегрева.

Максимум Номинальная мощность

Это максимальная мощность, которая может быть отведена от перехода без каких-либо повреждений или проблема в стыке.

Разница между кремниевыми и германиевыми диодами

S.No. Параметр Кремниевый диод Германиевый диод
1 Используемый материал Кремний Германий
2 Напряжение включения 0.6 В 0,2 В
3 Обратный ток насыщения В наноампер В микроампер
4 Влияние температуры Меньше Более
5 Напряжение пробоя Выше Ниже
6 Приложение Выпрямители, кусачки, зажимы и т. д. Низкое напряжение Низкое температурное приложение

Применение диода

Однополупериодный выпрямитель

При полуволновом выпрямлении цепь проводит ток только в течение положительных полупериодов входа a.c. поставка. Отрицательные полупериоды переменного тока. питание подавляется, т.е. во время отрицательных полупериодов ток не проводится, и, следовательно, на нагрузке не появляется напряжение. Следовательно, ток всегда течет через нагрузку в одном направлении (т.е.постоянный ток), хотя и после каждого полупериода.

Однополупериодный выпрямитель

Двухполупериодный выпрямитель

В схеме двухполупериодного выпрямителя используются два диода вместе с переходником, вторичная обмотка которого разделена поровну на две части и имеет соединение с отводом по центру.Каждый диод поочередно проводит, когда его анодный вывод положительный по отношению к центральной точке.

Двухполупериодный выпрямитель

Мостовой выпрямитель

Другой тип схемы, производящей двухполупериодное выпрямление, — это мостовой выпрямитель. Этот тип однофазного выпрямителя использует 4 отдельных выпрямительных диода, соединенных в «мостовую» конфигурацию для получения желаемого выходного сигнала, но не требует пространственного центрального трансформатора с лентой, что снижает его размер и стоимость.Единственная вторичная обмотка подключена к одной стороне сети диодного моста, а нагрузка — к другой.

Полноволновой мостовой выпрямитель

Характеристики прямого и обратного смещения диода

Характеристики прямого и обратного смещения диода:

На рисунках 2-4 и 2-5 показаны типичные характеристики прямого и обратного смещения диодов для слаботочных кремниевых и германиевых диодов. Из характеристик кремниевого диода на рис.2-4 видно, что прямой ток (I F ) остается очень низким (менее микроампер) до тех пор, пока напряжение прямого смещения диода (V F ) не превысит примерно 0,7 В. Выше 0,7 В, I F увеличивается почти линейно с увеличением V F .

Характеристики прямого и обратного смещения кремниевого диода:

Поскольку обратный ток диода (I R ) намного меньше, чем его прямой ток, обратные характеристики показаны с расширенными шкалами тока.Для кремниевого диода I R обычно меньше 100 нА и почти полностью не зависит от напряжения обратного смещения. Как уже объяснялось, I R в значительной степени является неосновным носителем заряда , обратным током насыщения. Небольшое увеличение I R может происходить с увеличением напряжения обратного смещения из-за утечки некоторых неосновных носителей заряда по поверхности перехода. Для диода с характеристиками, показанными на рис. 2-4, обратный ток обычно составляет менее 1/10 000 от самого низкого уровня нормального прямого тока.Следовательно, I R весьма незначителен по сравнению с I F , а диод с обратным смещением можно рассматривать почти как разомкнутый переключатель.

Характеристики прямого и обратного смещения германиевого диода:

Когда обратное напряжение диода (V R ) достаточно увеличено, прибор переходит в режим обратного пробоя . Для характеристик, показанных на рис. 2-4, обратный пробой происходит при 75 В. Обратный пробой может разрушить диод, если ток не ограничен подходящим последовательно соединенным резистором.Обратный пробой успешно применяется в стабилитронах .

Характеристики прямого и обратного смещения германиевого диода аналогичны характеристикам кремниевого диода с некоторыми важными отличиями. Прямое падение напряжения германиевого диода обычно составляет 0,3 В по сравнению с 0,7 В для кремния. Для германиевого устройства обратный ток насыщения при 25 ° C может составлять около 1 мкА, что намного больше, чем обратный ток для кремниевого диода. Наконец, напряжение обратного пробоя для германиевых устройств, вероятно, будет существенно ниже, чем для кремниевых устройств.

Более низкое прямое падение напряжения для германиевых диодов может быть явным преимуществом. Однако более низкий обратный ток и более высокое обратное напряжение пробоя кремниевых диодов делают их предпочтительнее германиевых устройств для большинства приложений.

Коэффициент идеальности диода:

Наибольший интерес представляют следующие параметры диода:

  • В F — прямое падение напряжения
  • I R — обратный ток насыщения
  • В BR — обратное напряжение пробоя
  • r d — динамическое сопротивление
  • I F (макс.) — максимальный прямой ток

Значения этих величин обычно указаны в технических характеристиках диодов, предоставляемых производителями устройств.Некоторые параметры можно определить непосредственно из характеристик прямого и обратного смещения диода. Для характеристик кремниевого диода на рис. 2-4, V F ≈ 0,7 В, I R = 100 нА и V BR = 75 В.

Прямое сопротивление — статическая величина; это постоянное сопротивление диода при определенном постоянном прямом токе. Динамическое сопротивление диода — это сопротивление изменяющимся уровням прямого напряжения.Динамическое сопротивление, также известное как сопротивление приращения или сопротивление переменного тока , является обратной величиной наклона характеристик движения вперед за пределами колена. Ссылаясь на Рис. 2-4 и Рис. 2-7,

Динамическое сопротивление также можно рассчитать по формуле 26

, где I F — постоянный прямой ток в переходе. Таким образом, например, динамическое сопротивление диода, пропускающего прямой ток 10 мА, составляет r ’ d = 26 мВ / 10 мА = 26 Ом.

Уравнение 2-2 показывает, что динамическое сопротивление диода изменяется с уровнем постоянного постоянного тока. Это не показано на фиг. 2-4 и 2-5, поэтому характеристики являются приближенными к реальным характеристикам устройства. Следует также отметить, что уравнение. 2-2 показывает сопротивление переменному току только для соединения. Он не включает сопротивление полупроводникового материала постоянному току, которое может достигать 2 Ом в зависимости от конструкции устройства. Сопротивление, полученное из крутизны характеристики устройства, включает в себя понижающее сопротивление полупроводника.Таким образом, r d (из характеристики) должно быть немного больше, чем r ’ d , рассчитанное по формуле. 2-2.

Характеристики кристаллического диода и основные приложения

Какие характеристики у кристаллического диода

Сердцевиной диода является PN переход. PN-переход имеет однонаправленную проводимость, которая является основной характеристикой диода.

Электропроводность диода определяется напряжением, приложенным к диод и ток, протекающий через диод.Отношения между два называется вольт-амперной характеристикой диода. Кривая, используемая для количественно описать взаимосвязь между этими двумя кривая вольт-амперной характеристики, как показано на рисунке 1-6.

Как видно из рис. 1-6 видно, что проводящие характеристики диод можно разделить на две части: прямая характеристика и обратная характеристики.

1.Передняя характеристика

Относится к соотношению между током и напряжением при добавлении диода. с прямым напряжением.

Когда прямое напряжение, приложенное к диоду, постепенно увеличивается от ноль, прямой ток мал и почти равен нулю в начале, а диод имеет большое сопротивление. Эта зона называется мертвой зоной. 2В。 Напряжение мертвой зоны кремниевого диода составляет около 0,5 В; напряжение мертвой зоны германиевого диода составляет около 0.2В. В реальных условиях, когда напряжение прямого смещения диода меньше чем напряжение зоны нечувствительности, считается, что его прямой ток равен нулю. После того, как приложенное напряжение превышает напряжение мертвой зоны, прямой ток начинает появляться до тех пор, пока оно не сравняется с напряжением во включенном состоянии, а прямой ток быстро увеличивается. В это время диод находится в состоянии прямой проводимости. Напряжение проводимости кремниевой трубки составляет 0,6-0. 7В, а проводимость Напряжение на германиевой трубке равно 0.2-0,3В.

2. Обратные характеристики

Относится к соотношению между током и напряжением, когда диод подается с обратным напряжением.

Когда на диод подается обратное напряжение, образуется обратный ток. очень мала, и она не меняется при изменении обратного напряжения в большой диапазон, поэтому эта область называется областью обратной отсечки. Электрический ток который проходит, когда обратная отсечка называется обратным током насыщения, обычно кремниевые трубки имеют от нескольких микроампер до нескольких десятков микроампер; германиевые трубки имеют от нескольких десятков микроампер до нескольких сотен микроамперы.Этот ток является важным параметром для измерения качества диод. Чем меньше значение, тем лучше качество диода. В в общем, обратным током насыщения можно пренебречь, и диод считается непроводящим в обратном направлении.

Если обратное напряжение продолжает увеличиваться до определенного значения, обратное ток внезапно увеличится. Это явление называется обратным пробоем. В на этот раз напряжение, приложенное к диоду, называется обратным пробоем. Напряжение.Это явление недопустимо при использовании обычных диодов. как обычно.

Таким образом, диод включается с определенным прямым напряжением. С участием характеристика отсечки обратного напряжения. Эта характеристика называется однонаправленная проводимость.

Кристаллический диод и его основное применение

Пример применения 1: Технология полупроводникового преобразователя

Конвертерная технология — это технология преобразования энергии.Вообще говоря, «преобразование» означает «переменный ток в постоянный и постоянный ток в переменный». Например, в обычных зарядных устройствах используется переменный ток. к технологии преобразователя постоянного тока.

На рисунке 5-3 показана схема трехфазного однополупериодного неуправляемого выпрямителя. В в любой момент только одна фазная трубка с наивысшим мгновенным анодным напряжением включенный. Согласно чередованию фаз источника питания каждая трубка повернул на 120 ° по очереди.

Пример применения 2: Импульсный источник питания

Схема применения импульсного источника питания показана на рисунке 5-4.VT1 и переключающий трансформатор образуют прерывистый генератор. После зарядное устройство запитано, напряжение сети 220В выпрямляется полуволной VD1 выпрямление, чтобы сформировать 300 В постоянного тока на полюсе C VT1. Напряжение подается на полюс C VT1 через первичную обмотку трансформатора. При этом напряжение также обеспечивает напряжение смещения для полюса B VT1 через пусковой резистор R2. Из-за эффекта положительной обратной связи Ic VT1 быстро возрастает и насыщается.Во время ТН напряжение насыщения, создаваемое вторичной обмоткой Коммутационный трансформатор включает VD2 и выдает напряжение постоянного тока около 9В на нагрузка. Импульс индукции, создаваемый обмоткой обратной связи коммутационного трансформатор выпрямляется VD3 и фильтруется C2 для генерации постоянного напряжения. пропорционально количеству импульсов колебаний. Если это напряжение превышает значение регулирования регулятора напряжения VD2, VD2 будет включено, и это Выпрямленное напряжение отрицательной полярности будет добавлено к полюсу B VT1, чтобы сделать это отрезало быстро.Время отключения VT1 обратно пропорционально его выходное напряжение. На включение / выключение VD2 напрямую влияет напряжение сети и нагрузка. Чем ниже напряжение сети или больше ток нагрузки, тем короче по времени VD2 и больше по времени VT1; наоборот, чем выше напряжение сети или ток нагрузки. Чем меньше выпрямленное напряжение VD3, тем дольше время работы VT1 и короче время включения VT1.

Пример применения 3: Двунаправленный силовой электронный переключатель

Схема применения двунаправленного силового электронного переключателя показана на Рисунок 5-5.В цепи регулятора переменного напряжения с прерывистым напряжением силовой электронный переключатель должен соответствовать следующим требованиям: переключатель полностью управляемый, и можно управлять включением или выключением, поэтому он должен полностью контролироваться. Тип устройство. Силовые электронные переключатели должны иметь двунаправленную проводимость, поэтому одно устройство не может соответствовать требованиям, и несколько устройств должны быть комбинированный. Частота переключения высока, обычно выше 90 кГц.

Используется только один управляемый элемент, а четыре диода используются для формирования мостовое соединение одновременно, так что коллектор транзистора всегда течет независимо от направления тока внешней цепи.

Добавить комментарий

Ваш адрес email не будет опубликован.