Двуполярный блок питания своими руками – Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания

Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания

 

автор DDREDD.

 

 

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.

 

 

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял  транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

 

     

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм

) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А
и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)



Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).

В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.

Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.

Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.

Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.

Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

 

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.

Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.

Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь [email protected] с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.

В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.

Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.

Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.

Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).

Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Архив для статьи

 

vprl.ru

Двухполярное питание из однополярного | AUDIO-CXEM.RU

Недавно столкнулся со следующей проблемой, собрал два усилителя НЧ на TDA7294, следующим этапом была сборка импульсного блока двухполярного питания, но как-то не терпелось проверить работоспособность усилителей. Естественно трансформатора с двумя вторичными обмотками на нужное напряжение у меня не оказалось, да и вообще не было у меня трансформатора с двумя вторичными обмотками.

Покопавшись в своем барахле, нашел два не очень мощных трансформатора, каждый имел одну вторичную обмотку, но на разное напряжение. Далее я принял решение собрать плату, которая будет из одной вторичной обмотки делать двухполярное питание.

Устройство, преобразующее двухполярное питание из однополярного, имеет следующую схему:

Схема была найдена в интернете, но в ней нет ничего сложного и объяснять работу данного устройства я не буду.

Компоненты для сборки:

ОБОЗНАЧЕНИЕТИПНОМИНАЛКОЛИЧЕСТВОКОММЕНТАРИЙ
VDS1,VDS2Выпрямительный диодный мостЛюбой на нужное напряжение и ток2Распространенные KBU-610, KBU-810
C1,C5Электролит4700 мкФ 50В2
C2,C6Конденсатор неполярный100 нФ2Пленка или керамика
C3,C4Электролит470 мкФ 100В2

Скачать список компонентов в файле PDF

Описываемый в этой статье преобразователь двухполярного питания из однополярного не работает с постоянным током на входе преобразователя. Работает только с переменным током. Суть устройства такова, что из одной вторичной обмотки можно сделать  двухполярное питание.

 

Диодные мосты выбирайте любые, какие есть, главное, чтобы по напряжению и току подходили. У меня лежали с давней распайки мосты RBA-401, током 4 Ампера, напряжением 95 Вольт. Для питания одной TDA7294 (+-30В) этого достаточно. Распространенные мосты KBU-610, KBU-810 и другие.

Если вы захотите использовать данное устройство на напряжение больше 45 Вольт, то следует заменить конденсаторы C1,C5 на более высоковольтные. У меня не было электролитов ёмкостью 4700 мкФ, но были 2200 мкФ, их я и поставил 4 штуки.

Неполярные конденсаторы C2,C6 я поставил полипропиленовые, с разборки компьютерных блоков питания.

Трансформатор я использовал кольцевой, с одной вторичной обмоткой, напряжением 29 Вольт, мощностью 50 Вт. После выпрямления получил +-41 Вольт на конденсаторах.

При проверке я запитал TDA7294, выжал из не примерно 35 Вт, при этом просадка напряжения составила +-25 Вольт. Большая просадка напряжения произошла из-за слабого трансформатора. На плате преобразователя, все элементы кроме мостов были холодные, мосты теплые.

Сделаю вывод, что данный преобразователь двухполярного питания из однополярного, работает стабильно, и может использоваться для запитывания усилителей НЧ.

Минус данного устройства заключается в использовании на его входе только переменного тока.

Список компонентов в файле PDF СКАЧАТЬ

Печатная плата СКАЧАТЬ


Похожие статьи

audio-cxem.ru

Двухполярный блок питания с регулировкой напряжения

Вчера я написал статью о лабораторном блоке питания  и буквально через пару часов мне написал письмо один из посетителей мастерской. Ему очень понравился представленный блок питания, но эта схема очень сложна как для новичка.  Человек попросил ему помочь с непростой для него задачей. Не нужны ему защиты и регулировка тока, все что нужно, это двухполярный блок питания с возможностью регулировки напряжений одновременно на обоих плечах. Вариант собрать регулируемый блок питания на LM317 и LM337 не представляется возможным из-за отсутствия компонентов, зато есть полно транзисторов.
Человеку вполне могу помочь с этим простым для меня делом и я принялся за раздумья. В голове промелькнула советская схема регулируемого блока питания на транзисторах.

Данную схему немного доработал на современную элементарную базу, а так же добавил в нее отрицательное плече

Для данной схемы используется трансформатор с двумя обмотками с отводом от середины. Каждая обмотка примерно по 14В. После диодного моста на конденсаторах каждого плеча получается примерно 20В.
По схеме опорное напряжение берется с стабилитрона, регулируется переменным сдвоенным резистором управляя напряжением на базе транзистора. Сдвоенный резистор R3 нужен для одновременной регулировки обоих плеч. Резистор стоит применять линейный, что бы равномерно регулировать напряжение без скачков

Максимальное выходное напряжение зависит от напряжения стабилитрона в данном случае 15В, но надо помнить что на двух транзисторах падение 1,2В, поэтому на выходе будет примерно 13,8В, максимальный пропускаемый ток зависит от трансформатора, диодного моста, а так же транзистора.  Не стоит особо гнаться за током, так как блок питания не имеет защиты по току и защиты от КЗ
С ув. Эдуард

Загрузка… Полезные материалы по этой теме:

Навигация по записям

rustaste.ru

Лабораторный блок питания двухполярный | 2 Схемы

Если нужен приличный блоком питания с регулируемым током и напряжением — редакция сайта «Две Схемы» советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты — тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП — это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.

Схема блока питания на uA723

Принципиальная схема БП

Прямому регулированию подвергается плечо положительного напряжения, в то время как отрицательная часть следует за положительной благодаря системе построенной на операционном усилителе TL081.

Описание работы

Стабилизатор U1 (uA723) включает в себя температурно компенсированный источник опорного напряжения, усилитель ошибки и выходной транзистор, обеспечивающий ток до 150 мА. Микросхема работает в типовой конфигурации, в которой его внутренний усилитель ошибки сравнивает напряжение с делителя R0 (5,6 k) — R3 (4,7 k) с напряжением, какое наличествует на выходе блока питания. Резисторы R4 (220R), R5 (6,8 k) и потенциометр P1 (50k) обеспечивают регулирование напряжения выхода.

Усилитель ошибки работающие в петле отрицательной обратной связи регулируется с помощью элементов R1 (560R), T1 (BD911) и T2 (BD139) меняя выходное напряжение так, чтобы его доля была равна установленному напряжению через делитель R0 — R3. Изменение положения ползунка P1 приведет к изменению выходного напряжения, поэтому усилитель ошибки, соответственно, изменит выходное напряжение, чтобы эти изменения компенсировать.

Например: перемещение ручки потенциометра в направлении R4 повысит напряжение на его ползунке, что заставит стабилизатор (через усилитель ошибки) снизить выходное напряжения так, чтобы потенциал регулятора снизился до уровня устанавливаемого делителем R0 — R3.

Резистор R2 (0.2 R/5W) вместе с транзистором Т6(BC548) работает в узле ограничения тока. Если ток, потребляемый от источника питания растет — падение напряжения на R2 также возрастает. Открытый транзистор Т6 при снижении напряжения равным примерно 600 мВ вызовет короткое замыкание между эмиттером и базой транзисторов управления и тем самым ограничит ток, протекающий через T1. Ток будет ограничен значением примерно 0.6/R2, что в данном случае дает 3 Ампера. Номинал резистора следует подобрать самостоятельно, учитывая трансформатор и его характеристики. В роли T1 в большинстве случаев потребуется применение нескольких транзисторов соединенных параллельно, чтобы распределить протекающий ток и мощность на несколько элементов.

За регулирование отрицательной половины питания отвечает операционный усилитель U2 (TL081). Его выход управляет транзисторами T3 (BD140) и T4(BD912). Резистор R9 (560R) ограничивает ток базы Т3, выполняя аналогичную роль, как R1 в положительной половине питания. Делитель R6 (100k), R7 (100k) и P2 (10k) подобран таким образом, чтобы в состоянии, установленном на регуляторе P2 был потенциал массы. Увеличение напряжения на выходе положительной части блока питания приведет к увеличению потенциала на ползунке потенциометра P2, одновременно ОУ U1 стремясь уровнять потенциал на обоих своих выходах приведет к снижению отрицательной половины питания с помощью регулировочных элементов T3 и T4. Напряжение на отрицательной половине, соответственно, будет следовать за положительным, если только делитель R6, R7, P2 будет установлен на деление 1:1.
Транзистор T5 (BC557) ограничивает ток в отрицательной половине питания таким же образом, как и T6 в положительной половине. Максимальное значение тока в данном случае это 0.6/R8.

К разъемам IN1 и IN2 подключаются две независимые обмотки трансформатора питания. Напряжение будет одинаково на мостах Br1 (5А) и Br2 (5А) и будет фильтроваться с помощью емкости C1, C2 (4700uF) и C3, C4 (100nF), после чего попадает на транзисторы T1 и T4 (напоминаем, что каждый из них может состоять из нескольких транзисторов, соединенных параллельно). На выходе напряжение фильтруют конденсаторы C6, C7 (470uF) и C9, C10 (100nF). Выходом блока является разъем OUT на котором и будет регулируемое напряжение симметрично относительно массы. Кроме того, на плате можно установить делитель R10-R13, благодаря которому возможно измерение выходного напряжения с помощью микроконтроллера с преобразователем ADC.

На вход схемы необходимо подключить трансформатор с двумя обмотками напряжением 2×24 В и мощности в зависимости от ваших потребностей.

Сборка лабораторного блока питания

Плата печатная ЛБП

Схема паяется на печатной плате (скачать). Монтаж не сложен, элементы на ней находятся далеко друг от друга. Однако необходимо определить значения R3, Р1 и R5. Резистор R3 определяет уровень напряжения на входе усилителя ошибки (pin 5 U1) и его подбор является простым. По расчётам резистор R3 равен 4,7 k, что дает напряжение на усилителе ошибки около 3,2 В. Второй шаг-это подбор значения потенциометра P1 и резистора R5, от которых зависит максимальное выходное напряжение блока питания. Предполагая, что требуемый диапазон регулирования выходного напряжения от 3 В до 26 В легко рассчитаем значение R5 чуть ниже 7к. Принимаем ближайшее значение из стандартного ряда и получаем R5 = 6,8 к.

Готовый лабораторник БП

После сборки мелких элементов на плате, пришло время для установки силовых транзисторов T1 и T4, они должны быть установлены на отдельный радиатор. Если по какой-то причине будет только один радиатор — примените изоляционные прокладки под транзисторы. Если потребление тока от блока питания не будет большим — до 0.5 А, можно поставить только один транзистор. Если таки нагрузки планируются несколько ампер — можно использовать параллельное соединение транзисторов в соответствии со схемой их соединения.

Регулированный блок питания 0-30В

2shemi.ru

cxema.org — Двухполярный лабораторный блок питания

Двухполярный лабораторный блок питания

Напряжение бп 0-30 Вольт. Ток срабатывания защиты 0-10 А.

Сидел я как-то на работе и решил сделать что-нибудь полезное. Порыскав в интернете в поисках стоящих девайсов, наткнулся на довольно простой блок питания и решил взяться за него. 

Автор схемы leokri

Не знаю для чего нужна цепочка VD3,VD2, резистор на 3 кОма и электролит (видимо цепочка мягкого пуска), но с ними у меня блок питания не заработал и они были удалены из схемы. Емкость 20000 мкФ мной была заменена на 10000 мкФ, поскольку на нагрузку в 5 Ампер считаю что этого будет достаточно, да и вряд ли у меня будут такие токи в нагрузке блока питания.

 

Описания принципа работы схемы: При включении питания происходит заряд емкости конденсатора емкостью 20000 мкФ. Как только конденсатор зарядится, напряжение на выходе начнет расти до той поры, пока не сработает компаратор DA4 операционного усилителя LM324N. Как только напряжение на его 10 ноге превысит напряжение на 9 ножке, компаратор переключится и своим током через светодиод  начнет открывать транзистор VT3. Напряжение на эмиттере транзистора VT1 понизится до заданного значения. Если напряжение на 9 ножке станет больше, чем на 10 компаратор переключится обратно и напряжение на эмиттере VT1 начнет повышаться. Срабатывание компаратора определяется напряжением на 9 ножке, которое выставляется подстроечным резистором на 4,7 к Ома.

 Аналогично работает канал токового регулирования, подстройка которого производится подстроечным резистором на 1 кОм.

Вместо двух силовых транзисторов в канал я сделал один, так как для 5 ампер одного КТ827А вполне будет достаточно.

В качестве линейных стабилизаторов напряжения использованы LM7808 и LM7815. Стабилизатор LM7815 запитывался непосредственно с электролитического конденсатора сразу после выпрямительного моста, а стабилизатор LM7808 запитывался с LM7815.

Операционный усилитель LM324N мне в магазине продали такой, что минимальный ток срабатывания на нем 40 мА, пришлось искать операционный усилитель данного типа с лазерной гравировкой, только после этого все стало регулироваться как положено. А второй операционный усилитель я достал из платы управления UPSа, корпус которого был использован.

В качестве шунта я использовал два керамических резистора на 0,1 Ома на 5Wвключенных параллельно друг другу.

Разработав монтажную плату и удостоверившись в работоспособности платы, собрал вторую такую же, чтобы обеспечить второй канал. Плата разрабатывалась в Visio.

Для визуального получения информации о напряжении и токе на блоке питания было решено сделать ампервольтметр на базе контроллера Atiny13Aи дисплея от сотового телефона Nokia 1200, поскольку у меня валялась целая куча этих телефонов.

 

Вольтметр+амперметр+ваттметр для блока питания

 

Также как и в случае с платой блока питания, мной были разработана плата для  ампервольтметров и плата под два дисплея, чтобы все влезало в переднюю панель корпуса UPSа.

автор данного девайса pavel-pervomaysk

A JonnS переделал прошивку под большие символы на дисплее

Силовой трансформатор был задействован от того же UPSa. Трансформатор был разобран и перемотан на напряжение 18 Вольт переменки. После выпрямительного моста и конденсатора у меня получилось 25 Вольт постоянки. Если кто будет повторять, то рекомендую намотать две дополнительные обмотки на напряжение 12 Вольт для питания ампервольтметров. 

Чтобы коллекторы не замыкались друг с другом была поставлена диэлектрическая пластина, в которой выпилено большое отверстие для транзисторов и на которую были закреплены радиаторы.

На одном из радиаторов закреплены также 2 кренки для запитки ампервольтметров.

Конечный результат получился такой. Второй дисплей инвертированный, поэтому видно хуже, но перепрошивать контроллер было уже лень.)))

Сзади были установлены предохранители для каждого канала в отдельности и оставлены все разъемы. С одного из задних разъемов я питаю свою самодельную паяльную станцию. Очень кстати удобно провода не болтаются по всему полу.

Для программирования контроллеров был собран самый простой, как мне кажется, программатор, который был найден на просторах интернета.

Порыскав на заводе в старом хламе, был найден нужный разъем и сделано такое чудо.

Прошивка без проблем была вшита в контроллер программой Uniprof. Вот пожалуй и все!

Все исходники можно скачать тут

{youtube}Mm_f-Qw4964{/youtube}

Автор Роман Соболев

  • < Назад
  • Вперёд >

vip-cxema.org

Переделка компьютерного БП в двухполярный источник питания

В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.

TDA7294

И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.

На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.

Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:

По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.

Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:

Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.

То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.

Земля блока питания останется самой собой и в этом случае, то есть средней точкой.

Остается подобрать только диодный мост.

В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.

Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.

После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.

И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.

В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.

Потом нужно припаять провода к крайним выводам этой сборки.

Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.

Автор: Алексей Алексеевич. Мурманск.


 

volt-index.ru

Мощный лабораторный блок своими руками


Приветствую, Самоделкины!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение — регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый — свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.


От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие — это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.

Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:

Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.

Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками, а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.

Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.

Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное — это стандартная схема блока питания.
Следующий элемент схемы — это плавный пуск.

Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.

Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.


На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.


Думаю, тут нет ничего сложного.
Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.

Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:

С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.

Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.

В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.

Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:

На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.


Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.

Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.

Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.


Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:


Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.

Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.

Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:

Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть — разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.


На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.

Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.

Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А. Не совершайте такую же ошибку и возьмите себе стрелочный амперметр — надежнее будет. А по поводу проверки — не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А. Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.

Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.


Скрепка, шайба и даже шило — ничто не устояло перед мощью данного блока.

Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о