Как определить полярности диодов: плюс или минус
Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.
Общий вид изделия
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.
Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.
Особенности функционирования
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.
Расположение и обозначение выводов
Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.
На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.
Способы определения полярности
Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
- Проверка посредством мультиметра, включённого в режим прозвонки;
- Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный осмотр
Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.
Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.
По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.
Применение измерительного прибора
Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.
После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.
В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.
Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.
Проверка с помощью лампочки
При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.
В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.
Видео
Оцените статью:Диод на схеме где плюс. Основные способы определения полярности у светодиода. Другие способы определения полярности
Все диоды обязательно имеют положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется анодом
, а отрицательный — катодом
. Катод диода легко опознать по полоске красного или черного цвета, расположенной у этого вывода на корпусе.
На рис. 4.8 как раз показан диод с подобной маркировкой полярности . Полоска, таким образом, соответствует вертикальной линии схемотехнического символа данного элемента. Важно, чтобы, «читая» принципиальную схему какого-либо устройства, вы правильно трактовали расположение в ней диода и направление протекающего тока
Рис. 4.8. Используя диоды, всегда помните об их полярности. Полоска на одном из концов корпуса диода указывает его
Внимание
Как уже говорилось в самом начале этого раздела, диоды позволяют проходить через них току в прямом направлении и блокируют ток, протекающий в обратном. Таким образом, если вставить диод в схему неправильно, схема или не заработает, или некоторые элементы рискуют выйти из строя. Всегда внимательно проверяйте полярность диодов в схеме — лучше дважды перепроверить, чем один раз устранять последствия!
Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.
Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.
Особенности функционирования
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.
Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.
На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.
Способы определения полярности
Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
- Проверка посредством мультиметра, включённого в режим прозвонки;
- Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный осмотр
Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода.
Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.
По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.
Применение измерительного прибора
Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.
После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0. 7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.
В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.
Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.
При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.
В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.
Видео
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится.
Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?
Определяем зрительно
Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.
Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.
Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.
Применяем источник питания
Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.
Применение мультиметра
Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус.
На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.
Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.
Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.
99.80.2.000.00 | 9980200000 | Диод (обратная полярность) (= 6-220В DC) — 99 Серия — Модули подавления электромагнитного умпульса
Сертификация
ГОСТ Р, EAC
Ваша цена: не указана
Наличие: Под заказ
Минимальное количество в заказе 1 шт.
Быстрый заказ
Артикул
9980200000
- Характеристики
- Документация
- Доставка
- Отзывы ()
-
Сертификация
ГОСТ Р, EAC
Похожие товары
-
Наличие: >1000 шт.
Быстрый заказ
-
Наличие: 40 шт.
Быстрый заказ
-
Наличие: 214 шт.
Быстрый заказ
-
Наличие: Под заказ 5 недель
-
Наличие: Под заказ 5 недель
-
Наличие: 38 шт.
Быстрый заказ
-
Наличие: 10 шт.
Быстрый заказ
-
Наличие: >1000 шт.
Быстрый заказ
-
Наличие: 77 шт.
Быстрый заказ
-
Наличие: 400 шт.
Быстрый заказ
Полярность — диод — Большая Энциклопедия Нефти и Газа, статья, страница 3
Полярность — диод
Cтраница 3
В рассматриваемой схеме обе катушки реле Р1 ( I и / 7) питаются через диоды Д1 и Д2, что исключает возможность протекания токов в обоих направлениях. Якорь поляризованного реле предварительно устанавливается в такое положение, при котором протекание тока через любую из обмоток в направлении, допускаемом полярностью диодов Д1 и Д2, приводит к его перебрасыванию.
[32]
Предназначены для визуальной индикации. Выпускаются в пластмассовом корпусе с гибкими выводами Маркируются цветовыми точками на корпусе: АЛ336А — одной красной; АЛ336Б — двумя красными; АЛ336В — одной зеленой; АЛЗЗбГ — двумя зелеными; АЛ336Д — одной желтой; АЛ 336 Е — двумя желтыми; АЛ336Ж — тремя желтыми; АЛ336И — одной белой; АЛ336К — одной черной. Полярность диодов АЛ336 ( А, Б) и АЛ336К указывается на чертеже. Диоды АЛ336В — АЛ336И имеют обратную полярность. [33]
Предназначена яяя, применения в импульсных устройствах. Выпускаются в стеклянной Корпусе с гибкими выводами. Полярность диода обозначается желтой точкой на корпусе вблизи положительного ( анодного) вывода. Тип диода приводится на дополнительной таре.
[34]
Предназначены для визуальной индикации. Выпускаются в пластмассовом корпусе с гибкими выводами Маркируются цветовыми точками на корпусе: АЛ336А — одной красной; АЛ336Б — двумя красными; АЛ336В — одной зеленой; АЛЗЗбГ — двумя зелеными; АЛ336Д — одной желтой; АЛ 336 Е — двумя желтыми; АЛ336Ж — тремя желтыми; АЛ336И — одной белой; АЛ336К — одной черной. Полярность диодов АЛ336 ( А, Б) и АЛ336К указывается на чертеже. Диоды АЛ336В — АЛ336И имеют обратную полярность. [35]
Выпрямительные диоды малой мощности типа Д9 выполнены в стеклянном корпусе с гибкими выводами и применяются в ЭКВМ Элка-22 и в ряде моделей типа Искра. Маркируются диоды цветными точками на средней части корпуса. Полярность диодов обозначается красной точкой со стороны плюсового вывода. [36]
Бескорпусной с жесткими выводами. Тип диода указывается на упаковке. Полярность диода определяется тестером.
[37]
Предназначена яяя, применения в импульсных устройствах. Выпускаются в стеклянной Корпусе с гибкими выводами. Полярность диода обозначается желтой точкой на корпусе вблизи положительного ( анодного) вывода. Тип диода приводится на дополнительной таре. [38]
Выводы диодов бывают ленточные и проволочные. У мощных диодов один из выводов представляет собой зинт с гайкой для крепления диода к шасси или к радиатору охлаждения. Определение полярности диода предусматривается маркировкой. У соответствующего вывода ставится знак или на корпусе диода стрелка, указывающая направление прохождения тока. Если выводы ленточные, то на одном из них штампуется схема диода также с указанием направления тока. [39]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используются условная маркировка черными кольцевыми полосами на корпусе со стороны положительного ( анодного) вывода: 2Д522Б — одной полосой; КД522А — двумя; КД522В — тремя.
[40]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используется условная маркировка — одна широкая и две узкие цветные полоски па корпусе со стороны положительного ( анодного) вывода: КД521А — полосы синие; КД521Б — серые; КД521В — желтые; КД521Г — белые; КД521Д — зеленые. [41]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используются условная маркировка черными кольцевыми полосами на корпусе со стороны положительного ( анодного) вывода: 2Д522Б — одной полосой; КД522А — двумя; КД522В — тремя.
[42]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используется условная маркировка — одна широкая и две узкие цветные полоски на корпусе со стороны положительного ( анодного) вывода: КД521А — полосы синие, КД521Б — серые, КД521В — желтые, КД521Г — белые, КД521Д — зеленые. [43]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используются условная маркировка черными кольцевыми полосами на корпусе со стороны положительного ( анодного) вывода: 2Д522Б — одной полосой, КД522А — двумя, КД522В — тремя. [44]
Предназначены для применения в импульсных устройствах. Выпускаются в стеклянном корпусе с гибкими выводами. Для обозначения типа и полярности диодов используется условная маркировка — одна широкая и две узкие цветные полоски па корпусе со стороны положительного ( анодного) вывода: КД521А — полосы синие; КД521Б — серые; КД521В — желтые; КД521Г — белые; КД521Д — зеленые.
[45]
Страницы: 1 2 3 4
Что такое диод? | Fluke
Диод — это полупроводниковое устройство, которое управляет током как однополюсный выключатель. Он позволяет току свободно проходить в одном направлении, но значительно ограничивает движение тока в противоположном направлении.
Диоды также называются выпрямителями, поскольку они преобразуют переменный ток в пульсирующий постоянный ток. Номинал диодов зависит от их типа, напряжения и допустимой токовой нагрузки.
Диоды имеют полярность, которую определяют анод (положительный вывод) и катод (отрицательный вывод). В большинстве случаев ток проходит через диод только при подаче положительного напряжения на анод. На рисунке показаны различные конфигурации диодов:
Во время прохождения тока диод имеет прямое смещение. При отрицательном смещении диод действует как изолятор и не пропускает ток.
Интересный факт: Стрелка символа диода направлена против потока электронов. Причина: Этот символ приняли инженеры, на их схемах ток показан в направлении от положительного (+) полюса источника напряжения к отрицательному (-). Это же правило применяется и для условных обозначений полупроводников со стрелками: стрелка указывает допустимое направление «условного» тока, противоположное допустимому направлению потока электронов.
В режиме проверки диодов цифровым мультиметром между щупами создается небольшое напряжение, достаточное для прямого смещения p-n-перехода диода. Нормальное падение напряжения составляет от 0,5 В до 0,8 В. Сопротивление исправного диода с прямым смещением должно находиться в диапазоне от 1000 Ом до 10 МОм. При отрицательном смещении на экране цифрового мультиметра должно отображаться значение OL (указывает на очень высокое сопротивление).
Для диодов предусмотрено номинальное значение тока. При превышении номинала и отказе диода возможно короткое замыкание и a) ток будет проходить в двух направлениях или б) ток не будет проходить ни в одном из направлений.
Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.
Статьи на связанные темы
Защита от обратной полярности: как защитить ваши цепи, используя только диод — Новости
Защита обратной полярности: как защитить свои цепи, используя только диод
Подключение питания с неправильной полярностью — это непростая ошибка. К счастью, защита вашего устройства от обратной полярности также довольно проста.
Плохие вещи могут произойти, когда вы меняете полярность питания вашего устройства. Переключение положительных и отрицательных проводов питания, вероятно, является основным методом «пропускания дыма» из блестящей новой печатной платы, и это на самом деле лучший сценарий, чем нанесение какого-то тонкого повреждения, которое приводит к недоумению или прерывистым сбоям. Обратная полярность также может возникать после фазы тестирования и разработки. Устройство, как правило, предназначено для предотвращения неправильного подключения конечного пользователя к кабелю питания, но даже самые лучшие из нас могут иногда вставлять аккумулятор, не глядя на диаграмму полярности ….
Я предпочитаю использовать все доступные средства, чтобы сделать обратную полярность физически невозможной, но суть в том, что устройство никогда не является действительно безопасным, если сама схема не сможет выдержать обратное напряжение питания. В этой статье мы рассмотрим два простых, но очень эффективных способа сделать вашу схему надежной по сравнению с ошибками питания.
Что такое диод защиты от обратной полярности «» src = «// www.allaboutcircuits.com/uploads/articles/techarticle_RPP_1.jpg» />
Если вы не знакомы с этой техникой, это может показаться немного странным: может ли диод изменить полярность приложенного напряжения? Может ли это действительно «изолировать» схему ниже по потоку от приложенного напряжения?
Он, конечно, не может «отменить» обратную полярность, но он может изолировать остальную часть схемы от этого условия просто потому, что он не будет проводить ток, когда напряжение катода выше анодного напряжения. Таким образом, в ситуации обратной полярности повреждение обратных токов не может протекать, а напряжение на нагрузке не такое же, как инверсное напряжение питания, потому что диод функционирует подобно разомкнутой цепи.
Схема LTspice, показанная выше, позволяет нам исследовать переходное и установившееся поведение схемы защиты диода. Первоначально напряжение питания составляет 0 В, затем оно резко изменяется до -3 В. Моя идея здесь заключается в том, чтобы имитировать эффект неправильной установки двух 1, 5-вольтовых батарей (или одной батареи 3 В). Моделирование включает сопротивление нагрузки (соответствующее схеме, которая потребляет около 3 мА) и емкость нагрузки (соответствующая развязывающим колпачкам для нескольких ИС).
Вы можете видеть, что через диод протекает некоторый ток (т.е. катод-анод). Переходный ток очень мал, и более длительный ток является незначительным. Однако ток течет, и, следовательно, катодная сторона не полностью плавает; вместо этого в цепи нагрузки имеется очень малое обратное напряжение. Однако это не является установившимся условием. Если мы продолжим моделирование до 300 мс, мы увидим следующее:
Так как емкость нагрузки заряжается и становится разомкнутой цепью, ток падает до нуля (точнее, 0.001 фемтопары, в соответствии с LTspice), и, следовательно, нет никакого обратного напряжения на нагрузке. Вывод здесь состоит в том, что диод не идеален, но, насколько мне известно, он достаточно близко, потому что я не могу себе представить, что на любую реалистичную схему будет отрицательно влиять ~ 100 мс нескольких микровольт обратной полярности.
За и против
К настоящему времени преимущества этой схемы должны быть ясными: она дешевая, чрезвычайно простая и высокоэффективная. Однако есть определенные недостатки, которые необходимо учитывать:
- Во время нормальной работы диод падает до ~ 0, 6 В. Это может быть значительная часть напряжения питания, а при уменьшении напряжения батареи устройство может перестать работать досрочно.
- Любой компонент, который имеет падение напряжения на нем, и ток, протекающий через него, потребляет энергию. Если эта рассеянная энергия исходит от батареи, диод сокращает время автономной работы. Это не может быть приемлемым компромиссом в устройствах, которые имеют очень низкий риск возникновения обратной полярности.
Защита обратной полярности с помощью диода Шоттки
Простым способом смягчения обоих указанных недостатков является использование диода Шоттки вместо обычного диода. Этот подход уменьшает потери напряжения и рассеивание мощности. Я не уверен, как могут работать низкие диоды Шоттки, но в некоторых случаях прямое напряжение может быть ниже 300 мВ.
Вот новая схема моделирования:
Следующие спецификации дают вам пример характеристик прямого напряжения диода BAT54:
Таблица взята из этого Vishay datasheet.
Здесь приведен график переходного и стационарного отклика схемы защиты от обратной полярности на основе Шоттки.
Вы можете видеть, что обратный ток и обратное напряжение на нагрузке намного больше, чем мы наблюдали с диодом не Шоттки. Этот более высокий обратный ток утечки является известным недостатком диодов Шоттки, хотя в этом конкретном применении обратный ток по-прежнему намного ниже, чем все, что вызывает серьезную озабоченность. Поэтому, когда дело доходит до защиты от обратной полярности, диоды Шоттки определенно предпочтительны.
Вывод
Мы видели, что один диод представляет собой удивительно эффективный способ включения защиты от обратной полярности в схему электропитания устройства. Диоды Шоттки имеют более низкое прямое напряжение и, следовательно, обычно лучше, чем обычные диоды. Участник AAC, у которого есть опыт работы с этими схемами, рекомендует p / n 1N4001 (если по какой-либо причине вы хотите использовать обычный диод) или p / n MBRA130 (это Шоттки).
Что такое диод и как его проверить
Приветствую друзья!
Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.
А собранные вместе, они являют собой нечто совершенно уникальное!
Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.
Это как дом, построенный из кирпичей.
Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.
Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.
Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.
Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.
Что такое диод?
Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.
Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).
При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.
Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.
В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).
Когда диод открыт, то на нем падает какое-то напряжение.
Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.
Причем зависимость эта нелинейная.
Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.
Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).
Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.
Мостовая схема выпрямления
В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.
Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.
Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.
В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.
В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.
Схема выпрямления из двух диодов
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»
Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.
А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.
Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.
Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.
Проверка диодов
Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.
Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.
Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.
Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.
Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).
Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.
Дисплей покажет величину 0,5 – 0,6 В.
Если изменить полярность щупов, диод будет заперт.
Дисплей при этом покажет единицу в крайнем левом разряде.
Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).
Диодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».
При этом один диод будет открыт, а другой закрыт.
Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.
Следует обратить внимание на то, что катод – это плюсовой вывод моста.
Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).
Такой мост, естественно, непригоден для работы.
В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.
При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.
Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.
Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.
Токи потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.
Вследствие этого они будут сильно греться.
Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.
Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.
Диоды Шоттки
Диод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.
Получающийся при этом так называемый потенциальный барьер будет меньше.
В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.
Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.
Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.
В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.
Если в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!
Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?
До встречи на блоге!
Что такое диоды? Проверка диодов и их применение
Диоды — это электронные компоненты устройства, которые позволяют току более легко и плавно течь через любое устройство в определенном направлении. Он имеет два электрода, один известен как анод , а другой — катод. Полупроводниковые материалы , такие как Кремний и Германий , используются для производства диодов.
Использование диодов
Диоды используются для различных целей, например:
- Выпрямитель
- Регулятор напряжения
- Коммутаторы
- Осцилляторы
- Ограничители, модуляторы и демодуляторы сигналов.
Существует большое количество полупроводниковых диодов различных номиналов, которые используются в электронных схемах в соответствии с требованиями. Диоды бывают разной формы, размера и цвета.
На рисунке ниже показана форма диода BY 127 , который может безопасно пропускать прямой ток 1 А при пиковом обратном напряжении 1000 В. Он зеленого цвета, и направление, в котором он может проходить, обозначено символом, как показано на рисунке. В этой же серии есть и другие диоды, такие как BY 118, и т. Д.
На рисунке ниже показана форма диода 1N 4007 :
Он может безопасно пропускать прямой ток 1 А с PIV 100 В. Это черный цвет. На одной стороне напечатана полоса серебристого цвета, которая показывает отрицательный конец (катод) диода. В той же серии другие диоды — 1N 4001, 1N 4002. 1N 4003, 1N 4004 и т. Д. Другой диод той же серии — 1N 5406 , который может пропускать ток 6A с PIV 200 В.
На рисунке ниже показана форма диода OA 79 .Изготовлен из прозрачного стекла. Красная отметка на корпусе (стрелка) обозначает положительный вывод. Другой диод той же серии — OA 80, OA 85 и т. Д.
На рисунке ниже показана форма силового диода D 1604 N . Он имеет металлический корпус и может выдерживать большую мощность. Он может безопасно пропускать ток 16 А с PIV 400 В. Другой силовой диод — 10 KLR 12 , который может выдерживать ток 10 А при PIV 1200 В.
Проверка клемм диодов
Если символ или отметка на корпусе диода, показывающая полярность вывода, отсутствует или стерта, то полярность вывода можно определить с помощью измерителя сопротивления или мультиметра.
На рисунке ниже показано, что полярность клемм батареи, содержащейся в омметре, проявляется на выводах омметра.
Отведение P положительное, а Q отрицательное. Чтобы проверить вывод диода, его подключают к выводам P и Q, как показано на рисунке выше. Если диод проводит, а измеритель дает отклонение, то вывод A диода положительный (анод), а вывод B отрицательный (катод).
Однако, если диод не проводит и в Омметре нет отклонения, выводы диода противоположны, как и раньше.
Как проверить направление диода
Электронные схемы предназначены для работы с другими схемами, чтобы сформировать единицу, которая выполняет обозначенную задачу. Многие схемы, такие как схемы регулирования мощности, должны быть защищены от скачков напряжения и случайного изменения полярности. Диод — это электронный компонент, который пропускает электричество только в одном направлении, не позволяя потенциально опасным реверсам достигать чувствительной цепи. Электричество проходит через «катод» (отрицательную сторону) диода, а затем выходит из «анода» (положительная сторона) в сторону защищаемой цепи.При установке диода необходимо знание стандартов электроники.
-
Может быть трудно увидеть маленький белый полосу на катодной стороне стеклянного диода.При необходимости положите стеклянный диод на темный лист бумаги или ткани, чтобы белая полоса двигалась видимой.
Цвета полос на некоторых типах диодов могут отличаться друг от друга, но не расположение. Полоса всегда находится на катодной стороне диода. Цвет ремешка значения не имеет.
На некоторых специальных диодах, таких как стабилитроны, дополнительные полосы обозначают допуски и значения напряжения. Даже в этом случае первая полоса на конце — это полоса полярности.
Найдите принципиальную электрическую схему. Отслеживайте электрическую полярность по мере ее прохождения в цепи до точки, где катод (отрицательная сторона) диода должен быть припаян к плате. Обратите внимание, что диодный глиф на схеме имеет вертикальную линию с одной стороны и сплошную черную стрелку, указывающую на эту линию. Вертикальная линия представляет катод диода. Этот конец диода должен быть обращен в сторону, откуда идет отрицательный ток.
Внимательно осмотрите диод, при необходимости используя увеличительное стекло. Каждый диод имеет цветную точку или полосу на катодном (отрицательном) конце компонента. Черные пластиковые диоды будут иметь белую полосу на катодном конце, а стеклянные диоды будут иметь либо белую, либо черную полосу.
Используйте цифровой мультиметр для проверки полярности диода в случае, если маркировка полярности отсутствует или отсутствует. Просто включите измеритель и поверните циферблат, чтобы измерить «Ом.»Поднесите черный (отрицательный) измерительный щуп к одной металлической ножке диода, а красный (положительный) измерительный щуп к другой металлической ножке. Если вы не видите показания или просто» 1 «на дисплее, переверните щупы. Когда вы увидите на дисплее фактическое значение в омах, обратите внимание на сторону, на которой находится отрицательный (черный) датчик. Это катодная (отрицательная) сторона диода.
Проверка счетчика диода | Диоды и выпрямители
Функциональность полярности диода
Способность определять полярность (катод по сравнению с анодом) и основные функции диода — очень важный навык для любителя электроники или техника. Поскольку мы знаем, что диод по сути является не более чем односторонним клапаном для электричества, имеет смысл проверить его односторонний характер с помощью омметра постоянного тока (с батарейным питанием), как показано на рисунке ниже. При одностороннем подключении через диод измеритель должен показывать очень низкое сопротивление в точке (a). Подключенный другой стороной к диоду, он должен иметь очень высокое сопротивление в точке (b) («OL» на некоторых моделях цифровых измерителей).
Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный провод — это катод, а красный провод — анод (для большинства счетчиков) (b) Реверсивные провода показывают высокое сопротивление, указывающее на обратное смещение.
Определение полярности диода?
Использование мультиметра
Конечно, чтобы определить, какой конец диода является катодом, а какой — анодом, вы должны точно знать, какой измерительный провод измерителя положительный (+), а какой отрицательный (-) при установке на «сопротивление». или функцию «Ω». В большинстве цифровых мультиметров, которые я видел, красный провод становится положительным, а черный — отрицательным, когда они настроены на измерение сопротивления в соответствии со стандартным соглашением о цветовой кодировке электроники.Однако это не гарантируется для всех счетчиков. Многие аналоговые мультиметры, например, фактически делают свои черные выводы положительными (+), а их красные выводы — отрицательными (-) при переключении на функцию «сопротивления», потому что так проще изготавливать!
Проблемы проверки диодов с помощью омметра
Одна проблема с использованием омметра для проверки диода заключается в том, что полученные показания имеют только качественное значение, а не количественное. Другими словами, омметр только говорит вам, в какую сторону проводит диод; индикация низкого сопротивления, полученная при проводке, бесполезна.
Если омметр показывает значение «1,73 Ом» при прямом смещении диода, это значение 1,73 Ом не представляет собой какую-либо реальную величину, полезную для нас, технических специалистов или проектировщиков схем. Он не представляет ни прямое падение напряжения, ни какое-либо «объемное» сопротивление в полупроводниковом материале самого диода, а скорее является цифрой, зависящей от обеих величин, и будет существенно меняться в зависимости от конкретного омметра, используемого для снятия показаний.
Цифровой мультиметр для проверки диодов с
По этой причине некоторые производители цифровых мультиметров оснащают свои измерители специальной функцией «проверки диодов», которая отображает фактическое прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах.Эти измерители работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными проводами. (рисунок ниже)
Измеритель с функцией «Проверка диодов» отображает прямое падение напряжения 0,548 В вместо низкого сопротивления.
Прямое напряжение диода с Показание прямого напряжения, полученное с помощью такого измерителя, обычно будет меньше, чем «нормальное» падение 0,7 В для кремния и 0,3 В для германия, поскольку ток, обеспечиваемый измерителем, имеет тривиальные пропорции.
Альтернативы функции проверки диодов Если мультиметр с функцией проверки диодов недоступен, или вы хотите измерить прямое падение напряжения на диоде при некотором нетривиальном токе, схема на рисунке ниже может быть построена с использованием аккумулятор, резистор и вольтметр.
Измерение прямого напряжения диода без функции измерителя «проверка диода»: (a) Принципиальная схема. (б) Графическая диаграмма.
Если подключить диод к этой испытательной цепи в обратном направлении, вольтметр просто покажет полное напряжение батареи.
Если бы эта схема была разработана для обеспечения постоянного или почти постоянного тока через диод, несмотря на изменения прямого падения напряжения, ее можно было бы использовать в качестве основы прибора для измерения температуры, напряжение, измеренное на диоде, обратно пропорционально диодному переходу. температура. Конечно, ток диода должен быть минимальным, чтобы избежать самонагрева (диод рассеивает значительное количество тепловой энергии), что может помешать измерению температуры.
Особенности Multimet ers
Имейте в виду, что некоторые цифровые мультиметры, оснащенные функцией «проверки диодов», могут выдавать очень низкое испытательное напряжение (менее 0,3 В) при установке на обычную функцию «сопротивления» (Ом): слишком низкое, чтобы полностью разрушить область истощения PN переход.
Философия здесь заключается в том, что функция «проверка диодов» должна использоваться для тестирования полупроводниковых устройств, а функция «сопротивления» — для чего-либо еще.Используя очень низкое испытательное напряжение для измерения сопротивления, техническому специалисту проще измерить сопротивление неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, поскольку переходы полупроводниковых компонентов не будут смещены в прямом направлении при таких низких напряжениях.
Пример тестирования e
Рассмотрим пример резистора и диода, соединенных параллельно, припаянных на печатной плате (PCB). Обычно необходимо отпаять резистор от схемы (отсоединить его от всех других компонентов) перед измерением его сопротивления, в противном случае любые параллельно соединенные компоненты повлияют на полученные показания.При использовании мультиметра, который выдает очень низкое испытательное напряжение на щупы в режиме функции «сопротивление», PN-переход диода не будет иметь достаточного напряжения, приложенного к нему, чтобы стать смещенным в прямом направлении, и будет пропускать только незначительный ток. Следовательно, измеритель «видит» диод как обрыв (отсутствие обрыва) и регистрирует только сопротивление резистора. (Рисунок ниже)
Омметр с низким испытательным напряжением (<0,7 В) не видит диодов, позволяющих измерять параллельные резисторы.
Если бы такой омметр использовался для проверки диода, он показал бы очень высокое сопротивление (много МОм), даже если он подключен к диоду в «правильном» (прямом смещении) направлении. (Рисунок ниже)
Омметр с низким тестовым напряжением, слишком низким для прямого смещения диодов, диодов не видит.
Сила обратного напряжения диода не так легко проверить, потому что превышение PIV нормального диода обычно приводит к разрушению диода. Однако специальные типы диодов, которые предназначены для «пробоя» в режиме обратного смещения без повреждения (называемые стабилитроны ), которые испытываются с той же схемой источника напряжения / резистора / вольтметра, при условии, что источник напряжения достаточно высокого значения, чтобы заставить диод попасть в область пробоя.Подробнее об этом в следующем разделе этой главы.
ОБЗОР:
- Для качественной проверки работы диода можно использовать омметр. В одном направлении должно быть измерено низкое сопротивление, а в другом — очень высокое. При использовании омметра для этой цели убедитесь, что вы знаете, какой измерительный провод положительный, а какой отрицательный! Фактическая полярность может отличаться от цвета проводов, как вы могли ожидать, в зависимости от конкретной конструкции измерителя.
- Некоторые мультиметры предоставляют функцию «проверки диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерители обычно показывают немного более низкое прямое напряжение, чем «номинальное» для диода, из-за очень малого тока, используемого во время проверки.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Полярность маркировочного диода | Tempo Automation
Стрелка, нанесенная на слой шелкографии, — лучший способ обозначить полярность диода. Ни точки.Ни полоски. Используйте стрелку.
Даже при автоматической сборке неправильная полярность диода — обычная проблема. На диодах может быть неправильная маркировка. При программировании подъёмной машины для определения правильной ориентации требуется некоторая мысленная гимнастика. Стрелка шелкографии сокращает объем работы и повышает точность загрузки.
В современном символе диода прямой ток идет в направлении стрелки. Как удобно! Это приятно, но первоначальная цель дизайна символа заключалась в том, чтобы представить точечный контакт в диоде из германиевого стекла. Этот символ прижился, и теперь все думают о диоде как о стрелке.
. Полоса на стеклянном или пластиковом корпусе диода точно соответствует катодной линии на символе диода. Эта полоса также была нанесена на печатную плату. Это позволило легко увидеть правильную ориентацию.
Современные диоды поверхностного монтажа не всегда используют эту простую схему маркировки. Например, многие светодиоды имеют необычную маркировку полярности.Не самое лучшее место для размещения полосы сверху, потому что она будет блокировать свет.
Этот пакет отмечен сверху с небольшой выемкой в пластике сбоку катода.
Некоторые диоды имеют маркировку на контакте 1, а не на катоде.
Некоторые светодиоды не имеют маркировки наверху, а различные маркировки внизу не имеют отношения к катоду.
Установка ориентации диода в процессе сборки автоматизирована.Такие форматы файлов, как IPC-356D, определяют углы поворота для механизма подбора и размещения. Но с этими данными часто возникают проблемы, поскольку они основаны на предположениях об условных обозначениях, используемых при проектировании печатной платы. Данные в САПР согласованы, но не на 100% точны. Проверка ориентации исправляет небольшой процент деталей, которые не соответствуют соглашению об ориентации.
Контрактный производитель сможет выяснить, в какую сторону диод направлен на ленте. Человек, программирующий машину для подбора и размещения, находит ориентацию ленты в таблице данных, а затем проверяет ленту, чтобы убедиться, что она загружена правильно.Затем программист смотрит на конструкцию печатной платы, чтобы выяснить, в какую сторону должен указывать диод на плате. Если это не согласуется с файлом САПР, тогда это исправляется в программе станка. Вы можете упростить эту деталь, нарисовав стрелку или символ диода. Тогда программисту не придется задаваться вопросом, относится ли маркировка печатной платы к контакту 1, метке на корпусе или катоду. Допускается наличие и других обозначений, если есть четкая стрелка. Это касается всех типов диодов.
При создании библиотеки САПР для бесперебойной работы в автоматическом режиме мне нравится документ МПК «Нулевая ориентация электронных компонентов для построения библиотеки САПР». Вы можете найти этот документ, набрав заголовок в Google, или можете получить его прямо из IPC. В нем есть рекомендации по созданию библиотеки, а также для производителей. Например, для литых диодов говорится, что катод должен быть контактом 1 слева, а анод — контактом 2 справа.
Стандартная ориентация диодаСпасибо Джеффу Макэлвею.
Подключение светодиодов
Полярность светодиода
Светодиоды — это диоды, которые представляют собой электронные устройства, пропускающие ток только в одном направлении. Это означает, что светодиоды (и другие диоды) имеют положительную (+) и отрицательную (-) стороны. Для работы светодиода его необходимо подключить к источнику напряжения правильной стороной. Сторона источника напряжения диода является положительной (+) стороной, она называется анодом . Отрицательная сторона называется катодом .
Поскольку диоды изготовлены из полупроводникового материала, они имеют очень определенное напряжение, при котором они будут включаться. Если напряжение питания, которое вы используете, больше, чем напряжение включения, вам понадобится резистор между одним из выводов светодиода и подключением к GND или напряжению питания.
Светодиод резистор
Чтобы убедиться, что светодиод не повреждается слишком большим током, для соединения между ним и источником напряжения требуется резистор.Необходимое сопротивление зависит от того, какой ток будет использовать светодиод, чтобы он был достаточно ярким, чтобы видеть, но не настолько, чтобы он сам перегорел. Обычно это около 20 мА для большинства одноцветных светодиодов. Чтобы выбрать правильное значение сопротивления светодиода, вам также необходимо знать, какое у него напряжение включения (Vf). Красный светодиод использует наименьшее количество напряжения для включения, около 1,8 В, в то время как некоторые синие светодиоды требуют более 3,0 В.
Чтобы решить, какое сопротивление вам нужно, вам нужно использовать закон Ома для тока через резистор.Это та же величина, что течет к светодиоду, но напряжение на резисторе другое, потому что светодиод имеет напряжение включения, которое вы вычитаете из напряжения питания:
Напряжение резистора = напряжение питания - напряжение включения светодиода (Vf)
Для расчета сопротивления, необходимого для тока 20 мА для красного светодиода с Vf 2,0 В:
R = (3,3 В - 2,0 В) / 0,02 А = 65 Ом
Вот небольшая таблица с несколькими вариантами резисторов для красных светодиодов с разными значениями Vf:
Поставка | Vf | R |
---|---|---|
3.3 v | 1,8 v | 75 Ом |
3.3 v | 2.0 v | 65 Ом |
3.3 v | 2.2 v | 55 Ом |
Все о светодиодах
Что такое диоды? a quick refresher
Диод — это пассивный компонент, сделанный из полупроводниковых материалов (микросхема), который проводит ток, текущий в одном направлении, но не проводит ток, текущий в противоположном направлении. Символ диода (справа на рис. 1) выглядит как стрелка, указывающая в направлении прямого тока.Ток течет в одном направлении от положительной клеммы (называемой анодом) к отрицательной клемме (называемой катодом). Реальный диод, показанный слева на рисунке 1, отмечен полосой на анодной стороне. Полоса также соответствует символу диода, указывающему на протекание тока.
Вольт-амперная кривая диода (см. Рис. 2) показывает реакцию диода в зависимости от тока и напряжения. Идеальный диод не будет проводить никакого тока при обратном смещении (испытывая отрицательное напряжение), но будет проводить ток полностью (как если бы это был просто провод), если бы мы приложили положительное напряжение к диоду. По ВАХ можно сказать, что настоящий диод нелинейный. Диоды не являются неразрушаемыми. Если вы смещаете диод выше его напряжения пробоя, диод будет проводить ток в неправильном направлении.Некоторые диоды, называемые стабилитронами, специально разработаны с низким пробивным напряжением, которое можно безопасно превысить, не повредив его. Высоковольтный стабилитрон, также известный как лавинный диод, предназначен для работы за пределами напряжения пробоя. Лавинный пробой диода достигается, когда напряжение обратного смещения превышает напряжение пробоя. Лавина более известна как катастрофическое явление.
С точки зрения материаловедения, лавина касается реакции электронов на силу электрического поля в PN-переходе полупроводника.Стабилитроны и лавинные диоды отличаются от обычных диодов тем, что обычные диоды не предназначены для работы в режиме обратного смещения . Таким образом, ВАХ стабилитронов и лавинных диодов предназначены для использования после напряжения пробоя.
Рис. 2: ВАХ из таблицы данных для переключающего диода общего назначения, которая показывает типичный прямой ток диода как функцию от прямого напряжения.
Когда диод смещен в обратном направлении относительно напряжения пробоя, ток течет в неправильном направлении, но диод не сломан; он просто больше не работает как одностороннее устройство.Однако любой диод можно сломать. В таблице данных диода будут указаны максимальные номинальные значения, включая пиковый уровень напряжения обратного смещения, которое может выдержать диод. Многие диоды могут выдерживать очень большие напряжения до пробоя. Стабилитроны часто используются для защиты цепей. Стабилитроны полезны для защиты от смещения схемы выше ее номинального напряжения (например, в цепи лома), регулирования напряжения в цепи (также известного как стабилизатор шунта на стабилитроне),
Другой тип диодов — диод Шоттки.Диоды Шоттки имеют переход полупроводник металл , тогда как стандартный кремниевый диод имеет переход полупроводник. Переход металл-полупроводник имеет металл в контакте с полупроводниковым материалом. (Одно из основных отличий состоит в том, что ток металлического полупроводника будет выше при том же смещении напряжения, чем у диода с PN переходом. Кроме того, с переходом металл-полупроводник модуляция и переключение могут быть намного быстрее.) Один из результатов перехода металл-полупроводник заключается в том, что диод Шоттки имеет гораздо более быстрое время восстановления после выхода из состояния обратного смещения.Поэтому диоды Шоттки используются там, где имеет значение время восстановления на более высоких частотах. Диоды Шоттки используются для фиксации напряжения (т. Е. Для перемещения всего сигнала вверх или вниз по уровню напряжения без изменения сигнала), для защиты от обратного тока и разряда, а также в импульсных источниках питания.
Один диод, который многие люди используют каждый день, — это светоизлучающий диод (LED).Технически диоды являются пассивными устройствами, потому что, как резисторы, конденсаторы, катушки индуктивности и трансформаторы, они не управляют сигналом (или током) с помощью электрического сигнала, хотя их трудно рассматривать как пассивные, когда светодиод выделяет видимую энергию в виде света. Тем не менее, светодиод — это другой тип полупроводникового диода, который также проводит электричество при прямом смещении. Полярность светодиодов означает, что они не будут светить при обратном смещении напряжения. Светодиоды, используемые для индикаторов в схемах, будут иметь одну более длинную ножку, которая является анодом (+), а более короткая ножка — катодом (-).
Руководство по проектированию
— PMOS MOSFET для схемы защиты от обратной полярности напряжения
Если источник питания в цепи перевернут, например, подключите положительный провод к земле, а отрицательный провод к Vcc схемы. Могут произойти две плохие вещи: либо схема, которую мы разработали, может сгореть вместе со всеми дорогостоящими компонентами в ней, либо сам источник питания может выйти из строя.Все становится еще опаснее, если схема питается от батареи. Изменение полярности батареи — худшее, что может произойти в цепи, потому что это не только повредит цепь, но также может вызвать дым и пожар, что делает ее потенциальной угрозой.
Но возможна человеческая ошибка, и поэтому разработчик несет ответственность за то, чтобы его схема могла безопасно обрабатывать условия обратной полярности. Вот почему почти все схемы имеют дополнительную цепь безопасности на своей входной стороне, называемую схемой защиты от обратной полярности .В этой статье мы обсудим схему защиты от обратной полярности MOSFET , которая очень эффективна для защиты схемы от повреждений, связанных с обратной полярностью. Схема также может действовать как схема защиты полярности батареи , , поэтому то же руководство по проектированию можно использовать для защиты ваших цепей, даже если она питается от внешнего адаптера постоянного тока или батареи.
Защита цепей от обратной полярности
Есть несколько вариантов защиты цепи от обратной полярности.В большинстве случаев устройства с батарейным питанием используют специальные типы батарейных разъемов, которые не позволяют подключать батарейный разъем в обратном порядке. Это механически возможная защита аккумулятора от обратной полярности. Другой вариант — использовать диод Шоттки в шине питания, но это самый неэффективный способ защиты цепи от обратной полярности.
Использование диода Шоттки для защиты от полярности и его недостатки
На изображении ниже диод Шоттки используется последовательно с шиной питания, которая будет смещена в обратном направлении при обратной полярности и отключит цепь.Мы также ранее обсуждали это в разделе «Применение диодов» в предыдущей статье.
Левое изображение соответствует правильному соединению полярности, а правое изображение — состоянию обратной полярности. При подключении с обратной полярностью диод Шоттки блокирует прохождение тока.
Но схема выше неэффективна из-за постоянного протекания тока нагрузки через диод Шоттки. Кроме того, напряжение на выходе диода Шоттки меньше входного напряжения из-за прямого падения напряжения на диоде.Таким образом, используя описанный выше метод, он защитит схему от защиты от обратной полярности, но не эффективно.
Надлежащий способ сделать схему защиты от обратной полярности — использовать простой МОП-транзистор PMOS или МОП-транзистор NMOS. Рекомендуется использовать PMOS, потому что PMOS отключает положительные шины, и в цепи не будет никакого напряжения, а вероятность вредных последствий меньше, если схема работает при высоких напряжениях постоянного тока.
PMOS MOSFET для защиты от обратного напряжения
Полевой транзистор (FET) — это тип транзистора, который использует электрическое поле для управления прохождением тока через него.Полевые транзисторы — это устройства с тремя выводами: исток, затвор и сток. Полевые транзисторы управляют потоком тока путем приложения напряжения к затвору, которое, в свою очередь, изменяет проводимость между стоком и истоком. Это основная вещь, которая используется в P-MOSFET в качестве переключателя защиты от обратной полярности.
На рисунке ниже показана схема защиты от обратной полярности PMOS .
PMOS используется в качестве переключателя питания, который подключает или отключает нагрузку от источника питания.Во время правильного подключения источника питания МОП-транзистор включается из-за правильного VGS (напряжения затвора в источник). Но в ситуации обратной полярности напряжение затвора в источник слишком низкое, чтобы включить полевой МОП-транзистор, и нагрузка отключается от входного источника питания.
Резистор 100R — это резистор затвора MOSFET , подключенный к стабилитрону. Стабилитрон защищает затвор от перенапряжения.
Фактическое моделирование в Orcad PSPICE
Вышеупомянутая схема имеет все необходимые компоненты для защиты от обратной полярности.V1 — это источник с идеальной полярностью. MOSFET с каналом P смещается резистором 100R и стабилитроном 6,8 В 1N4099. Нагрузка — резистор 10R.
Моделирование показывает, что схема работает правильно при правильной полярности источника питания. Стабилитрон защищает затвор от перенапряжения, и нагрузка достигает 1,3 А при 13,9 В.
На изображении выше источник перевернут. Нагрузка полностью отключена, и схема действует как предохранитель от обратной полярности.Вы также можете посмотреть видео ниже, в котором объясняется работа схемы с симуляцией:
Выбор MOSFET для защиты от обратной полярности
Рекомендуется использовать PMOS вместо NMOS. Это связано с тем, что PMOS используется в положительной шине цепи, а не в отрицательной шине. Поэтому PMOS отключает положительные шины, и в цепи не будет положительного напряжения. Но NMOS используется в отрицательных шинах, поэтому отключение отрицательной шины не отключает цепь от положительной шины аккумулятора.Следовательно, в случае высокого напряжения постоянного тока отключение положительной шины намного безопаснее, чем отключение отрицательной шины, и меньше шансов, что не произойдет вредных последствий, таких как короткое замыкание, поражение электрическим током и т. Д.
Выбор компонентов — важная часть этой схемы. Основным компонентом является полевой МОП-транзистор с каналом P.
МОП-транзистор имеет следующие характеристики, которые имеют решающее значение для схемы.
- Сопротивление дренажного источника (RDS)
- Ток утечки
- Напряжение сток в источник
Сопротивление дренажному источнику (RDS):
RDS — сопротивление сток к источнику.Используйте очень низкое RDS (сопротивление от стока к источнику) для низкого тепловыделения и очень низкого падения напряжения на выходе. Более высокое значение RDS приведет к более высокому тепловыделению.
Ток стока:
Это максимальный ток, который проходит через полевой МОП-транзистор. Поэтому, если для цепи нагрузки требуется ток 2 А, выберите полевой МОП-транзистор, который выдержит этот ток. В таком случае хорошим выбором будет Mosfet с током стока 3А. Выберите этот параметр больше, чем необходимо на самом деле.
Напряжение сток-источник:
Напряжение сток-исток полевого МОП-транзистора должно быть выше, чем напряжение в цепи. Если для схемы требуется максимум 30 В, для безопасной работы требуется полевой МОП-транзистор с напряжением сток-исток 50 В. Всегда выбирайте этот параметр больше фактического требуемого.
При обратной полярности полевой МОП-транзистор будет отключен из-за недостаточного напряжения Vgs, и это не повлияет на цепь нагрузки, а также на МОП-транзистор.Вышеуказанные параметры необходимы при нормальных условиях и требуют тщательного выбора.
Выбор напряжения стабилитрона:
Каждый полевой МОП-транзистор имеет Vgs (напряжение затвор-исток). Если напряжение затвор-исток превышает максимальное значение, это может повредить затвор полевого МОП-транзистора. Поэтому выбирайте напряжение стабилитрона, которое не превышает напряжения затвора полевого МОП-транзистора. Для напряжения 10 В достаточно стабилитрона 9,1 В. Убедитесь, что напряжение затвора не должно превышать максимальное номинальное напряжение.
Резистор 100R в цепи:
Сопротивление резистора должно быть выбрано таким образом, чтобы оно не было достаточно высоким, чтобы не перегревать стабилитрон, но достаточно низким, чтобы обеспечить адекватный ток смещения стабилитрона и быстро разрядить затвор, если напряжение питания внезапно изменится на противоположное. Следовательно, это компромисс между временем разряда затвора и смещением стабилитрона.