Двуполярный блок питания своими руками: ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

Содержание

ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

Не так давно возникла насущная необходимость собрать двуполярный блок питания (взамен внезапно сгоревшего) по простой схеме и из доступных деталей. За основу была взята схема, опубликованная ранее на этом же сайте.

Исходная схема

По ссылке существует подробное описание сути работы и настройки, поэтому останавливаться на этих моментах и тонкостях не стану.

Сначала была собрана исходная однополярная схема для пробы и поиска возможных ошибок, про которые писали некоторые собиравшие данную конструкцию. У меня всё сразу заработало нормально, возникли лишь вопросы с регулировкой тока ограничения и индикацией срабатывания этого ограничения. 

Поскольку исходная схема, как видно, разрабатывалась для выходных токов порядка 3 ампер и более, то и схема ограничения выходного тока соответствует этим заданным параметрам. Величина минимального тока ограничения определяется номиналом сопротивления R6, а с помощью переменного резистора R8 можно лишь несколько увеличивать величину тока срабатывания защиты (чем меньше суммарное сопротивление резисторов R6 и R8, тем больше будет допустимый выходной ток).

Светодиод VD6  служит для индикации работы блока питания и срабатывания защиты (при срабатывания защиты и ограничении тока на выходе он гаснет).

Далее была собрана аналогичная схема для напряжения отрицательной полярности — полностью аналогичная, лишь с заменой полярности включения электролитических конденсаторов, диодов (стабилитронов) и с применением транзисторов противоположной структуры (n-p-n / p-n-p). Обозначения элементов «минусового» плеча оставлены такими же, как у «плюсового» для упрощения рисования схемы 🙂

Новая схема БП

При изготовлении был применён валяющийся без дела трансформатор мощностью 60 ватт, с двумя вторичными обмотками по 28 вольт переменного напряжения и одной на 12 вольт (для питания дополнительных маломощных полезных устройств, например — кулера охлаждения радиаторов мощных транзисторов со схемой управления). Получившаяся схема приведена на рисунке.

Чтобы иметь возможность регулировать выходной ток в широких пределах, вместо резисторов R6 и R8 в обоих плечах были применены наборы сопротивлений R6 — R9 и сдвоенный галетный переключатель на 5 положений. При этом резистор R6 определяет величину минимального тока ограничения, поэтому он включен в выходную цепь постоянно. Остальные же резисторы при помощи переключателя S1 подключаются параллельно этому R6, суммарное сопротивление уменьшается и выходной ток, соответственно, увеличивается.

Резисторы R6 и R7  могут быть мощностью 0,5 ватт или более R8 — 1-2 ватта, а R9 — не менее 2 ватт (у меня стоят резисторы типа С5-16МВ-2ВТ и заметного их нагрева при нагрузке до 3 ампер не наблюдается). На схеме (рис.1) указаны значения выходных токов, при которых срабатывает защита и выходной ток даже при КЗ не превышает этих значений.

Здесь следует отметить, что индикация срабатывания защиты работает только при выходных токах более 3 ампер (то есть светодиод гаснет при срабатывании защиты), при меньших же токах светодиод не гаснет, хотя сама защита при этом срабатывает нормально, это проверено на практике.

Транзисторы Т1 (обозначение дано по исходной схеме, у меня это А1658 и КТ805) стоят без теплоотводов и практически вообще не нагреваются. Вместо А1658 можно поставить КТ837, например. Вообще, при сборке схемы мною пробовались самые разные транзисторы, соответствующие по структуре и мощности и всё работало без проблем. Переменный резистор R (сдвоенный, для синхронной регулировки выходного напряжения) применён советский, сопротивлением 4,7 кОм, хотя пробовались и сопротивления до 33 кОм, всё работало нормально. Разброс выходных напряжений по плечам составляет порядка 0,5-0,9 вольт, чего для моих целей, например, вполне достаточно. Хорошо бы, конечно, поставить сдвоенный переменник с меньшим разбросом сопротивлений, но таких пока нет под рукой…

Стабилитроны VD1 — составные, по два соединённых последовательно Д814Д (14 + 14 = 28 вольт стабилизации). Следовательно, пределы регулировки выходных напряжений получились от 0 до 24 вольт. Диоды выпрямительных мостов — любые, соответствующей мощности, я использовал импортные диодные сборки — KBU 808 без радиатора (ток до 8 А) и ещё одну маломощную, без обозначения (?), для питания кулера.

 

На теплоотводы установлены только выходные регулирующие транзисторы КТ818, 819. Теплоотводы небольшие, что определено габаритами корпуса (по размеру он как БП от компа), поэтому потребовалось сделать дополнительное принудительное их охлаждение. Для этих целей был использован небольшой кулер (от системы обдува процессора старого компьютера) и простая схема управления, всё это питается от отдельной обмотки трансформатора, которая там оказалась весьма кстати.

В качестве термодатчика был использован германиевый транзистор типа МП42 (большие залежи остались и девать некуда. Оказалось, что замечательно работают в качестве термодатчиков!) Схема простая и понятная, в особом описании не нуждается. База транзистора-термодатчика никуда не подключается, этот вывод можно просто откусить, желательно только не своими зубами, а то стоматология нынче дорогое удовольствие!

Корпус этого транзистора металлический, поэтому его необходимо изолировать, например, трубкой-термоусадкой и расположить как можно ближе к теплоотводам выходных транзисторов. Температуру, при которой запускается кулер, можно регулировать подстроечным резистором (сопротивление может быть от 50 до 250 кОм). Максимальный ток и скорость вращения вентилятора определяются гасящим резистором в цепи питания. У меня это сопротивление 100 Ом (подбирается экспериментально, в зависимости от напряжения питания и тока потребления кулера).

Блок питания, собранный по данной схеме, неоднократно был испытан с нагрузкой во всём диапазоне выходных напряжений и токах от 30 мА до 3,5 ампер и показал свою полную работоспособность и надёжность работы. При токах более 2 ампер применённый трансформатор грелся довольно сильно из-за недостаточной его мощности, в остальном же схема вела себя вполне адекватно.

Есть возможность увеличить выходной ток нагрузки более 3-4 ампер, если использовать соответствующей мощности трансформатор и выходные (регулирующие) транзисторы, возможно применить параллельное включение нескольких мощных транзисторов. Схема не требует особой наладки и подбора компонентов, при изготовлении можно использовать практически любые транзисторы с коэффициентом усиления 80-350. Специально для сайта Радиосхемы, автор — Андрей Барышев

   Форум по блокам питания

   Форум по обсуждению материала ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

Сборка двухполярного блока питания для усилителя звука


Приветствую, Самоделкины!
В сегодняшней инструкции будет затронута тема питания, а точнее двухполярного питания. Ведь для питания тех же усилителей мощности звуковой частоты, обладающих довольно неплохими характеристиками, иногда необходим не однополярный источник питания, а двухполярный. В качестве двухполярного источника питания часто применяются трансформаторы, у которых имеется выход от средины обмотки.



Но зачастую такие трансформаторы, пригодные для использования в качестве двухполярного источника питания, стоят мягко сказать не так уж и дешево, и к тому же их бывает не так уж просто найти, не во всех магазинах, торгующих радиотоварами, можно встретить такие трансформаторы. Если вам нужно, но под рукой нет двухполярного источника питания, то его можно собрать из двух однополярнных.


Поэтому, автор YouTube канала «Radio-Lab», разобравшись в этом вопросе сам, решил показать, как своими руками можно собрать бюджетный и к тому же довольно простой вариант двухполярного источника питания на базе двух однополярных блоков питания.
Для повторения данного проекта понадобятся два совершенно одинаковых импульсных блока питания.


Данные блоки питания подключаются к сети с переменным напряжением 220В. Выходные характеристики у них следующие: напряжение на выходе составляет 24В, максимальный ток 4А.

Оба этих однополярных блока питания нам предстоит соединить так, чтобы на выходе у нас получился один, но уже двухполярный блок питания.
Итак, теперь давайте разберем, как же правильно все подключить, чтобы на выходе получилось полностью рабочее устройство. На изображении ниже представлена схема подключения упомянутых выше однополярных блоков питания.
Взглянув на нее, вы убедитесь, что она предельно простая.

Обозначения полярности плюса (+) и минуса (-) нарисованы возле соответствующих клеммников на платах блоков питания.

Первым делом давайте соединим плюс (+) и минус (-) выходов обоих блоков питания. Таким вот нехитрым образом мы получим ту самую среднюю точку, которая нам необходима.


В результате проделанной работы у нас остаются контакты плюс (+) и минус (–) питания на разных блоках, на которых будет соответственно плюс (+) и минус (-) будущего двухполятного источника питания.

Также нам понадобится вот такой провод с вилкой:

Данный провод, как вы уже наверное догадались, послужит нам для подключения сборки к сети переменного напряжения 220В.
Следующим шагом необходимо подключить в параллель провода на обоих блоках питания по контактам для подключения блоков к сети с напряжением 220В. Здесь важно, чтобы провода не перекрещивались между собой.


Затем к одному блоку питания припаяем тот самый провод с вилкой, посредством которого будем подключать устройство в сеть.


Все готово, однополярные блоки питания запараллелены по питанию от сети 220В. После проделанной работы мы имеем один двухполярный блок питания.

Как и говорилось в начале статьи – тут все предельно просто, главное в этом деле не торопиться и быть предельно внимательным, чтобы ничего не перепутать. И да, не стоит также забывать и о риске поражения электрическим током, ведь сетевое напряжение 220В является довольно высоким напряжением и здесь обязательно необходимо помнить о правилах техники безопасности и соблюдать их.
Все еще раз проверяем и, если все правильно, подключаем вилку к сети 220В.

Как видим, на обоих блоках питания засветились светодиодные индикаторы, это сигнализирует о том, что питание есть. Замеры показали примерно 24В в каждом плече, а общее напряжение составило почти 48В соответственно.

Работы по сборке двухполярного блока питания полностью завершены, можно приступать к тестам. Чтобы протестировать собранное устройство, давайте попробуем запитать данным блоком питания усилитель на микросхеме TDA7294.


Для питания данного усилителя как раз необходим двухполярный блок питания, к тому же и по напряжению тут все подходит.

Предварительно необходимо подключить провод на вход усилителя. Он необходим для подачи звукового сигнала.
По питанию же все предельно просто. Подключение следующее: три провода с блоков питания подключаются на контакты питания усилителя. Тут нет абсолютно ничего сложного, просто соблюдаем полярность. Хотя в данном случае нужно не перепутать только провод средней точки, а на плате усилителя присутствует диодный мост, который в таком случае будет работать просто как защита от переполюсовки и просто нужно по бокам среднего провода подключить провода плюса и минуса питания.


На выход усилителя подключаем тестовую колонку, думаю многим (в частности подписчикам и зрителям YouTube канала «Radio-Lab») уже знакомую.

Все подключено, проверяем еще раз, и теперь можно подключить в сеть 220В блоки питания.

Все включилось, реакция при прикосновении ко входу усилителя присутствует, что есть хорошо, и теперь осталось подать звуковой сигнал на вход усилителя. В качестве источника звукового сигнала будет служить смартфон.

При подключении смартфона, цепь по входу усилителя замыкается, и гул исчезает.

Далее автор включает тестовую музыку. Более подробно о процессе сборке и тестировании собранного устройства смотрите в оригинальном видеоролике автора:


На минимальном уровне громкости все отлично, посторонние шумы отсутствуют. Как вы могли убедиться, усилитель на микросхеме TDA7294 нормально работает и играет при питании от собранного нами двухполярого блока питания из двух одноплярных.

Если взглянуть на готовое устройство через тепловизор, то можно обнаружить места более сильного нагрева.

По аналогии двухполярный блок питания можно собрать из других импульсных или трансформаторных блоков питания и даже на аккумуляторах с подходящим напряжением.
Таким блоком питания можно запитать, например, тот же усилитель звука, лаборатоный блок питания или любое другое устройство, которому необходимо двухполярное питание. Такой двухполярный блок питания на импульсных блоках питания будет стабилизированным с минимальными просадками по напряжению под нагрузками и с защитой от короткого замыкания. Так же такой собранный блок питания может быть дешевле трансформатора. Но сильно дешевые блоки питания покупать не нужно, т.к. они могут иметь на выходе помехи и в итоге эти помехи вы будете слышать в колонках. А на сегодня это все. До новых встреч!
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

cxema.org — Двухполярный лабораторный блок питания

Напряжение бп 0-30 Вольт. Ток срабатывания защиты 0-10 А.

Сидел я как-то на работе и решил сделать что-нибудь полезное. Порыскав в интернете в поисках стоящих девайсов, наткнулся на довольно простой блок питания и решил взяться за него. 

Автор схемы leokri

Не знаю для чего нужна цепочка VD3,VD2, резистор на 3 кОма и электролит (видимо цепочка мягкого пуска), но с ними у меня блок питания не заработал и они были удалены из схемы. Емкость 20000 мкФ мной была заменена на 10000 мкФ, поскольку на нагрузку в 5 Ампер считаю что этого будет достаточно, да и вряд ли у меня будут такие токи в нагрузке блока питания.

Описания принципа работы схемы: При включении питания происходит заряд емкости конденсатора емкостью 20000 мкФ. Как только конденсатор зарядится, напряжение на выходе начнет расти до той поры, пока не сработает компаратор DA4 операционного усилителя LM324N. Как только напряжение на его 10 ноге превысит напряжение на 9 ножке, компаратор переключится и своим током через светодиод  начнет открывать транзистор VT3. Напряжение на эмиттере транзистора VT1 понизится до заданного значения. Если напряжение на 9 ножке станет больше, чем на 10 компаратор переключится обратно и напряжение на эмиттере VT1 начнет повышаться. Срабатывание компаратора определяется напряжением на 9 ножке, которое выставляется подстроечным резистором на 4,7 к Ома.

Аналогично работает канал токового регулирования, подстройка которого производится подстроечным резистором на 1 кОм.

Вместо двух силовых транзисторов в канал я сделал один, так как для 5 ампер одного КТ827А вполне будет достаточно.

В качестве линейных стабилизаторов напряжения использованы LM7808 и LM7815. Стабилизатор LM7815 запитывался непосредственно с электролитического конденсатора сразу после выпрямительного моста, а стабилизатор LM7808 запитывался с LM7815.

Операционный усилитель LM324N мне в магазине продали такой, что минимальный ток срабатывания на нем 40 мА, пришлось искать операционный усилитель данного типа с лазерной гравировкой, только после этого все стало регулироваться как положено. А второй операционный усилитель я достал из платы управления UPSа, корпус которого был использован.

В качестве шунта я использовал два керамических резистора на 0,1 Ома на 5Wвключенных параллельно друг другу.

Разработав монтажную плату и удостоверившись в работоспособности платы, собрал вторую такую же, чтобы обеспечить второй канал. Плата разрабатывалась в Visio.

Для визуального получения информации о напряжении и токе на блоке питания было решено сделать ампервольтметр на базе контроллера Atiny13Aи дисплея от сотового телефона Nokia 1200, поскольку у меня валялась целая куча этих телефонов.

Вольтметр+амперметр+ваттметр для блока питания

Также как и в случае с платой блока питания, мной были разработана плата для  ампервольтметров и плата под два дисплея, чтобы все влезало в переднюю панель корпуса UPSа.

автор данного девайса pavel-pervomaysk

A JonnS переделал прошивку под большие символы на дисплее

Силовой трансформатор был задействован от того же UPSa. Трансформатор был разобран и перемотан на напряжение 18 Вольт переменки. После выпрямительного моста и конденсатора у меня получилось 25 Вольт постоянки. Если кто будет повторять, то рекомендую намотать две дополнительные обмотки на напряжение 12 Вольт для питания ампервольтметров. 

Чтобы коллекторы не замыкались друг с другом была поставлена диэлектрическая пластина, в которой выпилено большое отверстие для транзисторов и на которую были закреплены радиаторы.

На одном из радиаторов закреплены также 2 кренки для запитки ампервольтметров.

Конечный результат получился такой. Второй дисплей инвертированный, поэтому видно хуже, но перепрошивать контроллер было уже лень.)))

Сзади были установлены предохранители для каждого канала в отдельности и оставлены все разъемы. С одного из задних разъемов я питаю свою самодельную паяльную станцию. Очень кстати удобно провода не болтаются по всему полу.

Для программирования контроллеров был собран самый простой, как мне кажется, программатор, который был найден на просторах интернета.

Порыскав на заводе в старом хламе, был найден нужный разъем и сделано такое чудо.

Прошивка без проблем была вшита в контроллер программой Uniprof. Вот пожалуй и все!

Все исходники можно скачать тут

Автор Роман Соболев

Лабораторный блок питания на основе трансформатора. Лабораторный блок питания своими руками

Изготовить лабораторный блок питания своими руками несложно, если имеются навыки обращения с паяльником и вы разбираетесь в электрических схемах. В зависимости от параметров источника вы можете с его помощью заряжать аккумуляторы, подключать практически любую бытовую аппаратуру, использовать для опытов и экспериментов при конструировании электронных средств. Главное при монтаже — использование проверенных схем и качество сборки. Чем надежнее корпус и соединения, тем удобнее работать с источником питания. Желательно наличие регулировок и приборов контроля выходного тока и напряжения.

Простейший самодельный блок питания

Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:

  1. Трансформатор с двумя обмотками (первичной — для подключения к сети, вторичной — для подключения потребителей).
  2. Один или четыре диода для выпрямления переменного тока.
  3. Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
  4. Соединительные провода.

В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале — во втором случае меньше пульсаций.

Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода — сила тока (чем больше толщина, тем больше ток).

Как сделать двухполярное питание?

Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.

Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число — это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника — нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.

Регулировка напряжения в однополярном источнике питания

Задача может показаться не очень простой, но сделать регулируемый блок питания можно путем сборки схемы из одного или двух полупроводниковых транзисторов. Но потребуется на выходе установить хотя бы вольтметр для контроля напряжения. Для этой цели можно использовать стрелочный индикатор с приемлемым диапазоном измерений. Можно приобрести дешевый цифровой мультиметр и адаптировать его под ваши нужды. Для этого потребуется разобрать его, установить при помощи пайки нужное положение переключателя (при интервале изменения напряжения 1-15 вольт требуется, чтобы прибор мог проводить замер напряжения до 20 вольт).

Регулируемый блок питания можно подключать к любому электрическому прибору. Сначала только вам потребуется выставить необходимое значение напряжения, чтобы не вывести из строя приборы. Изменение напряжения производится при помощи переменного резистора. Его конструкцию вы вправе выбрать самостоятельно. Это может быть даже ползункового типа устройство, главное — соблюдение номинального сопротивления. Чтобы блок питания было удобно использовать, можно установить переменный резистор, спаренный с выключателем. Это позволит избавиться от лишнего тумблера и облегчить отключение аппаратуры.

Регулировка напряжения в двухполярном источнике

Такая конструкция окажется посложнее, но и ее можно реализовать достаточно быстро при наличии всех необходимых элементов. Смастерить простой лабораторный блок питания, да еще двухполярный и с регулировкой напряжения, сможет не каждый. Схема усложняется тем, что требуется установка не только полупроводникового транзистора, работающего в режиме ключа, но и операционного усилителя, стабилитронов. При пайке полупроводников будьте аккуратны: старайтесь не сильно их нагревать, ведь диапазон допустимых температур у них крайне мал. При чрезмерном нагреве кристаллы германия и кремния разрушаются, в результате устройство перестает функционировать.

Когда делаете лабораторный блок питания своими руками, помните одну важную деталь: транзисторы требуется монтировать на алюминиевом радиаторе. Чем мощнее источник питания, тем больше площадь радиатора должна быть. Особое внимание уделяйте качеству пайки и проводам. Для маломощных устройств допускается использовать тонкие провода. Но если выходной ток большой, то необходимо применять провода с толстой изоляцией и большой площадью сечения. От надежности коммутации зависит ваша безопасность и удобство пользования устройством. Даже короткое замыкание во вторичной цепи может стать причиной возгорания, поэтому при изготовлении блока питания следует позаботиться о защите.

Регулировка напряжения в стиле ретро

Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения — 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской.

Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее:

  1. Определить, какое напряжение собирается одним витком обмотки. Для удобства намотайте 10 витков, включите трансформатор в сеть и проведите замер напряжения. Полученное значение разделите на 10.
  2. Проведите намотку вторичной обмотки, предварительно отключив трансформатор от сети. Если у вас получилось, что один виток собирает 0,5 В, то для получения 5 В вам требуется сделать отвод от 10-го витка. И по подобной схеме делаете отводы для остальных стандартных значений напряжений.

Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное — не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства.

Особенности импульсных источников питания

Такие схемы используются практически во всех современных приборах — в зарядных устройствах телефонов, в блоках питания компьютеров и телевизоров и др. Изготовить лабораторный блок питания, импульсный особенно, оказывается проблематично: слишком много нюансов требуется учитывать. Во-первых, относительно сложная схема и непростой принцип действия. Во-вторых, большая часть устройства работает под высоким напряжением, которое равно тому, которое протекает в сети. Посмотрите на основные узлы такого блока питания (на примере компьютерного):

  1. Сетевой блок выпрямления, предназначенный для преобразования переменного тока напряжением 220 вольт в постоянный.
  2. Инвертор, преобразующий постоянное напряжение в сигналы прямоугольной формы с высокой частотой. Сюда же входит и специальный трансформатор импульсного типа, который уменьшает величину напряжения, чтобы запитать компоненты ПК.
  3. Управление, отвечающее за правильную работу всех элементов блока питания.
  4. Усилительный каскад, предназначенный для усиления сигналов ШИМ-контроллера.
  5. Блок стабилизации и выпрямления выходного импульсного напряжения.

Подобные узлы и элементы присутствуют во всех импульсных источниках питания.

Блок питания от компьютера

Стоимость даже нового блока питания, который устанавливается в компьютерах, довольно низкая. Зато вы получаете готовую конструкцию, можно даже не делать шасси. Один недостаток — на выходе имеются только стандартные значения напряжения (12 и 5 вольт). Но для домашней лаборатории этого вполне достаточно. Пользуется популярностью лабораторный блок питания из ATX по той причине, что не нужно совершать большие переделки. А чем проще конструкция, тем лучше. Но есть и «болезни» у таких устройств, но излечить их можно достаточно просто.

Зачастую выходят из строя электролитические конденсаторы. Из них вытекает электролит, это можно увидеть даже невооруженным глазом: на печатной плате появляется слой этого раствора. Он гелеобразный или жидкий, со временем застывает и становится твердым. Чтобы отремонтировать лабораторный блок питания из БП компьютера, нужно установить новые электролитические конденсаторы. Вторая поломка, которая встречается намного реже, заключается в пробое одного или нескольких полупроводниковых диодов. Симптом — это выход из строя плавкого предохранителя, смонтированного на печатной плате. Для ремонта нужно прозвонить все диоды, установленные в мостовой схеме.

Способы защиты блоков питания

Простейший способ обезопасить себя — это установка плавких предохранителей. Использовать такой лабораторный блок питания с защитой можно, не боясь, что из-за короткого замыкания произойдет возгорание. Для реализации этого решения вам потребуется установить два плавких предохранителя в цепи питания сетевой обмотки. Их нужно брать на напряжение 220 вольт и ток порядка 5 ампер для маломощных приборов. На выходе источника питания следует установить плавкие предохранители с подходящими параметрами. Например, при защите выходной цепи с напряжением 12 вольт можно применить предохранители, используемые в автомобилях. Значение тока подбирается исходя из максимальной мощности потребителя.

Но на дворе — век высоких технологий, а делать защиту при помощи предохранителей с экономической точки зрения не очень выгодно. Приходится проводить замену элементов после каждого случайного задевания проводов питания. Как вариант — вместо обычных плавких вставок установить самовосстанавливающиеся предохранители. Но ресурс у них небольшой: могут верой и правдой прослужить несколько лет, а могут и через 30-50 отключений выйти из строя. Но блок питания лабораторный 5А, если он собран грамотно, функционирует правильно и не требует дополнительных устройств защиты. Элементы нельзя назвать надежными, зачастую бытовая техника приходит в негодность по причине поломки таких предохранителей. Намного эффективнее оказывается применение релейной схемы либо тиристорной. В качестве устройства аварийного отключения могут также использоваться симисторы.

Как сделать лицевую панель?

Большая часть работ — это проектирование корпуса, а не сборка электрической схемы. Придется вооружиться дрелью, напильниками, а при необходимости окрашивания еще и освоить малярное дело. Можно изготовить самодельный блок питания на основе корпуса от какого-нибудь устройства. Но если есть возможность приобрести листовой алюминий, то при желании вы сделаете красивое шасси, которое прослужит вам долгие годы. Для начала нарисуйте эскиз, в котором расположите все элементы конструкции. Особое внимание уделите проектированию лицевой панели. Ее можно сделать из тонкого алюминия, только изнутри провести усиление — прикрутить к алюминиевым уголкам, которые применяются для придания большей жесткости конструкции.

В лицевой панели обязательно следует предусмотреть отверстия для установки измерительных приборов, светодиодов (или ламп накаливания), клемм, соединенных с выходом блока питания, гнезда для установки плавких предохранителей (при выборе такого варианта защиты). Если вид лицевой панели не очень привлекательный, то ее нужно покрасить. Для этого обезжириваете и зачищаете до блеска всю поверхность. Перед началом окрашивания сделайте все необходимые отверстия. Нанесите 2-3 слоя грунтовки на прогретую поверхность, дайте высохнуть. Далее нанесите столько же слоев краски. В качестве финишного покрытия нужно применять лак. В итоге мощный лабораторный блок питания благодаря краске и получившемуся блеску будет выглядеть красиво и привлекательно, впишется в интерьер любой мастерской.

Как изготовить шасси для блока питания?

Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения.

Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку — пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный.

Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений.

Подведение итогов

В завершение стоит упомянуть, что все монтажные и испытательные работы проводятся при наличии напряжения, опасного для жизни. Поэтому нужно думать о себе, в комнате обязательно установите автоматические выключатели, спаренные с устройствами защитного отключения электроэнергии. Даже если вы коснетесь фазы, удар током не получите, так как сработает защита.

При проведении работ с импульсными блоками питания компьютеров соблюдайте технику безопасности. Электролитические конденсаторы, находящиеся в их конструкции, долгое время после отключения находятся под напряжением. По этой причине перед началом ремонта разрядите конденсаторы, соединив их выводы. Не пугайтесь только искры, она не причинит вреда ни вам, ни приборам.

Когда делаете лабораторный блок питания своими руками, обращайте внимание на все мелочи. Ведь для вас главное — это обеспечить стабильную, безопасную и удобную его работу. А достичь этого можно только в том случае, когда тщательно продуманы все мелочи, причем не только в электрической схеме, но и в корпусе устройства. Лишними приборы контроля в конструкции не будут, поэтому установите их, чтобы иметь представление о том, например, какой ток потребляет устройство, собранное вами в домашней лаборатории.


Лабораторный блок питания (БП) для радиолюбителя — прибор первой необходимости! Приходиться работать с разными приборами или их элементами. Соответственно существует широкий ассортимент потребителей энергии и у всех разные питающие напряжения. Ничего не остается, как приобрести уже готовый БП. Но прицениваясь в радиомагазинах, я понял что это не так уж дешево и решил, что для начала с меня хватит простого, недорогого источника питания. Так как я в этом деле, можно сказать, новичок, для начала обратился к литературе, изучил его принцип работы и хочу рассказать Вам что для этого нужно.

Схема простого лабораторного БП условно состоит из двух частей:
1) непосредственно сам БП (трансформатор, диодный мост и конденсатор) Это основная часть, именно от выбора параметров трансформатора зависит мощность всего БП.
2) небольшая схема регулятора напряжения (может быть на транзисторе или на стабилитроне).

Необходимые элементы:
— Трансформатор;
— Диодный мост;
— Стабилитрон __LM-317;
— Конденсаторы__C1 2200mkF, C2 0,1mkF, C3 1mkF;
— Резисторы _____R1 4.7 kOm (переменный), R2 200 Om;
— Вольтметр;
— Светодиод;
— Предохранитель;
— Клеммы;
— Радиатор.


Трансформатор у меня уже был (ТС-10-1), выбрать и тратить на это средства не пришлось.

Раз уже все элементы в сборе, приступим.

1й ЭТАП: Готовим плату.
(скачиваний: 1783)


2й ЭТАП: Впаиваем элементы соответственно схеме. Если у вас нет возможности «вытравить» плату, можете сделать «навесом».

3й ЭТАП: Подключаем плату к трансформатору, и наш БП готов.

Но теперь нужно сделать так, что бы было красиво и практично. Для этого я приобрел корпус и цифровой вольтметр.

Производим монтаж в корпус.


С помощью дрели и надфиля проделаны отверстия на передней панели. Вольтметр «сидит» на двух капельках суперклея.


Через несколько часов я получил желаемый результат.

Лабораторный блок питания

В этой статье я хотел бы рассказать о своем лабораторном БП, за основу которого была взята схема «Простой и доступный БП ». Вариантов этого устройства довольно много, авторы постоянно что-то добавляют, вносят изменения, на тот момент, когда я начал собирать, последней версией была v 13. Однако я немного изменил схему, в свою пользу, т.к. планировал использовать БП на большие токи и хотел добавить схему переключения обмоток трансформатора. Вот схема оригинал:

В своем варианте я убрал «Индикатор перегрузки» на DA 1. 3 и «Схему измерителя тока» на DA 1.4 и т.к. теперь два ОУ освободились, я решил на них же собрать «Схему переключения обмоток трансформатора», но об этом позже. Из-за этого была изменена схема стабилизации +12В для микросхемы ОУ, был использован отдельный источник питания со стабилизатором 7812. Также добавил силовых транзисторов, вместо одного 2N3055 я поставил пару 2SC5200. Максимальный отдаваемый ток теперь 5,6А. Вот мой вариант схемы:

В итоге мой вариант регулирует напряжение от 0 до 25В и может ограничивать максимальный ток на уровне от 0,01А до 5,6А. Для окончательной настройки схемы нужно установить максимальное напряжение резистором R13 и подобрать резисторы R14 и R16 для макс. и мин. тока соответственно.

Управление обмотками трансформатора

Бывают такие случаи,что нужно подключить к ЛБП какую-то низковольтную нагрузку, но с довольно большим током, например 5В при токе 5А. Тогда получается, что на силовых транзисторах будет падать несколько десятков вольт. К примеру после диодного моста и конденсатора в фильтре у нас 30В, а на выходе ЛБП всего 5В, значит на транзисторе будет падать 25В, и это при токе в 5А, получается, что бедный транзистор как-то должен превратить 125Вт просто в тепло. Одному мощному транзистору это не под силу, просто напросто произойдет тепловой пробой и он выйдет из строя, да и двум тяжко будет. На этой случай придумана схема, которая переключает обмотки трансформатора в зависимости от выходного напряжения ЛБП. К примеру, если нужно 5В, то зачем подавать на ЛБП 30В?

Ниже изображена схема переключения обмоток:

У меня же сам ЛБП и «схема переключения» собраны на одной плате. Переключение обмоток происходит при напряжениях на выходе 12В и 18В. Настройка схемы сводится к установке нужных напряжений переменными резисторами. Резистором R2 устанавливается деление выходного напряжения на 10, т.е. если на выходе ЛБП 25В, то на среднем выводе R2 (ползунке) должно быть 2,5В. Далее устанавливаем пороги срабатывания реле. Например у меня при 12В срабатывает первое реле, значит на 2 ножке микросхемы нужно установить 1,2В, соответственно при 18В на 6 ножке устанавливаем 1,8В. Позже можно будет заменить переменные резисторы R3 и R5 на два постоянных, спаяв их как делитель напряжения.

Охлаждение

В качестве радиаторов были собраны экспериментальные варианты из алюминиевых карнизов для штор, профили прикручиваются винтами к алюминиевой пластине (признаюсь, хотелось бы потолще) и естественно промазываются термопастой. Эффективность таких радиаторов довольна неплохая. В верхней крышке корпуса есть отверстия для охлаждения.

Ампервольтметры

В качестве измерителя напряжения и тока была использована довольно известная схема на специализированной мс ICL7107. Я собирал по этой схеме:

Отдельное питание

Для питания индикации и микросхем LM324 в ЛБП используется отдельный трансформатор и стабилизаторы +5В и +12В.

О корпусе

Основой для корпуса стал кусок стеклотекстолита, толщиной около 6-7 мм. На нем все и собиралось, далее были прикручены передняя панель со всеми органами управления и индикацией и задняя с вентиляторами и сетевым разьемом. И сверху П–образная крышка, обклеенная синей самоклейкой.

Трансформаторы я использовал ТН 60. У них довольно мощные обмотки по 6,3В. Ток до 7А. По весу данный аппарат получился около 10кг.

Диодные мосты серии КВРС, 35-амперные, также посаженые на общий радиатор с силовыми транзисторами.

Вот общий вид моего ЛБП:

Прикрепленные файлы.

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания (в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм ) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139 )
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)

В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.







Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.



Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.



Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.



Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.



Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.



Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь [email protected] с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.



В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.



Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.



Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.


Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).


Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Архив для статьи

Всем доброго времени суток! Сегодня я хочу представить вашему вниманию Лабораторный Блок Питания (ЛБП). Я думаю каждый начинающий радиолюбитель сталкивался с проблемой получения необходимого напряжения для той или иной своей самоделки, ведь каждое устройство требует разного напряжения. С такой проблемой столкнулся на днях и я. Надо было за питать самодельный усилитель, а необходимого напряжения под рукой не оказалось. Ну это не первая моя самоделка с которой у меня возникли проблемы. Вот я принялся за работу.

И так, нам понадобиться:
-Корпус (можно купить готовый, а можно как я взять его из компьютерного блока питания)
-Трансформатор с выходным напряжениям до 30В и током до 1,5 ампера (транс я взял по мощнее так как 1,5А для меня маловато)
-Простой набор радиодеталей:
-Диодный мост на 3А.
-Конденсатор электролитический 50В 2200мкф.
-Конденсатор керамический на 0.1мкф (чтобы сильнее сгладить пульсации).
-Микросхема LM317 (в моем случае 2 таких микросхемы).
-Резистор переменный на 4.7кОм.
-Резистор на 200ом 0.5Ват.
-Конденсатор керамический на 1мкф.
-Старый аналоговый тестер (я использовал в качестве вольтметра).
-Текстолит и хлор железа (для травления платы).
-Клеммы.
-Провода.
-Паяльные принадлежности.
Начинаем! Корпус я взял из компьютерного Блока Питания. Разбираем его и вытаскиваем внутренности и отпиливаем переднюю панель (ту с которой выходят провода) как на фото.

Отрезаем крепления платы с одной стороны и выгибаем их таким образом чтобы потом закрепить на них сделанную нами переднюю панель.

Выбираем место для трансформатора, сверлим в нижней части корпуса отверстия и закрепляем трансформатор.

Теперь приступим к собиранию платы для начала ее нужно вытравить. Переносим заранее распечатанную плату на текстолит.

И кидаем в хлорное на 10-20мин. После того как вытравили сверлим отверстия и лудим плату.

Впаиваем элементы согласно схеме.

Берем провода, собираем схему и пакуем все в корпус. ВАЖНО! (микросхему нужно установить на радиатор так как при больших нагрузках она сильно греется и может выйти из строя). Вот что получилось.

Теперь нужно получить вольтметр из старого тестера. Для этого просто отрезаем сам индикатор от пластикового корпуса.

от простейшего до мощного с легкой регулировкой

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Самостоятельная сборка БП

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Часть схемы простейшего БП без трансформатора

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Схема БП со стабилитроном

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Схема регулируемого БП

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для  устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Схема двухполярного блока питания

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Советы по оформлению корпуса

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Самодельный БП

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Оцените статью:

Двухполярный блок питания +/- 12В – Поделки для авто

Этот двухполярный блок питания имеет симметричный выход +12В и -12В с током до 100мА. Он был построен для питания 3-х операционных усилителей OPA627 моего аудио ЦАП-а на чипах PCM1792 и PCM1794.

Описание схемы

Схема имеет в первичной цепи только один предохранитель. Я не смог найти меньше, чем 50мА. Мы можем подключить шнур питания непосредственно к разъему X1 или с помощью выключателя питания на шасси. Ко вторичной обмотке трансформатора подключены два предохранителя по 100 мА и после них идет выпрямительный мост. Конденсаторы C1 и C2 для сглаживания пульсаций выпрямленного напряжения.

Далее идут положительный и отрицательный интегральные стабилизаторы напряжения 78L12 и 79L12 с конденсаторами развязки С3-С6, припаянных близко к выводам стабилизаторов. Далее идут небольшие конденсаторы фильтра, а также сигнальные светодиоды, подключенные через резисторы. Выходные напряжения выведены на 3-х контактный разъем. Для сигнализации наличия напряжения достаточен только один светодиод. Также можно использовать 2-х контактные разъемы для подключения светодиодов.

Монтаж

Сначала мы проверяем, все ли отверстия просверлены правильно. Припаиваем детали в порядке от малогабаритных к крупным. Начинаем с резисторов, небольших конденсаторов, светодиодов, регуляторов, предохранителей и выпрямителя. Далее – разъемы, трансформатор и большие конденсаторы. Будьте внимательны с полярностью электролитических конденсаторов, ориентацией диодов и стабилизаторов.

Печатная плата

Плата односторонняя. Это позволит сделать ее в любительских условиях. Я постарался спроектировать ее симметрично.

Если напряжение на больших конденсаторах не выше14.5В, то следует использовать трансформатор с вторичными обмотками 2 х 15В, чтобы получить 12В на выходе. При использовании светодиодов с током 2мА, следует увеличить номинал резисторов до 1.5кОм.

Правильно собранный блок не нуждается в наладке и работает при первом же включении.
Если требуется другое напряжение, например +/- 15В, то надо заменить трансформатор и стабилизаторы, а также обратить внимание на допустимое рабочее напряжение электролитических конденсаторов.

И ещё хочу отметить один момент, если у вас автомобиль RENAULT Duster и вы хотите немного его усовершенствовать или сделать так сказать тюнинг, то есть отличный ресурс, который поможет вам в этом плане. Заходите, смотрите и выбирайте, много чего интересного.

Лабораторный блок питания своими руками 0-30В 0-5А — Блоки питания (лабораторные) — Источники питания

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.+

Лабораторный блок питания своими руками 0-30В 0-5А

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.+

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.+

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.2

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.+

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay. +

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.+

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.+

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.+

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно!Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.+

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.+

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.+

Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор. +

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2(положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905устанавливается конденсатор С14.

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812должно быть 12 В.+

Шаг.
6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.+

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.+

 

 

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

 

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.+

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).+

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.+

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.+

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.+

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4D3 будет защищать вход блока от всплесков напряжений обратной полярности, т. к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания. +

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.+

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.+

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!+

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки. +

Ну и демонстрация работы лабораторного блока питания:+

 

 

Блок питания

Eurorack — самостоятельное биполярное модульное решение для питания синтезаторов

Это простой в сборке биполярный блок питания Eurorack, который выдает чистый, линейный источник биполярного напряжения +/- 12 В для синтезаторов Eurorack. Обратите внимание, что эта схема не обеспечивает 5В. Максимальный выходной ток составляет 1 ампер, разделенный между положительной и отрицательной нагрузками. Обратите внимание, что все максимальные нагрузки блоков питания являются «теоретическими», поэтому не пытайтесь максимально использовать любой блок питания. Можно добавить дополнительные радиаторы, чтобы приблизиться к теоретической максимальной мощности.

Эта схема / комплект имеет место на печатной плате для входного разъема постоянного тока для настенной бородавки, поэтому вам не нужно соединять настенную бородавку, а также евростойку, Molex (MOTM) и проводные выходы на печатной плате, чтобы обеспечить питание для работы не только как блок питания Eurorack, питающий несколько модулей, но и как стендовый источник питания для тестирования сборок MOTM и Eurorack DIY.

В комплект входит все, кроме настенной бородавки переменного тока (ее можно легко купить на Amazon или на месте) и дополнительного выходного разъема (евро или MOTM).Чаще всего пользователь подключает выход (после тестирования!) К плате шины для питания нескольких модулей Eurorack через контактные площадки выходных проводов, но есть места для 4-контактного усилителя (MOTM) и разъема Eurorack, если вы хотите использовать его в качестве настольного источника питания или если вы используете 4-контактный разъем для подачи питания на шинные платы.

Обратите внимание, что хотя в комплект входят регуляторы LM78 и LM79, выбранные для систем +/- 12 В, использование другой настенной бородавки и других регуляторов напряжения LM позволит использовать системы с напряжением +/- 9 или 15 В.

Вы должны поставить собственную настенную бородавку, которая выдает от 12 до 15 В переменного тока при токе от 500 до 1000 мА. Выход настенной бородавки ДОЛЖЕН быть AC. Эта стенная бородавка — хороший тому пример.

Это не должен быть первый комплект для сборки, поскольку он содержит в основном поляризованные детали, и неправильная установка может привести к возгоранию и / или разрушению других модулей Eurorack. Набор несложен в сборке и имеет небольшое количество деталей, однако на протяжении всего процесса сборки необходимо внимательно следить за тем, чтобы не было ошибок.

Схема очень проста: поступает двухполюсный сигнал питания переменного тока, который выпрямляется диодами на положительную и отрицательную мощность, а затем регулируется до 12 В с каждой стороны.Резисторы 2,4 кОм обеспечивают нагрузку, гарантирующую, что схема работает даже без модулей, потребляющих ток, а большие колпачки предназначены для очистки сигналов питания. Меньшие колпачки и дополнительные диоды нужны только для безопасности.

Я не несу ответственности за любой ущерб, причиненный в результате сборки, установки или использования этого источника питания. Создавайте и пользуйтесь на свой страх и риск!

Введение в биполярные блоки питания

По мере того, как вы начинаете заниматься более сложными и интересными компонентами синтезатора, вы можете столкнуться со схемами цепей, для работы которых требуется как положительный, так и отрицательный вход мощности.В качестве примера в модулях синтезатора Eurorack используются блоки питания с плюсовым и минусовым напряжением 12 В. В результате многие энтузиасты DIY-синтезатора также будут использовать + \ — 12В, чтобы они могли взаимодействовать со своими модульными установками Eurorack. Это называется биполярным источником питания и необходимо для схем, содержащих операционные усилители.

К сожалению, это может вызвать некоторую тревогу у новичков в области электроники или синтезатора. Когда я впервые столкнулся с этим, мне потребовалось гораздо больше времени, чем я хотел бы признаться, чтобы осознать это. Как напряжение могло быть отрицательным? Требуется ли мне специальное оборудование для питания этих цепей? Эта путаница была вызвана главным образом двумя заблуждениями, которых я придерживался в то время:

Напряжение — это мера силы, а не количества:
Когда мы думаем о напряжении, мы склонны думать о нем как о величине. Мы предполагаем, что напряжение батареи — это количество вольт, которое она содержит. Это закреплено тем, как мы относимся к напряжению; «Эта батарея на 9В». Однако это неверно.Напряжение, которое мы называем батареями, источниками питания и цепями, на самом деле представляет собой разницы напряжений между положительным и отрицательным полюсами. Если вы знакомы с аналогией с водой для описания электричества, вы, возможно, слышали, что напряжение — это давление, которое проталкивает электричество по цепи. Если бы у вас была труба, в которой вы оказывали одинаковое давление на оба конца, вода не проходила бы через нее. Однако если бы у вас была труба, в которой вы оказывали большее давление на воду на одном конце трубы, вода начала бы двигаться. Кроме того, сила, с которой вода движется по трубе, будет эквивалентна разнице давлений между двумя концами трубы. Точно так же с батареей 9 В напряжение на положительном полюсе на 9 В выше, чем напряжение на отрицательном полюсе, которое проталкивает электричество от положительного полюса через вашу цепь к отрицательному полюсу.

Подумайте, перевернули ли вы схему вверх дном. Это означало бы, что через цепь все еще движется та же сила 9В. Однако теперь он движется по цепи в обратном направлении.Теперь сила 9 В будет отбирать электричество из заземления и подталкивать его к шине питания. Это то, что называется отрицательным напряжением.

Земля — ​​это ориентир:
Когда я начал работать с электроникой, у меня не было твердого представления о том, что такое земля. Я привык использовать отрицательный полюс батареи в качестве заземления и начал предполагать, что это самый нижний полюс батареи или источника питания. Это понимание хорошо помогло мне с основными схемами, но стало проблемой, когда я начал работать с операционными усилителями и более сложными схемами. Правда в том, что земля не является неотъемлемой точкой источника питания и имеет больше общего с самой схемой, чем с вашим источником питания (при этом некоторые источники питания включают схему для закрепления или экранирования своего заземления, чтобы сделать его более стабильный). Земля в конечном итоге служит точкой отсчета, от которой измеряется напряжение цепи. С помощью некоторых базовых компонентов вы можете установить заземление где угодно между максимальным напряжением вашего источника питания и 0 В.

Рассмотрим схему выше.Самый интуитивный способ подойти к этому — сказать, что земля — ​​это точка C . В этом случае мы должны измерить разницу напряжений между B и C , чтобы определить, что напряжение в точке B составляет 9 В. Аналогичным образом, измеряя разность напряжений между A и C , вы можете определить, что напряжение в точке A составляет 18 В.

Однако, если вы подойдете к схеме иначе, вы увидите совсем другие результаты.Допустим, мы назначаем точку B заземлением в цепи. В этом случае, измерив напряжение A и B , можно определить, что напряжение в точке A равно 9 В. Затем мы измерим напряжение между C и B и обнаружим, что напряжение в точке C отрицательно 9 В. Это означает, что напряжение в точке C на 9 В меньше напряжения на земле (точка B ). Схема, показанная выше, представляет собой самый простой биполярный источник питания, который вы можете создать, и идеально подходит для ознакомления с этими типами схем.

Чтобы облегчить себе жизнь, я спаял этот небольшой биполярный блок питания вместе на куске перфорированной платы, который у меня был под рукой. Я добавил два больших конденсатора (330 мкФ электролитические), чтобы обеспечить некоторую развязку для простых схем. Кроме того, я разместил выводы на положительной, заземляющей и отрицательной дорожках, чтобы я мог легко подключить этот источник питания к моей макетной плате.

Если вы хотите избавиться от батарей, я настоятельно рекомендую изучить биполярный источник питания MFO Wall Wart Bipolar как вариант перехода на более постоянный источник напряжения (вместе с замечательной документацией, поставляемой со всеми проектами MFO).В качестве альтернативы, если у вас есть традиционный настольный источник питания, существует множество проектов, которые помогут вам создать биполярный источник питания с использованием монополярного выхода, который они обеспечивают.

Связанные

Регулируемый биполярный блок питания | Модульный синтезатор

Для питания модульной системы необходим биполярный источник питания, обеспечивающий напряжение от ± 9 В до ± 18 В в зависимости от используемой системы. Могут потребоваться дополнительные линии электропередач. Стандарт Eurorack предлагает симметричную линию ± 12 В и дополнительную линию + 5 В, что полезно для микроконтроллеров и некоторых других цифровых ИС. Можно использовать компьютерный блок питания для модульных систем, но блоки питания с ШИМ имеют довольно нестабильное напряжение в изменчивой среде. Из-за этого настройка и громкость синтезатора, питаемого от источника ШИМ, могут иметь нежелательные модуляции. В некоторых случаях его можно использовать в качестве художественного эффекта, но для получения полностью предсказуемого звука вам понадобится традиционный источник питания, в котором используется трансформатор.

Вот один такой блок питания — регулируемый биполярный блок питания. Он дает достаточно мощности практически для любой системы.

Напряжение регулируемого источника питания может быть точно установлено для получения идеальной симметрии для генераторов, стабильной настройки и низкого уровня шума. Этот источник питания состоит из мостового выпрямителя, фильтра и трех идентичных частей схемы восстановления напряжения, защиты и индикации. Положительная линия работает следующим образом: мост ( D1 , D3 ) выпрямляет переменный ток, затем он фильтруется двумя конденсаторами по 3300 мкФ ( C1 , C3 ) и керамическим дисковым конденсатором 100n. ( C5 ), которые подключены параллельно.Затем идет регулятор LM317, работающий как регулируемый регулятор. ( IC2 , R2 , R5 , D8 , C8 ) Нагрузочный резистор ( R8 ) и светодиод обеспечивают индикацию и минимальную необходимую нагрузку для регулировки. Сопротивление резистора должно быть от 2 до 10 кОм, поэтому лучше использовать не очень яркий светодиод.

Отрицательная линия работает так же, как и положительная, за исключением LM337, используемого в качестве регулятора.

Эта схема очень похожа на решение Кена Стоуна. Думаю, он тоже был вдохновлен таблицей данных LM317.

Версия 1.2

Схема
Вид компонентов
Макет печатной платы (зеркальное отображение)

BOM

Деталь Кол-во Значение Упаковка
C1, C2, C3, C4 4 3300u 35v E7,5-18
C5, C6 2 100n 35v Керамика C050-024X044
C7, C8, C9 3 10u 16v E2,5-5
D1-D13 13 1n4004 / 1n4002 DO41-10
IC1, IC2 2 LM317 317ТС
IC3 1 LM337 337ТС
J1, J2, J3, J4 4 Клеммная колодка 2pos 5MM

(или 2 шт. По 4 позиции)

ТЕРМИНАЛ_БЛОК_2P_5
JP1 1 Заголовок 2 × 8 контактов 2X08
LED1 1 3 мм красный светодиод LED3MM
LED2 1 3 мм желтый светодиод LED3MM
LED3 1 3 мм синий светодиод LED3MM
R1, R2, R3 3 Триммер 10K Bourns W3296 S64W
R4, R5, R6 3 1 кОм 1/4 Вт 1% 0207/10
R7 1 4K7 1/4 Вт 1% 0207/10
R8, R9 2 10K 1/4 Вт 1% 0207/10

Узел в сборе (старая версия) выглядит так:


Эта схема опубликована под лицензией Creative Commons «Attribution-NonCommercial-ShareAlike» 3. 0 лицензия.
Любое использование сверх этой лицензии должно быть согласовано с автором.

Печатная плата регулируемого биполярного блока питания

MFOS

Это продвинутый проект, и его следует реализовывать только в том случае, если у вас есть предыдущий опыт безопасной сборки источника питания с питанием от сети. Для этого источника питания требуется трансформатор с центральным ответвлением вторичной обмотки 24–26 В переменного тока, способный выдавать от 1 до 2 ампер. Я не показываю трансформатор, выключатель или предохранитель на схеме и не указываю трансформатор в списке деталей.Изготовитель несет ответственность за знание подходящего трансформатора, который отвечает требованиям электробезопасности в их регионе, и за правильное подключение его к печатной плате. Если вы хотите узнать больше о производстве источников питания от сети, проконсультируйтесь со своим опытным профессором в области электроники, учителем или другом.

***** Сетевое напряжение смертельно опасно. Всегда следите за тем, чтобы никто не соприкоснулся с ним при использовании в вашем проекте. *****

ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ НА ПРИМЕР! Трансформатор 24 В переменного тока с центральным ответвлением имеет 24 В переменного тока на двух внешних выводах вторичной обмотки и 12 В между любым внешним выводом вторичной обмотки и центральным выводом вторичной обмотки.

Когда вы выпрямляете переменное напряжение с помощью диода в крышке накопителя, вы обычно получаете 1,414 В переменного тока источника переменного тока. Поэтому при выборе трансформатора для вашего проекта имейте это в виду. Кроме того, если вы хотите получить 15 В постоянного тока от регулятора напряжения (или -15 В, если на то пошло), вам необходимо подать не менее 18 В постоянного тока (или -18 В постоянного тока), чтобы дать регулятору передышку, в которой он должен работать наилучшим образом. Так что, если в вашем проекте будет использоваться напряжение +/- 12 В, трансформатор 24 В переменного тока с ЦЕНТРАЛЬНЫМ РЕЖИМОМ подойдет. Однако, если вы планируете использовать +/- 15 В, вы захотите использовать как минимум трансформатор с центральным отводом на 25,6 В переменного тока и не выше, чем трансформатор с центральным отводом на 36 В переменного тока.

Это отличный биполярный источник питания для вашего проекта модульного синтезатора. Этот источник питания на базе LM317 / LM337 может похвастаться мощностью 1,5 А и регулируемым выходом, поэтому вы можете снабжать свои проекты любым напряжением от +/- 9 до +/- 15 В.

Как вы можете видеть ниже, вам потребуется теплоотвод регуляторов, если вы планируете потреблять максимальную мощность, которую может обеспечить этот блок.Я бы даже предложил радиаторы большего размера, чем показано. Я сделал их из алюминиевого L-образного канала, и если они станут слишком нагреваться, когда я добавлю модули, я увеличу их размер, чтобы рассеять больше тепла.

Также подойдут однооборотные триммеры, но многооборотные позволят вам установить напряжение с большей точностью.

Я перечисляю конденсаторы на 10 000 мкФ в списке деталей основных сглаживающих колпачков, и они обеспечат вам отличное сглаживание подачи, но если вы найдете колпачки, которые подходят для шага 0,4 дюйма, которые больше или меньше по емкости (от 3300 до 15 000 мкФ), они будет по-прежнему работать при более низких токах, поэтому не слишком зацикливайтесь на поисках электролита на 10000 мкФ.Я также указываю тантал для некоторых колпачков для достижения наилучших результатов, но алюминиевые электроды также будут работать. Чем больше тока вы планируете получить от источника, тем больше должны быть основные сглаживающие насадки.

Регулируемые блоки питания Очень важная часть любого аудиопроекта. Статья Gray Rollins

Лето 2010

Регулируемые блоки питания
Очень важная часть любого аудиопроекта.
Статья Грей Роллинза

Уровень сложности

P цвет поставки — нелюбимые пасынки искусства электроники DIY. Хотя аудиофилы вполне могут модифицировать существующие блоки питания. обычно путем добавления емкости идея создания мощности поставка с нуля — не самое интересное для большинства людей. Посмотри правде в глаза, никто проникает в аудиоэлектронику для создания источников питания. Они фантазируют о построении схемотехники усиления; блок питания неприятная обязанность, похожая на необходимость есть овощи перед тем, как есть десерт. Тем не менее, блоки питания имеют решающее значение, а выполненный один может испортить производительность в остальном прекрасной цепи.

Итак, с чего начать?
Самый очевидный параметр — это напряжение. Если блок питания не обеспечивает нужное напряжение, цепь не будет работают должным образом и даже могут полностью выйти из строя, если напряжение превышает рейтинги компонентов. Второе, что нужно иметь в виду, это текущие требования к схеме. Если в цепи не хватает текущего, будут всевозможные временные проблемы, которые убедить вас, что ваш контур одержим злыми демонами.Звуки достаточно просто. Если все, что вам нужно сделать, это обеспечить достаточный ток в определенное напряжение, тогда, конечно, это не может быть слишком сложно.

Может быть, а может и нет. Как всегда, дьявол в Детали. Напряжение, которое отлично себя ведет, когда вы сидите на скамейке тестирование схемы, может провисать, если все в вашем блоке запускают свой воздух кондиционирование в жаркий день. Ваши якобы безобидные линии электропередач могут принести во всевозможных радиочастотах, регуляторах освещенности и прочем вещи могут сбросить гудящий постоянный ток в ваш якобы чистый переменный ток.

Есть целые книги, посвященные проектированию источников питания, и вы можете провести недели, погружаясь во всевозможные загадочные вещи, которые не обязательно имеют отношение к аудиосистеме. К сожалению, книги Эта крышка аудио источника питания практически отсутствует. Обычно лучшее, что вы можете найти, — это одна глава в конце книги о усилители, и в этой главе рассматриваются только основные конденсаторные фильтры. питания, как в усилителях мощности.Давайте использовать это как отправной точкой, а затем постепенно улучшайте производительность.

Я предполагаю, что вы знакомы с основы. На трансформатор подается переменный ток, который напряжение вниз (или вверх, в случае ламповой передачи) до чего-то большего Соответствует потребностям схемы усиления. Это напряжение затем подается на диодный мост, который выпрямляет переменный ток, превращая его в импульсы постоянного тока.Затем импульсный постоянный ток подается на конденсатор, который сглаживает импульсы, теоретически оставляя чистый постоянный ток, который вы можете используйте для запуска вашей схемы. На схеме № 1 показан блок питания этого Сортировать.

Нажмите здесь, чтобы скачать схемы.

К сожалению для любителей электроники своими руками, даже эта базовая топология приводит к вопросам, на которые трудно ответить. Насколько большим должен быть трансформатор? Какие диоды использовать? Насколько хватит емкости? И множество других мелких деталей они возникают, когда вы действительно готовы начать покупать запчасти.

Начните с рассмотрения схемы, которую вы собираетесь построить. обратите внимание на требования к напряжению шины. В качестве примера воспользуемся Проект Difference Engine, опубликованный в прошлом году. Указанная схема шины + 20Vdc. Предполагая конденсаторный фильтр на источнике питания, переменный ток, требуемый от трансформатора, будет 0,7 * 20 В = 14 В переменного тока. Для тех, кто хочет быть разборчивым, 0,7 на самом деле составляет 0,707 (обратное квадратного корня из 2), но в реальном мире 0. 007 завален другие переменные, так что 0.7 вполне подойдет. Одна из переменных, которая должна быть учитывается падение напряжения на диодах, которое находится на порядка 0,6 В. Добавьте это, и вы будете искать двойной 14,6 В вторичный трансформатор. Не сводите себя с ума, пытаясь найти трансформатор с дробными напряжениями на вторичных обмотках просто круглый выключите его на 15В и будьте счастливы. Обратите внимание, что на практике многие трансформаторы на самом деле выдают немного более высокое напряжение, чем спецификации указывают.Они делают это специально. Когда трансформатор под нагрузкой напряжение имеет тенденцию немного проседать, поэтому перенапряжение компенсирует эти потери во вторичных обмотках.

Какой ток нужен трансформатору, чтобы доставлять? В круглых цифрах разностная машина что-то рисует порядка 100 мА на канал. Я бы посоветовал купить трансформатор оценивается как минимум в два раза больше, а лучше в три раза. Больше не будет обидно, и любопытный факт, который бесконечно раздражает педантичных людей, что слишком большой трансформатор может улучшить звук.Почему? Поскольку вторичная обмотка с более высоким током намотана проводом большего сечения, что, в свою очередь, снижает сопротивление вторичной обмотки постоянному току, что снижает сопротивление относительно земли на небольшую величину, что делает источник питания лучший источник напряжения. Это одна из тех вещей, которых нет в учебников, потому что это неприменимо, если вы разрабатываете что-то вроде микроволновая печь. Цены на трансформаторы быстро растут, поэтому может не стоить дополнительные расходы для вас.Это просто уловка, которую нужно держать в секрете разум.

После трансформатора идет диодный мост. В Теоретически можно обойтись одним диодом, но для аудио это будет делать вещи излишне трудными, поэтому мы предположим, что использование мост. Диодные мосты доступны в отдельных упаковках, но они различаются широко по характеристикам, и было бы утомительно пытаться охватить все перестановки здесь. Это не должно помешать вам использовать его, если вы хотеть; просто чтобы это не превратилось в книгу.Если вы построите мост с использованием дискретных частей, выбор по умолчанию — серия 1N400x диоды, где x — это цифра от 1 до 7, показывающая, какое напряжение диод выдерживает. Учитывая, что нет значительных затрат разница между 1N4001 и 1N4007, тратите деньги и идите с 1N4007 с рейтингом 1000 PIV. PIV расшифровывается как Peak Inverse Volts мера того, какое напряжение может удерживать деталь, когда напряжение пытается течь «в обратном направлении».»Очевидно, что для относительно низкой цепь напряжения, как у Difference Engine, 1000 вольт — это перебор, но если нет штрафа, почему бы и нет? Все диоды 1N400x рассчитаны на 1A, что позволяет избежать вопросов о текущей емкости Difference Engineindeed почти для всех схем предусилителя. Тебе следует хотите изучить более производительную часть, я бы предложил изучить диоды быстрого / мягкого восстановления. Диоды включаются и выключаются в зависимости от того, они проводят или нет, а быстрые / мягкие диоды переключаются больше изящнее, чем обычный сорт.Как и следовало ожидать, они также стоят дороже, но повышение цены не так уж и плохо.

Следующий пункт повестки дня — емкость. Это другая область, где звуковые схемы и ответы учебников расходятся. если ты почитайте об источниках питания, вы быстро найдете формулы, которые скажут вам какую емкость использовать в зависимости от того, сколько пульсаций источника питания вы готовы терпеть. Но источник питания — это нечто большее, чем просто отфильтровывая импульсы постоянного тока, исходящие от диодов.Аудио сигнал обычно накладывается на напряжение шины и нужно место, чтобы он не модулировал рельс и не создавал проблем в активная схема. Куда ему нужно идти, так это на землю, и его путь через конденсаторы блока питания. Чем больше конденсатор, тем ниже импеданс, который видит аудиосигнал, и тем легче он находит свой путь К земле, приземляться. Педанты также регулярно упускают из виду, что больше Емкость означает более низкую точку спада, что означает, что более низкая частоты шунтируются на землю.Итак, в то время как тысяча микрофарад емкость может удовлетворить ваши требования к пульсации в соответствии с формулы, использование большего количества будет звучать лучше. Имея это в виду, давайте бросим 4700 мкФ, может быть, 10 000 мкФ. Если чем больше, тем лучше, почему бы не поставить фарад в схема? К сожалению, с диоды. При нормальной работе они включаются, работают в течение время, а затем снова выключите. При прочих равных условиях чем короче период времени, который они проводят, тем больше тока должно течь в это время, и чем ближе они подходят к своему току и теплу рейтинги рассеивания. Большая емкость сокращает количество время, которое диод проводит, поэтому существуют практические ограничения на емкость можно поставить в цепь. Всем этим можно управлять, конечно, но вы доходите до того, что идете на компромисс, не планировал делать.

На схемах 2 и 3 показаны фильтры PI (они называется так, потому что фильтр похож на греческую букву PI) добавлен к исходному источнику питания.Это простой способ улучшить производительность простого емкостного фильтра, но он все еще не решает колебания сетевого напряжения, и он очень быстро становится громоздким. Еще хуже, индукторы, особенно такие, которые могут обрабатывать более нескольких мА тока, встречаются редко и дорого.

Активное регулирование позволяет обойти некоторые из ограничения конструкции пассивного источника питания. За доллар или два вы можете иметь активное регулирование, которое легко сравнимо с производительностью многих увеличенный пассивный источник питания и зафиксируйте напряжение шины на известном значении в придачу чего пассивные блоки питания не могут.

Самый простой способ — купить чип-регулятор, например LM317 / LM339. Они недороги, просты в использовании и требуют минимум внешние части. На схеме № 4 показан стандартный чип-регулятор. Схема сравнения со схемами пассивного фильтра. Предполагать, тем не менее, вы бы предпочли свернуть свою собственную. Или возможно у вас есть напряжение или текущие требования, которые выходят за рамки того, что вы можете получить от чипа.

регулятор А может быть как простой, в качестве опорного напряжения и пропускное устройство.На схеме № 5 показаны проходные устройства MOSFET. ссылаются на стабилитроны для установки напряжения. Стабилитроны демонстрируют стабильное падение напряжения, идеально подходящее для наших целей. Вы также можете использовать сложите их последовательно, и напряжения отдельных диодов складываются красиво линейным образом. В этом примере я последовательно использовал два стабилитрона, смещен резистором. Если, например, вы должны были последовательно подключить два 12В Стабилитроны, вы получите напряжение на шине порядка 20 В. для разностной машины.Да, 12В + 12В = 24В, что на первый взгляд кажется высоким, но Vgs устройства прохода MOSFET (~ 3-4 В) снизит это обратно к чему-то очень близкому к 20V. Если вы хотели заменить биполярные проходные устройства для полевых МОП-транзисторов, вы бы стреляли для справки напряжение около 21 В или около того, избыток компенсируется Vbe (около 0,6 В), что снова дает шину 20 В.

На схеме № 6 показана модификация № 5. В данном случае опорный стабилитрон (на этот раз показан только один диод, но не стесняйтесь использовать два или более, если хотите) смещен током JFET источник.Источник тока — это отличный способ обеспечить амортизатор. что предотвращает изменение входящего напряжения от изменения смещения ток через стабилитрон. Не стесняйтесь экспериментировать с этими схемами. Просмотрите свой ящик для мусора и замените его свободно. Если у вас нет JFET, создайте вместо него биполярный источник тока. если ты нет IRF610, используйте Zetex MOSFET или биполярный проход устройство. К пропускному устройству всего три требования:

1) Он должен принимать напряжение от конденсатор фильтра.Используйте деталь, рассчитанную как минимум на 50% больше, чем Напряжение на шине постоянного тока, поступающее от источника питания.

2) Он должен быть в состоянии передать любую разумную сумму тока, который может потребоваться цепи. Я бы предложил использовать деталь рассчитан как минимум на удвоенный ожидаемый ток.

3) Умножьте напряжение и ток вместе, чтобы получить рассеиваемая мощность. Используйте деталь, рассчитанную как минимум вдвое больше фигура.

Хотя может сойти с рук ТО-92 футляр Пройдите через устройства для небольших цепей, вы обнаружите, что корпуса TO-220 обеспечивают более широкий запас прочности. Регулярно запускаю устройства ТО-220 мощностью до 0,5Вт рассеивание без радиатора. Если вы собираетесь запустить их намного горячее чем это, используйте радиатор.

Следующий шаг — снабдить регулятор мозг, под видом дифференциальной схемы. Как только регулятор схема достаточно умна, чтобы сравнить выходное напряжение с Опорное напряжение и генерировать сигнал об ошибке для коррекции, он открывает целые миры возможностей.

Схема номер 7 представляет собой полностью развернутую дискретную стабилизатор напряжения, который я построил для выходного каскада усилителя мощности.я сделал две небольшие модификации для настоящего использования: я уменьшил пропускные устройства до IRF610 / IRF9610, и теперь они получают питание от той же шины, что и сам регулятор. В построенном виде используется схема IRFP140 / IRFP9140. MOSFET и они регулируют отдельные рельсы. Есть множество способов эту схему можно изменить, чтобы она соответствовала доступным деталям, и я предлагаю некоторые возможности по мере продвижения.

Начиная слева, D1 (D2 в отрицательном напряжении регулятор) является функцией безопасности.Сбрасывает остаточное напряжение на C1 (C2) когда цепь отключается. C1 (C2) действует как функция медленного пуска и также помогает заглушить стабилитрон. Помните, что стабилитроны имеют довольно низкое сопротивление, поэтому, если вы собираетесь использовать колпачок для уменьшения шума, сделайте он довольно большой.

Q1 (Q2) — источник тока, очень похожий на Номер схемы 6. Его выход установлен R1 (R4) и должен быть выбран. согласно индивидуальному JFET. Вместо этого вы можете использовать горшок, чтобы упрощать вещи.Это позволит точно настроить источник тока в situ . R2 (R3) предназначен для уменьшения рассеивания тепла в JFET. Стабилитроны на 9,1 В. Нет причин, по которым ты не мог используйте другое напряжение, если хотите.

Q7 (Q8) — еще один источник тока, используемый для смещения дифференциальная схема. Ток смещения устанавливается R7 (R8). Q3 и Q11 (Q4 и Q12) составляют сам дифференциал — мозги, которые сравнивают опорное напряжение и выходное напряжение.Если выходное напряжение слишком высокий, дифференциал дает команду проходному устройству опустить Напряжение. Если он слишком низкий, он поднимает его. Q5 и Q9 (Q6 и Q10) составляют текущее зеркало. Текущее зеркало увеличивает усиление дифференциал, что делает его более чувствительным к изменениям напряжения. В дифференциалы и текущие зеркала — отличное место для замены деталей. Хорошими кандидатами будут малошумящие транзисторы BC550 / BC560.

Q13 (Q14) — проходное устройство.В цепи я предназначен для этого, он используется с радиатором. R13 и R14, а также V1 (R15, R16 и V2) устанавливает напряжение, воспринимаемое дифференциалом. Этот позволяет немного изменить фактическое выходное напряжение. Постоянные резисторы можно использовать здесь. Это простое соотношение выходного напряжения, выбранное так что дифференциал видит напряжение, эквивалентное стабилитрону ссылка, когда на выходе правильное значение. Другой вариант — быть использовать стабилитрон, который дает точное напряжение на шине, которое вы хотите.Это бы позволяют полностью пропустить строку резистора, подавая выход напряжение прямо в дифференциал.

Много возможны более сложные схемы и множество вариантов вы можете строить, используя только представленные здесь элементы. Возможно, некоторые в другой раз я рассмотрю альтернативы, такие как множители емкости и действующие регуляторы, но так пишут книги об этом люди начинают и хотят добавить «еще кое-что» и прежде чем вы это узнаете, на полке лежит двенадцатифунтовый фолиант, никогда не читает просто потому, что это слишком громоздко.Если повезет, я предложил достаточно идей, чтобы ваши творческие соки текли, подавляющий. Блоки питания могут быть и в порядке почти столь же интересны, как и схемы, для питания которых они предназначены. Это просто вопрос наличия идей для работы.

Принадлежности для скамейки

Принадлежности для скамейки
Elliott Sound Products Настольные источники питания

Настольные источники питания — купить или построить?
Авторские права © Ноябрь 2019 г., Род Эллиотт Вершина
Указатель статей
Главный указатель

Содержание
Введение

Стендовый комплект — одно из самых полезных испытательных устройств, которое у вас когда-либо будет.Одно дело создать один, предназначенный для тестирования предусилителей и другого низковольтного, слаботочного оборудования, а другое дело — сделать такой, который подходит для тестирования усилителей мощности. На самом деле это настолько сложно сделать правильно, что подобные покойному Бобу Пизу рекомендовали своим коллегам-инженерам и другим людям даже не пытаться. Его совет заключался в том, чтобы купить его у надежного поставщика и не подвергать себя горю, тратя много часов на его сборку, только для того, чтобы он взорвал многие дорогие детали, использованные при его создании. [1] .

Во многих отношениях трудно не согласиться, и вдвойне, если вы хотите получить напряжение более 20 В на пару ампер. В наши дни проблема удваивается, потому что, чтобы быть действительно полезным, источник питания должен иметь двойное отслеживание, как с положительным, так и с отрицательным питанием, с выходным напряжением, которое может изменяться от нуля до 25 В или около того. В идеале он должен быть способен выдавать не менее 3 А и иметь ограничение по току, чтобы вы не отключили питание при первом коротком замыкании выходных выводов (и что будет !).

По сути, на самом деле нет такой большой разницы между источником питания и усилителем мощности , за исключением того, что усилитель мощности должен обеспечивать и потреблять ток, в то время как источник питания должен только подавать ток на нагрузку. Однако там, где усилитель мощности будет время от времени подвергаться довольно сильному рассеянию, источник питания должен обеспечивать выход, возможно, 3-5 А при коротком замыкании и не выходить из строя. Это намного сложнее, чем кажется.

Рассмотрим источник питания, который может обеспечить 40 В при 5 А, но настроен на выходное напряжение, возможно, 1-2 В и ток 5 А.Внутреннее напряжение будет около 50 В, поэтому на транзисторах регулятора почти 50 В, ток 5 А, что приведет к рассеянию 250 Вт. Это может продолжаться часами или всего несколько минут, но это не значит, что вам нужно выделить всего несколько минут, потому что однажды вам, , понадобится 1-2 В при 5 А в течение часа или более.

Никто не знает точно, что они будут делать с приличным источником питания, пока он у них не будет, и в конечном итоге он будет использоваться для питания усилителей во время тестирования, зарядки аккумуляторов, измерения очень низких сопротивлений или любого количества других возможностей. Я знаю это, потому что так поступаю со своим (который я построил много-много лет назад, но он обеспечивает только ± 25 В при токе до 2,5 А). Я потерял счет, сколько раз цепь тепловой перегрузки отключала мою нагрузку, даже с вентилятором для принудительного воздушного охлаждения.

Принято считать, что настольные поставки должны регулироваться, и в этом проблема. Регулирование усложняет ситуацию и может создать проблемы со стабильностью, которые варьируются от просто неприятных до неразрешимых. Никому не нужен источник питания, который колеблется, и никому не нужен источник питания, который убивает тестируемое устройство (или заряжает, измеряет и т. Д.)). В действительности регулирование (или, по крайней мере, «идеальное» регулирование) не является существенным. В большинстве усилителей мощности не используются регулируемые источники питания, как и во многих других сильноточных нагрузках. У вас должна быть возможность регулировать напряжение, и оно должно быть достаточно стабильным, но для большинства приложений не требуется обеспечение того, чтобы выходное напряжение изменялось только на несколько милливольт под нагрузкой. Возможно, вы почувствуете себя лучше, если у источника питания будет идеальная регулировка, но ваши схемы в основном не заботятся.

Ограничение тока — другое дело.В идеале при первом включении ваш последний проект должен быть защищен от неисправности. Как и регулирование напряжения, функция ограничения тока должна быть регулируемой, но редко требуется чрезвычайно точное регулирование тока . Если мы согласимся с тем, что очень точное регулирование напряжения или тока не является существенным, это упростит конструкцию, значительно упростит сборку и работу с минимумом хлопот.

Мало кто захочет возиться целую вечность, пытаясь усовершенствовать регулятор, который хочет колебаться, и этот будет тем, что , если «совершенство» является целью.Если это то, что вам действительно нужно, то я должен полностью согласиться с Бобом Пизом — покупайте коммерческие принадлежности у уважаемого производителя. Однако вы, вероятно, получите серьезные деньги, если вам понадобится двойное отслеживание, высокое напряжение (более 30 В) и большой ток (5 А или более).

Обычно полезный источник питания будет иметь два выхода, от 0 до 25 В или около того, с регулируемым ограничением тока. В идеале это позволит вам использовать два выхода последовательно, что позволяет использовать одну переменную питания от 0 до 50 В.Выход 5А полезен, но не важен. Если вы используете его для тестирования аудиооборудования DIY (предусилители, активные кроссоверы, усилители мощности и т. Д.), Вы можете убедиться, что DUT (тестируемое устройство) работает должным образом, не имеет коротких замыканий или других серьезных неисправностей, после чего может быть надежно подключенным к предполагаемому источнику питания. Редко бывает, что любая грамотная конструкция выходит из строя с «настоящим» источником питания, если он был протестирован при более низком напряжении, используя источник с ограничением тока, который защищает от повреждений в случае возникновения проблемы.

Расширение «базового» источника питания называется SMU (источник-измеритель). Обычно это высокоточные источники питания с микропроцессорным управлением, которые могут подавать ток стока и любой полярности. Большинство подает на нагрузку только ток источника, но SMU также можно использовать в качестве «активной нагрузки», как правило, для источников питания или другого тестируемого оборудования. Они также известны как «4-квадрантные» источники питания, что означает, что они предназначены для источника или стока тока любой полярности.К счастью, это не является требованием для базового тестирования и упоминается только в интересах полноты. Я не предлагаю рассматривать эти материалы в этой статье.

Обратите внимание, что это , а не строительный товар. Хотя на нем показаны схемы, они предназначены в первую очередь для демонстрационных целей, и нет гарантии, что они будут работать должным образом, как показано. Хотя они были смоделированы, это только указывает на то, что лежащие в их основе принципы верны, но не означает что схема будет работать так, как ожидалось в «реальной жизни».Хотя описанные схемы выглядят так, как будто они будут работать нормально, это не было подтверждено сборкой и тестированием. их!

Не случайно проектов настольных блоков питания своими руками не так уж и много. Большинство людей довольно быстро осознают, что это очень дорогое мероприятие и что получение полностью работающего и надежного источника питания, который сделает именно то, что вам нужно, — нетривиальная задача. Схемы, показанные здесь, предназначены для вдохновения и предназначены в основном для того, чтобы дать вам представление о задействованных сложностях — даже для кажущихся простыми схем.


1 Регулировка напряжения

Первые регулируемые источники питания используются клапаны (вакуумные трубки), с регулятором газоразрядной в качестве опорного напряжения. Как и ожидалось, они были не очень хороши из-за ограниченного доступного усиления. Несколько основных примеров показаны ниже, причем версия операционного усилителя является довольно хорошим аналогом современных микросхем 3-контактных стабилизаторов. Все они страдают от проблемы, которая делает их (как правило) непригодными для настольного питания — они не могут снизить выходное напряжение до нуля вольт.

При тестировании того, что только что было построено, важно иметь возможность начинать с очень низкого (предпочтительно нулевого) напряжения и контролировать ток по мере увеличения напряжения. Если вы видите, что ток быстро нарастает при напряжении питания всего в вольт или около того, вы, , знаете, что есть проблема. Включение ограничения тока (рассмотрено немного позже) означает, что ток короткого замыкания можно поддерживать на уровне, при котором он вряд ли вызовет повреждение.


Рисунок 1.1 — Базовая топология стабилизатора напряжения

Устройство последовательного прохода — V1 / Q1, а управляющий элемент — V2, Q2 или U1 (вентиль, транзистор и операционный усилитель соответственно).Опорным напряжением для схемы клапана является газоразрядная трубка, и она обычно имеет напряжение около 90 вольт (в зависимости от устройства доступны напряжения от 70 до 150 В [5] ). В схеме транзистора используется стабилитрон, а схема операционного усилителя показана с внешним опорным сигналом. В каждом случае используется обратная связь, а VR1 позволяет установить желаемое значение напряжения. В каждом случае это базовые версии регулятора, и на практике существует множество вариаций.

Обратная связь устроена таким образом, что если выходное напряжение падает (например, из-за подключенной нагрузки), управляющее устройство гарантирует, что элемент последовательного прохода может пропускать дополнительный ток, необходимый для подачи на нагрузку желаемого напряжения. Способность любой из цепей поддерживать желаемое напряжение называется «регулировкой» и выражается в процентах. Например, если напряжение падает на 1% при подключении нагрузки, это является спецификацией для регулятора. Более высокий коэффициент усиления в устройствах управления и последовательного прохода означает лучшее регулирование.

В версии с операционным усилителем есть дополнительный транзистор и резистор. «Rs» — это резистор считывания тока, а Q2 — транзистор регулятора тока . Если ток таков, что напряжение на Rs больше 0,6 В, Q2 включается и «крадет» базовый ток у Q1 (обеспечивается через R1). Это самая основная форма текущего регулирования, и она удивительно хорошо работает на практике. Если Rs составляет 1 Ом, выходной ток ограничивается до 650 мА, если выход закорочен (или если нагрузка пытается потреблять более 600 мА).Несмотря на то, что эта схема является базовой, на протяжении многих лет она использовалась в бесчисленных конструкциях дискретных регуляторов.

Как и ожидалось, версия операционного усилителя будет иметь гораздо лучшее регулирование, чем две другие, потому что она имеет чрезвычайно высокое усиление. Большинство современных 3-терминальные регулятора ИС используют аналогичный (но оптимизированный) топологию, а опорное напряжение, как правило, «запрещенной зоны» расположение с очень высокой стабильностью. Для регулирования предусмотрены два значения — «линия» и «нагрузка». Регулировка линии — это мера того, насколько изменяется выходной сигнал при изменении входного напряжения, а регулировка нагрузки — это мера изменения выходного напряжения при изменении тока нагрузки. Если вы посмотрите на лист данных любого 3-контактного регулятора, эта информация предоставляется, но не всегда в процентах — иногда она отображается как ΔV (изменение напряжения), обычно в милливольтах. Большинство из них лучше 1% (линия и нагрузка).

Существует множество факторов, которые необходимо учитывать в любой схеме регулятора напряжения. Одна из самых сложных задач — это стабильность, чтобы гарантировать, что схема имеет быстрое время реакции, но без колебаний. Использование операционного усилителя, управляющего усилителем тока (обычно эмиттерным повторителем), обычно будет стабильным, но если в контуре обратной связи используются какие-либо дополнительные схемы усиления, он почти наверняка будет колебаться.Это означает, что необходимо добавить дополнительные компоненты (обычно конденсаторы малой емкости), и их оптимальное расположение обычно не сразу видно. Примеры можно увидеть на Рисунке 6.1 (однополярный источник питания, операционный усилитель с выходом эмиттерного повторителя) и Рисунке 7. 1 (двойное питание), где за операционным усилителем следует каскад усиления. Учитывая, что большинство «обычных» операционных усилителей ограничены напряжением питания менее 36 В, это ограничивает доступное выходное напряжение, когда каскад усиления не включен.

В некоторых отношениях источник питания мало чем отличается от усилителя мощности звука.Единственное реальное отличие состоит в том, что усилители могут генерировать и поглощать (поглощать) ток, тогда как блок питания должен только подавать ток на нагрузку. В самом деле, вполне работоспособная схема регулятора может быть построена с использованием обычных строительных блоков усилителя мощности. Однако не ожидается, что усилители мощности будут управлять емкостными нагрузками, а регуляторы напряжения должны быть способны управлять любой нагрузкой, будь то емкостная, резистивная или индуктивная. Конечно, блок питания также должен защищать себя от повреждений (закороченные выходы или нагрузки с очень низким импедансом), и он должен иметь возможность передавать свой номинальный ток на любой нагрузке при при любом напряжении . Рассеяние на последовательном транзисторе может быть чрезмерным, но питание должно продолжаться. По сравнению с блоками питания усилители мощности просты!


2 подхода для скамейки

Один из способов сделать очень надежный источник питания — использовать источник питания на основе мощного трансформатора и регулировать напряжение с помощью вариатора (см. Рисунок 4.1). Это не регулируется, но это самый простой способ создать источник питания высокой мощности, который можно использовать практически с любым усилителем (или другими проектами, включая источники питания ).Нет защиты от перегрузки по току (кроме предохранителей), но у меня есть пара источников питания, которые используют именно эту конфигурацию. Когда мне нужно много напряжения и тока, эти источники неоценимы. Однако сначала необходимо убедиться, что тестируемый блок не имеет внутренней неисправности. В идеале для этого требуется ограничение тока. Хотя «предохранительные» резисторы могут использоваться последовательно с положительными и отрицательными источниками питания для начальных испытаний, это неудобно.

Большинство (практически все) из моих первоначальных тестов проводились с использованием источника двойного слежения от нуля до ± 25 В, 2 А, который я спроектировал и построил около 35 лет назад (на момент написания, и он все еще работает).Он имеет ограничение по току примерно до 100 мА и вентилятор для радиатора, а также функцию отключения при перегреве. Они необходимы, потому что действительно используется для «странных» приложений, и да, выходы были закорочены много раз — обычно случайно, но иногда из-за неисправности проверяемого элемента. Такая простая вещь, как небольшой припойный мостик, может обернуться гибелью для источника питания, который не может защитить себя.

Проблема рассеяния кратко обсуждалась выше, и это ахиллесова пята (так сказать) всех сильноточных линейных источников питания.Ответ (конечно) заключается в использовании конструкции с переключаемым режимом, но это так далеко выходит за рамки обычного DIY, что не заслуживает рассмотрения. Каждая проблема, с которой сталкивается линейный регулятор, сводится к мощности «n th » для импульсного источника питания. Те, которые вы можете купить, претерпели значительные изменения, и в них используются специализированные детали, которые не подходят для самостоятельной работы. Если вы не способны разрабатывать и строить трансформаторы с переключаемым режимом, об этом вообще не может быть и речи.

Если у вас есть линейный источник питания, который может обеспечить (скажем) 50 В при 5 А, в лучшем случае рассеивание при полном токе с закороченным (или низким напряжением) выходом составляет 250 Вт, но на самом деле это может быть намного больше.Если вы думаете, что это довольно просто (в конце концов, существуют транзисторы с мощностью рассеивания 250 Вт), подумайте еще раз. SOA (безопасная рабочая зона) и тепловые ограничения вступают в игру очень быстро, и транзистор с (например) 56 В на нем может быть рассчитан только на 3 А или около того, исходя из температуры корпуса 25 ° C. В конечном итоге вам необходимо обеспечить достаточно транзисторов, чтобы иметь возможность обрабатывать , по крайней мере, на , вдвое больше рассеиваемой мощности, а желательно больше. Я предлагаю использовать как минимум 5 или более 125 Вт транзисторов, и хотя это звучит как излишний, в большинстве случаев достаточно — есть некоторый запас, но не очень! Более низкое напряжение снижает напряжение, и я знаю из многолетнего опыта, что ± 25 В обычно достаточно для большинства тестов.

При более высоких напряжениях, если вы использовали 5-кратный TIP35C (NPN, 125 Вт при 25 ° C), каждый из них может передавать 1A с 50 В через транзистор (50 Вт), , но только при 25 ° C. При повышенных температурах он снижается, снижаясь на 2 Вт / ° C выше 25 °. При температуре корпуса 75 ° C полное рассеивание ограничивается всего 25 Вт на каждый транзистор. Это исключает их возможность конкуренции с помощью простой схемы, поскольку рассеивание будет превышать максимально допустимое при нагревании радиатора. Конечно, вы можете использовать гораздо более прочные транзисторы, но они будут соразмерно дороже.TIP35C (125 Вт) стоит около 3 австралийских долларов против более 5 австралийских долларов для MJL3281 (200 Вт) и более 6 австралийских долларов для MJL21194 (200 Вт).

Все доступные устройства имеют одни и те же ограничения — SOA и температура всегда означают, что вы можете получить гораздо меньше энергии от любого транзистора, чем вы ожидаете. Принудительное воздушное охлаждение является обязательным, если у вас нет доступа к бесконечному радиатору, что, по моему опыту, трудно найти. Даже использование изолирующих шайб может стать непрактичным, потому что дополнительное тепловое сопротивление означает, что транзисторы придется еще больше снизить.Это, в свою очередь, означает «живой» радиатор, работающий на полное напряжение питания. Если он соприкоснется с заземленным шасси, результатом будет очень громкий взрыв ! Как вы теперь должны знать, есть так много вещей, которые могут пойти не так, что совет покупать коммерческие расходные материалы действительно начинает выглядеть очень разумным.

Тогда (конечно) есть трансформатор. После этого идет сильноточный мостовой выпрямитель, за которым следуют конденсаторы фильтра. Все они должны быть очень прочными, с трансформатором на 500 ВА, мостом на 35 А и емкостью не менее 10 000 мкФ.Одно только оборудование (трансформатор, мостовые выпрямители, крышки фильтров, радиаторы и силовые транзисторы), вероятно, будет стоить не менее 200 австралийских долларов — или больше. У вас по-прежнему нет корпуса / корпуса, кастрюль, ручек и вспомогательных деталей, включая разъемы питания и постоянного тока, измерители и т. Д. Помните, что для двойного источника питания (единственного, который действительно полезен), все удвоено . Вы получите как минимум за 400 австралийских долларов только за базовые вещи и ближе к 600 австралийским долларам к тому времени, когда все будет включено. Если это не убедило вас в том, что коммерческая поставка стоит того, тогда ничего не будет.

Если вы посмотрите на крупного поставщика (такого как RS Components, Element14 и т. Д.), Вы найдете двойные источники питания, которые могут работать от 0 до ± 30 В при 5 А или от 0 до 60 В, если два выхода соединены последовательно. Возможно, они не принадлежат к той же лиге, что и Tektronix, Keysight или другие производители «лабораторного» оборудования, но их стоимость будет меньше, чем стоимость основных деталей, если бы вы попытались создать свое собственное. Хотя максимальное напряжение ниже идеального, я знаю по многолетнему опыту, что до ± 30 В вполне достаточно для базового тестирования, и все усилители мощности, показанные в разделе проектов, были протестированы с моим источником ± 25 В перед подключением к моему монстру. Источник переменного тока с регулируемым напряжением (который может обеспечивать напряжение до ± 70 В при напряжении около 10 А или более).


Настольные принадлежности 2.1 ‘Digital’

Многие настоящие лабораторные расходные материалы используют цифровой (с клавиатуры) ввод основных параметров. Для общего пользования это абсолютная боль в заднице! В большинстве случаев лучше использовать обычные ручки и кастрюли, потому что эффект мгновенный. В лабораторных расходных материалах обычно используется поворотный энкодер для управления током или напряжением, но вы должны сначала выбрать функцию, и может потребоваться несколько полных оборотов, чтобы охватить весь диапазон.

Если в вашей тестовой цепи что-то начинает нагреваться, последнее, что вам нужно, это нажать несколько кнопок или десять раз повернуть ручку, чтобы уменьшить напряжение. При использовании стандартного потенциометра один поворот против часовой стрелки, и напряжение возвращается к нулю. Вы никогда не узнаете, насколько неприятен ввод с клавиатуры, пока вам не понадобится что-то быстро изменить. В идеале должна быть кнопка «ZERO» для выключения выхода, но я не видел цифрового источника питания, в котором она была бы. Быстрое считывание тока на цифровом дисплее просто невозможно, если в нем нет функции усреднения (которая будет скрыта на три уровня ниже в меню — где-то).

Всю свою жизнь я использовал настольные расходные материалы, поэтому могу с уверенностью сказать, что «обычные» горшки более чем подходят для обычных целей тестирования. Чрезвычайная точность редко важна для большинства испытаний, и если по какой-то причине вам или понадобится очень точное напряжение или ток, достаточно легко построить отдельный регулятор. В большинстве случаев он вам не понадобится, и если напряжение питания находится в пределах вольта или около того, этого почти всегда достаточно. Очевидно, вам нужно быть осторожным, если вам нужно 3.3 В или 5 В для логических цепей, но они часто имеют свой собственный регулятор и вполне нормально работают с 7-12 В.

Цифровые дисплеи и элементы управления также могут давать ложное ощущение безопасности, потому что мы склонны верить счетчикам, потому что они отображают напряжение и ток с точностью до пары десятичных знаков. Однако, если они не откалиброваны должным образом (с помощью известного и откалиброванного точного измерителя), они могут легко сказать вам, что напряжение составляет 5 В, тогда как на самом деле оно 5,5 или 4,5 В. Поскольку все цифровые системы, в конечном счете зависят от DACs и АЦП (цифро-аналогового и аналого-цифровых преобразователей), они требуют точного опорного напряжения. Если по какой-то причине это пойдет не так, то все показания бессмысленны.

По этой причине я не рассматриваю здесь цифровые системы управления. Управление напряжением и током остается в аналоговой области — это аналоговые функции, и добавлять дополнительные сложности не требуется. Совершенно очевидно, что по крайней мере некоторые из представленных идей могут быть адаптированы для цифрового управления, но я не показываю никаких примеров.


3 Измерение тока

Здесь все становится труднее.Есть два варианта — определение «высокой стороны» и «нижней стороны». «Сторона высокого напряжения» означает мониторинг тока на положительном и отрицательном выходах и осложняется тем фактом, что это напряжение не только переменное, но и при напряжении, которое обычно несовместимо с операционными усилителями. Вы не можете ожидать, что операционный усилитель будет иметь входное напряжение 30 В или более, поскольку это обычно максимальное рабочее напряжение. Это нетривиальная проблема, и обычно лучше контролировать ток перед последовательным транзистором (транзисторами) , чтобы напряжение не сильно менялось. Однако это усугубляет проблему напряжения, потому что нерегулируемое питание обычно составляет около 35 В или более, что значительно превышает диапазон для любого недорогого операционного усилителя.

На рис. 1.1 показан простой ограничитель тока «высокого напряжения» (версия «Opamp»), но он не так прост, как кажется. Трудно сделать его переменным, не используя нереально большой чувствительный резистор и допуская, что вы потеряете значительное выходное напряжение на резисторе, который также будет очень горячим. Переключаемая схема показана на рисунке 7.1, и хотя это, безусловно, работает, оно не особенно точное и не самое практичное.

Датчик

«Низкая сторона» решает эту проблему, но его можно использовать только для одного источника питания. Совместное использование цепи датчика низкого напряжения между положительным и отрицательным источниками питания не сработает, потому что большая часть тока питания проходит между выходами + ve и -ve, часто с небольшим потоком в общем соединении. Это можно сделать и , но это далеко не идеально, особенно если для установки напряжения будет использоваться один горшок (источник питания с двойным отслеживанием).В схеме на рис. 6.1 используется измерение на стороне низкого напряжения, и она по-прежнему будет работать при обеих полярностях двойного источника питания, поскольку выходы имеют общую точку после всего регулирования.

Существуют специализированные ИС, позволяющие обойти проблему определения тока на стороне высокого напряжения. Ниже показаны три «демонстрационных» схемы измерения тока на стороне высокого напряжения. Однако все они показаны только с положительным запасом. Первые два могут использоваться в отрицательном источнике питания (при условии дополнительной конструкции, такой как рисунок 7.1), а вот версия IC — нет. Похоже, что для этой конкретной проблемы нет решения.


Рисунок 3.1 — Цепь измерения тока на стороне высокого давления

Токовое зеркало (Q1 и Q2) используется для измерения тока через измерительный резистор (R1, 100 мОм), а выходной сигнал смещается по уровню цепью резисторов. Выход контролируется операционным усилителем U1, который настроен как дифференциальный усилитель. VR1 включен, чтобы можно было установить нулевую точку (то есть нулевое выходное напряжение с нулевым током через R1).Операционный усилитель намеренно настроен на немного большее усиление, чем ему нужно, а выход масштабируется с помощью VR2. Как показано, схема будет обеспечивать выходное напряжение 1 В / А, поэтому при токе 2 А на выходе будет 2 В. Показанная схема подходит для сил тока до 5 А, а для более высоких токов необходимо увеличить значения R2 и R3.

Хотя эта схема обладает высокой точностью, она также очень чувствительна к колебаниям температуры между Q1 и Q2. В идеале это была бы «суперсоответствующая пара» в одном корпусе, но их бывает трудно найти, и, хотя они и недорогие, большинство из них сейчас доступно только в SMD-корпусе.Естественно, что аналогичная компоновка может использоваться без зеркала , но чувствительность снижается и максимально допустимое напряжение также ниже. Токовое зеркало легко справляется с входным напряжением 50 В, но простая дифференциальная схема операционного усилителя ограничена примерно 40 В. Более высокое напряжение возможно за счет увеличения значений R2 и R3, но это еще больше снижает чувствительность.

Если вы использовали схему дифференциального усилителя, выходное напряжение варьировалось от нуля до 250 мВ для тока от нуля до 2.5А. Измерение тока ниже 100 мА (выход 10 мВ) затруднено. Конечно, можно увеличить номинал резистора считывания, но за счет рассеивания мощности. При 2,5 А резистор 100 мОм рассеивает 625 мВт, но чтобы получить такую ​​же чувствительность от дифференциального усилителя, вам понадобится резистор 1 Ом, который упадет на 2,5 В и рассеивает 6,25 Вт. Это явно довольно серьезный компромисс. Также существует постоянная проблема смещения постоянного тока операционного усилителя, которую также необходимо решить, если вам нужно установить низкий ток (все, что ниже 100 мА, является проблемой).

Если вам интересно, как использовать источник питания -1,2 В для операционных усилителей, это гарантирует, что они могут достичь нуля вольт на выходе. LM358 может (якобы) довести свою мощность до нуля, но на самом деле это не совсем так. Небольшое отрицательное напряжение позволяет легко достичь нуля. Большинство других операционных усилителей не допускают такого небольшого отрицательного напряжения, и для правильной работы потребуется около -5 В. Это потребует много превышающего рекомендованное рабочее напряжение, если используется источник питания 30 В, как показано.

Во всех случаях необходимо, чтобы входное напряжение оставалось в пределах указанного диапазона для любого операционного усилителя, используемого в этой роли. При напряжении питания 30 В входы всегда должны быть на минимум на 4 В выше минимального напряжения питания и на 4 В ниже максимального. По возможности входное напряжение должно быть близко к 15 В (при условии, что напряжение питания 30 В).

Простое решение, которое может быть применено к простому (один операционный усилитель) датчику верхнего плеча, состоит в использовании переключаемых резисторов вместо одного фиксированного значения. Например, 100 мОм подходит для более высоких токов, и вы можете переключиться на резистор 1 Ом, чтобы обеспечить точную настройку для более низких токов (например, менее 1 А). Это добавляет еще один переключатель, но также упрощает конструкцию, и смещение постоянного тока операционного усилителя представляет собой гораздо меньшую проблему, когда вам нужен низкий предел тока.

Существует несколько специализированных ИС для измерения тока на стороне высокого напряжения, одна из которых показана на рис. 3.1. К ним относятся LT6100, INA282 и несколько других, но они доступны только в SMD-корпусах, что делает их довольно неудобными для приложений DIY, где нет печатной платы.Они очень точны и позволяют напряжению линии питания, контролируемой по току, быть намного выше, чем напряжение питания ИС. Как и большинство микросхем SMD, они часто доступны только в упаковках по пять и более штук, и они не совсем недорогие. Если вам нужен двойной источник питания (например, ± 25 В), не существует отрицательной версии этих шунтирующих усилителей тока, и это создает дополнительную сложность. INA282 может (очевидно) воспринимать отрицательное напряжение, но оно не может превышать -14 В. Коэффициент усиления составляет 50 В / В, поэтому можно использовать шунтирующий резистор гораздо меньшего размера (0.Показано 02 Ом). Это означает, что выходное напряжение изменяется на 1 В / А, поэтому для выхода 2,5 А выходное напряжение будет 2,5 В. Поскольку это активная схема, она вносит фазовый сдвиг, который может сделать регулятор тока нестабильным. Это не было проверено.

В технических описаниях микросхем считывания тока также содержится полезная информация о правильном подключении к резистору считывания тока. Вы должны убедиться, что в цепь датчика включена эффективная zero PCB, Veroboard или жесткая проводка.Измерительные провода должны выходить непосредственно из токового шунта, избегая любой другой проводки. Это известно как соединение «Кельвина», которое гарантирует, что сопротивление дорожки или проводки не включено последовательно с резистором считывания тока.


Рисунок 3.2 — Цепь измерения тока на стороне низкого давления

Измерение нижней стороны — гораздо более простой вариант, но в некоторых обстоятельствах его нельзя использовать. Например, вы не можете использовать измерение на стороне низкого напряжения в схеме на Рисунке 7.1, потому что общим является , буквально , общее как для положительного, так и для отрицательного источника питания.В симметричной схеме или если вы потребляете ток только между двумя выходами, ничего не будет регистрироваться независимо от потребляемого тока. Этот метод используется в схеме на рис. 6.1, и там это не проблема, потому что каждый источник питания является отдельным объектом, пока они не будут соединены последовательным / параллельным переключением.

Я не показал ни одного из вариантов, которые можно использовать. Например, если вы используете чувствительный резистор с очень низким сопротивлением, небольшое напряжение на нем можно усилить операционным усилителем, чтобы получить большее напряжение. 100 мВ / А, как показано, подходит для нагрузок до 5 А или около того, но при большем токе потери становятся слишком высокими. Например, даже при 5 А резистор 0,1 Ом рассеивает 2,5 Вт, и на резисторе теряется 0,5 В. При более высоких токах это быстро выходит из-под контроля. При токе 7 А резистор рассеивает почти 5 Вт, и он нагреет до . Эти предостережения, конечно же, относятся и к восприятию высоких частот, поскольку физика идентична.

Резистор считывания тока (высокого или низкого уровня) должен быть внутри контура обратной связи регулятора напряжения, иначе он не сможет компенсировать падение напряжения на резисторе считывания.На самом деле это обычно не имеет значения, потому что очень немногие схемы, которые вы будете тестировать, позаботятся о том, чтобы напряжение немного проседало под нагрузкой. Для усилителя, который использует обычный источник питания (нерегулируемый), фактическое напряжение будет изменяться гораздо больше, чем в случае настольного источника питания, даже если резистор измерения тока находится вне контура обратной связи.


4 Альтернативная скамья

Если у вас есть детали, необходимые для создания надежного источника питания усилителя мощности, то с добавлением Variac (см. Трансформаторы — Variac, если вы не знаете, что это такое) вы можете построить «монстр» источник питания, который будет подходят для тестирования высокой мощности практически с любой нагрузкой.Вы не получаете ни регулирования, ни ограничения тока (даже защиты от короткого замыкания), но с правильными деталями это грозный образец испытательного оборудования.

У меня есть пара, одна из которых действительно считается монстром. Схема показана ниже, и это буквально то, что я использую для тестов высокой мощности. Любое подключенное к нему оборудование уже проверено на работоспособность, и это важно, потому что оно может уничтожить практически все, что угодно. Это чрезвычайно полезный комплект, и все проектные усилители, опубликованные на сайте ESP, прошли финальные испытания именно с этим комплектом.


Рисунок 4. 1 — Блок питания на базе вариатора

Источник питания — это всего лишь трансформатор на 1 кВА, два мостовых выпрямителя (по 35 А каждый) и батарея конденсаторов, извлеченных из очень древнего жесткого диска много лет назад (диски размером с стиральную машину!). желаемое напряжение с Variac, которое у меня, конечно же, есть на моем рабочем столе. Источник питания не регулируется, но может обеспечить достаточный ток для любого усилителя, который я когда-либо тестировал с ним. Когда-то Variac был очень дорогим комплектом , но теперь китайские автомобильные трансформаторы с регулируемой мощностью стали на удивление доступными.

Это также означает, что приложенный постоянный ток очень похож на тот, который обычно обеспечивается линейным источником питания, но с лучшим регулированием из-за увеличенного размера трансформатора и конденсаторов фильтра. Очевидно, что это , а не , дешевый вариант, но он мне почти ничего не стоил, потому что у меня было все необходимое в моем «ящике для мусора». Показанные ограничения на 10 000 мкФ следует рассматривать как минимум — в шахте используется около 20 000 мкФ на каждый источник питания. Если они у вас есть в наличии или вы можете их себе позволить, используйте как можно больше емкости! Обратите внимание на наличие «спускных» резисторов — без них напряжение может оставаться на опасном уровне в течение многих часов.Обычно я их не использую, потому что усилитель разряжает конденсаторы, но это не всегда верно для тестового оборудования.

Непрерывный выходной ток составляет около 7 А, но с нагрузкой усилителя он может легко справиться с пиками 25 А (и более). Вам нужно что-то подобное? Только вы можете ответить на этот вопрос, но он не должен быть таким большим, как тот, который я использую. Конечно, здесь нет ограничения по току, поэтому вы должны убедиться, что схема работает с , прежде чем использовать «монстр» источник питания! Выходные предохранители защищают от короткого замыкания выходов, но , а не , спасут ваш проект от повреждения, если он неисправен. Такой источник питания применим для заключительных испытаний, но не для начального тестирования или поиска неисправностей. Ограничения по току нет, поэтому неисправность может вызвать значительные повреждения (предохранители защищают только источник питания, но не нагрузку!). Короткое замыкание на выходе, очевидно, является поводом для беспокойства, поэтому требуется осторожность.


5 Переключение ответвлений / предварительное регулирование

Один из подходов, который использовался во многих источниках питания, — это простая схема переключения ответвлений трансформатора. Если вам нужно только (скажем) 15 В или меньше, выход трансформатора переключается с помощью реле, поэтому выход переменного тока составляет только 15 В переменного тока, а не полные 30 В переменного тока, необходимые для получения чистого выхода 30 В постоянного тока.Если выход работает при низком напряжении, но при большом токе, рассеивание уменьшается, потому что на регуляторе меньше напряжения. Когда выбрано напряжение 16 В постоянного тока или более, реле переключается на полный выход (30 В переменного тока). Конечно, это можно расширить, добавив больше ответвлений, но для этого потребуется специальный трансформатор, что значительно повысит стоимость.

Источники переключения ответвлений существуют почти столько, сколько я себя помню. Самым впечатляющим из тех, что я видел, было использование моторизованного Variac для поддержания входного переменного тока на уровне, достаточном для предотвращения появления пульсаций на стороне постоянного тока.Они были очень большими, очень сильными по току и стоили бы целое состояние, когда были сделаны (где-то в середине 1970-х). Это не то, что я предлагаю кому-либо попытаться построить, поскольку стоимость и сложность его настройки будут намного выше бюджета даже состоятельного фанатика DIY.

В источниках с простым переключением ответвлений используются два напряжения переменного тока, поэтому для двойного источника питания вам потребуются две обмотки с ответвлениями, а также вспомогательная обмотка для обеспечения нормального напряжения ± 12 В или около того для цепей управления. Найти подходящий трансформатор будет практически невозможно, поэтому вам нужно будет сделать трансформатор на заказ.Это не проблема для производителей, потому что они будут производить много расходных материалов, а стоимость может быть амортизирована в течение всего производственного цикла. У любителей нет такой роскоши.

Использование переключения ответвлений снижает требования к транзисторам последовательного прохода. Для двойного источника питания вам понадобятся как минимум два силовых трансформатора (и реально вам также понадобится третий трансформатор для обеспечения напряжения питания схемы управления). Это увеличит и без того значительную стоимость создания двойного источника питания.Также есть дополнительные компоненты, необходимые для измерения выходного напряжения и автоматического переключения с низкого на высокое напряжение (и наоборот) с помощью реле. Хотя создание любого источника питания является проблемой, добавление переключения ответвлений просто добавляет еще один уровень сложности. Я не собираюсь вдаваться в подробности, так как это делает и без того сложную и трудную работу намного сложнее и дороже.

Конечно, есть и некоторая экономия, особенно в отношении количества необходимых транзисторов с последовательным проходом и количества радиаторов.Однако этого недостаточно, чтобы компенсировать стоимость трансформаторов, и силовые транзисторы все еще могут подвергаться краткосрочным условиям, которые выталкивают их за пределы их безопасной рабочей зоны. Такие отклонения могут быть краткими, но транзистор может выйти из строя за миллисекунду, если SOA превышен, особенно если он уже находится при повышенной температуре. Я вспоминаю друга, который много лет назад построил довольно простой блок питания с переключением ответвлений из комплекта, и у него не было ничего, кроме проблем. Это был полукоммерческий продукт с футляром и всем необходимым для его сборки.Это так много раз терпело неудачу, что он в конце концов сдавался с отвращением. Никто не хочет через это проходить!

Есть еще один метод, который стоит немного больше, чем упоминание вскользь, хотя у него есть серьезные проблемы. Используя схему с отсечкой фазы (аналогичную той, что используется в диммерах ламп), можно изменять входное напряжение до регулирования, просто применяя довольно простое низкочастотное переключение. Тем не менее, это также вызывает гораздо большие, чем обычно, нагрузки на трансформатор и крышку фильтра, но это не является непреодолимой проблемой.

Переключающим элементом может быть MOSFET, IGBT (биполярный транзистор с изолированным затвором) или SCR (кремниевый выпрямитель), при этом переключение синхронизируется с сетью с помощью простого детектора перехода через ноль. Идея состоит в том, чтобы ввести задержку, начиная с перехода через ноль (ноль времени). Обычно проще (и добавляет меньше дополнительных проблем) дождаться, пока входное напряжение не упадет до желаемого напряжения, поэтому используется конфигурация «переднего фронта». Когда входное напряжение падает чуть ниже порогового значения, переключатель включается, заряжая основной конденсатор фильтра.Упрощенная блок-схема показана ниже.


Рисунок 5.1 — Блок-схема предварительного регулятора с отсечкой фазы

Проблемы, упомянутые ранее, включают чрезвычайно высокие пиковые токи , особенно с низким выходным напряжением при высоком токе. Их можно уменьшить, добавив катушку индуктивности и обратный диод (обозначенные как «Необязательно»), при этом самая большая проблема заключается в том, что индуктор должен нести большую составляющую постоянного тока без насыщения. Это означает, что необходимо использовать сердечник с низкой магнитной проницаемостью, поэтому для данной индуктивности необходимо больше витков.Это увеличивает сопротивление и увеличивает потери (то есть выделяется больше тепла). Однако включение катушки индуктивности даст лучшие результаты, чем вы получите в противном случае, и снизит сильноточные напряжения, которые в противном случае налагаются на трансформатор, мостовой выпрямитель и конденсатор фильтра. Диод (D1) должен быть быстродействующим, рассчитанным на максимальный выходной ток.

Этот метод использовался в нескольких коммерческих продуктах, и хотя он действительно выполняет то, что задумано, он плохо использует номинальную мощность трансформатора, если не используются индуктор и диод.Без них вы можете ожидать, что выходной ток трансформатора будет в четыре раза больше постоянного тока. Это означает, что для выхода 3 А постоянного тока (и с использованием трансформатора 25 В) трансформатор должен быть 300 ВА, тогда как обычно достаточно трансформатора на 150 ВА. Что еще хуже, индуктор должен быть довольно большим — требуется около 10 мГн, большой и дорогой компонент.

Схема работает, сравнивая входное управляющее напряжение с пилообразным сигналом, создаваемым генератором пилообразного сигнала и синхронизируемым с частотой сети с помощью детектора перехода через ноль.Когда напряжение переменного тока достигает необходимой амплитуды, переключатель выключается, предотвращая дальнейшую зарядку конденсатора. Показана «идеализированная» форма волны (при условии отсутствия катушки индуктивности или накопительного / фильтрующего конденсатора), и очевидно, что напряжение и ток, подаваемые на выход, уменьшаются в зависимости от фазового угла. Этот процесс и формы сигналов можно увидеть более подробно в статье Project 157 — 3-Wire Trailing-Edge Dimmer. Это другое приложение, но сам процесс практически идентичен.

На самом деле у меня есть блок питания, который использует эту схему, но его вход 120 В переменного тока делает его практически бесполезным, если я не питаю его от Variac. На холостом ходу напряжение возрастает, затем медленно падает, пока не станет ниже порогового значения, когда оно снова подскакивает, и процесс повторяется (в некоторой степени случайным образом). Под нагрузкой это неплохо, но я бы не рекомендовал эту технику. Помимо того, что тот, который у меня есть, рассчитан на 150 В при 5 А, он также весит около 40 кг и имеет один большой главный трансформатор очень , вспомогательный трансформатор меньшего размера для питания электроники и большой дроссель фильтра (индуктор ).Это очень «старая школа» с точки зрения планировки и конструкции, и никогда не находит применения. Даже не помню, как я стал им владеть! Если мне нужно такое напряжение и ток, я использую свой «монстр» источник питания Variac.

Еще один подход заключается в использовании понижающего (понижающего) преобразователя импульсного режима в качестве предварительного регулятора слежения. Вы можете думать об этом как о «высокотехнологичной» версии предварительного регулятора с отсечкой фазы, описанной выше, которая дает преимущества, но меньше недостатков (по крайней мере, с точки зрения использования трансформатора).Некоторые достаточно мощные модули доступны по удивительно низкой цене, и идея состоит в том, чтобы обеспечить напряжение, подаваемое на транзисторы с последовательным проходом, всего на пару вольт выше выходного напряжения. Это может улучшить эффективность, так что вы можете обойтись гораздо меньшими радиаторами, а регулирование температуры не является такой проблемой. Должен быть предусмотрен подходящий механизм обратной связи, который управляет выходным сигналом импульсного преобразователя, чтобы он всегда был достаточно большим для обеспечения регулирования.

Предварительный регулятор снижает рассеиваемую мощность при последовательном проходе до нескольких ватт даже при полном токе. Само собой разумеется, что этот подход требует серьезной доработки, и, хотя это, вероятно, лучшее универсальное решение, его гораздо сложнее найти правильно, чем любой из других рассмотренных вариантов. Это электронный эквивалент использования моторизованного Variac (как упоминалось выше), но он дешевле в изготовлении и проще в управлении. Если вы попытаетесь создать свою собственную конструкцию, то проблемы с дизайном могут оказаться весьма серьезными, а также может оказаться трудным убрать шум на конечном выходе.Если вам нужен очень низкий уровень шума (например, для выполнения измерений шума или искажений), шум переключения почти всегда будет влиять на измерения. Этот вариант здесь не рассматривается.


6 Однополярное питание

Одинарная поставка может быть привлекательной для некоторых людей, и это, безусловно, проще, чем версия с двойным отслеживанием. Конечно, если у вас есть только одна полярность, которая ограничивает ваши возможности в отношении того, что вы можете тестировать, но они обычно доступны у любого количества поставщиков.Схема, показанная ниже, адаптирована из схемы, представленной на нескольких различных веб-сайтах [2, 3, 4] . Таким образом, трудно определить, какой из них был «первым», и за эти годы в него было внесено множество улучшений (или, по крайней мере, изменений, которые не всегда одно и то же!). Основы не сильно изменились, и тот, что показан ниже, обходится без одного регулятора напряжения в пользу простого диодно-регулируемого отрицательного источника питания. Поскольку я использовал операционные усилители LM358, отрицательное напряжение питания должно быть около -1.2В при довольно низком токе.

Когда источник питания находится в режиме ограничения тока, загорается светодиод, указывая на работу «постоянного тока». Обычно он выключен, поэтому вы можете сразу определить, потребляет ли нагрузка заданный ток с пониженным выходным напряжением. Работа с постоянным током особенно полезна для тестирования светодиодов высокой мощности или светодиодных матриц, поскольку именно так они и предназначены. Вам также понадобится переключатель «вкл / выкл», который снижает выходное напряжение до нуля в положении «выключено».Это важная функция (IMO), поскольку она позволяет вносить изменения без отключения источника питания. Лучше всего обеспечить переключение на выходе источника питания, поскольку это позволяет вам устанавливать напряжение при отключенном постоянном токе. Рассмотрите возможность использования реле (или двух) для переключения, иначе вам понадобится сверхмощный переключатель. В то время как напряжение можно снизить до (почти) нуля, подключив неинвертирующий вход U1B к земле, могут возникнуть «помехи» при первой подаче питания переменного тока. Этого можно избежать, переключив выход.

Источник питания, показанный ниже, является довольно простым, и вам нужно будет добавить как минимум измерители напряжения и тока, а также управления температурой (вентилятор и отключение по перегреву). Можно внести бесчисленное количество улучшений, но они сделают схему более сложной, более дорогой и предоставят более «захватывающие» способы сделать, казалось бы, незначительную ошибку и вызвать взрыв питания при первом включении.


Рисунок 6.1 — Схема однополярного питания

U1 — это стабилизатор 7815, но с стабилитроном 15 В на выводе «земли» для повышения напряжения до 30 В.R3 обеспечивает дополнительный ток стабилитрона для обеспечения стабильного выхода. U2A — текущий регулятор. Когда напряжение на инвертирующем входе (U2A, Pin 2) больше, чем на неинвертирующий вход (Pin 3), выходной сигнал переходит на низкий уровень, потянув вниз опорное напряжение, оказываемую U2B (регулятор напряжения). Напряжение снижается ровно на величину, необходимую для обеспечения подачи заданного тока на нагрузку.

Предел тока может изменяться от (теоретически) нуля до 2,5 А.VR4 позволяет регулировать, чтобы обеспечить опорное напряжение для U2A (ТР2) является как можно ближе к 825mV (825mV через R18 (0.33Ω) является выходной ток 2.5A). Может быть, можно увеличить выходной ток до 3А (990mV опорного напряжения), но вам нужно будет добавить еще один ряд пройти транзистор, чтобы сохранить транзисторов в пределах их SOA при минимальном напряжении и максимальном токе. Некоторый прорыв пульсации на максимальной мощности (напряжение и ток) вероятен, если вы не добавите больше емкости (C1).

При нахождении в режиме напряжения, U2B сравнивает опорное напряжение от VR2 с напряжением на выходе, уменьшенном на R16, R11 и VR3 (заданное напряжение).Если выходная мощность падает из-за нагрузки, U2B увеличивает мощность до комбинации выходного последовательного прохода (Q3, Q4 и Q5), чтобы поддерживать желаемое напряжение. Верхний предел выходного напряжения налагается операционным усилителем (U2), который не может форсировать свой выходной сигнал намного выше 25 В при типичном выходном токе около 2 мА (это зависит от усиления выходной секции Q3, Q4 и Q5). . Следует отметить, что опорное напряжение сам называют выходные контакта отрицательного — это гарантирует, что регулятор будет корректировать любое падение напряжения на R18.Если бы было иначе, регулирование сильно пострадало бы, особенно при максимальном токе.

Обратите внимание, что тяжелые гусеницы имеют решающее значение, и любое значительное сопротивление в этих секциях нарушит определение тока. Также имейте в виду, что точки, обозначенные символом «земля», помечены как «Com» (общий). Они , а не , подключенные к шасси или какому-либо другому заземлению. Обозначение «Com» означает только то, что все отмеченные таким образом точки соединены вместе. Также обратите внимание на диоды со звездочкой (*), которые должны быть 1N5404 (3A непрерывно) или лучше.Все остальные диоды — 1N4004 или аналогичные (кроме мостового выпрямителя на 25 А, конечно). Настольные источники питания часто подключаются к «враждебным» нагрузкам, а сильноточные диоды (D8 и D9) служат для защиты источника питания.

В источнике питания используется измерение тока «низкой стороны», поэтому необходимы некоторые уловки, чтобы использовать его в качестве источника с двойным отслеживанием как с положительным, так и с отрицательным выходом. Резистор считывания тока (R18) — это компромисс между падением напряжения и рассеиванием. При максимальном токе (2,5 А) R18 рассеивает чуть более 2 Вт, что легко контролировать с помощью резистора с проволочной обмоткой 5 Вт.Регулировка напряжения и тока очень хорошая (по крайней мере, согласно симулятору), и нет никаких признаков нестабильности. Теоретически (всегда замечательно) ток можно отрегулировать до пары миллиампер, но на самом деле он не станет настолько низким. Ожидайте около 50 мА или около того, но может быть немного ниже (в зависимости от собственного смещения постоянного тока операционного усилителя). Можно добавить еще один подстроечный резистор для коррекции смещения постоянного тока операционного усилителя, но в этом нет необходимости (и добавляет что-то еще, что требует настройки).

Во всех альтернативных версиях для выхода указывается один 2N3055, но с закороченным выходом и максимальным током рассеиваемая мощность составит около 80 Вт, и поддержание последовательно проходных транзисторов при температуре 25 ° C будет невозможно. Устройства TIP35 имеют более высокую номинальную мощность (125 Вт) и хорошую SOA (безопасную рабочую зону), но все же необходимо использовать три вместо двух показанных. BD139 также нужен радиатор, но обычно достаточно простого «флажкового» типа.Как и любой транзистор, который рассеивает значительную мощность, очень важно отличное тепловое соединение с радиатором, и вам понадобится вентилятор. Он может управляться термостатически и может использовать ШИМ (широтно-импульсную модуляцию) для управления скоростью, или он может просто включаться и выключаться. На рис. 8.1 показана подходящая схема как для работы вентилятора, так и для отключения источника питания, если он становится слишком горячим (что в данном контексте имеет температуру радиатора не более 50 ° C).


6.1 Двойное одинарное питание

Если вы действительно хотите использовать рисунок 6.1 для двойного питания, трансформатору нужны две отдельные обмотки. Второй источник питания (# 2) — это , идентичный показанному выше, а положительный выход подключен к GND (или, точнее, «общему») соединению источника # 1. В большинстве случаев источники питания используются с плавающими выходами без подключения к защитному заземлению сети. Это позволяет вам использовать источник питания как нормальный положительный и отрицательный источник питания, или выходы можно использовать последовательно, что даст выход 50 В при максимум 2.5А. Таким образом, вы можете заземлить любой терминал, который хотите получить нужную вам конфигурацию питания.

Чтобы построить его как двойной источник питания, потенциометры «Набор напряжения» и «Набор тока» будут двухконтурными линейными электролизерами, с одной секцией каждого для отдельных источников питания. Отслеживание не будет идеальным, но двухканальные линейные горшки обычно неплохо в этом отношении. Использование двух источников питания также позволяет подключать их последовательно или параллельно. Последнее удобно, если у вас есть нагрузка с одним источником питания, которая потребляет больше тока, чем может обеспечить один источник питания.Многие коммерческие двойные источники питания используют эту схему, и она может быть очень полезной. В то время как «правильное» двойное отслеживание будет использовать только один блок питания с электронной связью для обеспечения идентичности напряжений, это делает схему более сложной.


Рисунок 6.2 — Подключение питания «двойной одиночный»

Когда переключатель или реле (двухполюсный, двухпозиционный или DPDT) находятся в последовательном положении, отрицательный полюс верхнего источника питания соединяется с плюсом нижнего источника питания, и оба соединяются с общей клеммой.У вас может быть выход от 0 до 50 В, а обычным является центральный отвод для ± 25 В. В параллельной конфигурации два положительных вывода соединяются вместе с двумя отрицательными (общий вывод отключен). Это позволяет подавать 0-25 В при выходном токе до 5 А. Обратите внимание, что отрицательный вывод является отрицательным выходом нижнего регулятора. Поскольку выходы являются плавающими, положительный или отрицательный вывод может стать заземлением системы, если это необходимо.

Одним из преимуществ использования «двойных одиночных» источников питания является то, что они могут использоваться независимо (с различными настройками напряжения и тока), подключаться последовательно (обычно с отслеживанием) или параллельно для увеличения выходного тока.К сожалению, если вы хотите использовать два расходных материала по отдельности, вы не можете использовать двухконтурные горшки, и каждый расход должен быть настроен индивидуально. Это серьезная неприятность, и, к счастью, это не обычное требование.

Показанная схема позволяет подключать источники питания последовательно (от 0 до ± 25 В или 50 В при 2,5 А) или параллельно (от 0 до 25 В при 5 А). «Общий» вывод обычно не должен быть заземлен, поэтому источники питания находятся на плаву. Это позволяет управлять источником питания без создания контуров заземления.При параллельном подключении один источник питания обычно будет иметь немного отличающееся напряжение от другого, но ограничитель тока гарантирует, что ток от каждого источника не может быть выше предела (2,5 А). Возможно небольшое изменение напряжения при изменении тока, но это не должно создавать никаких проблем при нормальном использовании.

Такая конструкция означает отсутствие общей схемы — оба регулятора полностью независимы и никакие части не являются общими — кроме двухконтактных потенциометров, используемых для установки напряжения и тока.Это увеличивает общую стоимость, но обеспечивает большую гибкость. Схема выше не позволяет использовать независимые источники питания, но вряд ли это будет ограничением. В хорошо оборудованной мастерской будет как минимум два источника питания (например, у меня также есть отдельный независимый источник питания ± 12 В плюс независимый источник питания 5 В). Ни у одного из этих источников нет общей основы — все они полностью плавающие.

Переключение «вкл. / Выкл.» Находится на конечном выходе (непосредственно перед выходными клеммами). Это позволяет вам установить напряжение без выхода (счетчики будут подключены перед выходным переключателем ).Реле (или пара реле) позволяет использовать мини-тумблер, а не тумблер для тяжелых условий эксплуатации, и рекомендуется для максимальной производительности. Реле (а) можно установить на передней панели рядом с выходами.


7 Простое питание от 0 до ± 25 В

Теперь мы можем рассмотреть еще один «разумный» вариант. Опять же, это означает выход около ± 25 В постоянного тока при максимальном токе не более 3 А или около того. Вы не поверите, но это , но все равно на дешевле купить! Я знаю, что это не способ «сделай сам», но он более практичен, чем строить самому.За эти годы я просмотрел бесчисленное количество различных дизайнов, но немногие из них стоят тех деталей, которые потребуются для их создания. Остаются проблемы со стабильностью (то есть отсутствие колебаний на при любом выходном напряжении или токе , или при «нечетных» нагрузках). Это может показаться не проблемой, но взаимодействие между регуляторами напряжения и тока может заставить источник питания с хорошим поведением внезапно подумать, что это генератор. Само собой разумеется, что это нежелательно (мягко говоря).

Project 44 существует уже довольно давно (с 2000 года), и хотя максимальный выход составляет всего ± 25 В, это довольно хороший вариант для запуска начальных тестов.У него нет регулируемого ограничения тока, поэтому выходной ток устанавливается регуляторами LM317 / 337 на уровне около 1,5 А. Его полезность никогда не уменьшалась с момента публикации, но вы должны использовать «предохранительные» резисторы последовательно с выходами, чтобы ничего не было повреждено, если есть ошибка в проводке DUT. Стоимость любого конкретного проекта ESP обычно указывается в статье проекта или примечаниях по конструкции (доступно при покупке одной или нескольких печатных плат).

Одна из вещей, которые ожидали , — это то, что настольная поставка требует очень хорошего регулирования.На самом деле это не так. Усилители мощности обычно не имеют регулируемых источников питания, а предусилители (и аналогичные слаботочные проекты) потребляют довольно постоянный ток, поэтому регулировка в допустимом диапазоне проста. Если напряжение источника питания падает (скажем) на 0,5 В при большой нагрузке, это действительно не имеет значения, потому что это намного меньше, чем он должен будет справиться при подключении к «нормальному» источнику питания. То, что является критическим для , — это ограничение тока, и хотя это может показаться достаточно простым, на самом деле трудно заставить его работать надежно.Схема ограничения тока вводит в схему дополнительное усиление, и поддержание стабильности может быть в лучшем случае утомительным, а в худшем — почти невозможным.

Часто критическим аспектом любого источника питания с ограничением тока является переход между регулированием напряжения и тока, где взаимодействуют две различные формы регулирования. В начале ограничения тока у вас есть регулятор напряжения, пытающийся поддерживать заданное напряжение, и в то же время регулятор тока пытается уменьшить напряжение для поддержания заданного тока.Для тех, кто действительно хочет создать блок питания, Джон Линсли-Худ представил его конструкцию еще в 1975 году. Обновленная версия показана ниже, но оригинальные транзисторы были заменены современными, и включены два последовательных транзистора. Добавление третьего последовательного транзистора к каждому источнику питания упрощает охлаждение и снижает нагрузку на транзисторы. В исходной схеме использовались операционные усилители µA741, но если они у вас есть под рукой, то лучше выбрать 1458 (по сути, двойной 741).Вы также можете использовать LM358 в этой схеме.


Рисунок 7.1 — Стендовый источник питания (после JLH, 1975) [6]

Вышеупомянутое адаптировано из оригинала, в котором использовался один силовой транзистор 2N3055 и MJ2955 TO-3 (по одному для каждой шины). Мало того, что они были подвержены чрезмерному рассеянию в оригинале (до 93 Вт при максимальном токе на закороченном выходе), но и устройства TO-3 сегодня довольно дороги. Их также сложно монтировать, поскольку плоские устройства в этом отношении намного проще.Указанные устройства TIP35 / 36 имеют более высокую номинальную мощность (125 Вт против 115 Вт каждое) и более высокий ток коллектора, но я модифицировал схему, чтобы она обеспечивала максимум ± 25 В и использовала трансформатор более низкого напряжения. Это поддерживает последовательные транзисторы на управляемом уровне мощности, не более 40 Вт каждый. Не стесняйтесь добавлять еще один последовательный транзистор для каждой полярности, еще больше снижая тепловую нагрузку. Q3 (a и b) должен иметь достаточно хороший радиатор , поскольку рассеиваемая мощность намного выше, чем она может появиться при полном выходном токе (и на при любом выходном напряжении ).

Концевой выключатель тока далеко не идеален, поскольку контакты переключателя должны выдерживать максимальный выходной ток (около 2,4 А), и это менее удобно, чем потенциометр, позволяющий непрерывно ограничивать переменный ток. Резисторы 0,27 Ом должны быть рассчитаны не менее чем на 3 Вт, а на резисторы 1,5 Ом — 1 Вт. Остальные токоограничивающие резисторы — 0,5 Вт. Хотя переключатель не такой универсальный, как горшок, ограничивающие пороги предназначены для защиты вашей схемы. При первом тестировании вы обычно используете слабый ток, чтобы убедиться, что ничего не потребляет больше, чем нужно.Значение 5 мА слишком мало для большинства цепей, но может быть полезно. Его можно не указывать, если вы думаете, что он вам не понадобится.

Для выхода требуется либо сверхмощный тумблер, либо реле для включения и выключения постоянного тока, и это полностью отключает питание, когда вам не нужен какой-либо выход (например, повторная пайка пропущенного соединения и т. Д.). Измерение не показано — подробнее о том, как добавить вольтметр и, при необходимости, амперметр, см. Ниже. Два подстроечных резистора 20k позволяют установить максимальное напряжение (номинально ± 25 В).Они должны быть примерно отцентрированы для получения правильного напряжения. Хотя это не показано на схеме, вам может потребоваться добавить резисторы последовательно с C4a / b, если источник питания колеблется в режиме ограничения тока. Их не было в оригинале, но смоделированная схема колеблется, если их там нет. Значение около 100 Ом должно быть достаточным.

Схема далека от «идеальной» (как и оригинал), но на практике она должна хорошо работать. В идеале потенциометры установки напряжения должны быть двухконтактными, поэтому оба источника питания могут быть изменены одновременно.Аналогично, переключатель (Sw1a / b) будет 2-полюсным 5-позиционным переключателем. Обратите внимание, что я не создавал и не тестировал эту схему , но она была смоделирована и работает так, как ожидалось. Преимущество показанной простой схемы состоит в том, что ее, скорее всего, можно построить за меньшую цену, чем коммерческая поставка.

Последовательные транзисторы (Q1a / b и Q2a / b) нуждаются в очень хорошем радиаторе и оптимальной тепловой связи. Если вы используете при низком выходном напряжении и большом токе, вам понадобится вентилятор, чтобы транзисторы оставались достаточно холодными и не выходили из строя из-за перегрева.Для транзисторов драйвера (Q3a / b) также потребуются небольшие радиаторы. Схема симметрична, поэтому, хотя она может показаться сложной, в основном это повторение. Я не могу гарантировать, что он будет полностью стабильным в режиме ограничения тока — симулятор говорит мне, что это так, но это может быть просто сам симулятор — реальность часто сильно отличается от симуляции.

Хотя ожидает, что источник питания никогда не должен колебаться, на самом деле требуется серьезная инженерия, чтобы поддерживать стабильность наряду с хорошей переходной характеристикой.В основном, небольшое количество колебаний обычно не причинит никакого вреда, а ограничение тока существует, чтобы гарантировать, что ваше последнее творение не самоуничтожится в случае неисправности проводки. Он также может быть удобен для зарядки аккумулятора (помимо прочего), а основная цель ограничителя — защитить вашу схему и источник питания от «неудач». Многие источники питания демонстрируют признаки нестабильности высокой частоты, редко в режиме «постоянного напряжения» и чаще всего в режиме постоянного тока.

Если вы начали думать, что создание собственного источника питания не выглядит слишком сложным, есть и другие необходимые вещи. Температура транзистора имеет решающее значение, поэтому важно включить механизм теплового отключения. Это может быть простой термовыключатель, отключающий сеть, если радиатор становится слишком горячим — простой, но не очень сложный. Обычно лучше включить индикатор «перегрева» и тепловой вентилятор, который включается, если температура радиатора превышает заданную.Приобретенные в магазине расходные материалы могут иметь вентилятор с регулируемой скоростью с окончательным отключением, если радиатор не остывает. Это может произойти, если в коротком замыкании присутствует постоянный высокий ток, заблокирован фильтр вентилятора или если установка на рабочем столе ограничивает воздушный поток.


8 Тепловое зондирование

Это важная часть любого источника питания. В идеале, если достигнут тепловой предел, питание должно отключиться, но с некоторыми схемами это проще, чем с другими. Например, рисунок 6.1 схема проста, так как это просто вопрос потянув опорного напряжения к нулю (по существу, параллельно с «вкл / выкл» переключателя). Это можно сделать с помощью транзистора, контактов реле или даже сделать «пропорциональным», чтобы максимальный выходной ток уменьшался по мере нагрева радиаторов. В схеме на Рисунке 7.1 ограничение температуры немного сложнее, поскольку потенциометры «заданного напряжения» привязаны не к земле, а к выходным шинам питания. Из-за необходимости полной изоляции реле является лучшим выбором, и оно просто закорачивает установленные потенциометры.Вам нужно двухполюсное реле, потому что два электролизера отделены друг от друга (электрически).

Следующее — решить, как лучше всего определять температуру радиатора. Очевидным выбором является термистор с отрицательным температурным коэффициентом (NTC), и они легко доступны в диапазоне различных значений (значение обычно указывается при 25 ° C). К сожалению, термисторы неудобно устанавливать на радиатор, если только вы не можете получить его со встроенным монтажным узлом. Вы можете сделать его самостоятельно, используя миниатюрный терморезистор и прикрепив эпоксидную смолу к проволочному наконечнику.Естественно, вам нужно быть осторожным, чтобы убедиться, что нет электрического соединения термистора с его креплением. Вы также можете использовать диоды или транзисторы для измерения температуры, но они менее чувствительны, чем термисторы (всего -2 мВ / ° C), и более сложны в настройке. Транзистор может быть сконфигурирован для обеспечения большей чувствительности (потому что у него есть усиление), и вы можете легко получить до -100 мВ / ° C. Однако для транзистора требуется подстроечный резистор (желательно как можно ближе, чтобы минимизировать шумоподавление), а датчику требуется три провода вместо двух.Их также сложно правильно установить. Более или менее типичный термистор NTC 10 кОм (при 25 ° C) покажет изменение примерно на -250 Ом / ° C.

Поскольку термисторы сильно различаются по своему значению, изменяющемуся с температурой, важно, чтобы был предоставлен метод регулировки. В идеале вам нужен точный термометр с термопарой для измерения температуры радиатора как можно ближе к одному из выходных транзисторов с последовательным проходом. Вам понадобится термопаста, чтобы получить точные показания.Обычно сопротивление термистора падает примерно до 30-40% от значения 25 ° C при 50 ° C, но это зависит от используемого материала. Технические данные термистора, который вы покупаете, обычно содержат точные данные. Убедитесь, что термистор (и) не установлен слишком близко к вентилятору. В противном случае вентилятор будет легко охлаждать термисторы, но может не поддерживать безопасную температуру радиатора. Это может вызвать сбой.

Дешевый операционный усилитель — это самый простой способ надежного обнаружения «события» превышения температуры, и можно использовать несколько термисторов, причем самый горячий запускает охлаждающий вентилятор (ы) или отключает источник питания.Вы можете использовать двухступенчатую систему, как показано ниже, где при небольшом перегреве вентиляторы запускаются, но если температура продолжает расти, то питание полностью отключается от нагрузки. Два подстроечных резистора используются для обеспечения того, чтобы начальное напряжение на каждом термисторе составляло около 5,8 В при 25 ° C, что означает примерно 65% от общего сопротивления VR1 и VR2. Если напряжение на любом из термисторов упадет примерно до 5,4 В, вентилятор включится. Вентилятор снова выключится, когда напряжение вернется к 5.Порог 4 В. Если подача прекращается из-за того, что температура продолжает расти, вентилятор продолжит работу.


Рисунок 8.1 — Датчик температуры, вентилятор и реле защиты

U1A — это буфер, обеспечивающий, чтобы гистерезисный резистор на U2B не мешал работе первого компаратора. При низких температурах компаратор U1B имеет низкий выход, а U2A высокий, поэтому вентилятор не работает, а контакты реле замкнуты (при условии, что переключатель постоянного тока замкнут). При повышении температуры сопротивление одного или обоих термисторов упадет до более низкого уровня.Когда напряжение на термисторе упадет до ~ 5,2 В, вентилятор запустится, а если температура продолжит расти, выходное реле питания будет отключено при дальнейшем падении напряжения на термисторе. Такое расположение гарантирует, что температура никогда не должна достигать опасного уровня. Потребуется отрегулировать подстроечные регуляторы, чтобы предварительно установить начальное напряжение термистора на соответствующий уровень, чтобы обеспечить включение вентилятора, когда температура радиатора достигнет примерно 35 ° C. Светодиод нужен, чтобы вы знали, почему все внезапно перестало работать (выходные транзисторы слишком горячие!).Последний подстроечный резистор (VR3) должен быть настроен на температуру отключения около 45 ° C. Оба компаратора имеют гистерезис, поэтому вентилятор не будет быстро включаться и выключаться, как и реле отключения. (Обратите внимание, что U2B не используется.)

Термисторы

не являются прецизионными устройствами, поэтому вам нужно будет провести собственные тесты с теми, которые вы можете получить. Возможно, потребуется поэкспериментировать с номиналами резисторов, чтобы получить разумные (и безопасные) пороговые значения температуры. Вы можете спросить, почему я предлагаю такую ​​низкую температуру радиатора (45 ° C).Имейте в виду, что тепловое сопротивление от корпуса транзистора до радиатора может составлять около 0,5 ° C / Вт, поэтому, если транзисторы работают при 35 Вт, температура корпуса будет на 17,5 ° C на выше, чем на радиаторе. Это означает, что температура корпуса превышает 60 ° C. Если ваши методы монтажа недостаточно хороши, разница может быть больше, что приведет к риску отказа. Если вы не можете положить палец на транзистор и удерживать его там , то, вероятно, он слишком горячий.

Поддержание безопасной рабочей температуры и отключение источника питания (или отключение нагрузки), если силовые транзисторы становятся слишком горячими, является важной частью любого источника питания.Природа любого источника переменных заключается в том, что вы никогда не знаете, для чего вы в конечном итоге будете использовать его, когда он впервые будет создан, и все возможные случаи необходимо учитывать. Лучше преждевременно отключиться от источника питания, чем позволить транзисторам так сильно нагреться, что они выйдут из строя. Транзисторы выходят из строя из-за короткого замыкания (по крайней мере, вначале), в результате чего на ИУ подается полное нерегулируемое напряжение питания. Ущерб, который может нанести, может быть катастрофическим.


9 Учет

Для всех блоков питания нужны счетчики.Обычно они включаются для напряжения и тока, и сейчас наиболее распространены цифровые. Однако «традиционные» аналоговые измерители с подвижной катушкой не только рентабельны (вы можете получить их на удивление дешево), но также легко читаются с первого взгляда. Многие цифровые счетчики не обеспечивают разумных подключений к источнику питания и измерениям (например, некоторым требуется плавающее питание). Это усложняет схему, а точность, которую обеспечивают цифровые измерители, часто оказывается иллюзией. В аналоговых измерителях «FSD» означает отклонение на полную шкалу.

Я всегда отдавал предпочтение аналоговым счетчикам. Если вы можете получить измеритель с циферблатом, который откалиброван от 0 до 30 В (например), один можно использовать для напряжения, а другой для тока (0-3,0 А). Необходимые шунты и множители могут быть определены достаточно легко — все подробности см. В статье «Счетчики, множители и шунты». Возможно, можно будет использовать резистор измерения тока в качестве шунта измерителя, в зависимости от номинала резистора считывания, а также чувствительности и внутреннего сопротивления измерителя.В большинстве случаев перемещение измерителя 1 мА является хорошим компромиссом, и это позволит вам использовать резистор измерения тока, показанный на рисунке 6.1. Да, подключение измерителя и внешнего резистора немного повлияет на шунт, но погрешность будет очень маленькой (вплоть до бесконечно малой).


Рисунок 9.1 — Измерение тока и напряжения

Основные схемы измерения показаны выше. Измеритель тока неудобен, потому что полярность должна быть изменена в зависимости от того, контролирует ли он положительный или отрицательный шунт.Он выглядит запутанным, но при подключении, как показано на рисунке, он будет работать именно так, как задумано. Общее сопротивление измерителя предполагает использование измерительного механизма 1 мА, откалиброванного на 30 В (вольтметр) или 3 А (амперметр), и при условии, что внутреннее сопротивление катушки составляет 200 Ом. Если используемый измеритель более чувствителен (или его сопротивление другое), необходимо будет рассчитать сопротивления. Почти всегда проще использовать подстроечные резисторы для установки диапазона, чем постоянные резисторы, и показаны подходящие значения. Для вольтметра (откалиброван на 30 В FSD)…

R м = (V / FSD) — R внутренний
R м = (30/1 м) — 200 = 28,8 тыс.

Если шунтирующие резисторы для амперметра отличаются от показанных значений, калибровка будет другой. Показанное «общее сопротивление» включает внутреннее сопротивление измерителя (обычно около 200 Ом для движения 1 мА). Обратите внимание, что если вы используете движение 1 мА, сопротивление шунтирующего резистора должно быть не менее 0,1 Ом. Требуется шунт 67 мОм, но при этом предполагается, что сопротивление измерителя составляет ровно 200 Ом, и нет возможности регулировки, если показания отсутствуют.Можно ли использовать один и тот же шунт как для измерения тока, так и для амперметра, зависит от окончательной топологии конструкции. Это не всегда практично, но немного снижает потери напряжения.

Обратите внимание, что при использовании схемы, показанной на Рисунке 6.1, два шунта имеют одинаковую полярность напряжения, поэтому показанное выше реверсирование не требуется. Чтобы посмотреть положительный или отрицательный выходной ток, измеритель просто переключают с одного шунта на другой, а полярность не меняется. Это устраняет перекрестную проводку, показанную на отрицательном шунте на приведенном выше рисунке.

Пока показан переключаемый амперметр (а это то, что использует мой старый источник питания), лучше использовать отдельный амперметр для каждого выхода. При условии, что у вас достаточно места на передней панели, это избавляет от утомительного переключения измерителя и означает, что если вы забудете (и что будет ), вы можете контролировать отрицательное питание, но используя положительное питание. Излишне говорить, что это означает, что вы не видите ток, и ИУ может быть повреждено до того, как вы поймете свою ошибку. Использование ограничения тока может уменьшить это, конечно, при условии, что оно установлено на неразрушающий (низкий) ток, когда вы начинаете тестирование.

Вольтметр можно переключить для измерения положительного или отрицательного напряжения, или его можно просто подключить к двойному источнику питания (50 В для схем, показанных здесь) и откалибровать, чтобы показывать 30 В FSD («Измеритель напряжения (альтернативный)). Подразумевается, что напряжение будет составлять ± 25 В или другое более низкое напряжение по выбору. Может возникнуть небольшая ошибка, если источники питания не отслеживают идеально, но обычно это не является серьезной проблемой, если вы по какой-то причине не ожидаете точного напряжения. Если это так, лучше использовать внешний измеритель — те, что находятся на источнике питания, — это «коммунальные» счетчики — они показывают значение напряжения и тока, но ожидать точности лучше, чем около 5%, нереально.


9.1 Цифровые счетчики

Цифровые измерители — это либо лучшая вещь после нарезанного хлеба, либо вред для ландшафта, в зависимости от вашей точки зрения. Лично я предпочитаю аналоговые (механические) счетчики, но они, как правило, довольно большие и громоздкие, занимая больше места на панели, чем цифровые устройства для считывания. Самым большим преимуществом аналоговых измерителей является то, что вы можете наблюдать за перемещением указателя, поэтому нарастающий (возможно, убегающий) ток можно быстро увидеть, а различные токи можно легко усреднить на глаз.Цифровые измерители особенно бесполезны, если ток меняется быстро, потому что на дисплее просто появляются размытые цифры, и вы не можете усреднить цифровые показания на глаз.

Однако сейчас цифровые измерители обычно дешевле аналоговых, и большинство из них довольно точны. Поскольку они занимают меньше места на панели, они являются хорошим вариантом при соблюдении нескольких простых мер предосторожности. В частности, и особенно для измерителя тока, вам необходимо включить схему усреднения, которая предотвращает отображение на дисплее набора, казалось бы, случайных цифр, когда ток питания быстро изменяется.Это может быть просто резистор (1 кОм всегда является хорошей отправной точкой) и конденсатор для усреднения показаний. С резистором 1 кОм конденсатор 100 мкФ означает, что у вас есть точка низкой частоты 1,59 Гц -3 дБ, поэтому самые быстрые изменения будут сглажены, чтобы вы могли считывать ток. Если не указать это, вы не сможете расшифровать показания. Этого достаточно, чтобы убедиться, что тренд хорошо виден.

Никаких подробностей цифровых счетчиков здесь не показано, потому что они зависят от самого счетчика.Некоторые из них имеют автоматический выбор диапазона, другие используют переключаемые диапазоны, а более простые просто дают показания от «000» до «199» с возможностью выбора десятичной точки в желаемой позиции (часто с помощью перемычки или ссылки на измерителе). Печатная плата). Для измерения тока часто бывает необходимо использовать операционный усилитель для повышения небольшого напряжения на токовом шунте. Например, если у вас есть шунт 0,33 Ом, вам необходимо усилить или ослабить напряжение на нем, чтобы соответствовать диапазону. Для полной шкалы 2,5 А это означает, что вы получите только 825 мВ при токе 2.5A, и его необходимо усилить, чтобы измеритель показал «2,50» (2,5 В в измерителе). Величина усиления или ослабления зависит от чувствительности измерителя. Например, для счетчика на 200 мВ потребуется снизить шунтирующее напряжение в 33 раза с помощью делителя напряжения. Он будет читать 2,5 (25 мВ) с десятичной точкой, выбранной любыми доступными способами. Разрешение составляет всего 100 мВ (± 2%, ± последняя цифра «фактора неопределенности» измерителя, которая может составлять до двух «единиц»). Это (ИМО) недостаточно хорошо.

В идеале, если вы решите использовать цифровой замер, используйте счетчик, который предлагает три полных цифр (до «999», а не «199»), и, если возможно, с автоматическим выбором диапазона. Есть много вариантов, поэтому вам решать, сколько вы хотите потратить и какая точность вам нужна. Опять же, Meters, Multipliers & Shunts дает несколько рабочих примеров, которые могут быть вам полезны.


10 Строительство

Вот где все может стать некрасивым. Передняя панель является наиболее важной частью источника питания, потому что на ней есть регуляторы напряжения и тока, переключатели включения / выключения (сеть и постоянный ток), возможно, последовательно-параллельный переключатель, счетчики и, конечно же, выходные разъемы (обычно комбинированные розетки типа банан. / переплет постов).Конечно, вы также добавите светодиоды для включения, ограничения тока и тепловой перегрузки. Все на передней панели должно быть доступно для строительства или обслуживания, а это неизбежно означает лабиринт проводки. На передней панели есть провода для сети переменного тока, выходы постоянного тока, все светодиоды и потенциометры, и все это складывается (на удивление быстро). Поддержание общего источника питания для всех светодиодов (например, от анода к положительному вспомогательному источнику питания) означает, что многие из светодиодов могут совместно использовать одно и то же анодное напряжение, что может сэкономить проводку.Однако это не относится к , а не , к светодиодам ограничения тока в двойной версии схемы на рис. 6.1, потому что два источника питания должны оставаться полностью независимыми до последовательно-параллельного переключения.

Внутренние компоненты должны содержать силовой трансформатор (ы), выпрямитель (ы) и крышки фильтров, а также основной радиатор (и) для выходных транзисторов. Последний будет иметь входную, выходную и управляющую проводку, а также соединения для термисторов и вентилятора (ов). По крайней мере, каждый модуль вывода (при условии двойного питания) будет иметь как минимум шесть проводов.Тогда есть плата (и) управления регуляторами. У вас будет по одному на каждый источник питания (при условии, что схема с двумя источниками питания показана на рис. 7.1), а также плата терморегулятора для контроля температуры радиатора.

Слишком легко сделать неправильную проводку, и вам нужен очень дисциплинированный подход, чтобы не допустить ошибок при подключении. Избегайте соблазна установить все платы управления на лицевую панель. Это может уменьшить необходимость в проводке, но делает обслуживание кошмаром, если различные части источника питания не могут быть доступны и протестированы без отключения проводов от плат.Какой бы размер шкафа вы ни планировали использовать, если в нем мало свободного места, значит, он слишком мал.

Убедитесь, что все соединения доступны без необходимости снимать платы, чтобы добраться до нижней стороны. Используйте булавки, проволочные петли или любую другую подходящую технику, чтобы все провода можно было отсоединить от верхней (или видимой) стороны плат. Избегайте вилок и розеток — все соединения (особенно действительно важные) должны быть припаяны, а проводка должна быть устроена так, чтобы, если вам когда-нибудь понадобится снять плату, чтобы что-то заменить, проводка была связана с помощью кабельных стяжек, чтобы каждый провод совпадал с подходящую точку подключения.Аналогичным образом, если это вообще возможно, при сборке плат (чаще всего на Veroboard) сохраняйте соединения вдоль одного края платы. Это будет означать добавление перемычек на Veroboard, но это намного лучше, чем прокладывать провода по всей плате. Это не только упрощает электромонтаж, но и снижает вероятность ошибок.

Тримпоты — это реальность для любого источника питания. Необходимо установить напряжение и ток и откалибровать измерители. Датчик температуры также должен быть откалиброван, поэтому почти все источники питания будут иметь множество подстроечных резисторов — вы просто не можете полагаться на резисторы с фиксированным значением, чтобы обеспечить надлежащие условия для чего-либо.Если бы вы построили схему на рис. 6.1 в виде двойного источника питания, с тепловой защитой и счетчиком, у вас было бы как минимум девять подстроечных резисторов, чтобы все правильно настроить. Это нормально для блоков питания, но в некоторых может быть больше!

Убедитесь, что важные части источника питания легко отделены от остальных (и шасси). Например, радиатор в сборе должен быть выполнен таким образом, чтобы его можно было снять, а доступ ко всем транзисторам можно было получить без демонтажа всего модуля.Одна конструкция, которую я видел, имеет крышки основного фильтра непосредственно перед выходными транзисторами, поэтому их нельзя снять, не сняв крышки фильтра (или транзисторы) с печатной платы. Расположение крышек таково, что вы просто не сможете получить доступ к винтам крепления транзистора после завершения сборки. Настоятельно рекомендую избегать подобных ошибок. Необходимость извлекать (и / или демонтировать) компоненты или платы, чтобы получить доступ к любой части блока питания, превращает дальнейшую работу в кошмар.Учтите, что он может проработать 20 или более лет, прежде чем ему потребуется обслуживание, и к тому времени вы, вероятно, забудете многие «тонкости» схемы. По прошествии этого времени у вас может даже не оказаться схемы, поэтому убедитесь, что вы поместили ее в корпус!

Хотя основы источника питания не слишком сложны, всегда будет гораздо больше проводки, чем в любом типичном аудиопроекте. Это неизбежно, если вы не увеличите общую стоимость еще больше, сделав свои собственные печатные платы.Хотя это означает более профессиональный продукт, нет никакой гарантии, что вы получите правильный дизайн с первого раза, а внесение изменений может занять очень много времени. Если ошибка была сделана в топологии печатной платы, может быть сложно диагностировать и найти ошибку, чтобы ее можно было исправить. В общем, вероятно, будет намного проще подключить окончательную выходную секцию. Из-за задействованных высоких токов (которые могут присутствовать в течение нескольких часов) обычная печатная плата не обеспечивает достаточно низкое сопротивление или достаточно высокую пропускную способность по току, если вы не используете очень широкие дорожки (я бы предложил минимум 5-миллиметровых дорожек для 5A, но даже это является предельным значением для непрерывного режима).

Хотя это может показаться незначительной придиркой, я настоятельно рекомендую вам использовать розетку IEC для сети. По моему многолетнему опыту работы с испытательным оборудованием и другим оборудованием, нет ничего более неприятного, чем фиксированный сетевой шнур. Вместо того, чтобы просто отсоединять вилку IEC от задней панели, если ее нужно переместить, вам, возможно, придется проследить фиксированный провод до его сетевой розетки, а затем отсоединить его от других проводов для остальной части оборудования вашего испытательного стенда. В зависимости от того, сколько у вас оборудования, это может быть более сложной задачей (и болью в задней части), о которой вы думаете, когда оно впервые устанавливается и подключается.Незначительный момент, но о нем стоит помнить. Очень немногие контрольно-измерительные приборы, которые я построил, имеют фиксированные сетевые кабели, и у меня есть хороший набор сетевых кабелей IEC!

Осталась одна проблема. Чтобы проверить различные части вашего блока питания, прежде чем он будет полностью подключен, вам понадобится … блок питания. Шансы на то, что все будет правильно с первого раза, невелики, поэтому, если у вас нет источника питания, вам придется разработать способ проверки правильности работы различных секций без риска задымления, если что-то не так. .Вы можете использовать « предохранительные » резисторы последовательно с основным источником питания, чтобы ограничить повреждение, если есть ошибка проводки, или (если он у вас есть) использовать Variac и текущий монитор (см. Проект 139 или Проект 139A, чтобы вы могли проверить на чрезмерный ток при повышении напряжения. Многие части блока питания не будут работать должным образом при пониженном напряжении, поэтому всегда есть риск. Тестирование и калибровка блоков питания — нетривиальная задача, поэтому вам придется многое сделать, чтобы завершить его.


11 Полезное дополнение

Хотя здесь я описал только базовый источник питания, многие коммерческие источники питания включают выход 5 В (обычно рассчитанный на ток около 3 А), а некоторые также включают источник питания ± 12 В.Поскольку вы никогда не знаете, как будет сконфигурирован источник питания в будущем, они оба будут полностью изолированы. Как только вы соедините вместе заземляющие (или общие) соединения внутри, это ограничит ваши действия с источниками питания. Как уже отмечалось, вы никогда не можете предугадать, для чего вы будете использовать источник, когда он впервые будет построен, и было бы неразумно предполагать что-либо заранее.

Это означает по крайней мере один, но, возможно, два дополнительных трансформатора, а также выпрямители, фильтры и регуляторы.Вам также потребуется больше места на передней панели для подключений. Большинство коммерческих расходных материалов не обеспечивают измерения для каких-либо дополнительных источников питания, и в схемах не требуется ничего особенного. Можно использовать пару плат P05-Mini, одну для одного выхода + 5 В, а другую для ± 12 В.

По сравнению со стоимостью остальной части поставки, они могут быть добавлены за (почти) арахис, за возможным исключением трансформаторов. В качестве альтернативы они могут быть построены как отдельная единица, что дает определенные преимущества.Как и ожидалось, у меня есть один из них, а также те, что есть на моем рабочем месте, и, хотя он мало используется, он бесценен, когда мне нужен дополнительный источник питания, изолированный от всех остальных. Он также достаточно мал, чтобы я мог взять его из мастерской в ​​свой офис, где я также выполняю некоторые работы по тестированию и разработке. Действительно, вот где он сейчас.


12 Меры предосторожности

Существуют меры предосторожности, которые следует соблюдать с и любым источником переменного тока .Если нет переключателя, который отключает постоянный ток (или снижает выходную мощность до нуля), питание никогда не должно включаться при подключенной нагрузке. Большинство схем должны пройти фазы «запуска» (зарядка конденсаторов, стабилизация напряжения стабилитрона и т. Д.), Прежде чем выход станет стабильным. Если ваша нагрузка подключена, она может быть подвержена опасному напряжению, а ограничения тока может быть недостаточно для предотвращения повреждений. В самом деле, до тех пор, пока все внутренние схемы не будут иметь требуемые рабочие напряжения, ограничения по току может даже не быть!

С рисунком 7.1, когда источник питания включен и работает, снижение напряжения до нуля с помощью переключателя будет работать. Однако во время «запуска» (после подачи питания от сети) этот может не работать! Ничего не должно быть подключено к выходу, когда сетевой выключатель включен, потому что выход может быть непредсказуемым. Это было подтверждено моделированием — даже при выключенном переключателе выходная мощность мгновенно возрастает до более 4 В при подаче питания. Схема на рис. 6.1 должна быть лучше в этом отношении, но все же лучше не подключать нагрузку при включенной сети.

Необходимо включить питание, уменьшить напряжение до нуля, пока вы выполняете соединения, а затем напряжение можно установить на желаемый уровень. При тестировании чего-либо в первый раз используйте низкий порог ограничения тока, чтобы минимизировать повреждение в случае неисправности в ИУ. Если вам нужен источник с ограничением по току, напряжение следует установить так, чтобы был достигнут предел по току, но не выше его. Например, если вы хотите обеспечить ток в 1 А через нагрузку 10 Ом, напряжение необходимо установить только для напряжения холостого хода около 12 В.Установка более высокого напряжения только увеличивает риск для вашей нагрузки, если что-то пойдет не так.

Установка низкого напряжения (как раз достаточного для задачи) , а не не снижает рассеивание в транзисторах последовательного прохода. Единственная причина — убедиться, что выходной конденсатор (-ы) не может заряжаться до 25 В, а затем разряжаться через нагрузку. Это почти наверняка гарантирует, что мгновенный ток будет намного выше установленного порога. Это не только совет для схем, показанных здесь — он применим ко всем источникам питания , если в инструкциях по эксплуатации не указано иное.Большинство советует не подключать что-либо, пока не будут установлены напряжение и максимальный ток перед подключением нагрузки.

Существует несколько конструкций источников питания, в которых для управления функциями используется микроконтроллер, но будьте очень осторожны со всем (домашним или коммерческим), которые требуют от вас «программирования» напряжения или тока с помощью клавиатуры. Использование простых в использовании обычных электролизеров означает, что вы можете увеличить напряжение (или ток) поворотом ручки и быстро снизить напряжение, если обнаружены какие-либо аномалии.Попытка сделать это с помощью кнопок обычно невозможна, и большой ущерб может быть причинен просто потому, что вы не смогли достаточно быстро снизить напряжение при первых признаках или неисправности. «Высокотехнологичный» внешний вид программируемого источника питания может быть привлекательным, но он непрактичен для чего-либо, кроме лабораторных испытаний, когда оборудование, на которое подается питание, является известной величиной с самого начала.


Выводы

Если все вышеперечисленное не отпугнуло вас от идеи создания собственного источника питания, я настоятельно рекомендую вам начать с чего-нибудь довольно простого (например, Project 44).Я знаю, что «сделай сам» — это все, что нужно сделать самому, но это должно быть верно только тогда, когда это имеет смысл. Как обсуждалось ранее, я создал источник питания от ± 0 до 25 В, 2 А с полностью регулируемым ограничением тока, тепловым выключателем и двухскоростным вентилятором. Он довольно часто использовался около 30 лет (на момент написания) и никогда меня не подводил. Однако это сложная схема и не совсем подходит для любительского строительства. К сожалению, принципиальную схему невозможно найти, и ее непросто «перепроектировать».С семнадцатью транзисторами, пятью операционными усилителями, двумя микросхемами стабилизатора 12 В, пятью подстроечными резисторами, а также ожидаемым набором резисторов, диодов, крышек фильтров, переключателей, измерителей и потенциометров и потенциометров установки напряжения / тока я бы не рекомендовал это — даже если бы я сделал это. У есть полная схема для него. Стоимость будет сочтена неприемлемой для большинства строителей, которым все это может не понадобиться так часто.

Простая схема, показанная выше (рисунок 7.1), неплоха. Он не так хорош, как тот, который я построил, но, безусловно, приемлем для нормальной работы на стенде.У него есть то преимущество, что он может ограничивать более низкий ток, чем мой (~ 50 мА — мой минимум), и это полезно для чувствительных схем. Что еще более важно, его достаточно просто собрать даже на Veroboard, со схемами ограничения тока, подключенными напрямую к переключателю и потенциометрам напряжения. Остается только базовая схема на Veroboard, которая должна быть довольно простой. В целом схема, показанная на рис. 6.1, лучше, но переключение на последовательно-параллельную работу должно выполняться с большой осторожностью.

Возможно, что удивительно (а может, и нет), определение тока в целом намного сложнее, чем кажется на первый взгляд. Это довольно просто, если вы используете простую схему переключаемого резистора, но настроить ее не так-то просто. Существуют специализированные микросхемы, предназначенные именно для этого приложения, но большинство из них предназначены только для SMD, и они недешевы, особенно если они доступны только в упаковке из пяти штук. Это очень часто встречается с деталями SMD. Конечно, это всего лишь чувствительная часть — все еще необходимо получить действующее положение .Как уже отмечалось, в точке перехода (от регулирования напряжения к регулированию тока) есть два отдельных регулятора, каждый из которых пытается наложить свою волю на выход. Без значительных затрат времени на разработку результатом часто становятся колебания (переходные или непрерывные).

Основная идея этой статьи — показать вам некоторые из доступных опций. В идеале, большинство строителей своими руками хотят что-то, что выполняет свою работу, является надежным и не требует больших затрат на строительство. Если он может использовать детали, которые у вас уже есть, это даже лучше.Если вам все-таки нужно покупать детали, вы должны быть достаточно уверены, что выбранная вами схема соответствует поставленной задаче. Как уже отмечалось, схемы, которые я показал, нужно было адаптировать для обеспечения надежности (особенно при низком выходном напряжении и большом токе). Отсутствие защитных мер (ограничение тока, отключение вентилятора и перегрева) приведет к цепи, которая не только подведет вас, но и может взорвать цепь, которую вы тестируете.

Если вы посмотрите на стоимость необходимых компонентов, вы очень быстро обнаружите, что они составляют довольно пугающую цифру.Только трансформатор (-ы) будет дорогим, и хотя многие детали достаточно дешевы, это не относится к конденсаторам фильтра или радиаторам. Вы также должны предоставить корпус и другое оборудование, а это потребует значительной механической обработки для размещения счетчиков, вентиляторов, разъемов и т. Д. Очень сомнительно, что вы потратите меньше эквивалента 400 австралийских долларов в выбранной вами валюте, даже если у вас есть в наличии много мелких деталей. Я видел в сети двойной источник питания 0–30 В, 3 А всего за 325 австралийских долларов, и очень сомнительно, что вы сможете построить его за меньшую цену, если у вас нет почти всего необходимого в своем «ящике для мусора».

Это изделие , а не ни при каких обстоятельствах не должно рассматриваться как строительное изделие! Он предназначен только для того, чтобы продемонстрировать, что создание даже небольшого запаса скамейки — нетривиальное занятие и что есть соображения, о которых вы, возможно, не задумывались. Некоторые из конструкций, которые вы найдете в других местах в сети, плохо спроектированы и не обеспечивают адекватный запас прочности для последовательного транзистора (в частности), и в большинстве нет предупреждений о транзисторной SOA, тепловом отказе или любых других вещах. что может пойти наперекосяк.Как показано в этой статье, есть много вещей, которые могут пойти не так, особенно если какая-либо часть запаса недооценена из-за неправильного использования, которое получит при нормальном использовании.


Список литературы
  1. В любом случае, что это такое за дизайн блока питания (электронный дизайн)
  2. Регулируемый лабораторный источник питания — два варианта
  3. Стабилизированный источник питания 0-30 В постоянного тока с контролем тока
  4. Zdroj G400 (на чешском языке)
  5. Трубка регулятора напряжения (Википедия)
  6. Стабилизированный источник питания с двумя напряжениями, John Linsley-Hood (Wireless World, январь 1975 г.)
  7. Термисторы NTC (www.resistorguide.com)


Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2019. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки.Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница опубликована и © Ноябрь 2019 г.


Регулируемый источник питания постоянного тока

Регулируемый источник питания постоянного тока

Домашняя аудиосистема DIY

Регулируемый источник питания постоянного тока или нить накала

Я разработал и построил простой источник питания постоянного тока для привода 300B. филаменты в «Излишне «Комплекс 300B Amp» некоторое время назад.С тех пор у меня был номер заявок на покупку печатных плат для этой схемы. Я наконец добрался до оптимизация дизайна и теперь есть несколько плат. Вы можете найти Печатные платы на eBay, нажав здесь.

Хотя я разработал это в основном для использования в качестве источника постоянного тока для трубных нитей или нагреватели, это универсальный источник постоянного тока, который имеет множество применений. В основном просто добавьте трансформатор, чтобы получить стабилизированное постоянное напряжение в 1.От 25 В до Диапазон ~ 25 В, до 5 ампер. Вы можете соединить два модуля, чтобы получить биполярный питания (например, для операционных усилителей) — см. ниже.

Вот схема (щелкните изображение, чтобы просмотреть полную схему в формате PDF):

Простой выпрямитель / фильтр, микросхема стабилизатора напряжения LT1084 или LT1085 (или аналогичная) и синфазный дроссель наподобие используемых в импульсных источниках питания. В синфазный дроссель не обязателен — вы можете установить две перемычки, если не хотите Это.Он предназначен для устранения синфазного шума, который может емкостная связь через силовой трансформатор от первичной к вторичный. Он также может помочь отфильтровать шум восстановления выпрямителя. Примечание что из-за сопротивления в синфазном дросселе нужно регулировать напряжение под нагрузкой … вы теряете пару десятых вольта на CML.

Обратите внимание, что если вы используете его при более высоком напряжении, таком как 10 или 12 В, вы будете необходимо сделать R1, R2 и R4 более высоким сопротивлением, иначе они будут рассеивать больше, чем 1/4 ватта.

Я разработал печатную плату того же форм-фактора, что и нить накала Tent Labs. Supply, который представляет собой более сложный источник тока, управляемый напряжением (который работает очень хорошо, кстати). Который Таким образом, я мог переключаться между ними без каких-либо серьезных изменений.

Вот как выглядит печатная плата (щелкните, чтобы увидеть полноразмерное изображение):

Размеры (в мм):

Вы можете скачать спецификацию либо в формате PDF или в формате XLS.У меня также есть Спецификация проекта Mouser, к которой вы можете получить доступ через этот связь. Обратите внимание, что в спецификации есть ограничение на 1 мкФ на выходе (C2), тогда как схема имеет 0,1 мкФ. Вы можете использовать любой — 1 мкФ, возможно, лучше.

Общая стоимость деталей составляет чуть более 20 долларов каждая, плюс плата за плату. я продавая их по 30 долларов за пару на eBay.


Выходное напряжение и подключение двойного питания

Выходное напряжение устанавливается резистивным делителем (R1, R2 и R3), подключенным к выводу обратной связи LT108x, который регулируется на 1.25В ниже выхода. Подробнее см. LT108x лист данных.

Значения, показанные на схеме и в спецификации, позволяют регулировать выход от 2,5 В до 7,6 В. регулировкой подстроечного резистора R1. Если вам нужен диапазон От 10 В до 20 В (например, для источников питания операционных усилителей), вы можете сделать R2 820 Ом и trimpot R1 1k. Вы также можете увеличить резистор утечки R4 до что-то побольше, например 1к.

Если у вас есть трансформатор с двумя вторичными обмотками, вы можете использовать два из них. расходные материалы для биполярного (+/-) питания.Вы бы соединили два модуля как показано ниже:


Входное напряжение и ток

Для поддержания регулируемого выходного напряжения вход постоянного напряжения микросхема регулятора должна оставаться немного выше желаемого регулируемого выходного напряжения. (минимальная разница между вводом и выводом называется «выпадение» напряжение «). Для серии LT108x минимальная разница в 1,5 В составляет рекомендуемые. Итак, для 5.Регулируемый выход 0 В, у вас должно быть минимум 6,5 В на входе регулятора (или выходе фильтра).

Чтобы определить, какое напряжение должно быть на вторичной обмотке трансформатора для правильного необходимо учитывать это минимальное напряжение, пульсирующее напряжение и падение напряжения на диодах. Пиковое напряжение постоянного тока (верхняя граница пульсации) приблизительно [1,4 * (действующее значение напряжения трансформатора)] — 1,0 В, где 1.0V — падение на двух диодах. Напряжение пульсации зависит от на токовом выходе блока питания и емкости блока питания (3 * 6800 мкФ в спецификации или 20.4 мФ). Напряжение пульсации составляет примерно I / (2 * f * C), где f равно 60 (сеть 60 Гц) или 50 (сеть 50 Гц). Например, для 1А ток нагрузки и сеть 60 Гц, пульсации напряжения будут около 0,4 В.

Если сложить все вышесказанное: 6,5 В (минимальный вход на регулятор) + 1 В (диодный падение) + 0,4В (пульсация) вы получите 7,9В. Теперь умножьте это на 0,707, чтобы получить Напряжение RMS, которое дает вам 5,58V RMS. Это минимальное напряжение вам нужно для вторичной обмотки трансформатора.Чтобы сохранить количество энергии рассеивается в регуляторе как можно ниже, следует использовать следующий, более высокий напряжение доступно. В данном случае это, вероятно, трансформатор на 6 В.

Среднеквадратичное значение тока трансформатора должно быть не менее 1,8-кратного значения постоянного тока. выходной ток. Это общее практическое правило, и оно действительно зависит от сам трансформатор. Итак, для приведенного выше примера выхода 5 В 1 А в идеале вы должны хочу трансформатор 6.3V 1.8A. Более высокие значения тока — это хорошо (2А будет здесь хороший выбор — чем выше номинальный ток, тем круче трансформатор будет работать).

Теперь, если ты такой же ленивый, как я, проще использовать Duncanamp Симулятор источника питания PSUD, чтобы понять, что вам нужно. я введены параметры для трансформатора 6.3V 2A с регулировкой напряжения 15% (типично для дешевого трансформатора). Вот результат:

Минимальное напряжение постоянного тока (нижняя часть пульсации) составляет около 7,75 В, что дает вам Падение напряжения на стабилизаторе 2,75 В.

Если вы используете это для подачи нити, некоторые рекомендации: 300В при 5В и 2А, используйте 6В (или 6.3 В) трансформатор с номиналом 4 А или более (трансформатор 5 В может работать , но увеличивает падение напряжения). 2A3 хорош с 5V на 4А. Для 6В 1А (как для предусилителя) можно использовать трансформатор 6,3В 2А. (или обмотка на пластинчатом трансформаторе).


Рассеиваемая мощность

Нет ничего бесплатного. Если у вас текущий ток 1А и падение 2,75В через регулятор вы рассеиваете (I * R) или 1 * 2,75 = 2,75 Вт мощности в регуляторе.Поэтому он установлен на радиаторе — он теплый.

Итак, ток, который вы можете получить от этого регулятора, ограничен не только ИС регулятора (1084 подходит для 5A; 1085 3A), но также рассеиваемая мощность. Радиатор на спецификации рассчитан на 5-7 Вт, в зависимости от от того, насколько горячо вы готовы позволить ему стать. Вы можете стать выше или ниже радиаторы, которые подходят к печатной плате, если вам нужно больше или меньше энергии диссипация. И если вы сообразительны, вы сможете понять, как его установить на ваше шасси для дополнительного радиатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *