Для чего служат конденсаторы: Для чего служат конденсаторы? — Школьные Знания.com

Содержание

Конденсаторы в энергетике | Силовые электрические конденсаторы

Страница 21 из 26

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ. КОНДЕНСАТОРНЫЕ УСТАНОВКИ И БАТАРЕИ

При передаче электрической энергии от места ее получения — электрической станции — к потребителю в линиях электропередачи (ЛЭП), распределительных сетях и связанных с ними устройствах теряется в общей сложности более 15% всей вырабатываемой энергии и вопрос снижения потерь приобретает важное экономическое значение. Значительную долю в них составляют потери, обусловленные протеканием реактивного (индуктивного) тока, что, помимо прочего, снижает также устойчивость работы энергосистемы. Снижение его потребления от генератора генерированием реактивной мощности у потребителя является основным путем повышения экономичности энергосистемы и надежности ее работы, а также улучшения качества электрической энергии. Генерирование реактивной мощности у потребителя обычно называют компенсацией реактивной мощности, а наиболее удобным и экономичным источником ее являются конденсаторы, выполняющие функцию энергосберегающего оборудования.

В условиях промышленного предприятия конденсаторы, используемые для этих целей, обычно комплектуются в виде небольших батарей, называемых конденсаторными установками. В табл. 19.1 приведены значения реактивной мощности на 1 кВт установленной, которые должны быть подключены для повышения коэффициента мощности от его фактического значения cosфi до требуемого cosф2.
Конденсаторы как источники реактивной мощности используются не только в сетях промышленной частоты, но также и на других частотах, как, например, в электротермических установках на частоты 0,5—10 кГц для нагрева металлов под ковку, штамповку и для закалки, для плавки металлов и некоторых других веществ.
По мере развития ЛЭП, увеличения их протяженности и оснащения автоматикой возникла необходимость в цепях управления ею и в оперативной связи, для чего стали использовать провода самой ЛЭП. Подключение к ЛЭП устройств связи и управления производится с помощью специальных конденсаторов связи, подключающих их непосредственно к фазе ЛЭП и являющихся частью ее оборудования (рис.
19.1). 

cos ф

cos ф (желаемый)

0,84

0,86

0.88

0,90

0,92

0,94

0,96

0.98

1,00

0,50

1,09

1,14

1,20

1.25

1.31

1,37

1,44

1,53

1,75

0,52

1,00

1,05

1,06

1,11

1,16

1,22

1,28

1,44

1,64

0,54

0,92

0,97

1,02

1,08

1,14

1,20

1.27

1,36

1,56

0,56

0,84

0,89

0,94

1,00

1,05

1,12

1,19

1,28

1,48

0,58

0. 76

0,81

0,87

0,92

0,98

1,02

1.11

1,20

1,41

0,60

0,69

0,74

0,80

0,85

0.91

0,97

1,04

1,13

1.33

0,62

0,62

0,67

0,72

0,78

0,84

0,89

0,97

1,06

1,27

0,64

0,56

0,61

0,67

0,72

0,78

0,84

0.91

1,00

1,20

0,66

0,49

0,55

0,60

0,66

0,71

0,78

0,85

0,94

1,14

0,68

0,43

0,49

0,54

0,60

0,65

0,72

0,79

0,88

1,08

0,70

0,38

0,43

0,49

0,54

0,60

0,66

0,73

0,82

1,02

0,72

0,32

0,37

0,32

0,48

0,54

0,67

0,67

0,76

0,97

0,74

0,26

0,33

0,37

0,43

0,48

0,55

0. 62

0,71

0,91

0,76

0,21

0,28

0,32

0,37

0,43

0,50

0,56

0,65

0,86

0,78

0,16

0,21

0,27

0,32

0,38

0,44

0,51

0,60

0,80

0,80

0,10

0,16

0,21

0,27

0,33

0,39

0,46

0,55

0,75

0,82

0,05

0,10

0,16

0,22

0,27

0,33

0.40

0,49

0.70

0,84

0,05

0,10

0,16

0,22

0,28

0,35

0,44

0,65

0,86

0,06

0,11

0,17

0,23

0,30

0,39

0,59

0,88

 

0,06

0,11

0,17

0,25

0,33

0,54

0,90

0,06

0,12

0,17

0,25

0,48

0,92

0,06

0,13

0,22

0,43

0,94

 

0. 07

0,16

0,36

На основе этих конденсаторов разработано устройство отбора небольших мощностей непосредственно от ЛЭП (рис. 19.2), а также измерительное устройство — конденсаторный трансформатор напряжения класса точности 0,5—для измерения напряжения ЛЭП. Конденсаторы аналогичной конструкции используются в высоковольтных выключателях с большим числом последовательных разрывных промежутков для выравнивания на них напряжения. Конденсаторные батареи широко используются в ЛЭП переменного тока. Они включаются или параллельно (шунтовые), или последовательно в рассечку ЛЭП (сериесные) и служат для повышения передаваемой мощности по ЛЭП и повышения устойчивости работы энергосистемы. Для комплектации шунтовых батарей промышленностью выпускаются стандартные блоки.

Для передачи больших мощностей на дальние расстояния помимо переменного тока высокого напряжения используется также и постоянный ток.



Рис. 19.1. Принципиальная схема канала высокочастотной связи но ЛЭП;
3— заградитель;         КС—конденсатор          связи:
ПК— полукомплект высокочастотной связи: Т— телефон

Рис. 19.2. Принципиальная схема отбора мощности от ЛЭП:
КС — конденсатор связи: КОМ — конденсатор отбора мощности: н- нагрузка

Имея ряд преимуществ — развязка по частоте соединяемых энергосистем, снятие проблемы устойчивости параллельной работы, возможность передачи энергии на большие расстояния, отсутствие влияния собственной индуктивности и др.— передача постоянным током требует для своего функционирования и большего объема оборудования, что накладывает  определенные ограничения на возможность ее экономически эффективного использования. Большой удельный вес в их оборудовании = около 30% стоимости всей ЛЭП — занимают конденсаторы. Они используются в них в качестве демпфирующих и выравнивающих элементов в преобразовательных устройствах и для комплектации фильтровых и шунтовых батарей как на приемном, так и на передающем концах линии, каждая из которых может иметь по несколько десятков тысяч конденсаторных единиц. На электрифицированном железнодорожном транспорте шунтовые и продольные конденсаторные установки являются составной частью тяговых подстанций.

Шунтовые установки служат для компенсации реактивной мощности тяговой нагрузки, продольные — для повышения и стабилизации напряжения в условиях непрерывно изменяющейся тяговой нагрузки. В поездах метрополитена конденсаторы используются в схемах безреостатного регулирования частоты вращения тяговых двигателей.

Ассортимент выпускаемых промышленностью для различного применения конденсаторов приведен в [19.2].

Конденсатор

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Конденсатор — это устройство для накопления электрического заряда; он состоит из двух проводников (обкладок), расположенных близко друг к другу, но не соприкасающихся. Типичный плоский конденсатор представляет собой пару параллельных пластин площадью А, разделенных небольшим промежутком

d (рис. 25.1, а). Часто пластины, разделяют прокладкой из бумаги или другого диэлектрика (изолятора) и сворачивают в рулон (рис. 25.1,6).

Предположим, что конденсатор подключен к источнику напряжения, например к батарее. (Батарея — это устройство, на клеммах которого поддерживается относительно постоянная разность потенциалов). Подсоединенный к батарее конденсатор быстро заряжается: одна его обкладка приобретает положительный заряд, другая-равный по величине отрицательный (рис. 25.2).

Заряд, приобретаемый каждой из обкладок конденсатора, пропорционален разности потенциалов Vba:

Q = CVba (25.1)

Коэффициент пропорциональности

С называется емкостью конденсатора. Единица емкости, кулон на вольт, называется фарад (Ф). На практике чаще всего применяются конденсаторы емкостью от 1 пФ (пикофарад, 10-12Ф) до 1 мкФ (микрофарад, 10-6 Ф). Формулу (25.1) впервые вывел Вольт в конце XVIII в.

Определение емкости конденсатора

Емкость С служит характеристикой данного конденсатора. Величина емкости С зависит от размеров, формы и взаимного расположения обкладок, а также от вещества, заполняющего промежуток между обкладками. В этом разделе мы будем считать, что между обкладками находится вакуум или воздух.

Емкость конденсатора, согласно (25.1), можно определить экспериментально, непосредственно измерив заряд Q пластины при известной разности потенциалов Vba.

Если геометрическая конфигурация конденсаторов достаточно проста, то можно определить емкость С аналитически. Для иллюстрации рассчитаем емкость С конденсатора с параллельными пластинами площадью А, находящимися на расстоянии d друг от друга (плоский конденсатор) (рис. 25.3). Будем считать, что величина d мала по сравнению с размерами пластин, так что электрическое поле Е между пластинами однородно и искривлением силовых линий у краев пластин можно пренебречь. Ранее мы показали, что напряженность электрического поля между близко расположенными параллельными пластинами равна Е = σ/ε0, а силовые линии перпендикулярны пластинам.
Поскольку плотность заряда равна σ = Q/A, то

Напряженность электрического поля связана с разностью потенциалов соотношением

Мы можем взять интеграл от одной пластины до другой вдоль траектории, направленной навстречу силовым линиям:

Установив связь между Q и Vba, выразим теперь емкость С через геометрические параметры:

Справедливость полученного вывода очевидна: чем больше площадь А, тем «свободнее» разместятся на ней заряды, отталкивание между ними будет меньше и каждая пластина сможет удерживать больший заряд. Чем больше расстояние d между пластинами, тем слабее заряды на одной пластине будут притягивать заряды на другой: на пластины от батареи поступает меньше заряда и емкость оказывается меньше.

Обратим также внимание, что формула справедлива при использовании в качестве диэлектрика — вакуума. Для других изоляторов используется коэффициент диэлектрической проницаемости К.
Тогда, с учётом коэффициента, ёмкость конденсатора будет равна:

С = Кε0 A/d , либо С = εA/d

Например, для некоторых диэлектриков коэффициент К будет равен:

Вакуум: К = 1.0000
Воздух (1 атм): К = 1.0006
Парафин: К = 2.2
Эбонит: К = 2.8
Пластик (поливинильный): К = 2.8-4.5
Бумага: К = 3-7
Кварц: К = 4.3
Стекло: К = 4-7
Фарфор: К = 6-8
Слюда: К = 7
Более подробно это будет рассмотрено далее в публикации — «Диэлектрики».

Продолжение следует. Коротко о следующей публикации:

Последовательное и параллельное соединения конденсаторов.
Конденсаторы можно соединять различными способами. На практике это используют очень часто, и емкость комбинации конденсаторов зависит от того, как они соединены. 3 Дж   (3,4 кДж)
=================================

Дано:

V₁ = 60 л = 0,06 м³
t₁ = 10 °C
t₂ = 100 °C
T = 26 °C
V₂ — ?

Решение:

Тепло, которое поглотит холодная вода
Q = cm₁(T — t₁)

Тепло, которое выделит теплая вода
Q = cm₂(t₂ — T)

Так как в условии не сказано о потерях тепла, приравниваем
cm₁(T — t₁) = cm₂(t₂ — T)

Сократим на c
m₁(T — t₁) = m₂(t₂ — T)

Выразим m₂
m₂ = m₁(T — t₁) / (t₂ — T)

Выразим V
V₂ = m₁(T — t₁) / (ρ(t₂ — T))

m₁ = ρV₁

V₂ = ρV₁(T — t₁) / (ρ(t₂ — T))

V₂ = V₁(T — t₁) / (t₂ — T)

Подставим данные значения (в системе СИ)
V₂ = 0,06 м³ · 16 °C / 74 °C ≈ 0,013 м³ = 13 л

Ответ: 13 л 

ОТВЕТ: А
Место: 10м
Время: 2с

Конденсатор: применение и виды

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Конденсатор с обкладками

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Модульный конденсатор

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Комбинированные конденсаторы

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Конденсатор с диэлектриком

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

Емкостные конденсаторы

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Конденсатор минимальной емкости

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Оцените статью:

Конденсатор для сабвуфера, что это, как установить, и зарядить

Работа мощных автомобильных сабвуферов может сопровождаться проблемами, связанными с большим потреблением тока этими устройствами. Заметить это можно на пиках НЧ, когда сабвуфер «захлебывается».


Это объясняется просадками напряжения на входе питания саба. Исправить проблему помогает накопитель энергии, роль которого играет емкость конденсатора, включенного в цепь питания сабвуфера.

Зачем нужен конденсатор для сабвуфера

Электрический конденсатор представляет собой двухполюсное устройство, способное накапливать, сохранять и отдавать электрический заряд. Конструктивно он состоит из двух пластин (обкладок), разделенных диэлектриком. Важнейшей характеристикой конденсатора является его емкость, отражающая величину энергии, которую он способен накопить. Единицей измерения емкости служит фарада. Из всех типов конденсаторов, наибольшей емкостью обладают электролитические конденсаторы, а также их дальнейшие усовершенствованные родственники – ионисторы.

Чтобы понять, для чего нужен конденсатор, разберемся, что происходит в электрической сети автомобиля при включении в нее низкочастотной автоакустики, имеющей мощность 1 кВт и более. Простой подсчет показывает, что ток, потребляемый такими устройствами, достигает 100 ампер и выше. Нагрузка имеет неравномерный характер, максимумы достигаются в моменты басовых ударов. Просадка напряжения в момент прохождения автозвуком пика громкости НЧ обусловлена двумя факторами:

  • Наличием внутреннего сопротивления аккумулятора, ограничивающим его способность к быстрой отдаче тока;
  • Влиянием сопротивления соединительных проводов, вызывающим падение напряжения.

Аккумулятор и конденсатор имеют функциональную схожесть. Оба устройства способны накапливать электрическую энергию, впоследствии отдавая ее нагрузке. Конденсатор это делает значительно быстрее и «охотнее» аккумулятора. Такое свойство и лежит в основе идеи его применения.


Конденсатор подсоединяется параллельно аккумулятору. При резком увеличении потребления тока увеличивается падение напряжения на внутреннем сопротивлении аккумулятора и, соответственно, уменьшается на выходных клеммах. В этот момент включается в работу конденсатор. Он отдаёт накопленную энергию, и тем самым компенсирует падение отдаваемой мощности.

Как подобрать конденсатор

Требуемая емкость конденсатора зависит от мощности сабвуфера. Чтобы не вдаваться в сложные вычисления, можно пользоваться простым эмпирическим правилом: на 1 кВт мощности необходима емкость 1 фарада. Превышение этого соотношения идет только на пользу. Поэтому, наиболее распространенный в продаже конденсатор большой емкости в 1 фараду, можно использовать и для сабвуферов мощностью менее 1 кВт. Рабочее напряжение конденсатора должно быть не менее 14 – 18 вольт. Некоторые модели оборудованы цифровым вольтметром – индикатором. Это создает дополнительные удобства в эксплуатации, а электроника, контролирующая заряд конденсатора, позволяет облегчить эту процедуру.

Как подключить конденсатор к сабвуферу

Установка конденсатора не относится к сложным процедурам, но при ее выполнении нужно быть внимательным и соблюдать некоторые правила:

  1. Чтобы избежать заметного падения напряжения, провода, соединяющие конденсатор и усилитель, не должны быть длиннее 50 см. По этой же причине, сечение проводов нужно выбрать достаточно большим;
  2. Следует соблюдать полярность. Плюсовой провод от аккумулятора соединяют с плюсовой клеммой питания усилителя саба и с выводом конденсатора, обозначенным знаком «+». Вывод конденсатора с обозначением «-», соединяется с кузовом автомобиля и с минусовой клеммой питания усилителя. Если усилитель до этого уже был подключен к «массе», минусовой вывод конденсатора можно зажать той же гайкой, соблюдая при этом длину проводов от конденсатора к усилителю в указанных пределах 50 см;
  3. Подключая конденсатор для усилителя, лучше воспользоваться штатными зажимами для присоединения проводов к его выводам. Если они не предусмотрены, можно воспользоваться пайкой. Следует избегать соединения скруткой, ток через конденсатор протекает значительный.


На рисунке 1 проиллюстрировано подключение конденсатора к сабвуферу.

Как зарядить конденсатор для сабвуфера

Подключать к электрической сети автомобиля, следует уже заряженный автомобильный конденсатор. Необходимость выполнения этого действия объясняется свойствами конденсатора, о которых упоминалось выше. Конденсатор заряжается так же быстро, как и разряжается. Поэтому, в момент включения разряженного конденсатора, токовая нагрузка будет чересчур велика.

Если купленный конденсатор на сабвуфер оснащен электроникой, контролирующей зарядный ток, можно не беспокоиться, смело подсоединяйте его к цепям питания. В противном случае, конденсатор следует заряжать до подключения, ограничивая ток. Удобно использовать для этого обыкновенную автомобильную лампочку, включив ее вразрез цепи питания. Рисунок 2 показывает, как правильно заряжать конденсаторы большой ёмкости.


В момент включения, лампа загорится в полный накал. Максимальный скачок тока будет ограничен при этом мощностью лампы и будет равен ее номинальному току. Далее, в процессе заряда, накал лампы будет ослабевать. По окончании процесса зарядки, лампа потухнет. После этого надо отключить конденсатор от зарядной цепи. Затем можно подключить заряженный конденсатор к цепи питания усилителя.

Если после прочтения статьи остались вопросы по подключению, советуем ознакомится со статьей «Как подключить усилитель в автомобиле».

Дополнительные плюсы установки конденсаторов в автомобилях

Кроме решения проблем с работой сабвуфера, подключаемый в сеть автомобиля конденсатор оказывает положительное влияние на режим работы электрооборудования в целом. Проявляется это следующим образом:

  • Конденсатор является хорошим фильтром высокочастотных составляющих сетевого напряжения, возникающих при коммутации нагрузок и работе некоторых электронных приборов, его функции благоприятно сказываются на работе всех систем автомобиля;
  • Применение конденсатора позволяет сгладить скачки напряжения, возникающие при включении и отключении потребителей бортовой сети, что позволяет генератору работать в более ровном режиме;
  • При запуске автомобиля стартером, конденсатор, безусловно, принимает в нем дополнительное участие, отдавая свой заряд в бортовую сеть. Особенно это актуально зимой, когда возможность аккумулятора отдавать ток снижается, а свойства конденсатора не изменяются.

Конденсатор установлен, и вы заметили, что ваш сабвуфер начал играть интересней. Но если маленько постараться можно заставить его играть еще лучше, предлагаем вам ознакомиться со статьей «Как настроить сабвуфер».

О помехах и не только…X- и Y-конденсаторы

Проблема электромагнитной совместимости и электромагнитных помех становится с каждым годом актуальнее. Связано это в первую очередь с увеличением числа потребителей и изменением схемотехники источников питания. Причем происходит как количественный рост (увеличение уровня помехи), так и качественный (меняется ее спектр). Помехи, как физическое явление присутствовали в электрических сетях всегда. Если раньше основным источником были коллекторные электродвигатели, с неизбежным искрообразованием на щетках, то сегодня – это импульсные источники питания с характерными для них ключевыми каскадами.

Как известно, помехи возникающие при работе устройства бывают двух видов: дифференциальные – когда ток помехи протекает в питающих проводах в разных направлениях и синфазные, когда ток помехи протекает в одну сторону, то есть дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей. Чтобы снизить влияние на электрическую сеть, между источником и потребителем устанавливается фильтр, типовая схема которого показана на рисунке слева.

 Дифференциальные помехи в этой схеме подавляются дросселями Ld и конденсатором Сх, а синфазные помехи – дросселем Lc и конденсаторами Cy. 

Остановимся подробнее на особенностях этих конденсаторов и попытаемся разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов».

Начнем с дифференциальной помехи.

Для её подавления используются конденсаторы класса X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке это конденсатор – Cх.

К конденсаторам данного класса предъявляются повышенные требования – они должны выдерживать максимально допустимые в сети электропитания всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2:

Основные свойства конденсаторов типа Х

Подкласс Пиковое тестовое напряжение (Up), кВ Область применения
Х1 2.5 < Up ≤ 4.0 Трехфазные сети
Х2 Up ≤ 2.5 Общее применение
  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения не менее 4кВ.
  • X2 – самый распространенный подкласс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2. 5кВ.

Величина ёмкости X-конденсаторов варьируется от 0.1мкФ до 1мкФ. Для каждого конкретного случая она рассчитывается в зависимости от потребляемой мощности нагрузки и уровня помех в линии. Как правило, противофазная составляющая комплексной помехи — это напряжение помехи между фазой и нейтралью.

Для подавления синфазной помехи применяется конденсатор класса Y — CY. Схема их включения напоменает букву Y. Отсюда и название класса таких конденсаторов. 

В качестве примера появления синфазной помехи рассмотрим структурную схему AC/DC преобразователя. 

Все гальванически развязанные AC/DC преобразователи напряжения имеют в своём составе трансформатор. Ему присущ такой существенный недостаток, как паразитная межобмоточная ёмкость (Спар). Так как силовой ключ преобразователя напряжения гальванически связан с входным напряжением, а частота преобразования составляет порядка нескольких десятков килогерц, то величина сопротивления паразитной ёмкости трансформатора на этой частоте мала и будет являться причиной появления синфазной помехи на выходе, на обоих проводах сразу. В некоторых случаях напряжение помехи может достичь опасных для человека величин. Ток синфазной помехи обязательно отводится в провод заземления.

Для подавления синфазной помехи применяются конденсаторы – СY — конденсаторы класса Y. Ток синфазной помехи, который просочился через паразитную ёмкость трансформатора на выход устройства, стекает по более короткому пути в нейтраль через помехоподавляющие конденсаторы и исключает воздействие на выходные цепи.

Обратим внимание на то, что в данном случае конденсаторы CY связывают один из проводов питающей сети с выходом преобразователя. Это накладывает дополнительные требования к конденсаторам по его надёжности. Конденсаторы класса Y предназначены для работы в тех местах, где выход их из строя угрожает безопасности людей.

Конденсаторы класса Y – типа делятся на 2 основных подкласса:

Основные свойства конденсаторов типа Y

Подкласс Пиковое тестовое напряжение (UP), кВ Номинальное переменное напряжение (UR), В
Y1 UP ≤ 8. 0 UR ≥ 250
Y2 UP ≤ 5.0 150 ≤  UR ≤ 250
  • Y1 – Работают при номинальном сетевом напряжении более 250В и выдерживают импульсное напряжение до 8кВ
  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы до 5кВ.

Подведем итог:

  • Конденсаторы класса Y можно использовать вместо конденсаторов класса X, но нельзя использовать конденсаторы класса X вместо конденсаторов класса Y.
  • Конденсаторы класса Y имеют обычно намного меньшую ёмкость, чем конденсаторы класса X.
  • Если для конденсаторов класса X типа чем больше ёмкости, тем лучше, то ёмкость конденсаторов класса Y нужно выбирать как можно меньшей. Типовое значение обычно не превышает 2.2нФ.
  • Если на конденсаторе присутствует обозначение X и Y, то возможно его применение для подавления противофазных и синфазных помех.

На сегодняшний день в группе компаний «Промэлектроника» конденсаторы классов X и Y широко представлены продукцией таких ведущих фирм, как Epcos и Vishay, Murata.

Примеры расшифровки партнамберов EpcosПримеры расшифровки партнамберов VishayПримеры расшифровки партнамберов Murata

особенности применения. Назначение и использование конденсаторов

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т. д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “ “. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали – частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Функции электролитических конденсаторов

Меры предосторожности при использовании алюминиевых электролитических конденсаторов
  1. При использовании в задачах, где к ним прикладывается постоянное напряжение, необходимо соблюдать правильную полярность. В противном случае, при установке конденсатора в обратной полярности, может уменьшиться его срок службы или, даже, конденсатор может быть поврежден. В цепях с неизвестной полярностью или если имеется возможность изменения полярности в цепи, следует использовать неполярные конденсаторы. Также нельзя применять полярные электролитические конденсаторы в задачах, где к ним прикладывается переменное напряжение.
  2. Не подавайте на конденсатор напряжение, длительно превышающее номинальное напряжение. Это приведет к повреждению конденсатора вследствие повышенного тока утечки.
  3. Используйте электролитический конденсатор при величине пульсаций тока через него в допустимых пределах.
  4. Используйте электролитические конденсаторы в разрешенном диапазоне рабочих температур. Эксплуатация конденсаторов при комнатной температуре обеспечит более длительный срок службы.
  5. Электролитические конденсаторы не подходят для схем с многократно повторяющимися циклами заряда и разряда. Их использование в схемах, в которых происходит многократно повторяющиеся глубокий разряд и заряд конденсатора, может приводить к уменьшению емкости или, даже, повреждению конденсатора. Если необходимо применить электролитический конденсатор для такой задачи, пожалуйста, обратитесь в наш инженерный отдел для технической консультации.
  6. Если электролитические конденсаторы в течение длительного времени хранились в разряженном состоянии, используйте их только после предварительной тренировки. Продолжительное хранение без подачи постоянного напряжения может увеличить ток утечки конденсатора. В таких случаях перед использованием необходимо выполнить процедуру предварительной «подформовки» конденсатора подачей постоянного напряжения заданной величины.
  7. Следует обратить особое внимание на соблюдение температурного режима и длительностей операций при пайке алюминиевых электролитических конденсаторов. Если температура пайки слишком высокая или время окунания выводов в припой слишком продолжительное, возможны деградация электрических характеристик конденсаторов и повреждение изоляционной оболочки, обтягивающей корпус. При пайке малогабаритных алюминиевых электролитических конденсаторов окунанием в припой, его температура не должна превышать 260°С, а продолжительность операции — не более 10 секунд.
  8. Очистка печатных плат после пайки. Не рекомендуется использовать растворители на основе галогенированных углеводородов для очистки плат, на которых смонтированы алюминиевые электролитические конденсаторы с открытым уплотнением выводов. Если для очистки печатных плат необходимо использовать растворители на основе галогенированных углеводородов, следует применять конденсаторы с эпоксидным покрытием торцевых уплотнений.
  9. Не следует допускать приложения чрезмерных усилий к выводам алюминиевого электролитического конденсатора. Это может привести к обрыву его выводов или внутренних присоединений. (Для определения допустимых механических нагрузок на выводы, пожалуйста, обратитесь к руководящим документам JIS C5102 и JIS C5141.)
  10. Следует обеспечивать достаточный зазор между корпусом конденсатора и стенкой корпуса прибора (Рис.19).

Рис. 19. Минимально-допустимое расстояние между корпусом алюминиевого электролитического конденсатора и стенкой корпуса оборудования

Не препятствуйте работе вентиляционных систем, если иное не оговорено в каталогах или технических характеристиках оборудования. Слишком малый зазор между корпусом конденсатора и корпусом прибора может негативно повлиять на работу вентиляционной системы и привести к взрыву конденсатора.

Внимание!

  • Информация, приведенная в данной статье, может быть изменена для улучшения качества продукции без предварительного извещения. Поэтому, пожалуйста, уточняйте актуальные спецификации прежде, чем заказать электролитические конденсаторы.
  • Общие характеристики, данные о надежности и другие параметры алюминиевых электролитических конденсаторов, приведенные в этой статье, не должны рассматриваться как гарантированные значения — они являются лишь стандартными, типовыми величинами.
  • Для правильного использования электролитических конденсаторов, пожалуйста, предварительно внимательно прочитайте рекомендации по применению, приведенные в этой статье.

Они используются в таймерах, поскольку резисторы обеспечивают медленную зарядку и разрядку. Катушки индуктивности вместе с конденсаторами присутствуют в схемах колебательных контуров устройств приема-передачи. В различных конструкциях блоков питания они эффективно сглаживают пульсации напряжения после процесса выпрямления.

Через конденсаторы легко проходит , а задерживается. Это позволяет изготавливать фильтры разного назначения. В электрических и радиоэлектронных схемах, конденсаторы способствуют замедлению таких процессов, как увеличение или падение напряжения.

Конденсатор: принцип действия

Основной принцип работы конденсатора заключается в его способности к сохранению электрического заряда. То есть, он может в нужный момент заряжаться или разряжаться. Это свойство наиболее ярко проявляется при параллельном или последовательном соединении конденсатора с катушкой индуктивности в схемах передатчиков или радиоприемников.

Такое соединение позволяет получить периодическую смену полярности на пластинах. Вначале, производится зарядка первой пластины положительным зарядом, а, затем, вторая пластина принимает отрицательный заряд. После полной разрядки, происходит зарядка в обратном направлении. Вместо положительного заряда, пластина получает отрицательный заряд и, наоборот, отрицательная пластина заряжается положительно. Такая смена полярности происходит после каждого заряда и разряда. Данный принцип работы положен в основу генераторов, установленных в аналоговых приемопередающих устройствах.

Основная характеристика — электрическая емкость

Рассматривая принцип работы конденсатора, не следует забывать о такой его характеристике, как электрическая емкость. Прежде всего, она заключается в способности конденсатора к сохранению электрического заряда. То есть, чем выше емкость, тем большее значение заряда может быть сохранено.

Измерение электрической емкости конденсатора производится в фарадах и обозначается буквой F. Однако, одна фарада является очень большой емкостью, поэтому, на практике используются единицы меньшего значения, такие как микро-, нано- и пикофарады.

Представляет определенную сложность, в связи с различными вариантами маркировок.

Как работают конденсаторы? — Объясни этот материал

Криса Вудфорда. Последнее изменение: 10 июля 2020 г.

Смотрите в небо большую часть времени, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства для хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой цифровым камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же хранят энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Маленький конденсатор в транзисторной радиосхеме.

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите их изолятором (материал который не пропускает электричество очень хорошо), и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать.В батарее используются химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергии гораздо быстрее — часто за секунды или меньше. Если вы берете например, фотографию со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы камеры. (Для зарядки конденсатора требуется время, и это почему вам обычно нужно немного подождать.) Когда конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и есть изолятор между их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ! Открытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: Как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом). Листы фольги подключаются к клеммам (синим) наверху, чтобы конденсатор можно было подключить к цепи. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического двигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электрических схемы. Их можно использовать как таймеры (потому что для этого требуется определенное предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), и для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электроэнергии может конденсатор хранить. Есть три способа увеличить емкость конденсатор. Один — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фотография: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это поворачивает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек и вы решили начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле как гравитационная потенциальная энергия, которую вы могли бы использовать для других целей (например, спуск по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую хранит конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две проводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы не у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда), конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии. Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q), а емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Вторая пластина поэтому снижает напряжение первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q) точно такой же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это ведь чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряжают пластины при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию противоположным образом — и это то, что уменьшает поле.

Последнее, что мы можем сделать для увеличения емкости, это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но он тяжелый, непрактичный и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярных молекул, будет превосходным диэлектриком, примерно в 80 раз лучше воздуха. Однако на практике все не так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Остальные диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, имеющие полярные молекулы, являются особенно хорошими диэлектриками.

Как работают конденсаторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 10 июля 2020 г.

Смотрите в небо большую часть времени, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства для хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой цифровым камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов. В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же хранят энергию. Давайте подробнее рассмотрим конденсаторы и как они работают!

Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: Маленький конденсатор в транзисторной радиосхеме.

Возьмем два электрических проводника (то, что пропускает электричество через них) и разделите их изолятором (материал который не пропускает электричество очень хорошо), и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядка ; высвобождая энергию из Конденсатор известен как разрядный .

Конденсатор немного похож на батарею, но у него другая работа делать. В батарее используются химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергии гораздо быстрее — часто за секунды или меньше. Если вы берете например, фотографию со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы камеры. (Для зарядки конденсатора требуется время, и это почему вам обычно нужно немного подождать.) Когда конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку. Зап!

Конденсаторы

бывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и есть изолятор между их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.

Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ! Открытие конденсаторов может быть опасным. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.

Изображение: Как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, чтобы конденсатор можно было подключить к цепи. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического двигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.

Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электрических схемы. Их можно использовать как таймеры (потому что для этого требуется определенное предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), и для множество других целей. Большие суперконденсаторы также могут быть используется вместо батареек.

Что такое емкость?

Количество электрической энергии, которую может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электроэнергии может конденсатор хранить. Есть три способа увеличить емкость конденсатор. Один — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.

Фотография: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это поворачивает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.

Как измерить емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек и вы решили начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле как гравитационная потенциальная энергия, которую вы могли бы использовать для других целей (например, спуск по горке на уровень земли).

То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз он называется , электрическая потенциальная энергия . И это, если вы не догадались к настоящему времени это энергия, которую хранит конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему у конденсаторов две пластины?

Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Как мы уже видели, конденсаторы имеют две проводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы не у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда), конденсатор перестанет работать. Воздух вокруг него разрушится, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q), а емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Вторая пластина поэтому снижает напряжение первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q) точно такой же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу между , что Вот почему все конденсаторы на практике имеют две пластины.

Как увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это ведь чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.

Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряжают пластины при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию противоположным образом — и это то, что уменьшает поле.

Последнее, что мы можем сделать для увеличения емкости, это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но он тяжелый, непрактичный и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и больше отрицательного электрического заряда с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярных молекул, будет превосходным диэлектриком, примерно в 80 раз лучше воздуха. Однако на практике все не так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.

Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Остальные диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, имеющие полярные молекулы, являются особенно хорошими диэлектриками.

Что такое конденсатор? — Основы схемотехники

Конденсатор представляет собой электрический компонент, используемый для хранения энергии в электрическом поле. Он имеет два электрических проводника, разделенных диэлектрическим материалом, которые накапливают заряд при подключении к источнику питания. Одна пластина получает отрицательный заряд, а другая — положительный.

Конденсатор не рассеивает энергию, в отличие от резистора.Его емкость характеризует идеальный конденсатор. Это количество электрического заряда на каждом проводнике и разность потенциалов между ними. Конденсатор отключает ток в цепях постоянного и короткого замыкания в цепях переменного тока. Чем ближе два проводника и чем больше площадь их поверхности, тем больше его емкость.

Общие типы конденсаторов

  • В керамических дисковых конденсаторах в качестве диэлектрического материала используется керамика. Керамический конденсатор заключен в капсулу с двумя выводами, которые выходят снизу и образуют диск.Керамический дисковый конденсатор не имеет полярности и подключается в любом направлении на печатной плате. В керамических конденсаторах относительно высокая емкость достигается при небольшом физическом размере из-за их высокой диэлектрической проницаемости. Его значение колеблется от пикофарад до одной или двух микрофарад, но его номинальное напряжение относительно низкое.

Трехзначный код, напечатанный на их корпусе, используется для определения емкости конденсатора в пикофарадах. Буквенные коды используются для обозначения их значения допуска, например: J = 5%, K = 10% или M = 20%.Например, керамический дисковый конденсатор выше с маркировкой 154 указывает на то, что имеется 15 и 4 нуля пикофарад, или 150 000 пФ (150 нФ).


Значение допуска керамического дискового конденсатора
  • Электролитические конденсаторы часто используются, когда требуются большие значения емкости. Они обычно используются для уменьшения пульсаций напряжения или для соединений и развязки. Электролитические конденсаторы изготовлены из двух тонких пленок алюминиевой фольги с оксидным слоем в качестве изолятора.Они поляризованы и могут быть повреждены или взорваны при неправильном подключении. Этот тип конденсатора имеет большой допуск, но плохо работает на высоких частотах.
Электролитический конденсатор
  • Танталовые конденсаторы обычно используются для средних значений емкости. Их лучше всего использовать, когда имеют значение размер и производительность, но они обычно не имеют высоких рабочих напряжений и не обладают очень высокой допустимой нагрузкой по току. Танталовые конденсаторы поляризованы и могут взорваться под нагрузкой.У них очень низкая терпимость к обратному смещению.
  • Маркировка танталовых конденсаторов с выводами
Маркировка танталовых конденсаторов SMD

Маркировка танталовых конденсаторов SMD обычно состоит из трех цифр. Последний — множитель, а первые два — значащие цифры. Его значения указаны в пикофарадах. Следовательно, танталовый конденсатор SMD, показанный выше, имеет значение 47 x 10 6 пФ, что соответствует 47 мкФ.

Маркировка танталовых конденсаторов SMD Танталовые конденсаторы

также можно маркировать напрямую, как показано на рисунке выше.

  • Серебряные слюдяные конденсаторы используются во многих радиочастотных цепях, таких как генераторы и фильтры. Серебряная слюда дает очень высокие характеристики с жесткими допусками, но с небольшими изменениями температуры. В нем используются серебряные электроды, которые наносятся непосредственно на слюду. Несколько слоев помогают получить необходимый уровень емкости, и на эту емкость влияет область, покрытая электродами.
Серебряный слюдяной конденсатор
  • В пленочных конденсаторах в качестве диэлектрика используется тонкая пластиковая пленка.Пленочные конденсаторы используются во многих приложениях из-за их стабильности, низкой индуктивности и низкой стоимости. Они не поляризованы, поэтому подходят для сигналов переменного тока и питания. Они также изготавливаются с очень точными значениями емкости и сохраняют ее дольше, чем любой другой тип конденсатора.
Пленочный конденсатор
  • Конденсаторы переменной емкости — это конденсаторы с емкостью, которую можно изменять в зависимости от требований к определенному диапазону значений. Переменные конденсаторы состоят из металлических пластин.Среди этих пластин одна неподвижная, а другая подвижная. Емкость Thier может составлять от 10 до 500 пикофарад. Эти переменные резисторы находят множество применений, например, для настройки LC-цепей в радиоприемниках, для согласования импеданса в антеннах и т. Д. Есть два типа переменных конденсаторов — настроечный конденсатор и подстроечный конденсатор.
Конденсатор настройки

Каркас в этом конденсаторе обеспечивает поддержку конденсатора, сделанного из слюды, и находящегося в нем «статора».С помощью вала ротор вращается, когда статор неподвижен. Когда пластины подвижного ротора входят в неподвижный статор, емкость, возможно, достигает максимального уровня. В противном случае значение емкости минимальное.

Подстроечный конденсатор

Этот тип конденсатора имеет три вывода. Один соединен с неподвижной частью, другой — с частью, которая отвечает за движение, называемое поворотным, а другой вывод является общим.

Поляризованные и неполяризованные конденсаторы

Когда дело доходит до хранения и разгрузки, у них обоих одинаковый принцип.Однако есть много факторов, которые отличают их друг от друга.

  • Различные диэлектрики — Диэлектрик — это материал между двумя пластинами конденсатора. В поляризованных конденсаторах в качестве диэлектрика используется электролит, что дает им большую емкость, чем у других конденсаторов того же объема. Однако полярные конденсаторы, произведенные из различных материалов и процессов электролита, будут иметь разные значения емкости. Использование полярных и неполяризованных конденсаторов зависит от обратимых свойств диэлектрика.
  • Различные конструкции — чаще всего используются электролитические конденсаторы круглой формы; квадратные конденсаторы встречаются редко. Существуют также невидимые конденсаторы или распределенные конденсаторы, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.
  • Условия использования и использование — внутренние материалы и конструкции обеспечивают большую емкость и высокочастотные характеристики полярных конденсаторов, что делает их очень подходящими для фильтров источников питания и т.п.Однако есть полярные конденсаторы с хорошими высокочастотными характеристиками — танталовый электролизный, который обычно не используется из-за своей дороговизны.
  • Различная производительность — Максимальная производительность — одно из основных требований при выборе конденсатора. Если в источнике питания телевизора в качестве фильтра используется металлооксидный пленочный конденсатор, емкость и выдерживаемое напряжение должны соответствовать требованиям фильтра; внутри корпуса можно установить только блок питания.Следовательно, в фильтре можно использовать только полярные конденсаторы, а полярная емкость необратима. Обычно электролитические конденсаторы имеют емкость более 1 МФ; лучше всего использовать для связи, развязки, фильтрации источника питания и т. д. Неполярные конденсаторы, как правило, менее 1 MF, что включает только резонанс, связь, выбор частоты, ограничение тока и т. д. Однако есть также большие емкости с высоким напряжением. неполярные конденсаторы, в основном используемые для компенсации реактивной мощности, фазового сдвига двигателя и фазового сдвига мощности преобразования частоты.
  • Различная емкость — конденсаторы одинаковой емкости имеют разную емкость в зависимости от их диэлектриков.

Общее использование конденсаторов

  • Связь по переменному току / блокировка по постоянному току — компонент позволяет только сигналам переменного тока проходить от одного участка цепи к другому, блокируя любое статическое напряжение постоянного тока. Они обычно используются для разделения компонентов переменного и постоянного тока в сигнале. В этом методе необходимо обеспечить достаточно низкое сопротивление конденсатора.Номинальное напряжение конденсатора должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение питающей шины с некоторым запасом для обеспечения надежности.
  • Развязка источника питания — Конденсатор используется для развязки одной части схемы от другой. Развязка выполняется, когда входящий линейный сигнал проходит через трансформатор и выпрямитель; результирующая форма волны не гладкая. Оно варьируется от нуля до пикового напряжения.При применении к цепи это маловероятно, поскольку обычно требуется постоянное напряжение.
  • Фильтрация шума переменного тока от цепей постоянного тока — Любые сигналы переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или других узлах, которые должны быть свободны от определенного переменного сигнала, должны быть удалены конденсатором. Он также должен выдерживать напряжение питания, подавая и поглощая уровни тока, возникающие из-за шума на рельсе.
  • Фильтрация аудиосигнала — необходимо учитывать ВЧ характеристики конденсатора.Эта производительность может отличаться на более низких частотах. Здесь обычно используются керамические конденсаторы, поскольку они имеют высокую частоту собственного резонанса, в частности конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, которые могут вызвать какую-либо индуктивность.

Что такое суперконденсаторы?

Он также известен как двухслойный электролитический конденсатор или ультраконденсатор. Суперконденсатор может хранить большое количество энергии. В частности, от 10 до 100 раз больше энергии на единицу массы или объема по сравнению с электролитическими конденсаторами.Он имеет более низкие пределы напряжения, которые перекрывают разрыв между электролитическими конденсаторами и аккумуляторными батареями.

Некоторые общие области применения суперконденсаторов

  • Ветряные турбины — суперконденсаторы помогают сгладить прерывистую энергию ветра.
  • Двигатели, приводящие в движение электромобили, работают от источников питания, рассчитанных на сотни вольт, что означает, что для хранения нужного количества энергии в типичном рекуперативном тормозе необходимы сотни последовательно соединенных суперконденсаторов.
  • Электрические и гибридные транспортные средства — суперконденсаторы используются в качестве временных накопителей энергии для рекуперативного торможения, при этом энергия транспортного средства, как правило, тратится впустую при остановке, кратковременно сохраняется и затем повторно используется, когда он снова начинает движение.

Суперконденсаторы и кривая разряда батареи

Кривая разряда батареи экспоненциальная. Как видите, экспоненциальный разряд обеспечивает стабильную мощность до конца. Энергия остается высокой на протяжении большей части заряда, а затем быстро падает по мере того, как заряд иссякает .

Кривая разряда суперконденсатора линейная. Как видите, линейный разряд не позволяет полностью использовать энергию. Он обеспечивает самую высокую мощность в начале .


Часть 2 — Как используются конденсаторы?

Добро пожаловать в серию «Основы работы с конденсаторами», где мы расскажем вам обо всех достоинствах и недостатках микросхем конденсаторов — их свойствах, классификации продуктов, стандартах испытаний и распространенных сценариях использования — чтобы помочь вам принять обоснованные решения о правильных конденсаторах для вашей конкретные приложения.После обсуждения емкости и того, как работают конденсаторы в нашей предыдущей статье, давайте поговорим о том, как конденсаторы наиболее часто используются в электронных схемах.

Конденсаторная технология

охватывает широкий спектр типов продуктов, основанных на множестве диэлектрических материалов и физических конфигураций, но все они в основном являются устройствами хранения электроэнергии, которые находят применение в различных приложениях в электронной промышленности. Основные варианты использования:

Разряд накопленной энергии

Являясь одним из основных применений конденсатора, он включает генерацию импульса тока путем разряда конденсатора в цепи.Например, в фотографии электронная вспышка на фотоаппарате должна синхронизироваться с открытием затвора, чтобы испускать вспышку света за доли секунды. Большой конденсатор заряжается до нескольких сотен вольт с помощью аккумулятора камеры, и при нажатии кнопки спуска затвора энергия мгновенно разряжается через ксеноновую вспышку, создавая яркую вспышку. После того, как выстрел сделан, конденсатор должен некоторое время перезарядиться, прежде чем его можно будет снова использовать.

Блокировка сигналов постоянного тока

Еще одно важное применение конденсаторов — остановка постоянного тока (DC), но пропускание переменного тока (AC) от одной части электронной схемы к другой.После зарядки конденсаторы действуют как элементы с высоким импедансом и, таким образом, блокируют попадание постоянного тока в указанные части схемы.

В цепи переменного тока с переменным (переменным положительным и отрицательным) напряжением ток будет течь сначала в одном направлении, а затем в другом по мере того, как конденсатор заряжается и разряжается. Это позволяет переменному току появляться с обеих сторон компонента, так что части схемы могут быть соединены вместе. Ток физически не течет через конденсатор, поскольку диэлектрик является изолятором; продолжительные скачки тока являются результатом изменения напряжения на конденсаторе.

Блокируя постоянный ток, но при этом разрешая прохождение переменного тока, устройство можно использовать параллельно с другим элементом схемы, чтобы переменный ток обходил элемент без прохождения части постоянного тока сигнала. Конденсаторы часто используются в телевизионных, радио и аудиоусилителях.

Дискриминация по частоте

Из-за своей емкости конденсатор не реагирует на низкочастотные сигналы, что делает его полезным для разделения входного сигнала со смешанными частотами.Для конденсаторов в цепи переменного тока ток увеличивается с частотой, тогда как реактивное сопротивление емкости (или сопротивление потоку переменного тока) обратно пропорционально значению емкости. Следовательно, конденсатор может быть спроектирован таким образом, чтобы оказывать незначительное сопротивление протеканию тока для высокочастотной части сигнала, в то же время предлагая большее сопротивление току более низкой частоты, что делает его полезным для фильтрации желаемого частотного диапазона.

Такие конденсаторы обычно используются для обнаружения радиочастоты как часть схемы настройки телевизионных и радиоустройств.Они также могут отфильтровывать частоты, которые могут мешать работе оборудования.

Сглаживание и накопление энергии

Конденсаторы

часто используются для стабилизации напряжения на чувствительных устройствах путем поглощения избыточной энергии, генерируемой нежелательными скачками переходного напряжения, и устранения дуги в точках контакта. Это конкретное приложение составляет большую часть всех используемых многослойных керамических конденсаторов (MLCC). Например, сглаживающий конденсатор может использоваться рядом с микросхемами памяти компьютера, чтобы гарантировать, что рабочее напряжение микросхемы остается постоянным, несмотря на электрическую активность, происходящую вокруг.Это же свойство также используется для сглаживания выходных сигналов источников питания и преобразователей напряжения.

Надеюсь, что часть 2 дала вам лучшее понимание основных вариантов использования конденсаторов и того, как они могут применяться в ваших конкретных проектах. В части 3 мы рассмотрим факторы и ограничения, влияющие на емкость. Также ознакомьтесь с нашими конденсаторами Knowles Precision Devices , чтобы ознакомиться с полным ассортиментом нашей продукции.


Чтобы узнать больше о конденсаторах, загрузите нашу электронную книгу «Руководство по выбору правильного конденсатора для вашего конкретного применения».

Список применений конденсаторов

Конденсаторы по-разному используются почти во всех электронных продуктах. На самом простом уровне они заряжаются током, а затем сразу отпускают этот ток. Это может показаться не особо впечатляющим, но именно эта зарядка и разрядка приводит в действие вспышку на вашей камере и ручку настройки на вашем радио, и это предотвращает взрыв ваших громкоговорителей.

Время

Конденсаторы могут использоваться в цепи, зависящей от времени, поскольку их зарядка и разрядка происходят через равные промежутки времени.Он может быть подключен к любому светоизлучающему диоду или системе громкоговорителей, и вполне вероятно, что любой мигающий свет или регулярный звуковой сигнал использует конденсатор синхронизации.

Сглаживание

Электричество от источника переменного тока колеблется через равные промежутки времени, что означает, что заряд в цепи постоянно меняется с положительного на отрицательный. На веб-сайте play-hookey.com объясняется, как с использованием трансформаторов выходная мощность источника переменного тока будет намного больше, чем мощность источника постоянного тока.Тем не менее, многие бытовые приборы используют электричество постоянного тока за счет использования конденсатора. Конденсатор может преобразовывать переменный ток в постоянный, «сглаживая» ток. Представьте себе переменный ток в виде единой линии, постоянно извивающейся вверх и вниз. Конденсатор будет заряжаться, когда эта линия поднимается, и на пике разрядится. После полной разрядки он снова начинает заряжаться, так что выходной ток никогда не успевает полностью упасть и работает как постоянный ток.

Соединение

Конденсаторы могут пропускать переменный ток, но блокировать постоянный ток в процессе, который Клуб электроники назвал «Соединение конденсаторов».Это используется в случае громкоговорителя. Динамики работают, преобразуя переменный ток в звук, но они могут быть повреждены любым постоянным током, который до них достигает. Конденсатор предотвращает это.

Настройка

Переменные конденсаторы используются в схемах настройки в радиосистемах путем подключения их к генератору LC, как описано на сайте Electronixandmore.com. Конденсатор заряжается, а затем разряжается в катушку из проволоки, создавая магнитное поле. Как только конденсатор полностью разряжен, магнитное поле начинает разрушаться, перезаряжая конденсатор.Этот ток заряда и разряда имеет регулярные интервалы, но его можно изменить, заменив конденсатор. Если частота этих интервалов совпадает с частотой ближайшей радиостанции, то усилитель в радиоприемнике усилит этот сигнал, и вы услышите трансляцию.

Накопление энергии

В некоторых случаях, например, в схеме вспышки камеры, требуется накопление энергии, а затем ее внезапное высвобождение. Именно это и делает конденсатор. В схеме камеры вы нажимаете кнопку, чтобы сделать снимок, и на конденсаторе высвобождается заряд.Когда он достигает пикового уровня, конденсатор разряжается, вызывая вспышку.

Почему конденсаторы являются важными компонентами электронных схем

С развитием технологий конденсаторы стали важными компонентами почти каждого электронного устройства. Они способны накапливать электрический заряд, но недолго.

По Potshangbam Июль

Как и аккумуляторная батарея, конденсаторы накапливают и выделяют энергию.Конденсаторы хранят потенциальную энергию в электрическом поле, тогда как батареи накапливают энергию в форме химической энергии, которая позже преобразуется в электрическую. Конденсаторы обладают такими функциями, как возможность легкой зарядки-разрядки. Сегодня растет спрос на более совершенные конденсаторы для носимых устройств, бытовой электроники и промышленного применения.

Важность конденсаторов
Конденсатор, также известный как конденсатор, является одним из основных компонентов, необходимых для построения электронных схем.Конструкция схемы является неполной или она не будет функционировать должным образом без базовых компонентов, таких как резисторы, катушки индуктивности, диоды, транзисторы и т. Д. Основная функция конденсаторов заключается в хранении электростатической энергии в электрическом поле и передаче этой энергии в цепь. , когда необходимо. Они пропускают переменный ток, но блокируют прохождение постоянного тока, чтобы избежать опасного выхода из строя цепи.

Хотя конденсаторы крошечные, они обеспечивают различные преимущества в электронных схемах.

  • Они накапливают энергию непосредственно на пластинах, что значительно ускоряет процесс зарядки / разрядки.
  • Они эффективны при фильтрации нежелательных частот.
  • Конденсаторы
  • могут эффективно справляться с потерями мощности и делать производство электроэнергии более экономичным.
  • Они менее чувствительны к температуре.
  • Конденсаторы разряжают ток практически мгновенно.
  • Конденсаторы предпочтительнее для приложений переменного тока.
  • Они могут работать с приложениями с высоким напряжением и поэтому подходят для высокочастотных сценариев использования.
  • Конденсаторы
  • имеют длительный жизненный цикл, составляющий от десяти до 15 лет.

Типы конденсаторов и их применение
Существует несколько типов конденсаторов разной конструкции, для разных применений и функций. Ниже приведены наиболее распространенные типы конденсаторов, используемых в электронных схемах.

Пленочные конденсаторы: К ним относятся полиэфирная пленка, металлизированная пленка, полипропиленовая пленка, пленка PTE и конденсаторы на основе полистирольной пленки. Что отличает их друг от друга, так это материал, используемый в качестве диэлектрика.

] Диэлектрик следует выбирать с осторожностью, исходя из его свойств. Пленочные конденсаторы обладают рядом преимуществ — они очень надежны и имеют долгий срок службы. Их предпочитают в условиях высоких температур.

Пленочные конденсаторы используются в автомобильных электронных устройствах, поскольку они демонстрируют стабильность при работе при высоких температурах и в условиях вибрации. Широкое применение пленочных конденсаторов также можно объяснить их способностью выдерживать высокое напряжение.

Керамические конденсаторы: Эти конденсаторы не имеют полярности и имеют фиксированную емкость. В качестве диэлектрического материала они используют керамическое вещество. Обычно используются два типа керамических конденсаторов — многослойный керамический конденсатор (MLCC) и керамический дисковый конденсатор. Следует отметить, что керамические материалы плохо проводят электричество; поэтому электрические заряды не могут проходить через них. Обратной стороной керамических конденсаторов является то, что незначительное изменение температуры изменяет их емкость.

Низкая индуктивность керамических конденсаторов делает их пригодными для высокочастотных приложений. Они имеют небольшие размеры и используются в различных электронных продуктах, включая телевизоры, мобильные телефоны, цифровые видеокамеры, ноутбуки и т. Д.

Электролитические конденсаторы: Их можно разделить на две категории: материал электрода (алюминий, тантал или ниобий) и свойства электролитов (влажный, твердый или гибрид влажный / твердый). Большинство электролитических конденсаторов имеют полярность; поэтому при постоянном напряжении важно исправлять полярность на обоих концах.Из-за своего небольшого размера и большой емкости электролитические конденсаторы подходят для использования в цепях питания постоянного тока. Их применения — соединение и развязка. Недостатком электролитических конденсаторов является их относительно низкое напряжение.

Бумажные конденсаторы: Они сконструированы с использованием бумаги в качестве диэлектрика и способны накапливать достаточный электрический заряд. Диапазон емкости для них варьируется от 0,001 до 2 000 мкФ, а напряжение очень высокое — до 2000 В.Этот конденсатор поглощает влагу из воздуха, что снижает сопротивление изоляции диэлектрика. Бумажные конденсаторы используются для фильтрации. Их также можно использовать в приложениях, требующих высокого напряжения и большого тока.

Общие проблемы при использовании неправильных конденсаторов
Плохой конденсатор может привести к различным проблемам. Когда в цепи используется неподходящий конденсатор, он не может стабилизировать высокое напряжение, что может отрицательно повлиять на систему, вызывая ее выход из строя раньше ожидаемого срока службы.Следует помнить, что все конденсаторы сделаны из разных материалов. Следовательно, использование конденсатора плохого качества или конденсатора с неправильным номиналом может серьезно повлиять на работу схемы.

Другие проблемы, возникающие при неправильном выборе конденсаторов, — это ненужная потеря мощности и нестабильные цепи. Кроме того, неправильный физический размер и тип конденсатора могут вызвать такие проблемы, как нежелательный шум, механическое напряжение, отказ цепи и т. Д. Также следует учитывать толщину внешнего слоя диэлектрика конденсатора.На этом слое обычно появляются трещины; поэтому толщина диэлектрика имеет большое значение для увеличения механической прочности, а также для увеличения срока службы изделий.

Также, когда конденсатор низкого качества или когда в цепи более высокое напряжение, высока вероятность утечки химического изолятора. В таких случаях на печатную плату воздействует слабореактивное соединение, которое, в свою очередь, может повлиять на близлежащие компоненты и медную фольгу печатной платы.

Некоторые конденсаторы, имеющиеся на рынке
Модель: Конденсаторы полипропиленовые пленочные; Производитель: Panasonic
В этих конденсаторах, специально разработанных для подавления помех, используется негорючий пластиковый корпус
и негорючая смола; они полностью соответствуют требованиям RoHS. В серии есть предохранительный механизм
, соответствующий требованиям UL / CSA и европейского стандарта безопасности класса X2.
Основные характеристики
  • Влагостойкость проверена при 240 В переменного тока при 85 ° C / 85% в течение 1000 часов (C <1.0 мкФ)
  • Имеет номинальное напряжение 275 В переменного тока, номинальную емкость от 0,10 мкФ до 4,7 мкФ и допуск емкости
    ± 10% (К), ± 20% (М)
  • Диапазон температур категории от -40 ° C до + 110 ° C

Контакт: www.panasonic.eu

Модель: Серия пленочных конденсаторов EPCOS B3277X / Y / Z; Производитель: TDK
Серия подходит для использования в цепях промежуточного контура, в качестве фильтров постоянного тока, для коррекции коэффициента мощности в промышленных преобразователях, а также для источников питания с повышенными требованиями к надежности.Эти применения включают рентгеновское оборудование, светодиодное уличное освещение, индукционные плиты и электрические зарядные устройства
.
Основные характеристики
  • Разработан для напряжений от 500 В до 1200 В постоянного тока со стандартной емкостью от 1,5 до 170 мкФ
  • Максимальный ток до 36,5 А
  • Максимальная рабочая температура компонентов, совместимых с RoHS, составляет 105 ° C

Контакт: www.tdk-electronics.tdk.com

Модель: керамический конденсатор MLCC, 100 нФ; Производитель: Murata
Компания заявляет, что это самый маленький в мире керамический конденсатор MLCC 100 нФ для смартфонов 5G.Его максимальная емкость составляет 0,1 мкФ (100 нФ). Компания добилась площади монтажной поверхности, которая примерно на 50 процентов меньше, а объем — примерно на 80 процентов меньше, чем у ее собственных обычных продуктов (размер 2552,7 см), с емкостью 0,1 мкФ. Более того, емкость этого продукта примерно в десять раз больше, чем у других продуктов такого же размера (размер 20330,16 см), изначально выпускаемых компанией серийно.
Контакт: www.murata.com
Модель: Vishay BC Компоненты 257 серии PRM-SI; Производитель: Vishay Intertechnology
Эта серия миниатюрных вставных алюминиевых электролитических конденсаторов позволяет создавать конструкции с более высокой плотностью мощности.Серия представляет собой цилиндрический алюминиевый корпус, изолированный синей гильзой. Конденсаторы серии 257 PRM-SI имеют номинальное напряжение до 500 В в 25 компактных корпусах размером от 22 мм x 25 мм до 35 мм x 60 мм. Устройства, соответствующие требованиям RoHS, также доступны с защелкивающимися клеммами с 3-контактным ключом.

Основные характеристики

• Размер корпуса (Д x Д в мм): от 22 x 25 до 35 x 60
• Диапазон емкости: от 56 мкФ до 3300 мкФ
• Допуск: ± 20%
• Срок службы при + 85 ° C: 5 000 часов Контакт: www.vishay.com
Модель: серия KXF; Производитель: United Chemi-Con
Серия KXF включает сверхминиатюрные алюминиевые электролитические сквозные конденсаторы. Гарантия на эту серию составляет 15 000 ~ 20 000 часов работы для цепей светодиодного освещения и других долговечных высоковольтных источников питания. Эти конденсаторы идеально подходят для высоконадежных приложений, таких как светодиоды, зарядные устройства, повышающие преобразователи и миниатюрные импульсные источники питания.

Основные характеристики
• Диапазон номинального напряжения от 160 В до 450 В постоянного тока
• Диапазон емкости от 5,6 мкФ до 68 мкФ
• Поляризованные конденсаторы, не устойчивые к растворителям
• Диаметр от 10 до 18 мм
• Соответствует RoHS2

Контакт: www.chemi-con.com

Что такое конденсатор и как он работает?

В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения.Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

Обзор

Практически нет схемы без конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.

Что такое конденсатор?

Конденсатор — это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.

Конструкция конденсатора

Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-нибудь, что препятствует прохождению тока.

Емкость конденсатора, измеряемая в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости ε диэлектрика, в то время как чем меньше расстояние между пластинами, тем больше емкость.При этом давайте посмотрим, как работает конденсатор.

Как работает конденсатор

Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.

Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны с пластины, подключенной к положительному выводу батареи, начнут перемещаться к пластине, подключенной к отрицательному выводу батареи.Однако из-за наличия диэлектрика между пластинами электроны не могут проходить через конденсатор, поэтому они начнут накапливаться на пластине.

После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания той электроники, которая уже там.

На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный чистый положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.

Принцип работы диэлектрика конденсатора

Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут менять свою ориентацию в зависимости от зарядов на двух пластинах. Таким образом, молекулы выстраиваются в электрическом поле таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая больше электронов из положительной пластины.

Итак, после полной зарядки, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.

Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут перемещаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.

Итак, это основной принцип работы конденсатора, а теперь давайте рассмотрим несколько примеров его применения.

Приложения

Развязные (байпасные) конденсаторы

Конденсаторы развязки или конденсаторы байпаса являются типичным примером.Они часто используются вместе с интегральными схемами и размещаются между источником питания и землей ИС.

Их задача — фильтровать любой шум в источнике питания, например, пульсации напряжения, которые возникают, когда в источнике питания на очень короткий период времени падает его напряжение или когда часть цепи переключается, вызывая колебания в источнике питания. В момент падения напряжения конденсатор временно действует как источник питания в обход основного источника питания.

Преобразователь переменного тока в постоянный

Другой типичный пример применения — конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без помощи конденсаторов он не сможет справиться с этой задачей.

Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, в то время как на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя падает, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.

Связано: что такое триггер Шмитта и как он работает

Фильтрация сигналов

Фильтрация сигналов — еще один пример применения конденсаторов. Благодаря своему особому времени отклика они способны блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *