Двуполярный блок питания своими руками – ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

Не так давно возникла насущная необходимость собрать двуполярный блок питания (взамен внезапно сгоревшего) по простой схеме и из доступных деталей. За основу была взята схема, опубликованная ранее на этом же сайте.

Исходная схема

По ссылке существует подробное описание сути работы и настройки, поэтому останавливаться на этих моментах и тонкостях не стану.

Сначала была собрана исходная однополярная схема для пробы и поиска возможных ошибок, про которые писали некоторые собиравшие данную конструкцию. У меня всё сразу заработало нормально, возникли лишь вопросы с регулировкой тока ограничения и индикацией срабатывания этого ограничения. 

Поскольку исходная схема, как видно, разрабатывалась для выходных токов порядка 3 ампер и более, то и схема ограничения выходного тока соответствует этим заданным параметрам. Величина минимального тока ограничения определяется номиналом сопротивления R6, а с помощью переменного резистора R8 можно лишь несколоько увеличивать величину тока срабатывания защиты (чем меньше суммарное сопротивление резисторов R6 и R8, тем больше будет допустимый выходной ток). Светодиод VD6  служит для индикации работы блока питания и срабатывания защиты (при срабатывания защиты и ограничении тока на выходе он гаснет).

Далее была собрана аналогичная схема для напряжения отрицательной полярности — полностью аналогичная, лишь с заменой полярности включения электролитических конденсаторов, диодов (стабилитронов) и с применением транзисторов противоположной структуры (n-p-n / p-n-p). Обозначения элементов «минусового» плеча оставлены такими же, как у «плюсового» для упрощения рисования схемы 🙂

Новая схема БП

При изготовлении был применён валяющийся без дела трансформатор мощностью 60 ватт, с двумя вторичными обмотками по 28 вольт переменного напряжения и одной на 12 вольт (для питания дополнительных маломощных полезных устройств, например — кулера охлаждения радиаторов мощных транзисторов со схемой управления). Получившаяся схема приведена на рисунке.

Чтобы иметь возможность регулировать ваходной ток в широких пределах, вместо резисторов R6 и R8 в обоих плечах были применены наборы сопротивлений R6 — R9 и сдвоенный галетный преключатель на 5 положений. При этом резистор R6 определяет величину минимального тока ограничения, поэтому он включен в выходную цепь постоянно. Остальные же резисторы при помощи переключателя S1 подключаются параллелно этому R6, суммарное сопротивление уменьшается и выходной ток, соттветственно, увеличивается.

Резисторы R6 и R7  могут быть мощностью 0,5 ватт или более R8 — 1-2 ватта, а R9 — не менее 2 ватт (у меня стоят резисторы типа С5-16МВ-2ВТ и заметного их нагрева при нагрузке до 3 ампер не наблюдается). На схеме (рис.1) указаны значения выходных токов, при которых срабатывает защита и выходной ток даже при КЗ не превышает этих значений.

Здесь следует отметить, что индикация срабатывания защиты работает только при выходных токах более 3 ампер (то есть светодиод гаснет при сработке защиты), при меньших же токах светодиод не гаснет, хотя сама защита при этом срабатывает нормально, это проверено на практике.

Транзисторы Т1 (обозначение дано по исходной схеме, у меня это А1658 и КТ805) стоят без теплоотводов и практически вообще не нагреваются. Вместо А1658 можно поставить КТ837, например. Вообще, при сборке схемы мною пробовались самые разные транзисторы, соответствующие по структуре и мощности и всё работало без проблем. Переменный резистор R (сдвоенный, для синхронной регулировки выходного напряжения) применён советский, сопротивлением 4,7 кОм, хотя пробовались и сопротивления до 33 кОм, всё работало нормально. Разброс выходных напряжений по плечам составляет порядка 0,5-0,9 вольт, чего для моих целей, например, вполне достаточно. Хорошо бы, конечно, поставить сдвоенный переменник с меньшим разбросом сопротивлений, но таких пока нет под рукой…

Стабилитроны VD1 — составные, по два соединённых последовательно Д814Д (14 + 14 = 28 вольт стабилизации). Следовательно, пределы регулировки выходных напряжений получились от 0 до 24 вольт. Диоды выпрямительных мостов — любые, соответствующей мощности, я использовал импортные диодные сборки — KBU 808 без радиатора (ток до 8 А) и ещё одну маломощную, без обозначения (?), для питания кулера. 

На теплоотводы устаневлены только выходные регулирующие транзисторы КТ818, 819. Теплоотводы небольшие, что определено габаритами корпуса (по размеру он как БП от компа), поэтому потребовалось сделать дополнительное принудительное их охлаждение. Для этих целей был использован небольшой кулер (от системы обдува процессора старого компьютера) и простая схема управления, всё это питается от отдельной обмотки трансформатора, которая там оказалась весьма кстати.

В качестве термодатчика был использован германиевый транзистор типа МП42 (большие залежи остались и девать некуда. Оказалось, что замечательно работают в качестве термодатчиков!) Схема простая и понятная, в особом описании не нуждается. База транзистора-термодатчика никуда не подключается, этот вывод можно просто откусить, желательно только не своими зубами, а то стоматология нынче дорогое удовольствие!

Корпус этого транзистора металлический, поэтому его необходимо изолировать, например, трубкой-термоусадкой и расположить как можно ближе к теплоотводам выходных транзисторов. Температуру, при которой запускается кулер, можно регулировать подстроечным резистором (сопротивление может быть от 50 до 250 кОм). Максимальный ток и скорость вращения кулера определяются гасящим резистором в цепи питания. У меня это сопротивление 100 Ом (подбирается экспериментально, в зависимости от напряжения питания и тока потребления кулера).

Блок питания, собранный по данной схеме, неоднократно был испытан с нагрузкой во всём диапазоне выходных напряжений и токах от 30 мА до 3,5 ампер и показал свою полную работоспособность и надёжность работы. При токах более 2 ампер применённый трансформатор грелся довольно сильно из-за недостаточной его мощности, в остальном же схема вела себя вполне адекватно.

Есть возможность увеличить выходной ток нагрузки более 3-4 ампер, если использовать соответствующей мощности трансформатор и выходные (регулирующие) транзисторы, возможно применить параллельное включение нескольких мощных транзисторов. Схема не требует особой наладки и подбора компонентов, при изготовлении можно использовать практически любые транзисторы с коэффициентом усиления 80-350. Специально для сайта Радиосхемы, автор — Андрей Барышев

   Форум по блокам питания

   Обсудить статью ПРОСТОЙ ДВУХПОЛЯРНЫЙ БП С РЕГУЛИРОВКАМИ

radioskot.ru

Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания

 

автор DDREDD.

 

 

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.

 

 

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял  транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

 

 

 

 

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)

Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).

В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.

Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.

Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.

Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.

Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

 

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.

Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.

Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь [email protected] с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.

В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.

Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.

Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.

Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).

Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Архив для статьи

 

vprl.ru

Двухполярный блок питания схема которого • Питание

Двухполярный блок питания внешний вид монтажа которого показан на рисунке.

Технические характеристики:

  • Регулируемые выходные напряжения 1,2 … 25 В постоянного тока
  • максимальный длительный выходной ток: 2 ✕ 1,5A
  • индикаторы выходного напряжения – светодиоды
  • защита от короткого замыкания и тепловая защита
  • размеры платы: 45 ✕ 81 мм

Двухполярный блок питания схема которого классическая, выходное напряжение устанавливается с помощью потенциометров PR1 и PR2.

LM317 – используется как положительный стабилизатор напряжения, а LM337 – стабилизирует отрицательное напряжение.

Для стабилизаторов LM требуется небольшое количество рассыпухи и еще они имеют встроенную тепловую защиту, а также ограничение тока при коротком замыкании. Диапазон выходного напряжения составляет от ± 1,25 В до ± 25 В. Микросхемы LM317 и LM337 имеют встроенную кратковременную защиту от короткого замыкания. При выборе трансформатора обратите внимание на номинальное напряжение конденсаторов C1, C2. Трансформатор должен быть выбран таким образом, чтобы его вторичное напряжение после выпрямления не превышало номинальное напряжение конденсаторов.

Печатная плата двухполярный блок питания показана на рисунке.

Сборка не представляет особого труда, а последние установленные элементы должны быть конденсаторы C1, C2, сразу после установки микросхем на радиатор. Стабилизаторы US1 и US2 должны быть изолированы от радиатора с помощью слюды или силиконовой прокладки. Схема собранная из заведомо исправных элементов, не требует какой-либо регулировки, и после подключения трансформатора работает сразу же.

varikap.ru

Лабораторный блок питания двухполярный | 2 Схемы

Если нужен приличный блоком питания с регулируемым током и напряжением — редакция сайта «Две Схемы» советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты — тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП — это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.

Схема блока питания на uA723

Принципиальная схема БП

Прямому регулированию подвергается плечо положительного напряжения, в то время как отрицательная часть следует за положительной благодаря системе построенной на операционном усилителе TL081.

Описание работы

Стабилизатор U1 (uA723) включает в себя температурно компенсированный источник опорного напряжения, усилитель ошибки и выходной транзистор, обеспечивающий ток до 150 мА. Микросхема работает в типовой конфигурации, в которой его внутренний усилитель ошибки сравнивает напряжение с делителя R0 (5,6 k) — R3 (4,7 k) с напряжением, какое наличествует на выходе блока питания. Резисторы R4 (220R), R5 (6,8 k) и потенциометр P1 (50k) обеспечивают регулирование напряжения выхода.

Усилитель ошибки работающие в петле отрицательной обратной связи регулируется с помощью элементов R1 (560R), T1 (BD911) и T2 (BD139) меняя выходное напряжение так, чтобы его доля была равна установленному напряжению через делитель R0 — R3. Изменение положения ползунка P1 приведет к изменению выходного напряжения, поэтому усилитель ошибки, соответственно, изменит выходное напряжение, чтобы эти изменения компенсировать.

Например: перемещение ручки потенциометра в направлении R4 повысит напряжение на его ползунке, что заставит стабилизатор (через усилитель ошибки) снизить выходное напряжения так, чтобы потенциал регулятора снизился до уровня устанавливаемого делителем R0 — R3.

Резистор R2 (0.2 R/5W) вместе с транзистором Т6(BC548) работает в узле ограничения тока. Если ток, потребляемый от источника питания растет — падение напряжения на R2 также возрастает. Открытый транзистор Т6 при снижении напряжения равным примерно 600 мВ вызовет короткое замыкание между эмиттером и базой транзисторов управления и тем самым ограничит ток, протекающий через T1. Ток будет ограничен значением примерно 0.6/R2, что в данном случае дает 3 Ампера. Номинал резистора следует подобрать самостоятельно, учитывая трансформатор и его характеристики. В роли T1 в большинстве случаев потребуется применение нескольких транзисторов соединенных параллельно, чтобы распределить протекающий ток и мощность на несколько элементов.

За регулирование отрицательной половины питания отвечает операционный усилитель U2 (TL081). Его выход управляет транзисторами T3 (BD140) и T4(BD912). Резистор R9 (560R) ограничивает ток базы Т3, выполняя аналогичную роль, как R1 в положительной половине питания. Делитель R6 (100k), R7 (100k) и P2 (10k) подобран таким образом, чтобы в состоянии, установленном на регуляторе P2 был потенциал массы. Увеличение напряжения на выходе положительной части блока питания приведет к увеличению потенциала на ползунке потенциометра P2, одновременно ОУ U1 стремясь уровнять потенциал на обоих своих выходах приведет к снижению отрицательной половины питания с помощью регулировочных элементов T3 и T4. Напряжение на отрицательной половине, соответственно, будет следовать за положительным, если только делитель R6, R7, P2 будет установлен на деление 1:1.
Транзистор T5 (BC557) ограничивает ток в отрицательной половине питания таким же образом, как и T6 в положительной половине. Максимальное значение тока в данном случае это 0.6/R8.

К разъемам IN1 и IN2 подключаются две независимые обмотки трансформатора питания. Напряжение будет одинаково на мостах Br1 (5А) и Br2 (5А) и будет фильтроваться с помощью емкости C1, C2 (4700uF) и C3, C4 (100nF), после чего попадает на транзисторы T1 и T4 (напоминаем, что каждый из них может состоять из нескольких транзисторов, соединенных параллельно). На выходе напряжение фильтруют конденсаторы C6, C7 (470uF) и C9, C10 (100nF). Выходом блока является разъем OUT на котором и будет регулируемое напряжение симметрично относительно массы. Кроме того, на плате можно установить делитель R10-R13, благодаря которому возможно измерение выходного напряжения с помощью микроконтроллера с преобразователем ADC.

На вход схемы необходимо подключить трансформатор с двумя обмотками напряжением 2×24 В и мощности в зависимости от ваших потребностей.

Сборка лабораторного блока питания

Плата печатная ЛБП

Схема паяется на печатной плате (скачать). Монтаж не сложен, элементы на ней находятся далеко друг от друга. Однако необходимо определить значения R3, Р1 и R5. Резистор R3 определяет уровень напряжения на входе усилителя ошибки (pin 5 U1) и его подбор является простым. По расчётам резистор R3 равен 4,7 k, что дает напряжение на усилителе ошибки около 3,2 В. Второй шаг-это подбор значения потенциометра P1 и резистора R5, от которых зависит максимальное выходное напряжение блока питания. Предполагая, что требуемый диапазон регулирования выходного напряжения от 3 В до 26 В легко рассчитаем значение R5 чуть ниже 7к. Принимаем ближайшее значение из стандартного ряда и получаем R5 = 6,8 к.

Готовый лабораторник БП

После сборки мелких элементов на плате, пришло время для установки силовых транзисторов T1 и T4, они должны быть установлены на отдельный радиатор. Если по какой-то причине будет только один радиатор — примените изоляционные прокладки под транзисторы. Если потребление тока от блока питания не будет большим — до 0.5 А, можно поставить только один транзистор. Если таки нагрузки планируются несколько ампер — можно использовать параллельное соединение транзисторов в соответствии со схемой их соединения.

Регулированный блок питания 0-30В

2shemi.ru

Двухполярное питание из однополярного | AUDIO-CXEM.RU

Недавно столкнулся со следующей проблемой, собрал два усилителя НЧ на TDA7294, следующим этапом была сборка импульсного блока двухполярного питания, но как-то не терпелось проверить работоспособность усилителей. Естественно трансформатора с двумя вторичными обмотками на нужное напряжение у меня не оказалось, да и вообще не было у меня трансформатора с двумя вторичными обмотками.

Покопавшись в своем барахле, нашел два не очень мощных трансформатора, каждый имел одну вторичную обмотку, но на разное напряжение. Далее я принял решение собрать плату, которая будет из одной вторичной обмотки делать двухполярное питание.

Устройство, преобразующее двухполярное питание из однополярного, имеет следующую схему:

Схема была найдена в интернете, но в ней нет ничего сложного и объяснять работу данного устройства я не буду.

Компоненты для сборки:

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
VDS1,VDS2 Выпрямительный диодный мост Любой на нужное напряжение и ток 2 Распространенные KBU-610, KBU-810
C1,C5 Электролит 4700 мкФ 50В 2
C2,C6 Конденсатор неполярный 100 нФ 2 Пленка или керамика
C3,C4 Электролит 470 мкФ 100В 2

Скачать список компонентов в файле PDF

Описываемый в этой статье преобразователь двухполярного питания из однополярного не работает с постоянным током на входе преобразователя. Работает только с переменным током. Суть устройства такова, что из одной вторичной обмотки можно сделать  двухполярное питание.

 

Диодные мосты выбирайте любые, какие есть, главное, чтобы по напряжению и току подходили. У меня лежали с давней распайки мосты RBA-401, током 4 Ампера, напряжением 95 Вольт. Для питания одной TDA7294 (+-30В) этого достаточно. Распространенные мосты KBU-610, KBU-810 и другие.

Если вы захотите использовать данное устройство на напряжение больше 45 Вольт, то следует заменить конденсаторы C1,C5 на более высоковольтные. У меня не было электролитов ёмкостью 4700 мкФ, но были 2200 мкФ, их я и поставил 4 штуки.

Неполярные конденсаторы C2,C6 я поставил полипропиленовые, с разборки компьютерных блоков питания.

Трансформатор я использовал кольцевой, с одной вторичной обмоткой, напряжением 29 Вольт, мощностью 50 Вт. После выпрямления получил +-41 Вольт на конденсаторах.

При проверке я запитал TDA7294, выжал из не примерно 35 Вт, при этом просадка напряжения составила +-25 Вольт. Большая просадка напряжения произошла из-за слабого трансформатора. На плате преобразователя, все элементы кроме мостов были холодные, мосты теплые.

Сделаю вывод, что данный преобразователь двухполярного питания из однополярного, работает стабильно, и может использоваться для запитывания усилителей НЧ.

Минус данного устройства заключается в использовании на его входе только переменного тока.

Список компонентов в файле PDF СКАЧАТЬ

Печатная плата СКАЧАТЬ

Похожие статьи

audio-cxem.ru

cxema.org — Двухполярный лабораторный блок питания

Двухполярный лабораторный блок питания


Напряжение бп 0-30 Вольт. Ток срабатывания защиты 0-10 А.


Сидел я как-то на работе и решил сделать что-нибудь полезное. Порыскав в интернете в поисках стоящих девайсов, наткнулся на довольно простой блок питания и решил взяться за него. 


Автор схемы leokri


Не знаю для чего нужна цепочка VD3,VD2, резистор на 3 кОма и электролит (видимо цепочка мягкого пуска), но с ними у меня блок питания не заработал и они были удалены из схемы. Емкость 20000 мкФ мной была заменена на 10000 мкФ, поскольку на нагрузку в 5 Ампер считаю что этого будет достаточно, да и вряд ли у меня будут такие токи в нагрузке блока питания.


 


Описания принципа работы схемы: При включении питания происходит заряд емкости конденсатора емкостью 20000 мкФ. Как только конденсатор зарядится, напряжение на выходе начнет расти до той поры, пока не сработает компаратор DA4 операционного усилителя LM324N. Как только напряжение на его 10 ноге превысит напряжение на 9 ножке, компаратор переключится и своим током через светодиод  начнет открывать транзистор VT3. Напряжение на эмиттере транзистора VT1 понизится до заданного значения. Если напряжение на 9 ножке станет больше, чем на 10 компаратор переключится обратно и напряжение на эмиттере VT1 начнет повышаться. Срабатывание компаратора определяется напряжением на 9 ножке, которое выставляется подстроечным резистором на 4,7 к Ома.


 Аналогично работает канал токового регулирования, подстройка которого производится подстроечным резистором на 1 кОм.


Вместо двух силовых транзисторов в канал я сделал один, так как для 5 ампер одного КТ827А вполне будет достаточно.


В качестве линейных стабилизаторов напряжения использованы LM7808 и LM7815. Стабилизатор LM7815 запитывался непосредственно с электролитического конденсатора сразу после выпрямительного моста, а стабилизатор LM7808 запитывался с LM7815.


Операционный усилитель LM324N мне в магазине продали такой, что минимальный ток срабатывания на нем 40 мА, пришлось искать операционный усилитель данного типа с лазерной гравировкой, только после этого все стало регулироваться как положено. А второй операционный усилитель я достал из платы управления UPSа, корпус которого был использован.


В качестве шунта я использовал два керамических резистора на 0,1 Ома на 5Wвключенных параллельно друг другу.


Разработав монтажную плату и удостоверившись в работоспособности платы, собрал вторую такую же, чтобы обеспечить второй канал. Плата разрабатывалась в Visio.


Для визуального получения информации о напряжении и токе на блоке питания было решено сделать ампервольтметр на базе контроллера Atiny13Aи дисплея от сотового телефона Nokia 1200, поскольку у меня валялась целая куча этих телефонов.


 


Вольтметр+амперметр+ваттметр для блока питания


 


Также как и в случае с платой блока питания, мной были разработана плата для  ампервольтметров и плата под два дисплея, чтобы все влезало в переднюю панель корпуса UPSа.


автор данного девайса pavel-pervomaysk


A JonnS переделал прошивку под большие символы на дисплее


Силовой трансформатор был задействован от того же UPSa. Трансформатор был разобран и перемотан на напряжение 18 Вольт переменки. После выпрямительного моста и конденсатора у меня получилось 25 Вольт постоянки. Если кто будет повторять, то рекомендую намотать две дополнительные обмотки на напряжение 12 Вольт для питания ампервольтметров. 


Чтобы коллекторы не замыкались друг с другом была поставлена диэлектрическая пластина, в которой выпилено большое отверстие для транзисторов и на которую были закреплены радиаторы.


На одном из радиаторов закреплены также 2 кренки для запитки ампервольтметров.


Конечный результат получился такой. Второй дисплей инвертированный, поэтому видно хуже, но перепрошивать контроллер было уже лень.)))


Сзади были установлены предохранители для каждого канала в отдельности и оставлены все разъемы. С одного из задних разъемов я питаю свою самодельную паяльную станцию. Очень кстати удобно провода не болтаются по всему полу.


Для программирования контроллеров был собран самый простой, как мне кажется, программатор, который был найден на просторах интернета.


Порыскав на заводе в старом хламе, был найден нужный разъем и сделано такое чудо.


Прошивка без проблем была вшита в контроллер программой Uniprof. Вот пожалуй и все!


Все исходники можно скачать тут


{youtube}Mm_f-Qw4964{/youtube}


Автор Роман Соболев

  • < Назад
  • Вперёд >

vip-cxema.org

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется… И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Схема ИБП для УМЗЧ

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Всем удачи! Специально для Радиосхем — с вами был Alex Sky.

   Форум по ИБП

   Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

radioskot.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о