Электричество по одному проводу: Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз! — Энергетика и промышленность России — № 9 (61) сентябрь 2005 года — WWW.EPRUSSIA.RU

Содержание

Однопроводный ток – реальность, снижающая затраты на передачу энергии в сотни раз! — Энергетика и промышленность России — № 9 (61) сентябрь 2005 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 9 (61) сентябрь 2005 года

Авраменко предположил, что статические заряды каким‑то образом приводятся в движение, и образуется то самое переменное электромагнитное поле, которое и зажигает газ в лампе. Он стал проводить многочисленные эксперименты со статическим электричеством (которое на сегодняшний день практически не используется).

Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах. Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике. Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт.

Трансформатор Авраменко

Дело пошло. Сначала появились малые токи, 2‑3 Вт, потом – большей мощности. В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.

На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все‑таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.

В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» – включенных особым образом диодах. С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля – Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача – лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.

В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.

За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети.

Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10‑15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2‑4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6‑7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача – указывать направление тока. Что это значит? А это значит – происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил. Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.

Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил деньги, и опыты стали производиться на гораздо более серьезной основе. Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.

Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.

Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например – по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток – по металлической оплетке кабеля) и т.п. (патент РФ № 2172546). А раз так – то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы. Еще одна область применения (патент № 2136515) – оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также – оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206). Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы – и по электронному лучу (патент № 2163376).

Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».

Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» – организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб. Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80‑100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр.

Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане
Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу.

Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из‑за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись.

Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.

Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты!

Но это пока только будущее.

Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов. Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии. Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома. Тем более что его стоимость сегодня составит примерно $1000 (против 45‑60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.

Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники. Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт.

Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

Новости : Отдел по связям с общественностью : АлтГТУ

10 октября на IV Фестивале науки АлтГТУ преподаватель кафедры электроснабжения промышленных предприятий Игорь Владимирович Белицын проведет презентацию «Передача электроэнергии по одному проводу».

Все знают, как выглядит обычная домашняя розетка: она состоит из короба и двух отверстий. Наличие именно двух отверстий говорит о том, что сегодня, как и 100 лет назад, электроэнергия передается по двум проводам.

Первой в истории полноценной линией электропередачи считается 170-километровая линия с мощностью 220 кВт между немецкими городами Лауфен и Франкфурт, открытая в 1891 году. С тех пор по всей планете зарыты в землю и подвешены на столбах и опорах миллионы тонн дорогостоящих цветных металлов – меди и алюминия. Эта масса в тоннах и в денежном эквиваленте продолжает непрерывно расти за счёт развития энергосетей и их модификации, без каких-либо принципиальных изменений с того самого 1891 года, поскольку ничего нового в проводной передаче энергии от источника к потребителю учёные до сих пор придумать не сумели. Впрочем, почему не сумели? Сумели. Вот только мало кто об этом знает.

В 1892 году передачу электроэнергии по одному проводу демонстрировал знаменитый изобретатель Никола Тесла. Для нас остается загадкой, как он это делал: часть его записей до сих пор не расшифровали, другая часть сгорела. Сенсационность опытов Теслы очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод! Русский инженер Станислав Авраменко занимается этим вопросом вот уже 15 лет.

Но почему мы так мало знаем об этой сенсационной технологии, и почему она не применяется в современной энергетике? Ведь эта технология позволит сократить затраты и уменьшить количество проводов, опоясывающих планету, минимум в два раза. 

Получить ответы на эти вопросы и узнать суть процессов, позволяющих передавать электроэнергию по одному проводу, можно будет на презентации Игоря Владимировича Белицына, которая состоится в рамках IV Фестиваля науки АлтГТУ «Наследники Ползунова сегодня» 10 октября в ауд. 408 нового корпуса. Начало мероприятия в 11.30.

Фестиваль технического университета проходит под эгидой V Всероссийского Фестиваля науки. АлтГТУ приглашает всех желающих посетить увлекательные мероприятия нашего Фестиваля 9−10 октября

В эти дни можно будет посетить и другие презентации и лекции, например: 

  • «Будущие политехники. Начало успешной карьеры»
  • «Искусственный интеллект. Нейронные сети»
  • «Как увидеть атомы?»
  • «Актуальные проблемы современной физики»
  • «Естественно-языковой интерфейс для систем управления сложными техническими объектами».

ОТКРЫТИЕ НЕОЖИДАННЫХ СВОЙСТВ АТМОСФЕРЫ — СТРАННЫЕ ЭКСПЕРИМЕНТЫ — ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПО ОДНОМУ ПРОВОДУ БЕЗ ВОЗВРАТНОГО — ПЕРЕДАЧА ЧЕРЕЗ ЗЕМЛЮ ВООБЩЕ БЕЗ ПРОВОДОВ

ОТКРЫТИЕ НЕОЖИДАННЫХ СВОЙСТВ АТМОСФЕРЫ — СТРАННЫЕ ЭКСПЕРИМЕНТЫ — ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПО ОДНОМУ ПРОВОДУ БЕЗ ВОЗВРАТНОГО — ПЕРЕДАЧА ЧЕРЕЗ ЗЕМЛЮ ВООБЩЕ БЕЗ ПРОВОДОВ

Другая из этих причин в том, что я пришел к осознанию того, что передача электрической энергии на любое расстояние через среду — это на нынешний момент самое лучшее решение великой проблемы приспособления энергии солнца на пользу человеку. Долгое время я был убежден, что такую передачу никогда нельзя будет осуществить в промышленных масштабах, но сделанное мной открытие изменило мои взгляды. Я наблюдал, что при определенных условиях атмосфера, которая обычно является хорошим изолятором, предполагает наличие проводящих свойств и тем самым становится способной проводить через себя любое количество

электрической энергии. Но сложности на пути к практическому использованию этого открытия для целей передачи электрической энергии без проводов казались непреодолимыми. Нужно получать электрические напряжения во много миллионов вольт и работать с ними; нужно изобрести и создать генерирующие машины нового вида, способные выдерживать огромные электрические нагрузки, в такой системе нужно достичь полной безопасности от угроз токов высокого напряжения, прежде чем можно будет даже подумать о практическом ее введении. Все это нельзя сделать за несколько недель или месяцев, или даже лет. Эта работа требовала терпения и постоянного усердия, но продвижение вперед хоть и медленно, все-таки шло. Тем не менее, в ходе этой длительной работы были достигнуты другие ценные результаты, которые я постараюсь кратко изложить, перечислив главные достижения в той последовательности, как они происходили.

Открытие проводящих свойств воздуха, было хотя и неожиданным, но естественным результатом экспериментов в специальной области, которые я проводил несколько лет назад. Насколько я помню, в 1889 очень быстрые электрические осцилляции открыли определенные возможности, и это побудило меня разработать много специальных машин, предназначенных для их исследования. Из-з а специфических требований создание этих машин было чрезвычайно сложным и потребовало массу времени и усилий; но моя работа над ними была щедро вознаграждена, потому что с их помощью я достиг нескольких новых и важных результатов. Одними из первых сделанных с помощью этих новых машин были наблюдения того, каким необычным образом действуют крайне высокие частоты на человеческий организм. Так например, я показал, что мощный электрический разряд в несколько сот тысяч вольт, который в то время считался абсолютно смертельным, может проходить через тело без неудобств или вредных последствий. Эти осцилляции производили только психологические эффекты, которые, после моих объявлений, активно взяли на вооружение и глубже изучили опытные врачи. Эта новая область оказалась продуктивной сверх всяких ожиданий, и за несколько лет, прошедших с тех пор, развилась до такой степени, что сейчас она составляет полноправную и важную область медицинской науки. Многие результаты, невозможные в то время, сейчас легко получаются с помощью этих осцилляции, и с их помощью выполняется множество экспериментов, о которых тогда нельзя было и мечтать. Я все еще с удовольствием вспоминаю, как девять лет назад пропустил разряд мощной индукционной катушки через свое тело, чтобы продемонстрировать научному обществу относительную безвредность очень быстро колеблющихся электрических токов, и все еще помню изумление моей аудитории. Сейчас бы я взялся, и с гораздо меньшими опасениями, чем были у меня во время того эксперимента, пропустить через свое тело посредством таких токов всю электрическую энергию динамо машин, работающих на Ниагаре — сорок или пятьдесят тысяч лошадиных сил. Я получил электрические осцилляции, которые были настолько интенсивными, что когда они циркулировали по моим рукам и груди, они плавили провода, которые шли к моим рукам, а я все равно не ощущал никаких неудобств. Я так сильно возбудил этими осцилляциями петлю из тяжелого медного провода, что куски металла, и даже предметы с электрическим сопротивлением существенно большим, чем человеческие ткани, близко поднесенные к петле или положенные внутрь нее, нагревались до высокой температуры и плавились, часто со скоростью взрыва, и даже в это самое пространство, где буйствовали эти разрушительные силы, я несколько раз засовывал свою голову ничего не ощущая и не испытывал каких-либо вредных последствий.

Другое наблюдение состояло в том, что с помощью таких осцилляции можно было новым и более экономичным образом получать свет, что обещало дать идеальную систему электрического освещения вакуумными трубками, освобождая от необходимости замены ламп или нитей накаливания и возможно также даже от использования проводов внутри зданий. Эффективность этого света возрастает пропорционально частоте осцилляции, и коммерческий успех, таким образом, зависит от экономичного получения электрических вибраций с частотами, выходящими за пределы обычных. В этом направлении я был вознагражден дальнейшими успехами, и практическое введение этой новой системы освещения уже недалеко.

Исследования привели меня к новым наблюдениям и результатам, одним из наиболее важных из которых была демонстрация осуществимости подачи электрической энергии через один провод без возвратного. Сначала я мог передавать этим новым способом только очень небольшие количества электрической энергии, но и в этом направлении мои усилия были вознаграждены таким же успехом.

Фотография, приведенная на Рис. 3, показывает, как поясняет надпись под ней, действительную передачу такого рода, выполненную с помощью аппарата, который использовался и в других описываемых здесь экспериментах. До какой степени эти устройства были усовершенствованы со времени моих первых демонстраций перед научным обществом в начале 1891, когда мой аппарат с трудом мог зажигать одну лампу (и этот результат считался удивительным), станет понятно, когда скажу, что этим методом сейчас без труда зажигаю четыре или пять сотен ламп, и мог бы зажигать намного больше. На самом деле, нет предела количеству энергии, которое может этим способом подаваться для задействования любого вида электрического устройства.

После демонстрации осуществимости этого способа передачи мне естественным образом пришла мысль использовать в качестве проводника Землю, тем самым избавившись от проводов совсем. Чем бы ни являлось электричество, это факт, что оно ведет себя как несжимаемая жидкость, и Землю можно рассматривать как огромный резервуар электричества, которое, как я полагаю, можно было бы эффективно распределять с помощью надлежащей электрической машины. Соответственно, мои дальнейшие усилия были направлены на разработку специального аппарата, который бы мог эффективно создавать возмущение электричества в Земле. Прогресс в этом новом направлении был, естественно, очень медленными, и работа удручала, пока я наконец не преуспел в создании нового вида трансформатора или индукционной катушки, практически подходящей для этой особой цели. То, что этим способом возможно не только передавать маленькие количества электрической энергии для работы точных электрических устройств, как я намеревался в начале, но и электрическую энергию в заметных количествах, станет понятно из рассмотрения Рис. 4, который показывает реальный эксперимент этого рода, выполненный с тем же аппаратом. Полученный результат был тем более замечателен, что верхний конец катушки не был подсоединен к проводу или пластине для усиления эффекта.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Однопроводная передача электроэнергии Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Скляров Н.Е., Назиров Р.Р. ОДНОПРОВОДНАЯ ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ

В настоящее время появление новых потребителей электроэнергии приводит к росту мощности нагрузки, что, в свою очередь, ведет к увеличению вырабатываемой мощности на электростанции. Напряжения и мощности электропередач непрерывно растут. Линии электропередач, по которым передается электрическая энергия не рассчитаны на такую большую мощность, поэтому приходится их заменять на провода большого сечения. Это приводит к следующим проблемам: происходит рост расхода металла — алюминий,

медь, сталь — и высокой стоимости ЛЭП, линии становятся тяжелыми, повышается электрическая напряженность, что сказывается на безопасности людей и животных.

Развитие электроэнергетики приводит к появлению новых сверхпроводных материалов. Это несколько решает настоящие проблемы передачи электричества, но они все равно остаются.

Одним из основных решений этих проблем является однопроводная передача электрической энергии. Считалось, что ЛЭП не могут быть однопроводными, так как для работы любого электрического прибора необходимо наличие положительных и отрицательных электрических зарядов и как минимум двух проводов, по которым эти заряды передаются от генератора к потребителю электроэнергии.

Идея однопроводной передачи электроэнергии стала интересовать многих исследователей особенно после того, как в московском научно-исследовательском электротехническом институте С.В. Авраменко была продемонстрирована возможность передачи переменного тока по одному проводу [ 1,2 ].

Основу устройства для однопроводной передачи энергии составляла «вилка Авраменко», которая представляет собой два последовательно включенных полупроводниковых диода (Рис.1). Если вилку присоединить к проводу, находящемуся под переменным напряжением, то через некоторое время в разряднике наблюдается серия искр. Временной интервал от подключения до разряда зависит от величины емкости, величины напряжения, частоты пульсации и размера зазора разрядника. Включение в линию передачи резистора номиналом 2-5 МОм не вызывает существенных изменений в работе схемы [1]. Эффективность устройства зависит от материала обмоток генератора, поэтому необходимо проверить целесообразность изготовления обмоток из проводов медных, никелевых, железных, свинцовых ИТ. д.

Рисунок 1. Однопроводная передача энергии по схеме С.В. Авраменко [1]

На выходе трансформатора Авраменко получается обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.

С помощью «вилки Авраменко» удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля — Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача — лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.

В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Разработан и второй вариант однопроводной электроэнергии.

В этой схеме не используется «вилка Авраменко». Вместо «вилки Авраменко» используется обычная мостовая схема. Эта мостовая схема оказалась значительно эффективней, чем «вилка Авраменко». Кроме этого, были внесены и другие изменения в схему Авраменко. Данная схема приведена на Рис.2. В состав передающего узла входят генератор и трансформатор. Схема приемного узла показана на Рис.2 справа от трансформатора. На схеме, изображенной на Рис.2, цифрами обозначены: 1 — генератор, 2 — расширитель спектра, 3 — «антенна».

Рисунок 2 .Однопроводная передача энергии по новой схеме

Ключевыми моментами в повышении эффективности второй схемы, по сравнению со схемой Авраменко, является использование стандартной мостовой схемы, а не ее половины, а также наличие расширителя

спектра. Наличие в схеме расширителя спектра приводит к тому, что нагрузка не препятствует полному заряду конденсатора. Включение в линию передачи резистора или использование в качестве линии передачи проводника с большим удельным сопротивлением существенно не влияет на степень накала спирали лампы. В нашей схеме однопроводной передачи энергии имеется два самостоятельных контура, спектры частот в которых различные. В первом контуре узкополосный спектр частот, во втором — широкополосный. В первом контуре цепь замыкается на свободный конец вторичной обмотки трансформатора через антенну 3. Второй контур образован конденсатором, расширителем спектра и лампой накаливания.

Известно, что газоразрядные лампы светятся в сильном электрическом поле. В поле от «вилки Авраменко» они загораются без пусковых устройств и светятся максимально ярко. Практическую значимость этого трудно переоценить, ибо цена пускового устройства современной лампы дневного света (люминесцентной) составляет не менее 80% от всей ее стоимости. Но самое удивительное — «сгоревшие» лампы светятся, как новые.

Изучение свойств поля передающей линии в схеме Авраменко обнаружило необычайно высокую интенсивность даже на расстоянии 200 м от линии передачи энергии по одному проводу.

Однопроводная ЛЭП обладает рядом преимуществ. Содержание меди и алюминия в проводах может быть снижено в 10 раз, и провода не имеет смысла воровать. Реактивное электричество очень трудно украсть и использовать неспециалисту. Потери энергии в ЛЭП очень малы, и электроэнергию можно передавать на большое расстояние. При передаче ее обычным способом 10-15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2-4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6-7 А/мм2, то по однопроводной она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача — указывать направление

тока. Что это значит? А это значит — происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими. В однопроводной линии не может быть коротких замыканий, следовательно, однопроводный кабель не станет источником пожара в доме. Кроме того, стоимость однопроводной ЛЭП ниже, чем трехфазной. В стандартных ЛЭП и существующих электроприборах используют активный ток, поэтому для согласования старого и нового метода передачи электроэнергии в начале и в конце однопроводной ЛЭП устанавливают преобразователи активного тока в реактивный. Однако сейчас ученые ВИЭСХ работают над созданием генераторов реактивного тока и домашних электрических приборов, которые непосредственно используют реактивный ток из однопроводной линии. На данный момент ученые экспериментально подтвердили работу популярных полупроводниковых светодиодных светильников напрямую от однопроводной линии, без преобразователей. Также предложены электродвигатели, использующие для работы ток смещения в однопроводной ЛЭП.

Доказано, что однопроводное электричество можно передавать не только по медному проводу. Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.

Это доказывает, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например — по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток — по металлической оплетке кабеля) и т.п. А раз так- то можно изобрести массу машин и устройств, использующих это явление.

Проведенные теоретические и экспериментальные исследования по однопроводной передаче электроэнергии позволяют предложить интенсивно развивать это направление в следующих областях:

Электроснабжение сельскохозяйственных и сельских населенных пунктов

Однотроллейный и одножильный кабельный гибридный электротранспорт

Принципиально новые одноэлектродные электротехнологические установки и плазматроны: электрокультиваторы, обезза-раживание воды и стоков, производство озона, ветеринарные плазменные коагуляторы и скальпели.

ЛИТЕРАТУРА

1. Заев Н.Е., Авраменко С.В., Лисин В.Н., «Измерение тока проводимости, возбуждаемого поляризационным током». Журнал русской физической мысли №2, 1991.

2. «Резонанс Авраменко» http://www.skif.biz/energy/arhivl-3.shtml

Полуволновая передача энергии по однопроводным линиям |

Презентация: Полуволновая передача энергии по однопроводным линиям

Введение

Изначально предпосылками к исследованиям в данной области послужили работы Н. Теслы, в которых он указывает на возможность передачи энергии по одному проводу. Многочисленные публикации на эту тему породило множество толкований и легенд, реальная ситуация выглядит следующим образом – только часть уникальных изобретений Теслы действительно удалось повторить и реализовать на практике, в частности в данной работе.

Возможность применения полуволновых линий электропередач в резонансном режиме в России изучали ещё в первой половине прошлого века [1]. Наиболее подробно рассмотрена эта проблема исследователями СибНИИЭ, которые обнаружили   некоторые принципиальные особенности полуволновых передач [2].  Работа заключалась в экспериментальной проверке и уточнении ряда свойств полуволновых линий. Были установлены особенности полуволновых линий электропередач, в частности увеличение пропускной способности линии до 3,5 Pнат (натуральная мощность) при  малом возрастании потерь, повышение КПД, квазипостоянство тока в середине полуволновой линии. Данными работами занимались также, Александров Г.Н/ [3], А.А. Зевин [4] и другие.

Теоретический и экспериментальный вклад в развитие полуволнового способа передачи электроэнергии внёс Зильберман С.М. [5], объектом исследований которого являются электропередачи полуволнового типа высокого напряжения, предназначенные для транспорта больших потоков мощности и электроэнергии на расстояния 2000 — 4000 км.

В данной работе предлагается синтезировать предыдущие наработки в области реально существующего полуволнового способа передачи энергии с некоторыми принципиальными особенностями, делающими возможность передачу энергии более эффективном способом на средние расстояния (10 – 300 км).

Описание

Система передачи электроэнергии состоит из трёх основных частей, как показано на рис.1. Передающая часть – четвертьволновый вибратор с заземлённым низкопотенциальным выводом, пространственно-протяжённая часть – проводниковая часть системы длиной l (расстояние между передающей и принимающей частями). принимающая часть – полный аналог передающей части, включённой зеркально, четвертьволновые вибраторы – это трансформатор Тесла [6]. В областях пучностей тока четвертьволновых вибраторов размещены обмотки накачки энергии на передающей стороне и слива её на принимающей стороне.

Рис. 1. Схема полуволновой системы передачи электроэнергии на трансформаторах Тесла: Г, Н – питающий генератор и нагрузка полуволновой системы; L1, L4 – накачивающая и сливная катушки системы передачи; L2, L3 – передающая и принимающая высоковольтные катушки трансформатора Тесла.

Рассмотрим подробнее структуру системы передачи электроэнергии. Высоковольтная обмотка трансформатора Тесла с заземлённым низкопотенциальным выводом выполняет две функции: повышение силы тока в области пучности тока, т.е. на входе, и повышение напряжения в области пучности напряжения, т.е. на выходе. Обмотка представляет собой четвертьволновой отрезок, выполненный в виде спиральной намотки. Два встречно включённых трансформатора Тесла, соединённые высоковольтной линией l, образуют передающую полуволновую систему с заземлёнными с двух сторон низкопотенциальными выводами.

Через питающую первичную обмотку накачки возбудим описанную полуволновую систему на частоте полуволнового резонанса. Между заземлениями возникнет полуволновая стоячая волна с пучностью напряжения в середине системы (т.е. на высоковольтной линии длиной l) и пучностями тока на концах системы, (т.е. в областях накачки и слива энергии). Если обеспечить такое соотношение скоростей распространения электромагнитной энергии вдоль повышающих катушек трансформатора Тесла и вдоль проводниковой части системы, чтобы на трансформаторах уложилось, например, 85% полуволны, то на высоковольтной линии будут укладываться остающиеся 10 %.

Вдоль всей системы передачи, образованной передающей высоковольтной катушкой, высоковольтной линией и принимающей высоковольтной катушкой (т.е. между заземлёнными низкопотенциальными выводами), естественно, уложится вся половина длины волны (рис. 2) [7]. При этом вдоль высоковольтной передающей линии l напряжение будет оставаться практически одинаковым (из-за слабой зависимости функции синуса от угла в области аргумента, близкого к π/2).

Таким образом, передающая линия окажется в пучности напряжения под практически неизменным его значением вдоль всей длины. Низкопотенциальные части обеих катушек окажутся в областях пучностей тока, в этих же областях размещаются, как указывалось, катушки накачки и слива (низковольтные обмотки трансформаторов Тесла).

Рис. 2. Эпюры напряжений и токов вдоль полуволновой системы передачи электроэнергии: h – длина катушки; l – длина передающей линии. Г, Н – питающий генератор и нагрузка полуволновой системы; L1, L4 – накачивающая и сливная катушки системы передачи; L2, L3 – передающая и принимающая высоковольтные катушки трансформатора Тесла.

Эпюры на рис.2 развёрнуты вдоль электрических углов стоячих волн напряжения и тока.

В результате в полученной системе, области с переменным значением тока сосредоточены в трансформаторах, а область с низким значением тока и высоким значением напряжения размещена на проводниковой части передающей системы (на линии l).

Описанный вариант реализации передающей системы показывает, что возможны способы передачи, принципиально отличающиеся от широко используемых способов и обладающие рядом особенностей и преимуществ.

 Особенности и преимущества

1.Существует независимый фазовый сдвиг между напряжениями по концам линии от передаваемой мощности. То есть в полуволновой линии независимо от передаваемой мощности фазовый сдвиг по концам линии всегда составляет 1800 (напряжения в противофазе).

2.По критерию статической устойчивости полуволновая линия ведёт себя как линии нулевой длины. То есть, в случае работы электростанции на нагрузку через полуволновую линию предельная мощность по критерию статической устойчивости определяется параметрами самой электростанции, как в случае линии нулевой длины.

3.Полуволновая линия по способу изменения потока активной мощности идентична линии постоянного тока. То есть, в полуволновой линии, как и в линии постоянного тока, величина передаваемой мощности может изменяться только за счёт регулирования перепада напряжения по концам линии.

4.Полуволновая линия по реактивной мощности сбалансирована во всех режимах, в то время как в обычных линиях реактивная мощность по их концам равна нулю только в режимах натуральной мощности.

5.Прямопропорциональная зависимость напряжения в середине линии от передаваемой мощности находится в прямом противоречии с поведением напряжении в середине обычных линий, где колебание напряжения составляет всего несколько процентов при изменении передаваемой мощности в широких пределах (от нуля до натуральной и более), причём повышение напряжения происходит при холостом ходе.

6.У полуволновой линии напряжение в середине линии повторяет диапазон изменения передаваемой мощности.

7.При расчёте пропускной способности линий вместо критерия устойчивости руководствуются допустимым уровнем напряжения в средней части линии, то есть по наибольшему рабочему напряжению.

8.Появляется возможность шунтирования полуволновой линии в средней точке. Необычным свойством полуволновой линии по сравнению с традиционными линиями является то, что при шунтировании средней точки полуволной линии, токи по концам линии становятся равными нулю, так как шунтирование средней точки линии эквивалентно отключению линии по концам. Поэтому наличие в средней точке линии шунтирующего выключателя оказывается полезным для проведения коммутаций полуволновых линий в нормальных и аварийных режимах.

9.Полуволновые линии безразличны к качеству электроэнергии на входе, что делает актуальным их использование для буферной передачи электроэнергии от возобновляемых источников энергии в существующую сеть.

10.Существует возможность передачи энергии одному проводу. Механизм передачи не противоречит законам физики, а является прямым следствие вышеперечисленных режимов работы.

Перечисленные особенности полуволнового режима эксплуатации линий электропередач на качественном уровне могут быть объяснены электрическими свойствами стоячих волн напряжения и тока, физические свойства которых и порождают перечисленный выше набор столь необычных качеств.

Резюме

Полуволновые методы передачи энергии по одному проводу обладают следующими практическими преимуществами по сравнению с традиционными способами передачи электроэнергии:

  1. Передача электрической мощности по проводам существенно меньшего диаметра, что делает такой способ уже более экономичным.
  2. Возможность использования однопроводной передачи электрической энергии. Данная возможность позволяет решать ряд специальных задач (космос, питание аэростатов и д.р.).
  3. Линия обладает значительно большей устойчивостью в работе. Такой способ требует меньшего оборудования, поддерживающего стабильность работы, кроме того обслуживание сети упрощается.
  4. Повышенная электробезопасность линии. Возможность создавать режимы, где  полностью отсутствует опасность короткого замыкания.
  5. Эффективность и возможность передачи электроэнергии полуволновым способом на средние расстояния, данный способ требует меньших капитальных затрат, более прост в развёртывании.

Количественные оценки экономической эффективности внедрения данной технологии на практике могут быть получены только после проведения дополнительных исследований. По предварительным оценкам данный способ передачи электроэнергии более экономичен и технически целесообразен для специальных задач передачи энергии на средние расстояния (10 – 300 км).

 Список литературы

  1. Вульф А.А. Проблема передачи электроэнергии на сверхдальние расстояния по компенсированным линиям. – М.: Госэнергоиздат, 1941.
  2. Соколов Н.И., Соколова Р.Н. Возможности применения полуволновых линий электропередачи повышенной частоты. // Электричество – 1999 – № 2. C. 1-27.
  3. Александров Г.Н., Дардеер М.М. Длинная линия электропередачи между Конго и Египтом с использованием управляемых шунтирующих реакторов. // Электричество – 2008 – № 3. C. 9-17.
  4. Повышение эффективности электросетевого строительства / А.А. Зевин, и др.; под ред. Н.Н. Тиходеева. – Л.: Энергоатомиздат, 1991. – 240 с.
  5. Зильберман С. М. Методические и практические вопросы полуволновой технологии передачи электроэнергии, тема докторской диссертации и автореферата по ВАК 05.14.02.
  6. Пат. США № 593138 от 02.11.1897 г.
  7. Стребков Д.С., Некрасов А.И. Резонансные методы передачи и применения электрической энергии. Изд. 3-е, перераб. и доп.-М.: ВИЭСХ, 2008. – 352 с.
  8. В.З. Трубников, инж., ГНУ ВИЭСХ. Полуволновые линии передачи электроэнергии на резонансных трансформаторах. // Техника в сельском хозяйстве – 2009, №6

мир электроники — Передача электроэнергии по одному проводу

Из мира электрики и электроники

материалы в категории

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу. Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод! 

Но, современным электрикам предстоит удивиться еще больше, когда они узнают, что в авторитетном для своей отрасли Всесоюзном электротехническом институте работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рис. 1 показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р. Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

 

 Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно. Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток. 

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10—20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер. 

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности. Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет. 


Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину. Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины. По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть). 

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года. В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники. Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства. 

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения. 

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника. Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м…

Николай ЗАЕВ 
Техника — молодежи N1, 1991г. 

Передача электроэнергии по одному проводу схема. Передача электроэнергии по одному проводу — выдумка или реальность

Рис. 1. Схема генератора.

Для повторения эксперимента необходимо собрать генератор, схема которого приведена на рисунке 1.

Схема представляет собой обычный преобразователь постоянного напряжения в переменное которым питается трансформатор Т1. Возможно также, что схема выполняет ещё какую-то не вполне традиционную роль
1. Батарея питания GB1. В первых опытах (около года назад) я использовал одну обычную квадратную батарейку постоянного тока на 4,5 В. Во второй серии опытов (кон. июня 2004г.- нач. июля 2004г.) мной были использованы две последовательно включённые квадратные батарейки по 4,5 В, причём одна новая, а другая та же что использовалась в первых опытах.
2. Кнопка SB1. В общем, я думаю любая малогабаритная кнопка.
3. Конденсатор C1. Полярный конденсатор К50-12 номиналом 10мкФ*25В.
4. Транзистор VT1. Транзистор n-p-n марки КТ819В в пластмассовом корпусе.
5. Резистор R1. Резистор подстроечный номиналом 6,8 КОм.
6. Конденсатор C2. Плоский квадратный конденсатор марки Н30 номиналом 10нФ.
7. Трансформатор Т1. Мной было собранно два трансформатора. Первый трансформатор был собран для первых опытов, второй во время второй серии опытов.

Первый трансформатор имеет следующие характеристики:

Рис. 2. Конструкция каркаса первого трансформатора (размеры в мм).

Катушка I имеет 6 витков медного провода диаметром 0,15 мм, катушка II имеет 20 витков медного провода диаметром 0,25 мм, катушка III содержит 1800± 10 витков медного провода диаметром 0,12 мм. Тип проводов точно не знаю, но что-то вроде ПЭТВ или ПЭЛ.

Трансформатор намотан на самодельном каркасе. Конструкция каркаса приведена на рисунке 2.

Диски каркаса склеены каждый из двух слоёв картона (толщиной 0,4 мм), кольцо склеено из нескольких слоёв бумаги намотанных на подходящий каркас.


Рис. 3. Намотка катушек.

Намотка осуществляется следующим образом. На кольцо каркаса накладывается один слой изоляционного материала (что-то типа слюды). Поверх него наматывается катушка III, первый слой виток к витку(от себя слева направо), а далее в навал более или менее ровно по всей поверхности катушки (выводы III катушки расположены слева). Поверх III катушки накладывается один слой того же изоляционного материала. Далее в два слоя наматывается катушка II. Начиная приблизительно от середины, мотая к левому краю и обратно к середине, желательно виток к витку (выводы II катушки закреплены справа). На оставшейся свободной половине трансформатора наматывается катушка I, намотка осуществляется также от себя виток к витку начиная от середины и заканчивая у правого края (выводы I катушки закреплены также справа диаметрально противоположно выводам II катушки). Намотка всех трёх катушек должна быть выполнена в одну сторону (от себя). И, наконец поверх намотанных катушек накладывается ещё слой изоляционного материала.

Намотка катушек трансформатора приведёна на рисунке 3.

Второй трансформатор имеет следующие характеристики:

Рис. 4. Конструкция каркаса второго трансформатора (размеры в мм).

Катушка I намотана медным проводом диаметром 0,25 мм, катушка II намотана медным проводом диаметром 0,39 мм, катушка III намотана медным проводом диаметром 0,18 мм. Все катушки второго трансформатора имеют такое же количество витков как и соответствующие катушки первого трансформатора. Тип проводов так же что-то вроде ПЭТВ или ПЭЛ. Конструкция и технология изготовления второго трансформатора такая же как и у первого. На рисунке 4 приведены размеры каркаса.

При подключении трансформаторов к генератору особое внимание следует уделить тому, чтобы начала (помечены точками на схеме) и концы катушек были подключены соответствующим образом.

Трансформаторы сердечников не имеют. Хотя первый трансформатор работает и с броневым ферритовым сердечником, но хуже. Работу второго трансформатора с сердечником не проверял.

Монтаж генератора.


Рис. 5. Монтаж генератора.

Схема генератора собрана на монтажной панельке (рис. 5) размерами 30´ 8´ 8 мм с четырьмя парами выводов. Все соединения схемы выполнены пайкой.

Жирными кривыми линиями на рисунке показаны вспомогательные соединительные провода (за исключением трансформатора, где использовалась проволока, которой намотана катушка) представляющие собой обычный медный семи жильный провод диаметром (без изоляции) 0,5 мм и длинной в среднем около 5 см, тонкими прямыми линиями показаны выводы самих деталей. То есть, если у конденсатора тонкая прямая линия, то значит конденсатор подключен к панельке своим выводом без вспомогательного соединительного провода. Обращаю внимание, что желательно использовать подстроечный резистор припаянный непосредственно к панельке. Так как с переменным резистором который подключен проводами у меня хуже работает. Трансформаторы подключаются по одному, то есть либо первый либо второй. Катушки трансформатора подключены той же проволокой которой намотаны, длинной около 4-8 см. Начало III катушки имеет длину 7 см, конец III катушки можно вообще не оставлять, так как в экспериментах он почти не участвует, а можно на всякий случай оставить, сделать длинной около 4 см и намотать его поверх изоляции трансформатора.

Настройка генератора.

Для работы генератора следует учитывать все описанные мелочи. Правильно собранный генератор в настройке не нуждается. В начале следует лишь поставить подстроечный резистор в среднее положение, далее по ходу работы производят подстройку до получения наилучших результатов эксперимента. Какие либо изменения в схеме генератора необходимые для проведения опытов будут описаны ниже.

Эксперименты и наблюдаемые явления

Описания явлений даны приблизительно в хронологическом порядке.

Первая серия экспериментов (около года назад).

Для этой серии экспериментов использовался первый трансформатор, одна 4,5 вольтовая батарейка питания и тестер Ц4324. Все эксперименты проводились на деревянном столе покрытом плёнкой.

1. Передача переменного напряжения по одному проводу.

Рис. 6. Подключение тестера.

Для наблюдения этого явления я использовал тестер с двумя щупами длинной около 1 метра каждый. Тестер включается на переменный тип измерения на любом пределе и подключается одним щупом к выходу (начало III катушки) трансформатора, второй щуп никуда не подключается его вообще можно убрать (рис. 6).

Тем не менее важное значение имеет оба ли щупа присутствуют и какой куда подключен. Максимальное отклонение стрелки наблюдается в том случае, когда щуп идущий от гнезда тестера (*) подключен к выходу трансформатора, а второй щуп идущий от гнезда тестера (V, mA, -Kom, +Om) никуда не подключен (рис. 7.а). Минимальное отклонение стрелки наблюдается тогда, когда один щуп идущий от гнезда (V, mA, -Kom, +Om) подключен к выходу трансформатора, второй щуп отсутствует (рис. 7.б).


Рис. 7.

Отклонения стрелки, но в меньшей степени наблюдается также при подключении тестера к концу III обмотки трансформатора.

2. Подключение диодной вилки.

Рис. 8. Диодная вилка.

Схема вилки и её подключение приведено на рисунке 8.

Вилка состоит из двух одинаковых диодов VD1, VD2 марки КД503А или КД503Б и необязательного, хотя с ним лучше работает, поэтому лучше всё же поставить, конденсатора С3 марки h40 и номиналом 10нФ.

а. Для наблюдения появления на концах вилки постоянного тока, к вилке подключается тестер Ц4324 для измерения напряжения (предел около 30 в.) или силы тока (на одном из самых низких пределов) по постоянному току (рис. 9).


Рис. 9. Измерение напряжения.

Кроме того измерения можно проводить и по переменному току, подключив тестер к одному или двум выводам вилки.

То есть переменное напряжение диодами полностью не выпрямляется.

б. Также вместо тестера можно подключить светодиод VD3 типа АЛ307 (рис. 10).

Рис. 10. Подключение светодиода.

3. Подключение лампы дневного света (ЛДС).

Описание ЛДС будет дано ниже.

Схема подключения ЛДС к трансформатору приведена на рисунке 11.


Рис. 11. Подключение ЛДС (два варианта).

ЛДС к трансформатору можно подключать как с помощью вилки так и без неё. После включения устройства лампа должна светится на 1/2 — 2/3 своей длинны. Настройкой подстроечного резистора можно получить в лампе бегущие, чередующиеся тёмно-светлые кольца. Движение происходит от подключенного конца к свободному концу лампы (на рисунке слева на право). Свечение лампы не сильное, поэтому опыт рекомендуется проводить при слабом освещении.

Примечание: В выше описанных экспериментах подключение вилки со светодиодом и лампы осуществлялось непосредственно к выходу трансформатора без использования удлиняющих проводов.

4. Подключение тестера, светодиода и ЛДС на удлиняющем проводе.

Схема подключения тестера, и светодиода на удлиняющем проводе приведена на рисунке 12. Опять же конденсатор можно не использовать.


Рис. 12. Подключение на удлиняющем проводе.

В качестве удлиняющего провода использовался обычный двух жильный телефонный провод длинной 3,1метр, жилы которого были свиты вместе (другого просто не нашлось). Свечение светодиода и показания тестера не много уменьшились, но всё же были. При подключении ЛДС на удлиняющем проводе свечение ЛДС не наблюдается.

Примечание: Можно подвесить лампу за питающий провод длинной около 20 см, чтобы исключить контакт с поверхностью стола (проводил во второй серии экспериментов).

5. Передача энергии без проводов.

Стрелка тестера, настроенного на переменный тип измерений, щупы которого лежат рядом (расстояние пока не велико) с генератором начинает отклоняться при включении генератора. Вывод: стрелка отклоняется, значит совершается работа, а значит затрачивается энергия, но ведь тестер ни к чему не подключен???

6. Влияние нахождения различных предметов в зоне работы генератора.

Это явление можно наблюдать при проведении предыдущего эксперимента, если поводить рукой над генератором, щупами и тестером. В результате этих действий будет заметно колебание стрелки тестера. То есть рука в данном случае является приёмником излучения (поля) генератора захватывающим основную часть излучения (поля), кстати, по моемому токи около генератора наводятся в любых проводящих предметах. Это явление очень схоже с теорией и опытами Н. Теслы (KUASAR.NAROD.RU/LIBRARY/TESLA/ENERG.HTM#0001).

Вторая серия экспериментов (конец июня 2004г. – начало июля 2004г.).

В этих экспериментах в основном проводятся количественные измерения, а также используется второй трансформатор, две квадратные батарейки включенные последовательно дающие напряжение около 7 вольт и тестер Ц4324. Все эксперименты проводятся на деревянном столе покрытом плёнкой.

1. Измерение напряжения выхода.

Тестер включенный на измерение:
— переменного тока/напряжения и подключенный как показано на рисунке 6 зашкаливает на любом пределе измерений.
— постоянного напряжения и подключенный как показано на рисунке 9 показывает: с конденсатором С3 значение 79 В, без конденсатора 76 В.
— постоянного напряжения и подключенный как показано на рисунке 12 показывает: с конденсатором С3 значение 72 В, без конденсатора 68 В.
— постоянного тока и подключенный как показано на рисунке 9 только без конденсатора С3 и без дополнительной нагрузки показывает ток 1,6 мА.

Примечание: значения могут различаться в зависимости от состояния батарей питания.

2. Зарядка конденсатора от диодной вилки.

Используется схема аналогичная той что изображена на рисунке 8, только конденсатор С3 заменяется на полярный конденсатор марки К50-12 номиналом 20 мкФ´ 300 В. Далее генератор включают на (5-10 сек.) для зарядки конденсатора, после чего генератор выключают и измеряют тестером постоянное напряжение на конденсаторе (можно не отключая конденсатор от диодов). После такой зарядки тестер у меня показывает 79 В на пределе измерений тестера в 120 В. Кстати разряжая конденсатор, накоротко замыкая выводы, наблюдается довольно мощная искра. То есть как я полагаю, конденсатор действительно заряжается от одного проводника.

3. Явление смены полярности или присутствие обратного тока в диодной вилке.

Рис. 13. Обратный ток в диодной вилке.

Для наблюдения явления используется схема изображённая на рисунке 9 только без конденсатора (может и с ним конечно работает не пробовал). Тестер настраиваю на измерение постоянного напряжения (предел измерений 120 В) или силы тока (предел измерений 6 мА). Включаю генератор тестер показывает 76 В(или 1,6 мА если тестер настроен на измерение силы тока), далее отключаю один щуп тестера (рис. 13). Показания тестера становятся равными нулю.

Далее начинаю убавлять предел измерений тестера. При пределе тестера 1,2 В (0,06 мА) стрелка тестера начинает отклоняться в обратную сторону. Заметьте, тестер включен на постоянный тип измерений и касание осуществляется одним щупом причём именно тем что изображён на рисунке 13.

4. Переменное напряжение на батарее питания.

Рис. 14. Переменный ток в цепи питания.

Стрелка тестера зашкаливает если одним щупом тестера (настроенного на переменный тип измерений тока / напряжения) касаться одного (любого) вывода батарейки питания (рис. 14). Я случайно коснулся пальцем контакта кнопки, в результате чего получил небольшой ожог.

Примечание: возможно именно такой же эффект наблюдался в опытах Тесла в результате которых вышли из строя генераторы электростанции.

5. Снижение потребляемой мощности при подключении нагрузки.

Рис. 15. Снижение потребляемого тока под нагрузкой.

Для этого эксперимента используется дополнительный тестер Ц4311 для измерения потребляемого напряжения, тестер Ц4324 используется для измерения потребляемого тока. Подключение тестеров приведено на рисунке 15.

Тестер Ц4324 настраивается на предел измерения постоянного тока 3000 мА, а тестер Ц4311 настраивается на предел измерения постоянного напряжения 15 В.

В качестве нагрузки используется ЛДС мощностью 40 Вт подключенная без вилки к выходу генератора. Особое значение следует уделить размерам лампы: длинна 1,2 метра, диаметр трубы 36 мм, особенно это важно будет в следующем опыте.

Генератор отключен напряжение на батарее 7 В.

Включаем генератор:
— лампа отключена: напряжение падает до 4,5 В, потребляемый ток 250 мА.
— лампа подключена: напряжение падает до 4,5 В, потребляемый ток 180 мА.

Примечание: данные могут отличаться в зависимости от состояния батарей питания (новые, разряженные).

6. Получение обратного тока в цепи питания.

Рис. 16. Обратный ток.

Наверное это самый сложный опыт для повторения в виду неустойчивости его работы. Для этого эксперимента используется схема приведённая на рисунке 16.

Для измерений потребляемого тока в этом опыте необходимо использовать обязательно тестер Ц4324 настроенный на измерение постоянного тока на пределе 3000 мА, на других пределах измерений и с другим тестером обратного тока у меня не наблюдается. Искровой промежуток создаётся следующим образом Выходной конец катушки III накладываю (без крепления) на алюминиевую накладку конца лампы, далее включаю генератор и двигаю лампу из стороны в сторону таким образом чтобы между лампой и концом проволоки создавалась искра. В результате этих действий стрелка тестера начинает ходить из стороны в сторону, то приближаясь к нулю, то удалясь от него, в определённый момент стрелка устремляется к нулю, а затем уверенно отклоняется далее за нуль. Главное здесь поймать положение лампы при котором наступило данное явление. Кроме показаний обратного тока тестера также в этот момент наблюдается свечение ЛДС и искра между лампой и проволокой катушки.

Примечание: Также работает и с первым трансформатором, но сложнее поймать момент. Обязательно используёте ЛДС описанную раннее так как с ЛДС другого типа (которые я пробовал) явление наблюдается хуже либо же вообще не наблюдается. Кстати можно подключить тестер Ц4311 для измерения напряжения питания, но с ним опять же сложнее поймать момент.

Как я уже говорил в форуме сайта фирмы ООО “Скиф” данное явление можно трактовать по разному. Можно конечно всё списать на погрешности тестера и погрешности измерений, но можно предположить что именно при условиях описанных выше (определенная ЛДС (резонатор), определённый тестер и его предел (индуктивность, сопротивление) и т. д.) и наблюдается явление генерации обратного тока в цепи питания. Данное явление очень схоже с получением обратного тока в опытах Чернетского хотя есть и различие заключающееся в количестве питающих нагрузку проводов

7.Искровой разряд на любой проводящий предмет.

При достаточно близком поднесении отвёртки, грифеля карандаша к выходному концу (именно выходу) трансформатора наблюдается слабый искровой разряд, при поднесении к другому концу ничего нет.

8. Притяжение проволочного проводника.

Из-за того что выходной провод III катушки является тонкой проволокой наблюдается притяжение проволоки к близко расположенным (1-2мм) металлическим предметам (подобно наэлектризованной эбонитовой палочке притягивающей бумажки). Особенно это заметно при настройке искры в 6 эксперименте, что даже мешает, так как искровой промежуток слипается.

Заключение

Опыты Тесла, Авраменко, Чернетского и все вышеописанные эксперименты как мне кажется одного поля ягоды.

Данные явления ещё требуют больших исследований, но всё как всегда упирается в средства.

Большая просьба к тем кто захочет повторить данное устройство, обязательно сообщите о проведенных опытах и наблюдаемых явлениях.

P. S. Все вопросы, предложения и замечания можно направлять на E-mail: [email protected] или на форум сайта фирмы ООО “Скиф” Краснову Дмитрию.

Краснов Дмитрий


Дата публикации: Прочитано: 76130 раз Дополнительно на данную тему Рассказать в:

“Сверхпроводник” инженера Авраменко.

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу. Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что в авторитетном для своей отрасли Всесоюзном электротехническом институте работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рис. 1 показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р. Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.- нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно. Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10-20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2-5 МОм и R2=2-100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности. Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину. Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины. По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,- вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года. В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники. Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника. Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м…

Николай ЗАЕВ
Техника — молодежи N1, 1991г.

Раздел.

Идея однопроводной передачи электроэнергии появилась у С.В. Авраменко совершенно случайно более четверти века тому назад. Однажды он, только-только окончивший Ленинградский политехнический институт, снял с себя нейлоновую майку, трещавшую от разрядов статического электричества, и махнул ею около выключенной настольной люминесцентной лампы. И лампа загорелась!
Тогда он взял пластмассовую расческу, натер ее и стал махать возле лампы. И лампа снова зажглась. А ведь в институте учили другому: нужно либо подвести к лампе два конца, анод и катод, либо поместить газоразрядную лампу в переменное электромагнитное поле достаточно высокой частоты.
Авраменко предположил, что статические заряды каким-то образом приводятся в движение, и образуется то самое переменное электромагнитное поле, которое и зажигает газ в лампе. Он стал проводить многочисленные эксперименты со статическим электричеством (которое на сегодняшний день практически не используется).
Статический заряд почти невесом, чтобы получить его и переместить в пространстве, тяжелой механической работы производить не надо, мощные и металлоемкие двигатели и генераторы могут оказаться ненужными. Изобретатель старался получить свободный заряд, придать ему направленное перемещение, заставить действовать так же, как и обычный ток в проводах. Для этого он пытался преобразовать обычный ток из электросети в ток смещения свободных статических зарядов (в так называемые реактивные токи). Первичным источником служили обычные звуковые генераторы, используемые в радиотехнике. Из литературы он узнал о трансформаторе Теслы (этот ученый также пытался передавать на расстояние электрическую мощность с помощью реактивных токов) и использовал этот опыт. Трансформатор Авраменко
Дело пошло. Сначала появились малые токи, 2-3 Вт, потом — большей мощности. В результате Станиславу Викторовичу удалось сделать то, что до этого не получалось ни у кого: создать систему передачи тока свободных статических зарядов по одному проводу.
На выходе созданного Авраменко трансформатора мы имеем обычный переменный ток, который попал туда из обычной же электросети, только с полной асимметрией выходного напряжения: один конец вторичной обмотки остается под нулевым потенциалом, а вся синусоида подаваемого тока находится на другом ее конце. В трансформаторе Теслы второй конец был заземлен, небольшой потенциал на нем все-таки был, нулевого добиться ему не удалось. А в трансформаторе Авраменко подсоединяем к «нагруженному» электроду всего один провод и гоним электричество по нему.
В научных журналах (например, «Изобретатель и рационализатор»), заинтригованных уникальным явлением, пытались объяснить природу этого «однопроводного электричества». Рассказывалось и о трансформаторах без сердечников, подобных трансформаторам Теслы, о «вилке Авраменко» -включенных особым образом диодах. С их помощью удавалось накачивать энергией некую емкость, из которой потом получать эту энергию и перемещать ее по незамкнутой цепи, то есть по одному проводу. Причем течет она не внутри этого провода, а как бы вдоль него. По словам самого Авраменко, «поле перемещается вдоль провода как по волноводу». Из теории электричества известно, что токи смещения закону Джоуля — Ленца не подчиняются. Стало быть, сечение этого провода значения не имеет, он может быть тоньше волоса, его задача — лишь указывать направление. Кроме того, провод не нагревается, и потерь энергии почти нет.
В системе Авраменко ток проводимости из сети выпрямляется, преобразуется в реактивный ток нужной частоты, который передается по одному проводнику на любое расстояние, а там вновь преобразуется в обычный ток проводимости, заставляющий гореть лампы, крутиться моторы, работать лазеры и нагревать электроприборы.

Преимущества однопроводного электричества

Полного теоретического объяснения работы однопроводной системы нет и сегодня. Вопросы остаются, светила электротехники ответа на них не находят. И тем не менее возможность передачи энергии по одному проводу Авраменко доказал экспериментально. Это было около десяти лет назад.
За прошедшее с этого момента время Авраменко удалось установить уникальные свойства однопроводной сети.
Прежде всего выявились огромные преимущества однопроводной передачи электроэнергии на расстояние. При передаче ее обычным способом 10-15% энергии теряется на нагрев проводов (джоулево тепло). Для однопроводной же передачи можно брать настолько тонкий провод, насколько это позволяют соображения прочности, скажем, 2-4 мм в диаметре. Если в современных цепях плотность передаваемого тока не превышает 6-7 А/мм2, то по однопроводниковой она достигает 428 А/мм2 при мощности в 10 кВт. Причем провод не нагревается, а джоулевы потери уменьшаются почти в сто раз. Во столько же раз, соответственно, уменьшается расход меди на провода. Мало того, провода могут быть сделаны из обычной стали: ведь их электропроводимость значения не имеет, их задача — указывать направление тока. Что это значит? А это значит -происходит колоссальная экономия на опорах и проводах линий электропередач, а также контактных линий электротранспорта. Их можно сделать значительно менее громоздкими и материалоемкими.

Электрический ток… по трубопроводам

Станислав Викторович стал приглашать на демонстрацию опытов различных специалистов, руководителей Минэнерго, ученых из ФИАН, МИФИ и пр. Ни расчетам, ни своим глазам никто не верил. Первым человеком, поверившим Авраменко, стал директор Всероссийского НИИ электрификации сельского хозяйства (ВНИИЭСХ), академик РАСХН, профессор, д. т. н. Д.С. Стребков. Он первый понял, что все демонстрируемое изобретателем вполне подчиняется законам физики и электротехники.
Дмитрий Семенович пригласил Авраменко к себе в институт, создал там соответствующую лабораторию, выделил оборудование, выбил , и опыты стали производиться на гораздо более серьезной основе. Если раньше у Авраменко была лишь небольшая десятиваттная установка, то во ВНИИЭСХе изготовили опытную установку мощностью в 100 Вт, позволившую провести ряд важных экспериментов.
Например, было доказано, что однопроводное электричество можно передавать не только по медному проводу. Как происходит такой эксперимент? Выходящий из трансформатора Авраменко и батареи конденсаторов, где генерируются мощные статические заряды, стальной провод ныряет в лоток с водой, за которым идет графитовая нить, затем в лоток с грунтом (лотки, разумеется, изолированы). В линии специально устроены разрывы, в них возникают дуговые разряды между проводом и водой, землей, графитом. По проводу ползает однопроводная троллея (макет троллейбусной, например), отбирающая энергию для находящихся тут же потребителей. В конце линии подключена лампочка. Ток проходит по всем этим проводникам и зажигает ее.
Что этот опыт доказывает? А то, что можно постоянно и без больших потерь передавать энергию по любым токопроводящим изолированным веществам. Например — по трубопроводам, оптоволоконным линиям (по волокну передается информация, а ток — по металлической оплетке кабеля) и т.п. (патент РФ № 2172546). А раз так — то можно изобрести массу машин и устройств, использующих это явление.

Не воруйте провода, они… стальные!

Авраменко совместно со Стребковым и к.т.н. А.И. Некрасовым, руководящим лабораторией ВНИИЭСХа, разработали дождевальную машину, идущую вдоль арыка или лотка с водой и получающую из них не только воду, но и энергию для своей работы. Еще одна область применения (патент № 2136515) — оборудование для питания трамваев, троллейбусов, электропоездов и электромобилей с помощью одной троллеи взамен обычных двух (причем при этом по рельсу ток не идет!), а также — оборудование для питания мобильных электроагрегатов, вроде тракторов, аэростатов, вертолетов по сверхтонкому и легкому кабелю (патент № 2158206). Мало того, реактивные токи установки Авраменко можно передавать по лазерному лучу вообще без проводов (патент № 2143735), а за пределами атмосферы — и по электронному лучу (патент № 2163376).
Но корифеи все не верили, специальные журналы в публикациях отказывали: «Большие мощности все равно невозможно передать на расстояние. Сделайте киловаттную установку».
Ну, так ведь и сделали! Тут призадумались уже и специалисты. Первым всерьез заинтересовался «Газпром» — организация, далеко не бедная и на перспективные разработки денег не жалеющая. Вдоль газопроводов сейчас обязательно устраивают линии электропередачи для катодной защиты, питания перекачивающих насосов и для других эксплуатационных служб. Линии эти стоят дорого, провода из цветных металлов воруют. А при однопроводной передаче энергии можно протянуть стальной провод или даже пустить ток по самой трубе.

Воробей не сядет

«Газпром» спонсировал изготовление еще более мощной установки, на 20 кВт. Ее сделали с запасом: Д. С. Стребков утверждает, что она выдаст и 100 кВт. Установленный в начале этой линии высокочастотный трансформатор генерирует мощные электростатические заряды, которые концентрируются вдоль линии к резонансному контуру понижающего трансформатора Теслы и через выпрямитель отводятся к нагрузке, то есть к потребителям. Передает установка энергию по проводку толщиной всего в 80-100 мкм: его можно увидеть, только подойдя вплотную. Он отчаянно вибрирует, когда установка включена, иной раз даже отрывается от изолятора (разумеется, в реальных условиях столь тонкий провод никто ставить не собирается, он разорвется, даже если на него сядет воробей). И тем не менее по этому волоску течет ток, который питает 24 киловаттных лампы, мощный электромотор и пр.
Такая система имеет в сотни раз лучшие электрические параметры, чем традиционные двух-трехпроводные. При этом в конструкции установки применены стандартные, серийно выпускаемые отечественной промышленностью узлы: например, преобразователь, применяемый при термообработке труб, конденсаторы и пр. Между тем НПО «Сапфир» по заказу ВНИИЭСХа разрабатывает в настоящее время во много раз меньшие преобразователи на тиристорах, так что можно ожидать, сверх всего прочего, что установка станет гораздо более компактной.

Электротрактор без барабана и коагулятор в кармане

Применение принципиально новой системы подачи электроэнергии позволит значительно упростить и удешевить строительство троллейбусных и трамвайных линий или, допустим, даст возможность устанавливать на автомобилях электропривод с «антенной», чтобы водители, подъехав к устроенным повсеместно однопроводным линиям, подсоединялись к ним и ехали куда угодно, отключив ДВС и не загрязняя атмосферу.
Кроме того, можно было бы вернуться и к электротракторам, работающим от кабеля. От них в свое время отказались из-за того, что барабан кабеля, устанавливаемый на тракторе, весил 3 тонны. Теперь же его вес составит не более 30 кг. Да и без барабана можно обойтись.
Можно создать аэростатное телевидение, установив ретрансляторы километрах в десяти над землей. Или устроить аэростатную же систему мониторинга огромных площадей лесов или полей. Сейчас только вес кабелей мешает этому.
Но и это еще не все. Энергию по лазерным и электронным лучам можно передавать даже на спутники и ракеты! Но это пока только .
Однако вот вам настоящее: коагуляторы крови, изготовленные с помощью однопроводной системы. Эти приборы применяют для остановки крови при ранах и операциях, они как бы сваривают крохотной дугой электроплазмы края разорванных сосудов. Существующие сегодня в мире коагуляторы мощностью 8 Вт представляют собой громоздкую тумбу, стационарную или на колесах, весом около сотни килограммов, охлаждаемую водой из водопровода и потребляющую более киловатта энергии. Точно такой же мощности и еще более эффективного действия коагулятор, изготавливаемый во ВНИИЭСХе, питается от обычных аккумуляторных батареек, весит несколько сот граммов, помещается в «дипломате» или бардачке автомобиля, так что может работать и в полевых условиях, и дома. Тем более что его стоимость сегодня составит примерно $1000 (против 45-60 тыс. $ для громоздких зарубежных аналогов). Он может использоваться и уже используется не только в клиниках, но и в салонах красоты, для уничтожения бородавок, папиллом, татуировок и пр.
Сегодня работами Авраменко и его коллег весьма пристально интересуются иностранцы. Изобретения были отмечены золотой медалью Салона инноваций в Брюсселе и золотой медалью Николы Теслы, выдаваемой за выдающиеся работы в области электротехники. Англичане и японцы оплатили международное патентование, причем американцы выдали патент, в котором работы российских ученых названы «букетом открытий». С Индией ведутся переговоры о поставке демонстрационной установки в 25 кВт.
Но увы, увы и еще раз увы! О широком, массовом применении однопроводного тока в России пока приходится только мечтать.

В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии. Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже.

Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм. При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах. Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 — 0.5 мм. Катушки L2 — L4 должны быть одинаковые! Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор.

Видео с работой данной схемы

Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.

Отличие от других схем

Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров. При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи. Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.

Некоторые опыты

Опыт с лампочкой
Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.

Опыт с катушкой вокруг провода
Если сделать катушку, и продеть через нее передающий приемнику энергию провод, то на катушке появится ЭДС, как будто переменное магнитное поле направлено вдоль проводника, а не вокруг него.

“Сверхпроводник” инженера Авраменко.

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу. Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что в авторитетном для своей отрасли Всесоюзном электротехническом институте работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рис. 1 показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р. Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.- нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно. Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10-20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2-5 МОм и R2=2-100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности. Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину. Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины. По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,- вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года. В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники. Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника. Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м…

Рекомендуем также

4 метода для однопроводной передачи энергии

Сегодняшняя трехфазная электросеть использует 3 или 4 провода для передачи электроэнергии. В этой статье описаны 4 инновационных метода, некоторым из которых более 100 лет, в которых используется только один провод для передачи такого же количества энергии или более без обратного провода!

Эти методы обещают резко снизить затраты и снизить потери в линиях, и подразумевают, что наши учебники по электротехнике, возможно, нуждаются в обновлении.

В целях увеличения экзотичности, в этой статье мы рассмотрим следующие методы:

  1. Однопроводной возврат на землю (SWER)
  2. B-Line или Однопроводное электроснабжение (SLE)
  3. Однопроводная передача без возврата Tesla
  4. Однопроводная система электроснабжения Авраменко / Стребкова (SWEPS)

До Мы погрузимся в подробности, давайте кратко рассмотрим, что делает нашу нынешнюю систему передачи энергии неидеальной.

3-фазный: почему мы его используем и почему он неисправен

Трехфазная система используется для передачи энергии более 120 лет и с тех пор практически не изменилась. Так зачем использовать 3 фазы? На то есть несколько веских причин:

  1. Для создания плавно вращающегося магнитного поля, необходимого для достижения оптимального крутящего момента в электродвигателях, требуется минимум 3 фазы. Никола Тесла, сыгравший ключевую роль в разработке нашей нынешней энергосистемы, изобрел асинхронный двигатель переменного тока и поэтому был ярым сторонником трехфазной системы.
  2. Еще одно важное преимущество трех фаз состоит в том, что, поскольку каждая фаза разнесена на 120º, они в каждый момент времени дают в сумме ноль. Вот почему мы можем передавать 3 фазы без использования 3 обратных проводов. Пока нагрузки сбалансированы между фазами , мы можем объединить обратные токи в один, которые затем нейтрализуют друг друга, уменьшая необходимость в обратном проводе или используя только один относительно небольшой обратный провод, если фазы не совпадают. Не идеально сбалансирован.

Если вам нужно более интересное объяснение, посмотрите видео ниже.

Довольно отличная система. Однако есть и несколько серьезных недостатков:

  • Для передачи энергии необходимы 3 или 4 провода
  • Большие опорные башни для проводов
  • Размещение под землей очень дорого, так как провода должны располагаться достаточно далеко друг от друга
  • Значительные потери энергии
  • Требуется постоянная компенсация реактивной мощности
  • Комплексная балансировка нагрузки
  • Риск межфазных замыканий из-за ветра

Так что нет лучшего пути? Когда-то, не совсем.Переменный ток был выбран вместо постоянного тока в основном потому, что трансформаторы можно было использовать для легкого повышения и понижения токов.

Это было необходимо, потому что потери при передаче меньше при более высоких напряжениях, но вы не можете протолкнуть сотни киловольт в чью-то бытовую технику, поэтому потребовалось преобразование.

Благодаря полупроводниковой технологии это теперь также возможно для постоянного тока, хотя и с гораздо большими затратами и меньшей надежностью, поэтому линии высокого напряжения постоянного тока (HVDC) в настоящее время в основном используются для очень больших расстояний или для соединения двух систем переменного тока. , даже несмотря на то, что HVDC обещает снизить потери в линии и требует меньше проводов, чем трехфазная система переменного тока.

Ниже приведены 4 альтернативные системы, которым требуется только один проводник для передачи энергии, и которые решают большинство, если не все, из вышеупомянутых проблем.

Поскольку многие люди прямо скажут, что однопроводная передача энергии невозможна, я постараюсь предоставить как можно больше достоверных доказательств и поясню, как эти результаты могут быть воспроизведены для упрощения проверки.

Однопроводной возврат на землю (SWER)

Первая система, которую мы опишем, SWER, также единственная в списке, которая в настоящее время находится в активной эксплуатации.

Эта система, которая обеспечивает однофазное питание по одному проводнику при использовании земли (или океана) в качестве обратного пути, была разработана примерно в 1925 году в Новой Зеландии для экономичной электрификации малонаселенных сельских районов. Сегодня SWER активно используется в Новой Зеландии, Австралии, Аляске, Канаде, Бразилии и Африке, а также в подводных силовых кабелях HVDC.

Принципиальная схема SWER

Интерактивная принципиальная схема SWER. Нажмите на открытые переключатели, чтобы замкнуть их и увидеть, как ток течет по цепи.

Основным преимуществом этой системы является ее доступность, поскольку SWER использует только один провод вместо двух, и поскольку ток, потребляемый этими сельскими потребителями, относительно небольшой, более тонкие кабели и, следовательно, меньшее количество полюсов меньшего размера можно использовать для удержания кабеля. .

Однопроводной заземляющий обратный провод 19 кВ в Австралии

Обратной стороной является то, что эти линии не очень эффективны и часто испытывают значительные падения напряжения. Однако основная проблема заключается в том, что токи до 8 ампер могут протекать через землю около точек заземления, поэтому существует опасность поражения электрическим током людей и животных, если заземление неисправно.

И хотя системы SWER отлично подходят для экономичной передачи относительно небольших объемов энергии в малонаселенные районы, они не могут использоваться для электроснабжения городов и промышленности, поэтому их вариант использования довольно ограничен.

Следующий метод однопроводной передачи энергии, который мы обсудим, решает некоторые проблемы, присущие SWER, и полностью устраняет необходимость в обратном токе через землю.

B-Line

или Однолинейное электроснабжение (SLE)

Профессор Майкл Бэнк из Иерусалимского технологического колледжа разработал очень интересный способ обеспечения однопроводной передачи энергии путем создания равных фазных токов в проводе под напряжением и обратном проводе, что затем позволяет объединить эти провода в один.

Его система, которую он называет B-Line, достигает этого за счет использования фазовращателя на 180º после источника, объединения двух проводов в одну линию передачи, а затем преобразования этого обратно в обычный двухпроводной ток перед нагрузкой с помощью другого Фазовращатель на 180º. И нагрузка, и генератор не «увидят» разницы!

Фазовый сдвиг достигается за счет использования трансформатора 1: 1 с обратным подключением, а для более высоких частот может использоваться линия задержки на половину периода. Следующая интерактивная принципиальная схема должна прояснить эту идею.

Интерактивная электрическая схема B-Line

Если вы посмотрите на график тока в интерактивной схеме выше, вы увидите, что ток в однопроводной линии передачи составляет удвоенных тока источника, потому что два провода объединены в один.

Это означает, что для передачи того же количества мощности одиночная линия передачи должна иметь сопротивление , равное половине , следовательно, необходим более дорогой провод, но, по крайней мере, вам понадобится только один!

Основным преимуществом B-Line перед системой SWER является то, что , B-Line , не используют землю в качестве обратной цепи!

Да, на приведенной выше анимации кажется, что здесь задействована земля, но поскольку ток в одной линии передачи удваивается в этой системе, а ток между источником и нагрузкой подчиняется закону Ома, другого тока быть не может! Ток заземления здесь не существует, так как он все удерживается внутри цепи.

Профессор Бэнк провел два эксперимента, чтобы еще раз доказать, что земля не участвует в этой цепи.

  1. Он использовал сигнал 300 кГц, что затем позволило ему заменить заземленную катушку инвертора на 500-метровую линию задержки с полупериодом без подключения к земле . Система по-прежнему работала, как и раньше.
  2. В главе Обнуление без подачи тока в землю Банк описывает устройство, которое он называет «обнулителем», которое предлагает адекватный опорный уровень нулевого напряжения и, следовательно, может заменить заземление.Его система передачи все еще работала, когда соединение с землей было заменено обнулителем, что еще раз доказало, что в этой цепи через землю не протекает ток.
Обнулитель, разработанный профессором Майклом Банком, который предлагает опорный уровень нулевого напряжения, соответствующий нулю тока. Это антенна, состоящая из большого количества монополей, длина которых намного меньше четверти длины волны. Банк

отмечает, что недостатком использования его системы является то, что его одиночный провод создает более сильное электромагнитное поле, чем трехфазная система, которая предлагает компенсирующую полярность и, таким образом, оказывает большее влияние на людей.Этому недостатку противостоит тот факт, что один проводник требует гораздо меньше места и, следовательно, намного дешевле разместить под землей, где он не может нанести вред людям.

Линия задержки также должна быть отрегулирована при изменении частоты, чтобы фазовый сдвиг оставался равным 180º. Однако основным недостатком этой системы, по-видимому, является тот факт, что по одному проводнику необходимо передавать удвоенный ток, создавая большие потери передачи из-за рассеивания тепла (потери I ² R), если только не будут более дорогие кабели с меньшим сопротивлением работают.

Следующая система, которую очень легко воспроизвести, решает сильноточные проблемы B-Line и является первой в списке, которая, кажется, не поддается объяснению с помощью современных электротехнических моделей.

Однопроводная передача без возврата Теслы

«Я уже доказал на своей лекции в Колумбийском колледже, что могу передавать энергию по одному проводу»

Еще в 1891 году, во время лекции в Колумбийском колледже перед Американским институтом инженеров-электриков, Никола Тесла был первым, кто окончательно продемонстрировал, что электрическая энергия может передаваться по одному проводу без возврата и использоваться для силовые нагрузки, например лампы накаливания.

«В нескольких показательных лекциях перед научными обществами… я показал, что нет необходимости использовать два провода для передачи электроэнергии, но только один может быть использован с таким же успехом».

В своей основной форме однопроводная система Теслы представляет собой просто заземленный генератор переменного тока с другим выводом, подключенным к емкости, как большой металлический объект. Тесла объясняет работу этой системы, используя осветительный аналог в своей статье «Настоящая беспроводная связь».

Рис. 3. — Двухпроводная электрическая передача и гидравлический аналог. 4. — Электрическая передача через однопроводной гидравлический аналог.

«Работа устройств по одному проводу без возврата поначалу вызывала недоумение из-за своей новизны, но легко объясняется подходящими аналогами. Для этого сделана ссылка на фиг. 3 и 4.

В первом случае электрические проводники с низким сопротивлением представлены трубами большого сечения, генератор переменного тока — качающимся поршнем, а нить накаливания — тонким каналом, соединяющим трубы.При взгляде на диаграмму станет ясно, что очень незначительные отклонения поршня заставят жидкость устремиться с высокой скоростью через небольшой канал и что практически вся энергия движения будет преобразована в тепло за счет трения, как и у электрический ток в нити лампы.

Теперь вторая диаграмма не требует пояснений. В соответствии с конечной мощностью электрической системы используется эластичный резервуар, который устраняет необходимость в обратном трубопроводе.По мере того, как поршень колеблется, мешок расширяется и сжимается, и жидкость с большой скоростью проходит через ограниченный проход, что приводит к выделению тепла, как в лампе накаливания. Теоретически эффективность преобразования энергии должна быть одинаковой в обоих случаях ».

Эта базовая однопроводная система была усовершенствована Tesla на протяжении многих лет, что привело к разработке увеличительного передатчика Tesla, который будет использовать весь земной шар в качестве «провода».На изображении ниже Тесла показывает нам эволюцию своего устройства.

Эволюция однопроводной системы Николы Теслы

Сначала добавляется индуктор (2), затем этот индуктор становится переменной индуктивностью (3), а затем вводится повышающий трансформатор (4), эффективно создавая знаменитую установку катушки Тесла. Затем он совершенствуется для получения максимально возможного КПД и напряжения за счет использования настроенных цепей и резонанса.

Tesla планировала передавать большие объемы энергии через землю, по сути полностью устраняя необходимость в линиях передачи.Тем не менее, в ядре это по-прежнему однопроводная система передачи, и вместо земли вы можете использовать две настроенные катушки Тесла, соединенные одним проводом, для передачи электроэнергии так, как первоначально предполагал Тесла.

Три способа питания нагрузок от однопроводной линии передачи от катушки Тесла

На приведенных выше схемах показано следующее:

  1. Высоковольтные и высокочастотные нагрузки могут питаться напрямую от однопроводной линии передачи, если на конце линии присутствует емкость.
  2. Вторая катушка Тесла действует как приемник и понижает напряжение до линия передачи для питания низковольтных и высокочастотных нагрузок
  3. После понижения высокочастотное электричество выпрямляется с помощью двухполупериодного мостового выпрямителя со сглаживающим конденсатором для питания низковольтных нагрузок постоянного тока

Как вы можете Видите ли, система передачи Tesla очень универсальна и способна питать самые разные нагрузки по одному проводу.К сожалению, его так и не приняли на вооружение, потому что Тесла вложил все свои силы в свою «беспроводную» передачу энергии через землю.

Это безумие — думать, что Тесла еще в 1898 году назвал «необходимость обратной цепи для передачи электроэнергии в любом значительном количестве» «старым понятием»! Вот почему я был рад обнаружить, что группа российских ученых, наконец, продвигает эту технологию вперед и фактически интегрирует ее в энергосистему. Вдобавок они обнаружили, что эти однопроводные токи обладают некоторыми любопытными свойствами…

Авраменко / Стребков Однопроводная электрическая система (ОЭС)

В 1993 году российский дуэт Станислав и Константин Авраменко подали заявку на патент под названием « Способ и устройство для однолинейной передачи электроэнергии », который был им выдан 15 августа 2000 года.

Позвольте авторам описать функцию устройства, описанного в патенте.

«Преобразование электрической энергии… в энергию колебаний поля свободных электрических зарядов, таких как ток смещения или продольная волна электрического поля, плотность которого изменяется во времени, и передача энергии посредством передачи линия, не образующая замкнутой цепи, состоящая из однопроводной линии передачи и, при необходимости, ее преобразование в электромагнитную энергию токов проводимости.”

Этот фрагмент может потребовать пояснений.

По сути, Авраменко говорит, что их устройство преобразует регулярный ток проводимости в колеблющееся электрическое поле. Это колеблющееся электрическое поле затем передается по однопроводной линии передачи и, наконец, в конце линии снова преобразуется обратно в обычный ток проводимости.

Они называют свой трансформатор «генератором переменной плотности», поскольку он создает волну, изменяя плотность электрического поля, или «моновибратором», поскольку к линии подключается только один вывод.

Генератор переменной плотности Авраменко представляет собой просто вторичную катушку с одной отключенной клеммой или, альтернативно, подключенной к другой клемме с последовательной емкостью или без нее.

В конце концов, можно использовать любой старый трансформатор, «с ферромагнитным сердечником или без него», если только одна клемма вторичной обмотки подключена к линии передачи, хотя авторы рекомендуют, чтобы для максимальной эффективности настроенный передатчик и приемные катушки, другими словами: катушки Тесла.

Пока что устройства в патенте Авраменко идентичны устройствам Николы Теслы, за исключением того, что им было дано другое имя. Однако факт, что они описывают то, что, по их мнению, является природой однопроводного тока, является ценным.

Заглушка диодная Авраменко

Помимо трансформаторных катушек, вводится одно уникальное устройство для преобразования однопроволочного тока в регулярный ток проводимости: диодная вилка Авраменко.

Диодный штекер Авраменко может питать нагрузку регулярным импульсным постоянным током напрямую от однопроводной линии.

Это устройство на самом деле представляет собой не что иное, как установку однополупериодного выпрямителя с входными клеммами двух диодов, подключенных к однопроводной линии передачи, но это дает некоторые результаты, заставляющие задуматься.

Например, когда традиционный магнитоэлектрический или термоэлектрический миллиамперметр используется на однопроводной линии, ток не измеряется, но когда эти же измерители подключены к цепи вилки Авраменко, ток равен измеренным

Кроме того, включение резистора 10 кОм, конденсатора или катушки индуктивности последовательно с однопроводной линией не влияет на ток, измеряемый в цепи вилки Авраменко на конце линии! Однопроводной ток, кажется, полностью «игнорирует» эти компоненты, намекая на сверхпроводящие свойства ! Они делают , а не , похоже, соблюдают закон Ома или законы Кирхгофа.

Зная это, следующий пункт из патента Авраменко имеет смысл.

«Изобретение позволит резко снизить затраты, связанные с передачей электроэнергии на большие расстояния, и резко снизить потери джоулева тепла в линиях электропередачи».

Эти результаты подтверждают утверждение Авраменко о том, что однопроводные токи, которые он и его коллеги Заев и Лисин называют «токами поляризации» в своей статье 2012 года, принципиально отличаются от токов проводимости и что они имеют продольную, а не поперечную природу.

Улучшенный штекер Авраменко с двухполупериодным мостовым выпрямителем, емкостью, подключенной к его концу, и магнитоэлектрическим миллиамперметром, подключенным поперек, как предлагает Касьянов (2015)

Другие авторы приходят к тем же выводам, но также упоминают, что Эффективность вилки Авраменко может быть увеличена за счет использования двухполупериодного мостового выпрямителя.

Внедрение в сеть РФ

Подавляющее количество экспериментальных данных свидетельствует о том, что однопроводная передача энергии возможна и намного дешевле и эффективнее, чем наша древняя трехфазная электросеть, поскольку в ней используется меньше проводов меньшего диаметра, поэтому потребуется меньше полюсов, можно использовать трансформаторы меньшего размера. благодаря более высокой частоте во время передачи теряется меньше энергии, увеличивается дальность передачи и пропускная способность, а также устраняется опасность коротких замыканий.

И хотя западные ученые все еще смеются над осуществимостью однопроводных токов, российское правительство уже много лет финансирует исследования в этой области с целью серьезно модернизировать более 1 миллионов километров устаревших воздушных линий электропередачи в ближайшие 15 лет.

лет

В докладе 2018 года Федеральный научный агроинженерный центр ВИМ России предлагает использовать эту технологию, чтобы …

«Прямое преобразование солнечной энергии и трансконтинентальная передача тераваттной мощности с использованием технологии резонансных волноводов, разработанной Н.Тесла »

Помимо передачи электроэнергии по всему миру, в документе продолжается описание других приложений технологии Tesla, некоторые из которых уже запатентованы авторами, в том числе:

  • Электрические ракеты
  • Безхлорные способы создания солнечных элементов
  • Снижение затрат на электролиз для производства водорода в 10 раз
  • Безбатарейные электромобили
  • Бесконтактное питание поездов
  • Подземные кабели для замены воздушных

и Европа хочет оставаться конкурентоспособной, кажется, пора начать серьезно относиться к этой революционной технологии и начать вкладывать серьезные усилия в ее разработку.

А как насчет трехфазных двигателей ?!

После прочтения этой статьи я надеюсь, что жизнеспособность и революционный характер однопроводной передачи энергии стали очевидны. Однако по одному проводу может передаваться только 1 фаза, что нормально для большинства бытовых потребителей, но вначале мы узнали, что для работы промышленных двигателей требуется трехфазное питание…

К счастью, есть несколько решений для создания трехфазного питания от однофазной линии.

Создание трехфазного питания от однопроводной линии, как это предлагает Michael Bank
  1. TRiiiON предлагает решения для трехфазного питания по принципу plug & play
  2. Изобретатель B-Line, упомянутый в этой статье, также предлагает решение: разделить одиночный провод Линия на три линии на стороне клиента, затем используйте простые фильтры L & C, чтобы сдвинуть 2 фазы на 60 ° и 1 фазу на 180 ° с помощью катушки инвертора, в результате чего получится 3-фазный ток

Заключительные мысли

В этой статье описаны 4 метода передачи электроэнергии по одному проводу без возврата.

Оказывается, эффект невероятно легко воспроизвести: возьмите любой трансформатор и используйте только одну клемму вторичной обмотки. Вот и все! Затем вы можете еще больше повысить эффективность передачи, запустив трансформатор на его резонансной частоте.

Поскольку репликация настолько невероятно проста, а потенциал сверхпроводимости при комнатной температуре настолько очевиден, меня, честно говоря, сбивает с толку, что эта технология не используется в полную силу исследователями по всему миру.Похоже, только Россия серьезно к этому относится.

Я призываю всех, кто читает это, начать экспериментировать и найти способы распространения этой технологии. Я предполагаю, что это не будет принято до тех пор, пока не будет доступен полностью разработанный продукт или метод, который сэкономит предприятиям или потребителям так много денег, что они будут почти вынуждены их принять.

Если вы знаете какие-либо методы для достижения однопроводной передачи энергии, которые не были упомянуты в этой статье, поделитесь, пожалуйста, в комментариях!

Электрооборудование: энергоэффективность — увеличение на размер одного провода означает большую экономию

Установка провода только на один размер больше, чем требуется Национальным электротехническим кодексом, повышает энергоэффективность с существенной окупаемостью.Этот простой метод может обеспечить быструю окупаемость при одновременном повышении гибкости установки. За счет увеличения диаметра провода уменьшенные потери мощности компенсируют стоимость провода и сокращают затраты на электроэнергию.

Почему это важно?

Увеличивая размер провода в новой установке, инженер или подрядчик может продемонстрировать заказчику реальную экономию, а также преимущества меньшего количества выделяемого тепла и повышенной гибкости установки. Кроме того, когда вырабатывается меньше тепла, снижается потребность в энергии для вентиляторов и систем кондиционирования воздуха.

Конечно, при любой установке необходимо учитывать множество факторов. Но для большинства новых приложений, где стоимость рабочей силы и трубопровода для установки превышает стоимость провода, увеличенный размер провода окупается менее чем за два года. В то же время увеличенный размер проводов является страховкой от изменения будущих потребностей и обеспечивает более низкие падения напряжения. Некоторые компании, естественно, указывают провода на два или три сечения больше минимальных требований в нейтрали, которые часто перегружаются из-за гармоник.

Ключевыми элементами, которые влияют на окупаемость и, следовательно, на экономический стимул для установки большего сечения провода, являются рабочий цикл, коэффициент нагрузки и цена на электроэнергию. При использовании кабелепровода того же диаметра повышенная стоимость провода минимальна. Как показывают приведенные ниже примеры, окупаемость увеличения размера может быть довольно короткой даже в однофазных цепях освещения или коммерческих условиях в одну-две смены.

Насколько это важно для владельца?

Джим Кларксон, бывший корпоративный менеджер по энергетике компании Southwire, которая имеет под крышей почти 50 акров промышленных объектов в девяти штатах, требует, чтобы все нагрузки менее 100 А использовали провод на один размер больше, чем требуется по нормам.«В этих условиях гарантирована быстрая окупаемость», — говорит Кларксон. «Заявки большего размера рассматриваются в индивидуальном порядке».

Простой способ понять драматическое влияние сечения провода на энергоэффективность и затраты — это изучить число в этих примерах, в котором установлен один провод сечением, превышающим минимальный размер кода. Все три примера включают отдельный полноразмерный заземляющий провод в соответствии с рекомендуемой практикой и используют медные проводники THHN.

Пример 1. Трехфазная цепь, питающая 125 л.с. Двигатель 460 В, работающий при 75% нагрузке, 250 футов от центра нагрузки, наработка 8000 часов в год. Предполагается, что потребляемая мощность составляет 75% от 156 ампер полной нагрузки (FLA).
Провод 3/0 Провод 4/0
Размер кабелепровода 2 дюйма 2 дюйма
Расчетные потери (при нагрузке 75% и температурах проводника 44 и 40 ° C, соответственно) 708 Вт 554 Вт
Стоимость провода $ 991 $ 1232
Стоимость канала $ 365 $ 365
Дополнительные затраты $ 241
Энергосбережение: при 75% нагрузке 1237 кВтч / год
Экономия в долларах: по 0 долларов.07 за кВтч окупаемости $ 86,59 / год 2 года, 9 месяцев
Экономия в долларах: при окупаемости 0,10 долл. США за кВтч 123,70 $ / год 1 год, 11 месяцев
В этом примере окупаемость составляет менее 3 лет, а экономия сохраняется на неопределенный срок в будущем.
Пример 2. Та же экономия I 2 R и быстрая окупаемость применимы и к однофазным системам.Возьмем, к примеру, однофазную осветительную нагрузку на 15 А, работающую непрерывно. Для упрощения предположим, что нагрузка сосредоточена на расстоянии 100 футов от панели.
# 12 AWG # 10 AWG
Размер кабелепровода 1/2 дюйма 1/2 дюйма
Расчетные потери (при нагрузке 15 А, 40 ° C и 37 ° C, соответствующие температуры проводника) 77 Вт 48 Вт
Стоимость провода $ 11.82 $ 18,57
Стоимость канала $ 42,00 $ 42,00
Дополнительные затраты $ 6,75
Экономия энергии 254 кВтч / год
Экономия в долларах: 0,07 доллара США за кВтч окупаемости $ 17,78 / год 5 месяцев
Экономия в долларах: при окупаемости 0,10 долл. США за кВтч $ 25,40 / год 3 месяца
Значительная краткосрочная окупаемость при однофазном запуске с гибкостью для будущих изменений нагрузки.
Пример 3. Даже когда требуется больший трубопровод, можно быстро окупиться за счет увеличения размера провода. Рассмотрим случай трехфазной осветительной нагрузки на 40 А, соединенной звездой, работающей всего 4000 часов в год. Для упрощения предположим, что нагрузка сосредоточена в 200 футах от центра нагрузки. В этом примере в жестком металлическом кабелепроводе используется всего 5 проводников: три фазных проводника, нейтраль и полноразмерный заземляющий провод.
# 8 AWG # 6 AWG
Размер кабелепровода 3/4 дюйма 1 дюйм
Расчетные потери (при 100% нагрузке и 60 ° C и 45 ° C, соответствующие температуры проводника) 711 Вт 426 Вт
Стоимость провода $ 117 $ 166
Стоимость канала $ 128 $ 192
Дополнительные затраты $ 113
Экономия энергии 1140 кВтч / год
Экономия в долларах: по 0 долларов.07 за кВтч окупаемости $ 79,80 / год
1 год 5 месяцев
Экономия в долларах: при окупаемости 0,10 долл. США за кВтч 114,00 $ / год 1 год
Обратите внимание, насколько холоднее работает провод №6. И окупаемость менее полутора лет при всего 4000 часов эксплуатации.

6 опасных мифов об электробезопасности

Все используют электричество, но мало кто (вероятно, менее 10%) действительно понимает это.Это может быть опасно, так как электричество может убить или поранить. Объедините врожденную опасность электричества с окружающими его мифами, и ситуация станет еще более тревожной. Чтобы повысить безопасность, вот несколько развенчанных электрических мифов, любезно предоставленных несколькими энергетическими компаниями.

Миф 1. Бытовые резиновые перчатки и обувь на резиновой подошве — хорошие изоляторы. Только если они сделаны из 100% резины, чего нет. Чтобы сделать эти перчатки и обувь более удобными и долговечными, компании добавляют добавки, которые делают эти «резиновые» изделия хорошими проводниками, а не изоляторами.

Миф 2: Дерево — хороший изолятор. Дерево — проводник, не очень хороший, но все же проводник. Но сила высокого напряжения не имеет проблем с перемещением по дереву. А если древесина влажная, она превращается в отличный проводник даже при низком напряжении. Поэтому будьте осторожны при использовании деревянных лестниц вокруг линий электропередач.

Миф 3: Шины — отличные электроизоляторы. Слишком много телешоу показывают людей, находящихся в безопасности в своих машинах, несмотря на то, что высоковольтные линии танцуют и искрятся по кузову автомобиля.Это утомленный сюжетный прием. Подразумевается, что резиновые шины обеспечивают им изоляцию и безопасность. Но автомобильные шины — это электрические проводники, а не изоляторы. Верно и то, что в машине вы в безопасности, если на нее упадет провод под напряжением. Но это потому, что электричество всегда ищет путь к земле с наименьшим сопротивлением. Если вы останетесь в машине, электричество будет проходить по внешней стороне кузова, вниз по шасси, через шины и в землю. Пока вы не проложите альтернативный, менее устойчивый путь к земле через свое тело, электричество не попадет в него.

Миф 4: Все линии электропередач хорошо изолированы. Фактически, 90% внешних линий электропередач являются неизолированными и неизолированными проводами. Они могут иметь атмосферостойкое покрытие, но не обеспечивают изоляцию и защиту от поражения электрическим током. Даже изолированные линии могут оказаться незащищенными после долгих лет погодных условий. Таким образом, никакая линия электропередачи не является полностью безопасной для прикосновения или слишком близкого приближения.

Миф 5: Когда провод падает на землю, вся энергия, проходящая через него, автоматически отключается.В большинстве случаев w , когда провод падает на землю, он попадает на материалы с плохой проводимостью, такие как снег, асфальт или кирпичный выступ. Когда это происходит, распределительная система энергокомпании видит повышенный спрос на электроэнергию, а не разрыв цепи. Их оборудование не может распознать прерывистую линию, приземляющуюся на плохой проводник, и рост спроса, вызванный тем, что многие люди в одном районе приходят домой с работы и включают свои электроприборы.
Миф 6: При падении провода под напряжением образуются искры. В линиях электропередач возникнет искра, если они упадут на землю и не войдут в плотный контакт с землей или другим проводящим материалом. Но провода, которые падают на землю и плотно соприкасаются, часто не издают шума или искры. Это будет выглядеть как обесточенный провод или провод, который был безопасно обесточен.

Электробезопасность: системы и устройства

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как работают различные современные средства безопасности в электрических цепях, уделяя особое внимание тому, как используется индукция.

У электричества две опасности. термическая опасность возникает при электрическом перегреве. Опасность поражения электрическим током возникает, когда электрический ток проходит через человека. Обе опасности уже обсуждались. Здесь мы сосредоточимся на системах и устройствах, предотвращающих опасность поражения электрическим током. На рисунке 1 показана схема простой цепи переменного тока без каких-либо средств безопасности. На практике власть распределяется не так. Для современной бытовой и промышленной электропроводки требуется трехпроводная система , схематично показанная на рисунке 2, которая имеет несколько функций безопасности.Во-первых, это знакомый автоматический выключатель (или предохранитель ) для предотвращения тепловой перегрузки. Во-вторых, есть защитный кожух вокруг прибора, такого как тостер или холодильник. Функция безопасности кейса заключается в том, что он предотвращает прикосновение человека к оголенным проводам и электрический контакт с цепью, помогая предотвратить удары.

Рис. 1. Схема простой цепи переменного тока с источником напряжения и одиночным устройством, представленное сопротивлением R .В этой цепи нет функций безопасности.

Рис. 2. Трехпроводная система соединяет нейтральный провод с землей в источнике напряжения и в местоположении пользователя, заставляя его быть на нуле вольт и обеспечивая альтернативный обратный путь для тока через землю. Корпус прибора также заземлен на нулевое напряжение. Автоматический выключатель или плавкий предохранитель защищает от тепловой перегрузки и включен последовательно на активный провод (под напряжением / под напряжением). Обратите внимание, что цвета изоляции проводов различаются в зависимости от региона, и важно проверить на месте, какие цветовые коды используются (и даже если они соблюдались при конкретной установке).

Имеется три соединения с землей или землей (далее именуемые «земля / земля»), показанные на рисунке 2. Напомним, что соединение земля / земля представляет собой путь с низким сопротивлением непосредственно к земле. Два соединения «земля / земля» на нулевом проводе и вынуждают его быть на нулевом вольт относительно земли, что дало проводу свое название. Таким образом, к этому проводу безопасно прикасаться, даже если его изоляция, обычно белая, отсутствует. Нейтральный провод — это обратный путь для тока, по которому следует замкнуть цепь.Кроме того, два заземляющих соединения обеспечивают альтернативный путь через землю, хороший проводник, для замыкания цепи. Ближайшее к источнику питания соединение заземления может быть на электростанции, а другое — у пользователя. Третье заземление подключается к корпусу устройства через зеленый провод заземления / заземления , заставляя корпус также быть на нуле вольт. под напряжением или под напряжением (далее именуемые «под напряжением / под напряжением») подает напряжение и ток для работы прибора.На рисунке 3 показан более наглядный вариант того, как трехпроводная система подключается через трехконтактную вилку к прибору.

Рис. 3. Стандартная трехконтактная вилка может быть вставлена ​​только одним способом, чтобы обеспечить правильную работу трехпроводной системы.

Примечание о цветовой кодировке изоляции: Изоляционный пластик имеет цветовую кодировку для обозначения токоведущих / горячих, нейтральных и заземляющих проводов, но эти коды различаются во всем мире. Провода под напряжением / под напряжением могут быть коричневыми, красными, черными, синими или серыми. Нейтральный провод может быть синим, черным или белым.Поскольку один и тот же цвет может использоваться для живого / горячего или нейтрального в разных частях мира, важно определить цветовой код в вашем регионе. Единственным исключением является заземляющий провод, который часто бывает зеленого цвета, но может быть желтым или просто оголенным. Полосатые покрытия иногда используются для дальтоников. Трехпроводная система заменила старую двухпроводную систему, в которой отсутствует заземляющий провод. В обычных условиях изоляция на токоведущем / горячем и нейтральном проводах предотвращает попадание корпуса непосредственно в цепь, так что заземляющий провод может казаться двойной защитой.Однако заземление корпуса решает несколько проблем. Самая простая проблема — это изношенная изоляция на проводе под напряжением / под напряжением, которая позволяет ему контактировать с корпусом, как показано на рисунке 4. Отсутствие заземления (некоторые люди отрезают третий контакт от вилки, потому что у них устаревшие розетки с двумя отверстиями. ), возможно сильное потрясение. Это особенно опасно на кухне, где хорошее соединение с землей / землей обеспечивается за счет воды на полу или водопроводного крана. При неповрежденном заземлении срабатывает автоматический выключатель, и прибор требует ремонта.Почему некоторые приборы все еще продаются с двухконтактными вилками? Они имеют непроводящие корпуса, такие как электроинструменты с ударопрочными пластиковыми корпусами, и называются с двойной изоляцией . Современные двухконтактные вилки можно вставить в стандартную асимметричную розетку только одним способом, чтобы обеспечить правильное подключение токоведущих / горячих и нейтральных проводов.

Рис. 4. Изношенная изоляция позволяет находящемуся под напряжением / горячему проводу непосредственно контактировать с металлическим корпусом этого устройства. (a) Разрыв заземления, человек сильно поражен электрическим током.В этой ситуации прибор может работать нормально. (b) При правильном заземлении срабатывает автоматический выключатель, вызывая ремонт прибора.

Электромагнитная индукция вызывает более тонкую проблему, которая решается путем заземления корпуса. Переменный ток в приборах может вызвать на корпусе ЭДС. При заземлении напряжение на корпусе поддерживается близким к нулю, но если корпус не заземлен, может произойти сотрясение, как показано на рисунке 5. Ток, создаваемый наведенной ЭДС корпуса, называется током утечки , хотя ток не обязательно переходите от резистора к корпусу.

Рис. 5. Переменный ток может вызвать ЭДС на корпусе прибора. Напряжение может быть достаточно большим, чтобы вызвать поражение электрическим током. Если корпус заземлен, наведенная ЭДС поддерживается близкой к нулю.

A Прерыватель замыкания на землю (GFI) — это устройство безопасности, используемое в обновленной электропроводке на кухне и в ванной, которое работает на основе электромагнитной индукции. GFI сравнивают токи в токоведущем / горячем и нейтральном проводах. Когда токи под напряжением / под напряжением и токи нейтрали не равны, это почти всегда потому, что ток в нейтрали меньше, чем ток в проводе под напряжением / под напряжением.Затем часть тока, также называемого током утечки, возвращается к источнику напряжения по пути, отличному от нейтрального провода. Предполагается, что этот путь представляет опасность, например, как показано на рисунке 6. GFI обычно устанавливаются на прерывание цепи, если ток утечки превышает 5 мА, допустимый максимальный безвредный удар. Даже если ток утечки безопасно идет на землю / землю через неповрежденный провод заземления, GFI сработает, что приведет к устранению утечки.

Рисунок 6.Прерыватель замыкания на землю (GFI) сравнивает токи в токоведущем / горячем и нейтральном проводах и срабатывает, если их разница превышает безопасное значение. Здесь ток утечки следует опасному пути, который можно было бы предотвратить с помощью неповрежденного провода заземления.

На рисунке 7 показано, как работает GFI. Если токи в проводе под напряжением / под напряжением и нулевом проводе равны, то они вызывают равные и противоположные ЭДС в катушке. В противном случае сработает автоматический выключатель.

Рис. 7. GFI сравнивает токи, используя их для наведения ЭДС в одной и той же катушке.Если токи равны, они будут вызывать равные, но противоположные ЭДС.

Другим индукционным предохранительным устройством является изолирующий трансформатор , показанный на Рисунке 8. Большинство изолирующих трансформаторов имеют одинаковое входное и выходное напряжение. Их функция заключается в создании большого сопротивления между исходным источником напряжения и управляемым устройством. Это предотвращает полное замыкание между ними даже в показанных обстоятельствах. Через прибор проходит полный контур.Но не существует полной цепи для протекания тока через человека на рисунке, который касается только одного из выходных проводов трансформатора, и ни один из выходных проводов не заземлен. Прибор изолирован от исходного источника напряжения за счет высокого сопротивления материала между катушками трансформатора, отсюда и название «разделительный трансформатор». Чтобы ток прошел через человека, он должен пройти через материал с высоким сопротивлением между катушками, через провод, человека и обратно через землю — путь с таким большим сопротивлением, что током можно пренебречь.

Рис. 8. Изолирующий трансформатор создает большое сопротивление между исходным источником напряжения и устройством, предотвращая замыкание между ними.

Представленные здесь основы электробезопасности помогают предотвратить многие поражения электрическим током. Электробезопасность может быть достигнута на большей глубине. Например, существуют проблемы, связанные с различными соединениями заземления для устройств, находящихся в непосредственной близости. Многие другие примеры можно найти в больницах. Например, пациенты, чувствительные к микрошоку, нуждаются в особой защите.У этих людей токи до 0,1 мА могут вызвать фибрилляцию желудочков. Заинтересованный читатель может использовать представленный здесь материал как основу для дальнейшего изучения.

Сводка раздела

  • Системы и устройства электробезопасности используются для предотвращения опасности теплового удара и поражения электрическим током.
  • Автоматические выключатели и предохранители прерывают чрезмерные токи для предотвращения термических опасностей.
  • Трехпроводная система защищает от перегрева и поражения электрическим током, используя токоведущий / горячий, нейтральный и заземляющий / заземляющий провод, а также заземляющий нейтральный провод и корпус устройства.
  • Прерыватель замыкания на землю (GFI) предотвращает удар, обнаруживая потерю тока в непреднамеренных путях.
  • Изолирующий трансформатор изолирует устройство, запитанное от исходного источника, также для предотвращения поражения электрическим током.
  • Многие из этих устройств используют индукцию для выполнения своей основной функции.

Концептуальные вопросы

  1. Предотвращает ли пластиковая изоляция на проводах под напряжением / под напряжением опасность поражения электрическим током, тепловую опасность или и то, и другое?
  2. Почему обычные автоматические выключатели и предохранители не защищают от ударов?
  3. GFI может отключиться только потому, что подключенные к нему провода под напряжением / током и нейтраль значительно различаются по длине.Объяснить, почему.

Задачи и упражнения

1. Integrated Concepts Короткое замыкание на заземленный металлический корпус прибора происходит, как показано на Рисунке 9. Человек, дотрагивающийся до корпуса, мокрый, и его сопротивление относительно земли / земли составляет всего 3,00 кОм. а) Какое напряжение на корпусе, если через человека протекает 5,00 мА? (b) Каков ток короткого замыкания, если сопротивление заземляющего провода составляет 0,200 Ом? (c) Сработает ли это прерыватель цепи на 20,0 А, питающий устройство?

Рисунок 9.Человек может быть поражен электрическим током, даже если корпус прибора заземлен. Большой ток короткого замыкания создает напряжение на корпусе прибора, поскольку сопротивление заземляющего провода не равно нулю.

Глоссарий

термическая опасность:
термин, обозначающий опасность поражения электрическим током из-за перегрева
опасность поражения электрическим током:
термин, обозначающий опасность поражения электрическим током из-за прохождения тока через человека
трехпроводная система:
система электропроводки, используемая в настоящее время по соображениям безопасности, с проводами под напряжением, нейтралью и заземлением

Избранные решения проблем и упражнения

1.(а) 15,0 В (б) 75,0 А (в) да

Электричество | Электрические токи и цепи | Как производится и транспортируется электроэнергия

Все состоит из атомов. В каждом из них по три частиц : протоны, нейтроны и электроны. Электроны вращаются вокруг центра атома . У них отрицательный заряд . Протоны, находящиеся в центре атомов, имеют положительный заряд .

Обычно в атоме столько же протонов, сколько электронов. Он стабильный или сбалансированный . Углерод , например, имеет шесть протонов и шесть электронов.

Ученые могут заставить электроны перемещаться от одного атома к другому. Атом, который теряет электроны, заряжен положительно, атом, который получает больше электронов, заряжен отрицательно.

Электричество создается, когда электроны перемещаются между атомами. Положительные атомы ищут свободные отрицательные электроны, и притягивают их , так что они могут быть сбалансированы .

Проводники и изоляторы

Электричество проходит через одни объекты лучше, чем через другие. Проводники — это материалы, через которые электроны могут перемещаться более свободно. Медь , алюминий, сталь и другие металлы являются хорошими проводниками. Как и жидкостей, вроде соленой воды.

Изоляторы — это материалы, в которых электроны не могут двигаться. Они остаются на месте .Хорошими изоляторами являются стекло, резина, пластик или сухое дерево. Они важны для вашей безопасности , потому что без них вы не смогли бы прикоснуться к горячей кастрюле или к розетке телевизора.

Электрический ток

Когда электроны движутся по проводнику, создается электрический ток . Ток, который всегда течет в одном направлении, называется постоянным током (DC). Например, аккумулятор производит постоянный ток.Ток, который течет назад и вперед , называется переменным током (AC).

Электрические схемы

Электроны не могут свободно прыгать по воздуху к положительно заряженному атому. Им нужен контур , чтобы двигаться. Когда источник энергии , как батарея, подключен к лампочке , электроны могут перемещаться от батареи к лампочке и обратно. Мы называем это электрической схемой .

Иногда в электрическом устройстве есть много цепей, которые заставляют его работать. Телевизор или компьютер могут состоять из миллионов частей, которые соединены между собой различными способами.

Вы можете остановить прохождение тока , вставив в цепь переключатель . Вы можете разомкнуть цепь и остановить движение электронов.

Кусок металла или проволока также можно использовать для выработки тепла.Когда электрический ток проходит через такой металл , он может быть замедлен сопротивлением . Это вызывает трение и нагревает проволоку. Вот почему вы можете поджарить хлеб в тостере или высушить волосы теплым воздухом из фена.

В некоторых случаях провода могут сильно нагреваться, если через них проходит слишком много электронов. Специальные переключатели , называемые предохранителями , защищают проводку во многих зданиях.

Виды электроэнергии

Статическое электричество
  • происходит, когда происходит накопление электронов
  • он остается на одном месте, а затем перескакивает на объект
  • не требуется замкнутый контур для потока
  • — это вид электричества, который вы чувствуете, когда натираете пуловером какой-либо предмет или когда тащите ногами по ковру.
  • молния — форма статического электричества

Текущая электроэнергия
  • происходит, когда электроны свободно перемещаются между объектами
  • ему нужен проводник — нечто, в чем он может течь, например, провод.
  • текущее электричество необходимо замкнутая цепь
  • это во многих электрических приборах, в наших домах — тостеры, телевизоры, компьютеры.
  • аккумулятор — это форма электрического тока

Как работают батарейки

Аккумулятор содержит жидких или пасты , которые помогают ему производить электрических зарядов . Плоский конец батареи имеет отрицательный заряд , а конец с выступом имеет положительный заряд.

Когда вы соединяете провод между обоими концами, течет ток . Когда ток проходит через лампочку , электрическая энергия преобразуется в свет.

Химические вещества в батарее поддерживают заряд на концах и батарею в рабочем состоянии. Со временем химическое вещество становится все слабее и слабее, и батарея больше не может производить энергию.

Как производится электричество

Генераторы

используются для преобразования механической энергии в электрическую. Магнит вращает внутри катушки из проволоки . Когда магнит движется, в проводе возникает электрический ток.

На большинстве электростанций используются турбины для вращения генератора. Вода нагревается для образования пара , который толкает лопатки турбины. Для нагрева воды можно использовать газ, нефть или уголь. Некоторые страны строят электростанции на реках, где движущаяся вода толкает лопасти турбины .

Как измеряется электричество

Электричество — это , измеренное в ваттах, названо в честь Джеймса Ватта, который изобрел паровой двигатель .Потребуется около 750 Вт, чтобы получить , равное на одну лошадиную силу.

Киловатт-час — это энергия 1000 ватт, которые работают в течение одного часа. Если, например, вы используете 100-ваттную лампочку в течение 10 часов, вы израсходовали 1 киловатт электроэнергии.

Как транспортируется электроэнергия

Электроэнергия, произведенная генератором, проходит по кабелям к трансформатору , который изменяет напряжение электричества. Линии электропередачи несут высоковольтную электроэнергию на очень большие расстояния.Когда он достигает вашего родного города, другой трансформатор понижает напряжение, а более мелкие линии электропередач доставляют его в дома, офисы и фабрики.

Электробезопасность

Важно понимать, почему и как можно защитить себя от поражения электрическим током .

Поражение электрическим током происходит , когда электрический ток проходит через ваше тело.Это может привести к сердечной недостаточности и может повредить другие части вашего тела. Он также может обжечь вашу кожу и другие ткани тела .

Очень слабый электрический объект, такой как батарея, не может причинить вам никакого вреда, но внутри дома у вас есть устройств и машины, которые используют 220 вольт.

Большинство машин в вашем доме имеют устройств безопасности для вашей защиты. Что-то идет не так, специальный провод выводит электричество на землю, где ничего не может случиться.

Также существует опасность поражения электрическим током за пределами вашего дома. Деревья, которые касаются линий электропередачи , могут быть опасными. У молнии более чем достаточно электричества, чтобы убить человека. Если вы попали в грозу, держитесь подальше от открытых полей и возвышенностей. Одно из самых безопасных мест — это ваша машина, потому что молния ударит только по внешнему металлу машины.

Загружаемый текст и рабочие листы в формате PDF

Связанные темы

Слова

  • прибор = электрическая машина, которую вы обычно используете в доме, например плита или стиральная машина
  • привлекать = притягивать к объекту
  • вперед и назад = идти в одном направлении, а затем в другом
  • сбалансированный = то же, что и стабильный
  • лезвие = плоская часть объекта, которая отталкивается от воды
  • накопление = увеличение
  • выступ = небольшая площадь, которая выше остальных
  • углерод = химический материал, содержащийся в угле или бензине.Он в чистом виде в бриллиантах
  • заряд = электричество, которое подводится к объекту, например, к батарее, чтобы дать ему энергию
  • цепь = полный круг, по которому проходит электрический ток
  • катушка = провод, который огибает объект по кругу и излучает свет или тепло, когда электричество проходит через
  • подключиться = присоединиться
  • преобразовать = изменить
  • медь = мягкий красно-коричневый металл, который легко пропускает электричество и тепло
  • шнур = кабель
  • ток = поток электричества через кусок металла
  • ток = поток электричества через кусок металла
  • уменьшить = уменьшить
  • устройство = станок или инструмент, который делает что-то особенное
  • распределительные линии = провода или кабели, по которым передается электричество
  • перетащить = тянуть
  • равно = то же, что и
  • поток = переместить
  • трение = когда вы трете что-то о что-то другое, оно становится горячим
  • Предохранитель = короткий кусок провода внутри машины, который отключает электричество при слишком большой мощности
  • сердечная недостаточность = когда ваше сердце перестает биться
  • высокое напряжение = высокая электрическая сила
  • на месте = где они
  • увеличить = стать больше
  • травма = если вы поранились
  • сохранить = остаться, остаться
  • лампочка = стеклянный предмет внутри лампы.Излучает свет
  • молния = мощная вспышка света в небе во время грозы
  • жидкость = жидкость, водянистый объект
  • измерено = единица чего-то
  • происходит = происходит
  • сковорода = круглый металлический контейнер, который вы используете для готовки
  • частица = очень маленькая часть атома
  • пройти через = пройти через
  • паста = липкое вещество, похожее на клей
  • штекер = для подключения электрического объекта к электросети дома
  • линия электропередачи = большой провод, по которому электричество проходит над или под землей
  • сопротивление = материал, препятствующий прохождению электричества
  • повернуть = обойти
  • безопасность = безопасность, защита
  • средство безопасности = предметы в машинах или электрических объектах, которые защищают вас от травм
  • ученый = человек, имеющий научное образование
  • розетка = место в стене, где можно подключить электрический объект к основному источнику электроэнергии
  • источник = место, где вы получаете что-то из
  • spin = что-то быстро развернуть
  • пар = белый газ, который выделяется при нагревании воды
  • паровой двигатель = двигатель или мотор, работающий на пару
  • сталь = прочный металл
  • переключатель = объект, который запускает или останавливает поток электричества при нажатии на него
  • ткань = материал, из которого формируются клетки животных или растений
  • преобразовать = изменить
  • трансформатор = машина, которая переключает электричество с одного напряжения на другое
  • турбина = двигатель, который перемещает специальное колесо вокруг
  • напряжение = электрическая сила, измеряемая в вольтах
  • провод = очень тонкий кусок металла, через который может проходить электричество
  • электропроводка = сеть проводов в доме или доме

ОПОРЫ

Joint Pole I

Power, CATV, Телефон,


Дорожные сигналы Это столб поддерживает огромную линию электропередачи, вероятно, не менее 69 кВ, возможно даже выше.Он также поддерживает:
  • Первичное распространение.
  • Вторичное распределение.
  • Кабели CATV.
  • Кабели телефонные.
  • Светофоры.
  • Электропроводка светофора.

Вторичная распределительная проводка представляет собой дуплексный пучок в которых MGN служит как нейтральной и механической несущей нити. Дуплексный пакет обычно используется в ситуациях, когда только один Требуется цепь 115 вольт; такие схемы обычно предусмотрены для маломощные грузы, такие как уличные фонари и светофоры.

Joint Pole II

Электропитание, телефон, кабельное телевидение, уличный фонарь

Этот столб поддерживает три обычных объекта: электроэнергия, кабельное телевидение и телефон. Но учтите, что:
  • Нет статического провода.
  • MGN находится на той же траверсе, что и первичные проводники.
  • Столб включает в себя уличный фонарь без счетчиков, подключенный непосредственно к вторичный.
  • Сеть CATV смещена на прицеле , вероятно, для поддержания разрешения от других объектов.
подпись

Joint Pole III

Электропитание, телефон,


CATV, уличный фонарь Это опоры для столбов:
  • Статический провод.
  • Большая ЛЭП, наверное, не менее 69-кВ.
  • Вторичная распределительная проводка (как открытая, так и тройная).
  • Уличный фонарь, подключенный напрямую к вторичному распределителю.
  • Кабели CATV.
  • Два телефонных кабеля с кожухами для сращивания жгутов.
  • Телефонная кросс-коммутируемая панель на опоре.
Обратите внимание, что там на этом полюсе нет первичного распределения; поступает вторичное напряжение от трансформатора за кадром слева.

Полюс шарнирный IV

Power, Alarm Signals, CATV, Telephone, Traffic (Питание, сигналы тревоги, кабельное телевидение, телефон, трафик) Сигналы

Этот столб поддерживает:
  • Два первичных распределительных контура.
  • Одна вторичная распределительная цепь с разомкнутым проводом.
  • Электропроводка светофора.
  • Электропроводка пожарной сигнализации.
  • Сеть кабельного телевидения.
  • Сезонный декор.
  • Светофоры
  • Сигналы пешеходных переходов.

Обратите внимание на то, что проводка пожарной сигнализации является обрывом и, похоже, очень близко к кабелю CATV. Если эти провода не изолированы, это будет являться нарушением Национального кодекса электробезопасности.

Когда был сделан этот снимок, этот столб поддерживал то, что Кодекс электробезопасности называет сезонным украшением . Сезонный украшения часто содержат схемы освещения; эти схемы обычно питается от вторичных цепей распределения на полюсе.

Совместная опора V

Power, Transformer,


CATV, Телефон На этом столб, телефонные кабели и кабели кабельного телевидения монтируются рядом друг с другом вертикальное положение, смещение по горизонтали обычным траверсом.Этот расположение экономит место на переполненных столбах, сохраняя при этом необходимые зазоры.

Совместная опора VI

Электропитание, стояк, уличный фонарь, кабельное телевидение

Эта опора отличается от предыдущих примеров двумя способами: изготовлен из предварительно напряженного бетон, и он поддерживает стояк .

Столбы из предварительно напряженного бетона часто используются в прибрежных районах, подверженных атмосферная коррозия (один производитель утверждает, что «бетонные столбы прежде всего по внешнему виду, долговечности и необслуживаемости »).

Подъемник представляет собой электрическое соединение, прикрепленное к боковой стороне столб; следовательно, столб, поддерживающий стояк, называется штангой . Подъемник обеспечивает соединение между антенными проводниками и подземные проводники. Жилы стояка обычно защищены по кабелепроводу, хотя иногда используется U-образная защита.

Этот конкретный столб поддерживает:

  • Статический провод.
  • Трехфазная цепь передачи, соединенная звездой (четырехпроводная).
  • Трехфазная первичная распределительная цепь, подключенная к питанию, через стояк, подземный канал к ближайшему крупному заказчику, например, школа, больница или торговый центр.
  • Уличный фонарь.
  • Однофазный вторичный распределительный контур (питание от трансформатор за кадром справа), единственная цель которого — обеспечить мощность для уличного фонаря.
  • Кабель CATV с опорой на жгут.

Joint Pole VII

Power, трансформатор,


CATV, CATV Мощность Поставка Этот столб поддерживает:
  • Трехфазное первичное распределение электроэнергии.
  • Трансформатор.
  • Однофазное вторичное распределение электроэнергии.
  • Кабель CATV с опорой на жгут.
  • На опоре Источник питания CATV .
  • Электросчетчик на опоре для подачи питания на кабельное телевидение поставлять.

Сети кабельного телевидения (также называемые широкополосными сетями ) включают широкополосных усилителей , разнесенных по сети с интервалами около 2500 футов.Эти усилители требуют рабочего питания; это питание (при 60, 75 или 90 вольт RMS) обеспечивается мощностью CATV источник питания , аналогичный показанному здесь, и доставляемый к усилителям по самой сети CATV. Каждый блок питания способен питание группы от 10 до 20 усилителей, расположенных в радиусе мили или так. Каждый усилитель включает блок питания DC , который выпрямляет это напряжение и обеспечивает рабочее напряжение постоянного тока для схема усилителя.

Источник питания CATV получает свою рабочую мощность от источника питания. Вторичная распределительная цепь компании, 115 В, 60 Гц. В зависимости от политики выставления счетов энергетической компании блоки питания CATV могут быть счетчиком, или они могут быть выставлены на фиксированной основе. Сила показанная здесь подача измеряется; счетчик виден ниже мощности поставлять.

Следующий рисунок иллюстрирует типичную электрическую схему для Источник питания CATV (широкополосная сеть):

Шарнир Полюс VIII

Power, Transformers, CATV,


Телефон, оптоволокно Кабель
Эта стойка поддерживает отдельный оптоволоконный кабель в коммуникационное пространство.Наверное, это голос- и кабель передачи данных, принадлежащий телефонной компании.

зажим для крепления опоры поддерживает волокно в мягком цилиндре, так что вибрации, вызванные ветром, не вызывают царапания волокна против металла. Красная пластиковая втулка над зажимом указывает имя владельца и предоставляет контактный телефон номер.


Фармингтон, Нью-Мексико, 2004

Joint Pole IX

Электропитание, телефон, кабельное телевидение, источники питания кабельного телевидения, трафик Сигнал

Этот столб поддерживает:
  • Трехфазное первичное электрическое распределение с разомкнутым проводом.
  • Однофазное трехполюсное вторичное распределение электроэнергии.
  • Кабель CATV для общественной сети кабельного телевидения.
  • Кабель CATV для Институциональная сеть («I-Net»), закрытая схема коаксиальной сети для школ и муниципальных властей.
  • Многопарный телефонный кабель.
  • Два источника питания CATV, один для общественной сети CATV и один для Интернет-сеть.
  • Электросчетчик (за табличкой) для измерения мощности, потребляемой двумя блоки питания кабельного телевидения.
  • Мигающая сигнальная лампа желтого цвета.
  • Выключатель немерцающего проблескового маячка желтого цвета.

I-Net физически идентична публичной сети CATV (а в Фактически, он был построен и, вероятно, до сих пор принадлежит компании CATV). Однако это связано только с правительственными и квазигосударственные здания, такие как мэрия и школы.

Нет электросчетчика для сигнальной лампы желтого цвета; видимо, владелец света получает счет по фиксированной ставке.

Часто задаваемые вопросы об электрическом ограждении — Gallagher Fence

В: Строительство силового ограждения обходится дороже, чем колючая проволока?

Нет. Материалы и рабочая сила, необходимые для строительства электрического ограждения, значительно меньше, чем для колючей проволоки — до 1000 долларов за милю меньше.

Q: Разве силовое ограждение не является временным забором?
Высокопрочный силовой упор не менее прочен, чем колючая проволока.

Q: Я строю постоянное силовое ограждение из высокопрочной проволоки.Какие-либо предложения?
Не перетягивайте трос. Использование высокопрочной проволоки позволяет увеличить расстояние между опорами линии, чем обычная проволока; обычно минимум 50 футов. Также не перетягивайте провода. Убедитесь, что это гибкая система, учитывающая столкновения с дикой природой, снеговую нагрузку и т. Д. Если вы не переусердствуете с забором, вы сэкономите много денег.

В: Что следует учитывать при использовании высокопрочной проволоки для постоянного силового ограждения?
Две наиболее распространенные ошибки, которые мы наблюдаем, — это использование слишком большого количества линейных столбов и чрезмерное натяжение проволоки.Помните, это не колючая проволока. Электрозащита — это психологический барьер для ваших животных, а не физический. При использовании высокопрочной проволоки это позволяет увеличить расстояние между стойками линии, чем обычная проволока; обычно минимум 50 футов. Также не перетягивайте провода. Вам нужна гибкая система, учитывающая столкновения с дикой природой, снеговую нагрузку и т. Д. Чрезмерное строительство силового ограждения делает его слишком жестким, и вы теряете это преимущество. К тому же это дороже материалов.

Q: Как лучше всего настроить постоянный электрический забор для КРС?
Крест с одинарной проволокой будет содержать молочный или дрессированный скот.Пятипроводная граница необходима для животноводческих хозяйств / годовиков или коров / телят. Используйте стойки на расстоянии 60-90 футов друг от друга для поддержки провода.

Q: Почему лучше использовать несколько горячих проводов вместо одного?
Чем больше провода, тем меньше сопротивление току в проводах, и меньше напряжение падает в самой линии, что оставляет больше шока для животного.

Q: Можно ли подключить блок питания к колючей проволоке?
Нет. Животные могут запутаться и попасть в колючую проволоку, и хотя шока, производимого нашими энергозатратами, недостаточно, чтобы убить или серьезно ранить сельскохозяйственных животных, стресс от попадания в ловушку и многократных ударов током может.

В: Можно ли подключить два блока питания к одной линии для увеличения мощности?
Нет. Компоненты наших блоков питания рассчитаны на определенные требования по напряжению и току. Подключение двух или более блоков питания к одной линии в конечном итоге приведет к выходу из строя блоков питания.

Q: Какой блок питания мне следует использовать?
Это зависит от вашей ситуации. Галлахер делает множество моделей с разными возможностями. Вопросы, на которые нужно ответить:
-Какое животное вы контролируете?
Для контроля домашнего скота потребуется меньше энергии, чем для ограждения территории диких животных.
— Насколько большую площадь нужно ограждать?
Очевидно, вам понадобится генератор энергии большего размера, чтобы обеспечить достаточную мощность для больших работ. Если для забора есть большая растительность, вам понадобится больше мощности. Запланируйте сейчас любые дополнения, которые могут вам понадобиться в будущем.
— Какой источник питания имеется?
По возможности используйте блок питания на 110 или 220 вольт. Если вы не можете, есть широкий выбор батарей и солнечных батарей.
— Вам нужна постоянная или переносная система?
Если вам нужна портативная система, вам подойдет один из наших комплектов для солнечных батарей.

Q: Почему напряжение увеличивается по мере того, как я двигаюсь вниз по линии забора?
Напряжение на вашем заборе выше ближе к концу из-за того, что называется «эффектом отскока». Это означает, что импульс, посланный блоком питания по ограждению, достиг конца и возвращается обратно вверх по ограждению. Затем он встречает следующий импульс, исходящий от блока питания, создавая скачок напряжения или «дребезг». Это на самом деле означает, что ваш рейтинг в джоулях энергозатрат более чем достаточен для вашей нагрузки на забор и имеет избыток энергии, а это именно то, что вы хотите от своей системы.

Q: Почему некоторые небольшие блоки питания показывают более высокие значения напряжения непосредственно на выходе блока питания, чем некоторые более крупные?
Напряжение просто представляет собой разность потенциалов между двумя электрическими точками и является только одним аспектом общей мощности. Рейтинг в Джоулях — это истинная мера запасенной энергии и истинной мощности блока питания.

Электрическое ограждение

Q: Нужны ли регуляторы напряжения для солнечных батарей?
Они необходимы с солнечными батареями мощностью 44 Вт и более.Если требуется регулятор, Галлахер предварительно устанавливает устройство перед отправкой любых солнечных батарей.

Вопрос: Что такое Джоуль?
Измерение энергии. Джоуль — это единица работы, равная произведению одного ватта за одну секунду. Это мера хлопка, щелчка, удара или пинка или боли / дискомфорта выходного импульса, ощущаемого животным.

Q: Будет ли мое животное травмировано, когда оно ударится о забор?
Нет. Энерджайзер выдает импульс каждую секунду или реже, поэтому у животного есть время, чтобы уйти от ограды.

Q: Выходят ли у вас какие-нибудь новые продукты?

Да. Мы стремимся поставлять лучшие продукты на рынок, а это означает, что новые продукты выпускаются на постоянной основе. Обязательно посетите наш сайт или свяжитесь с нами, чтобы быть в курсе последних новостей.

В: Какая наиболее частая причина отказов силового ограждения?
Наиболее распространенные проблемы с силовым ограждением могут быть связаны с неправильным заземлением. Если забор в любом случае ведет себя «странно», скорее всего, проблема с заземлением.Кроме того, изношенные или поврежденные провода, изоляторы и разъемы могут вызвать сопротивление или неисправность вашего забора. Убедитесь, что вы покупаете только качественные продукты, чтобы ваш забор работал долгие годы.

Q: Почему моя батарея разряжается через неделю?
Неправильное заземление. Блоки питания батареи будут передавать энергию на отрицательную сторону зарядного устройства (зеленая клемма), если она не заземлена должным образом, она также подключена к отрицательной клемме батареи, которая затем поражает батарею положительными электронами.Решение — использовать соответствующее количество оцинкованных стержней для заземления, как рекомендовано в Руководстве по Power Fence.

Q: Мои животные не уважают силовые заборы, когда почва высыхает. Что я могу сделать?
Вы, вероятно, использовали горячую систему (все провода забора заряжены). Галлахер рекомендует использовать полностью горячие системы только в областях с влажностью не менее 35 дюймов в год. Система горячего заземления может быть лучшим выбором. Нагрейте верхний провод забора, затем следующий провод заземления и так далее.Свяжите заземляющие провода оцинкованной проволокой и зажимами на концах, затем подключите их к заземляющим стержням и клемме заземления блока питания. Таким образом, вы переносите систему заземления к животному и не полагаетесь на сухую почву для подключения.

В: Что Галлахер рекомендует для заземления системы постоянного силового ограждения?
Минимум три шестифутовых стержня заземления из оцинкованной стали, расположенных на расстоянии не менее 10 футов друг от друга и соединенных одной сплошной оцинкованной проволокой, прикрепленной к стержням.

Q: Могу ли я использовать медные заземляющие стержни?
Нет. Медные заземляющие стержни не рекомендуются, поскольку медь вступает в реакцию с любой оцинкованной сталью в результате электролиза и разъедает соединение. Gallagher использует только компоненты из оцинкованной стали, чтобы избежать этой проблемы.

В: Почему лучше использовать оцинкованные заземляющие стержни вместо того, чтобы просто вбивать в землю большой медный столб, поскольку медь является хорошим проводником?
Металлы, вбитые в землю, независимо от их проводимости, подвержены окислению и / или ржавчине.Поскольку блокаторы силового ограждения излучают только кратковременный мощный толчок, очень важно, чтобы проводимость заземляющих стержней была максимальной, чтобы гарантировать, что животное получит хороший шок.

Q: Как мне пронести горячую землю через все ворота в моем заборе?
Лучше всего закопать прочный изолированный кабель в траншею глубиной около 10 дюймов. Убедитесь, что он рассчитан минимум на 20 000 вольт, иначе может возникнуть утечка тока с сегодняшними мощными блоками питания. Не прикрепляйте его к столбу.Не забудьте также провести заземляющий провод через шлюз, используя тот же тип кабеля. Его можно закопать в той же траншее, что и горячий кабель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *