Однофазный асинхронный электродвигатель
Дмитрий Левкин
Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой
Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.Основные части однофазного двигателя: ротор и статор
Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.
Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.
Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.
Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга
Принцип работы однофазного асинхронного двигателя
Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.
Проанализируем случай с двумя обмотками имеющими по оному витку
Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.
Запустить
Остановить
Пульсирующее магнитное поле
Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.
Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:
,
- где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
- nобр – частота вращения магнитного поля в обратном направлении, об/мин,
- f1 – частота тока статора, Гц,
- p – количество пар полюсов,
- n1 – скорость вращения магнитного потока, об/мин
Запустить
Остановить
Разложение пульсирующего магнитного потока на два вращающихся
Действие пульсирующего поля на вращающийся ротор
Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как
Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:
,
- где sпр – скольжение ротора относительно прямого магнитного потока,
- n2 – частота вращения ротора, об/мин,
- s – скольжение асинхронного двигателя
Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока
Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр
,
- где sобр – скольжение ротора относительно обратного магнитного потока
Запустить
Остановить
Вращающееся магнитное поле пронизывающее ротор
Ток индуцируемый в роторе переменным магнитным полем
Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:
,
- где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц
,
- где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц
Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.
Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц
Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент
,
- где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
- сM — постоянный коэффициент, определяемый конструкцией двигателя
Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент М
,
- где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м
Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,
,
Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.
Тормозящее действие обратного поля
При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Ф
,
- где r2 — активное сопротивление стержней ротора, Ом,
- x2обр — реактивное сопротивление стержней ротора, Ом.
Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.
С помощью одной фазы нельзя запустить ротор
Действие пульсирующего поля на неподвижный ротор
При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .
Пуск однофазного двигателя. Как создать начальное вращение?
Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].
После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.
Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.
Подключение однофазного двигателя
С пусковым сопротивлением
Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].
Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.
Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки
Разное сопротивление и индуктивность обмоток
Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.
Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.
Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.
С конденсаторным пуском
Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.
Ёмкостной сдвиг фаз с пусковым конденсатором
Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.
Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.
Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.
Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.
Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.
При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.
Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.
Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.
Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».
Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.
Однофазные асинхронные электродвигатели INNOVARI – серия асинхронных электродвигателей с короткозамкнутым ротором для общепромышленного и бытового применения. Электродвигатели предназначены для питания от однофазной сети напряжения 230 В, 50 Гц, и продолжительного (S1) режима работы при классе нагревостойкости изоляции F (фактическая температура до 155°С). Конструктивно электродвигатели выполнены в вариантах фланцевого присоединения типов В5 и В14. Для последнего варианта предусматривается 8 крепежных отверстий, чтобы исключить присоединение к редуктору с углом поворота. Обмотка статора разных исполнений двигателей может быть 2-х и 4-х полюсной, с синхронными скоростями соответственно 3000/1500 об/мин. Серия адаптирована для работы с преобразователями частоты. Для исключения протекания паразитных токов через вал и станину двигателя, вал ротора устанавливается на изолированных подшипниках. Выбрать и купить однофазный электродвигатель вы можете в интернет-магазине … Модельный ряд однофазных асинхронных двигателей INNOVARI Основные модели и электромеханические характеристики однофазных асинхронных двигателей с короткозамкнутым ротором серии INNOVARI.
Технические характеристики однофазных асинхронных двигателей INNOVARI
Габаритные размерыСопутствующие товары к асинхронным двигателямПрименение однофазных асинхронных двигателей INNOVARI В основном однофазные асинхронные электродвигатели с короткозамкнутым ротором INNOVARI предназначены для применения в промышленных электрических приводах малой мощности. Относительная дешевизна и надежность двигателей с короткозамкнутым ротором обеспечивают очень широкий спектр применения: устройства промышленной автоматики, манипуляторы, электроинструмент, вентиляторы, насосы, компрессоры, бытовая техника. Преимущества применения однофазных асинхронных двигателей INNOVARI:
Принцип работы однофазных асинхронных двигателей с короткозамкнутым Магнитная система однофазного асинхронного электродвигателя состоит из сердечников статора и ротора, выполняемых из листов электротехнической стали. Сердечник статора фиксируется в станине двигателя, которая неподвижно закрепляется на фундаменте. Сердечник ротора насаживается на вал двигателя, а концы вала опираются на подшипники, расположенные в станине. В пазах статора размещается, как правило, двухфазная многополюсная обмотка, питаемая от однофазного источника напряжения. В пазах ротора располагается короткозамкнутая обмотка типа беличьей клетки. Между статором и ротором имеется небольшой воздушный зазор. Чтобы обмотка статора создавала вращающееся магнитное поле, фазы обмотки сдвинуты в пространстве на некоторый угол и запитываются токами, сдвинутыми по фазе во времени. Для этого последовательно или параллельно с одной из обмоток включается конденсатор определенной ёмкости, располагающийся непосредственно на двигателе. Сертификаты
| г. Москва, г. Москва, Новости 29 Новая серия индикаторов потока от РусАвтоматизации 26 Непрерывный и бесконтактный контроль уровня 22 Снижение цен на частотники INNOVERT PUMP и ITD 19 Световая и звуковая сигнализация при авариях и ЧС 15 Радарный уровнемер в новом исполнении |
Однофазный асинхронный электродвигатель: устройство, принцип работы, подключение
Практически всем хорошо известны трехфазные электродвигатели, они широко применяются в промышленности, позволяют решать самые различные задачи. Да и принцип получения переменного тока, как физической величины мы привыкли рассматривать на примере тех же трехфазных асинхронных генераторов. Но как быть в бытовых условиях, где присутствует только одна фаза, народные умельцы научились выполнять подключение трехфазных электрических машин, но это не обязательно. На практике давно используется однофазный асинхронный электродвигатель, который может выполнять все свои функции даже в домашней сети переменного тока.
Конструктивные особенности
Если сравнивать однофазный электродвигатель с другими электрическими машинами, то конструктивно он также состоит из подвижного и неподвижного элемента — статора и ротора. Статор, за счет протекания электрического тока по его обмоткам, создает магнитное поле, вступающее во взаимодействие с ротором. В результате электромагнитного взаимодействия ротор приводится во вращение.
Однако все не так просто, как может показаться на первый взгляд, если бы вы убрали из обычного трехфазного электродвигателя лишние две обмотки и подключили в розетку, вращение бы не началось. Мотору попросту не хватит момента для вращения ротора. Поэтому конструкция однофазного асинхронного электродвигателя имеет ряд особенностей.
Ротор
Ротор однофазного электродвигателя представляет собой такой же металлический вал, который оснащается обмоткой. На валу собирается ферромагнитный каркас из шихтованной стали по ее внешней поверхности проделываются пазы. В пазах на валу ротора устанавливаются стержни из меди или алюминия, которые выступают в роли обмотки, проводящей электрический ток. На концах стержни соединяются двумя кольцами, из-за такой конструкции его также называют беличьей клеткой.
При воздействии электромагнитного потока от статора на короткозамкнутые обмотки ротора в беличьей клетке начинает протекать ток. Ферромагнитная вставка на валу помогает усилить поток, проходящий через него. Однако далеко не во всех моделях существует магнитный проводник, в некоторых он выполняется из немагнитных сплавов.
Статор
Конструкция статора в однофазном электродвигателе имеет такой же состав, как и в большинстве электрических машин:
- металлический корпус;
- установленный внутри магнитопровод из ферромагнитного материала;
- обмотка статора, представленная медными проводниками.
Обмотки статора такого электродвигателя подразделяются на две – основную, она же рабочая, через которую осуществляется постоянная циркуляция нагрузки и пусковая, которая задействуется только в момент запуска. Обе обмотки однофазного двигателя расположены под углом 90° друг относительно друга. Такая конструкция делает их схожими с двухфазными электродвигателями, где также применяются две обмотки.
Но их объем, относительно всего пространства асинхронного двигателя отличается, основная составляет только 2/3 от общего числа пазов, а пусковые обмотки занимают 1/3.
Принцип работы
Принцип действия однофазного асинхронного электродвигателя заключается в создании пульсирующего магнитного потока от протекания электрического тока по основной обмотке статора, если рассматривать вариант пуска от вспомогательного витка. Таким образом, подключение однофазного мотора к сети мы рассмотрим на примере одно витка.
Рис. 2. Принцип формирования магнитного потока в статореКак видите на рисунке выше, переменный электрический ток, протекая по проводнику, согласно правила буравчика, создает концентрические магнитные потоки. При появлении максимума синусоиды магнитный поток также достигнет своего максимума. Однако в сети однофазного переменного электрического напряжения ток меняет свое направление движения в витке с частотой в 50 Гц. Это означает, что как только кривая пересечет ось абсцисс, ток будет протекать по витку обмотки в противоположном направлении и создаваемый ним магнитный поток получит противоположные полюса и направленность результирующего вектора:
Рис.
С физической точки зрения оба потока равнозначны, поэтому их смена с периодичностью 100 раз в секунду даст нулевой результат при сложении. Прямой магнитный поток окажется равным обратному:
Фпр = Фобр
Это означает, что если в таком поле окажется ротор электродвигателя, вращаться он не будет. 100 раз в минуту в нем произойдет смена магнитного потока, и короткозамкнутый ротор будет просто гудеть, оставаясь на месте. Однако ситуация в корне измениться, если возникнет импульс к начальному движению. В таком случае появиться скольжение, которое и приведет к постоянному вращению вала:
Sпр = (n1 — n2) / n1, где
- n1 – частота вращения магнитного поля однофазного электродвигателя;
- n2 – частота вращения ротора асинхронного электродвигателя;
- S – величина скольжения однофазного индукционного мотора.
При смене магнитного потока направление вращения и поля статора и ротора электродвигателя совпадут, поэтому скольжение получит иное выражение для вычисления:
Sобр = (n1 — ( — n2)) / n1, где
Попеременное пересечение стержней магнитными потоками разного направления создаст в них ЭДС, которая сгенерирует электрический ток в роторе и ответный магнитный поток. А он, в свою очередь, также вступит во взаимодействие с полем статора однофазного электродвигателя, как показано на рисунке ниже.
Как видите, чтобы подключить трехфазный электродвигатель, достаточно подать на него напряжение, но с однофазным такой вариант не сработает.
Для запуска мотора необходим первичный импульс, который на практике может быть получен посредством:
- раскрутки вала вручную;
- кратковременного введения пусковой катушки;
- расщепления магнитного поля короткозамкнутым контуром.
Из вышеприведенных способов сегодня первый используется только в лабораторных экспериментах, из практического применения он вышел из-за опасности травмирования оператора.
Схемы подключения
Для получения базового импульса вращения могут использоваться различные схемы подключения. Со временем, некоторые из них утрачивали свою актуальность и сменялись более прогрессивными, поэтому далее мы рассмотрим наиболее эффективные, которые применяются и сейчас.
С пусковым сопротивлением
Так как в индукционных электродвигателях сопротивление обмоток имеет комплексную форму, вектор магнитного потока можно легко сместить, если в пусковую обмотку добавить сопротивление. Наличие активной составляющей даст необходимый угол сдвига между рабочими катушками однофазного электродвигателя и пусковой, от 15° до 50°, что и обеспечит разницу для начального вращения.
Рис. 5. Схема с пусковым сопротивлениемС конденсаторным запуском
В отличии от предыдущего способа, в схеме с конденсаторным пуском электродвигателя применяется емкостной элемент, который позволяет сместить электрические величины в основной и пусковой катушках на 90°, обеспечивая максимальное усилие.
Рис. 6. Схема с конденсаторным пускомНа практике пусковой конденсатор вместе с дополнительной обмоткой вводятся кнопкой пуска одновременно с подачей основного питания. Пусковая кнопка устроена таким образом, что контакт Cn возвращается пружиной в изначальное положение, сразу после окончания конденсаторного запуска.
С расщепленными полюсами
В отличии от конденсаторных двигателей, такой способ пуска предусматривает наличие особой конструкции статорного магнитопровода. В этом случае каждый полюс разделяется на два, один из которых комплектуется короткозамкнутым витком, изменяющим характеристики магнитного потока.
Рис. 7. Схема с расщепленными полюсамиСущественным недостатком этого метода пуска однофазного электродвигателя является постоянная потеря мощности и снижение КПД мотора. Поэтому его применяют только в электрических машинах до 100 кВт.
Область применения
Однофазные электродвигатели находят широкое применение в бытовых устройствах или промышленных аппаратах малой механизации. Они охватывают относительно маломощное однофазное оборудование, которое питается от 220В.
Это различные станки для обработки древесины, металла, пластика и т.д. Также однофазные электродвигатели используются в установках сельскохозяйственной отрасли для смешивания зерновых, изготовления бетона и т. д. В быту их применяют в некоторых моделях микроволновок, вытяжек, стиральных машин и куллеров, питающихся от однофазного источника.
Видео по теме
Однофазный асинхронный двигатель: принцип работы
Особенности устройства и работы
Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.
Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.
Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.
Расчет:
Mn = М1 — М2
М — противоположные моменты;
n — частота вращения.
Асинхронный однофазный двигатель: принцип работы
При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.
У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.
Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.
Для расчета обмоток статора разработаны специальные программы.
Какие бывают типы однофазных двигателей
На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.
Бифилярный пуск
Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.
Конденсаторный пуск
Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.
Основные принципы работы
В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.
Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.
Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.
Схема центробежного выключателя
Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.
Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.
При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.
В чем достоинства однофазного асинхронного двигателя:
- доступная цена;
- простая конструкция;
- небольшой вес, компактность;
- большая двигательная способность из-за отсутствия коллектора;
- питание от синусоидальной сети.
В чем недостатки однофазного асинхронного двигателя:
- небольшой диапазон регулировки частоты вращения;
- отсутствие или небольшой пусковой момент, низкий КПД.
Двигатель Однофазный Переменного Тока: Принцип Работы
Простое и крайне надежное устройство
Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.
Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.
Основная информация
Синхронный однофазный двигатель переменного тока работает от общественной сети
Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.
- Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
- Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
- Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.
Электрический двигатель в разрезе
- На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
- Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
- Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
- Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
- А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
- Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.
Асинхронный двигатель переменного тока
- Если сопоставить все эти моменты, то можно понять следующее.
- На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
- В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
- То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.
Принцип действия однофазного двигателя
Однофазный синхронный двигатель переменного тока
Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.
Как работает асинхронный электродвигатель однофазный
- Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
- Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
- Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
- Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.
Однофазный коллекторный электродвигатель переменного тока – принцип работы
- Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
- Эта обмотка требует включения только при пуске мотора.
Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.
- Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
- Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
- Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
- Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
- Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
- Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.
Подключение двигателя
Как подключается коллекторный однофазный электродвигатель переменного тока
Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.
Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.
Различные варианты подключения
- Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
- В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
- Во втором она подключена через конденсатор постоянно.
- В третьем вместо конденсатора используется сопротивление.
Коллекторный однофазный двигатель переменного тока от стиральной машины
- Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
- Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
- Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.
Конденсаторный пуск имеет следующие особенности:
- Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
- Конденсатор необходимо подбирать по потребляемому току.
Конденсатор и переменный ток
Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.
Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.
Строение асинхронного однофазного двигателя
Однофазный коллекторный двигатель переменного тока
Итак, мы вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.
Асинхронный двигатель
Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.
- Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
- Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
- Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.
Коллекторные электродвигатели переменного тока однофазные
- Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
- На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
- Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.
Двигатель с ротором фазного типа
- С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.
Строение фазного ротора
- Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
- Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
- Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
- Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
- Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
- Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.
На фото – статор электродвигателя
- Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
- Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
- У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.
Помимо этих элементов двигатели имеют следующие составляющие:
- Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
- Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
- Крыльчатка – активное охлаждение двигателя, располагается также на валу;
- Подшипники вращения.
Что происходит в обмотках при включении
Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.
- Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.
Полный период синусоидального тока
- Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
- Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
- Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
- Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
- Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.
Как же создается сила, заставляющая ротор вращаться?
Инструкция по работе однофазного двигателя переменного тока
- Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
- Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
- Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
- Как только ротор начинает вращаться, в нем создается ЭДС.
- Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
- За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
- Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.
То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.
На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.
Однофазные промышленные электродвигатели 220В от производителя в Киеве – УКРВЕНТ
Представленный в каталоге интернет-магазина «УКРВЕНТ» однофазный асинхронный электродвигатель от производителя широко востребован среди покупателей в Украине. Устройства такого типа с напряжением питания 220 В, которые предлагается заказать на сайте, характеризуются повсеместным использованием. Они находят применение не только в квартирах, домах, на дачах, участках, но и в цехах на производстве.
Характеристики и назначение однофазного промышленного двигателя
Данное устройство достаточно маломощно – ограничивается 2-3 кВт в силу конструктивной специфики и некоторых технических особенностей. Последние выражаются в:
- возможностях электрической проводки;
- ЭДС;
- пусковых токах, формирующихся в обмотке.
Агрегат находит активное применение в сельскохозяйственном, насосном, вентиляционном оборудовании. Двигатели ориентированы на привод разных механизмов, машин и устройств для функционирования от однофазной сети переменного тока.
Можно купить однофазный электродвигатель в одной из двух модификаций, первая из которых выполнена по двухфазной схеме и наделена мощностью трехфазных двигателей, а вторая – по трехфазной схеме, но обладает однофазным включением с утратой мощности на одну ступень. И та, и другая модификация представляет собой конденсаторный двигатель, функционирование которого предполагает систематическое включение рабочего конденсатора. Приводы, пуск которых затруднен, нуждаются во включении пускового конденсатора на этапе пуска.
Устройство однофазного двигателя с пусковой обмоткой
Главными составляющими электродвигателя выступают 2 элемента:
- ротор – вращающийся. Данная обмотка короткозамкнутая, внешне напоминает беличью клетку. Стержни из алюминия либо меди замыкаются с концов кольцами, а участок между стержнями зачастую заливается алюминиевым сплавом. Помимо прочего, ротор общепромышленного однофазного двигателя нередко представлен полым ферромагнитным либо немагнитным цилиндром;
- статор – неподвижный, посредством него формируется магнитное поле для вращения предыдущего элемента. Предполагает наличие двух перпендикулярно расположенных обмоток: основная, или главная, зачастую заполняет собой 2/3 пазов сердечника; пусковая, или вспомогательная – 1/3.
По сути, двигатель можно считать двухфазным, но ввиду наличия только одной рабочей обмотки он именуется однофазным. Недорого купить асинхронный двигатель с напряжением питания 220 В в Киеве можно непосредственно на сайте. Приятная цена и оперативная доставка гарантированы каждому, кто остановит свой выбор на компании «УКРВЕНТ» и захочет купить по-настоящему надежное устройство.
Однофазные электродвигатели, взрывозащищенные электродвигатели — АИР, AIR, АИВР
Категория: асинхронные электродвигатели
Заводы производители электродвигателей: Могилевский завод Электродвигатель, Полесьеэлектромаш, Владимирский электромоторный завод, Ярославский электромашиностроительный завод, Силовые машины
Серии двигателей: АИРЕ
Применение
Однофазный электродвигатель – это асинхронный двигатель, который предназначен для подключения к однофазной сети переменного тока. Применяется в основном в вентиляторах с малой мощностью. При выборе электродвигателя необходимо проконсультироваться с заводом производителем.
Технические характеристики лифтовых двигателей
Тип |
Мощность, кВт |
Частота вращения об./мин. |
АИРЕ71С2 |
1,1 |
3 000 |
АИРЕ80А2 |
1,1 |
3 000 |
АИРЕ80А4 |
0,75 |
1 500 |
АИРЕ80В2 |
1,5 |
3 000 |
AИРЕ80В4 |
1,1 |
1 500 |
АИРЕ80С2 |
2 |
3 000 |
АИРЕ80С4 |
1,5 |
1 500 |
АИРЕ80D2 |
2,2 |
3 000 |
Однофазные двигатели очень широко используются в домах, офисах, мастерских и т. Д., Поскольку в большинство домов и офисов подается однофазное питание. Кроме того, однофазные двигатели надежны, дешевы по стоимости, просты в конструкции и легко ремонтируются.
- Однофазный асинхронный двигатель (разделенная фаза, конденсатор, экранированный полюс и т. Д.)
- Однофазный синхронный двигатель
- Отталкивающий двигатель и т. Д.
Однофазный асинхронный двигатель
Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором, за исключением того, что статор намотан для однофазного питания. Статор также снабжен «пусковой обмоткой», которая используется только для пусковых целей. Это можно понять из схемы однофазного асинхронного двигателя слева.Принцип работы однофазного асинхронного двигателя
Когда на статор однофазного двигателя подается однофазное питание, он создает переменный магнитный поток в обмотке статора. Переменный ток, протекающий через обмотку статора, вызывает индуцированный ток в стержнях ротора (ротора с короткозамкнутым ротором) согласно закону электромагнитной индукции Фарадея. Этот индуцированный ток в роторе также будет создавать переменный магнитный поток. Даже после установки обоих переменных потоков двигатель не запускается (причина объясняется ниже).Однако, если ротор запускается внешней силой в любом направлении, двигатель разгоняется до конечной скорости и продолжает работать с номинальной скоростью. Такое поведение однофазного двигателя можно объяснить теорией вращения двойного поля.Теория вращения двойного поля
Теория вращения двойного поля утверждает, что любая переменная величина (здесь переменный поток) может быть разделена на две составляющие, величина которых равна половине максимальной величины переменной величины, и обе эти составляющие вращаются в противоположном направлении.
Следующие рисунки помогут вам понять теорию вращения двойного поля.Почему однофазный асинхронный двигатель не запускается автоматически?
Статор однофазного асинхронного двигателя намотан с однофазной обмоткой. Когда на статор подается однофазное питание, он создает переменный магнитный поток (который чередуется только вдоль одной оси пространства). Переменный поток, действующий на ротор с короткозамкнутым ротором, не может производить вращение, только вращающийся поток может. Вот почему однофазный асинхронный двигатель не запускается автоматически.Как сделать самозапуск однофазного асинхронного двигателя?
- Как объяснено выше, однофазный асинхронный двигатель не запускается автоматически . Для самозапуска его можно временно преобразовать в двухфазный двигатель при запуске. Это может быть достигнуто путем введения дополнительной «пусковой обмотки», также называемой вспомогательной обмоткой.
- Следовательно, статор однофазного двигателя имеет две обмотки: (i) основная обмотка и (ii) пусковая обмотка (вспомогательная обмотка).Эти две обмотки подключены параллельно к однофазному источнику питания и разнесены на 90 электрических градусов друг от друга. Разность фаз в 90 градусов может быть достигнута путем последовательного подключения конденсатора к пусковой обмотке.
- Следовательно, двигатель ведет себя как двухфазный двигатель, а статор создает вращающееся магнитное поле, которое заставляет ротор вращаться. Когда двигатель набирает скорость, скажем, до 80 или 90% от его нормальной скорости, пусковая обмотка отключается от цепи с помощью центробежного переключателя, и двигатель работает только от основной обмотки.
Реверсивные однофазные асинхронные двигатели
Реверсивные однофазные асинхронные двигателиНачиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.
Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора.Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.
Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если на него воздействует вращающееся магнитное поле, он попытается следовать за ним. (подробнее об этом здесь)
В трехфазном двигателе, естественно, три фазы на трех обмотках. создают вращающееся магнитное поле.Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.
Реверс двигателя с расщепленной фазой
В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.
Основная обмотка создает магнитное поле, чередующееся по вертикали,
а другая обмотка создает магнитное поле, которое чередуется по горизонтали.
но не в фазе, в сумме это вращающееся магнитное поле.
Ротор пытается следовать за ним, заставляя его вращаться.
Реверс двигателя — это просто перестановка силового соединения.
так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение
одна сторона силового соединения от (A) до (B), в результате чего обмотка (O)
быть основной обмоткой, а обмотка (М) — фазосдвинутой.
На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные количество оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.
Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).
Обмотки стартера на более мощных двигателях
Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее.Обмотки распределены по множеству пазов. в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.
Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера.
из более тонкой проволоки (S). Основная обмотка создает горизонтальную
магнитное поле, а обмотка стартера создает вертикальное.
Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S).В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.
Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).
Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно.Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.
Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.
Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не такая уж элегантная. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор представляет собой электролитический конденсатор и не является рассчитан на постоянную нагрузку. А потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.
Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этой в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного лошадиных сил. Это 1,75 лошадиных сил.
Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.
Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго функция тока.
Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.
На самом деле компромисс гораздо меньше.
фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Тем не менее, стартер на этих моторах довольно неэффективен, но он
не имеет большого значения, когда двигатель работает. Однако лишний ток
требуемый для стартера может привести к срабатыванию автоматического выключателя, поэтому этот метод
обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с.
В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.
Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.
В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.
Совсем недавно я случайно зажал выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и для отключения двигателя потребовалось всего около 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.
Реверс конденсаторного пускового двигателя
Так как же нам поменять местами конденсаторный пусковой двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, переставив полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор наоборот. Порядок выключателя и конденсатора не имеет значение, если вы подключены последовательно.Вы также можете реверсировать двигатель, перевернув основную обмотку. (тот же эффект).
Если бы вам пришлось поменять местами главную обмотку и стартер, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Однако, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.
Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».
Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.
Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.
Но на реверсивных двигателях этикетка всегда означает, что нужно поменять местами два провода, чтобы перевернуть его.
Провода для реверса — это всегда провода, ведущие к обмотке стартера.
Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только три провода выходят из обмоток, затем основная и пусковая обмотки имеют один конец, связанный вместе, и двигатель не реверсивный.
Для 120-вольтового двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.
У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.
Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!
Однофазные промышленные двигатели— как они работают?
Где бы мы были без электродвигателя?
Эти машины дали нам все, от освещения до охлаждения и даже сверхбыстрых электромобилей, и все это за счет преобразования электроэнергии в механическое движение.Существует много типов электродвигателей, но электродвигатели переменного тока остаются обычным явлением в промышленности благодаря своей элегантности и проверенной работе. Эти двигатели используют переменный ток и физику электромагнетизма для генерации вращательной мощности и бывают разных типов в зависимости от области применения. В этой статье будут рассмотрены однофазные промышленные двигатели, опора современного мира, обеспечивающая энергией многие полезные инструменты. Этот двигатель, его принципы работы и его характеристики будут обсуждены, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.
Что такое однофазные двигатели?
Однофазные двигатели — это двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают примерно так же, как и двигатели с короткозамкнутым ротором, с фазным ротором и другие многофазные двигатели, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о короткозамкнутых роторах, роторах и асинхронных двигателях). «Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, которые используют однофазные входы.Обычно они используются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статоры, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем у других конструкций. Для них также требуется стартер, поскольку использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.
Как работают однофазные двигатели?
В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-другому.В трехфазных двигателях 120-градусное разделение фаз между тремя токами переменного тока, проходящими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, создаваемое только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными по ориентации, или «вверх-вниз»). Это приближается к вращающемуся полю, но не полностью.Эти двигатели должны получить начальный толчок или почувствовать силу, «не совпадающую по фазе» с фазой статора, чтобы произошло начальное движение ротора. Стационарный ротор не будет ощущать никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз идеально компенсируют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. Д.), Которое затем создает моделируемое вращающееся магнитное поле для запуска двигателя.Более подробную информацию об этих стартерах можно найти в нашей статье о пускателях двигателей.
Типы однофазных двигателей
Однофазный двигатель относится только к типу используемого входного источника питания, а не к конкретной схеме статор-ротор-пускатель. Многие спецификации для других двигателей переменного тока применяются при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут указаны различные типы однофазных двигателей, чтобы общие принципы можно было применить к этим конкретным конструкциям.
Двухфазные двигатели
В двигателяхс разделенной фазой имеется вспомогательная обмотка вне обмотки статора, чтобы обеспечить начальную разность фаз, необходимую для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта обмотка с расщепленной фазой даст начальный толчок для начала вращения, а основная обмотка будет поддерживать двигатель в работе.Затем пусковую обмотку необходимо отключить (обычно с помощью центробежного переключателя на выходном валу), как только двигатель достигнет процента полной скорости (около 75% от номинальной скорости). Увеличение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти переключатели необходимы для правильной и надежной работы двигателей с расщепленной фазой.
Конденсаторные пусковые и конденсаторные пуско-конденсаторные двигатели
В однофазных двигателях этих типов конденсаторы вместе со вспомогательной обмоткой обеспечивают разность фаз, необходимую для запуска вращения в этих двигателях.Они похожи на двигатели с расщепленной фазой, но для сдвига фазы пускателя используют емкость вместо сопротивления. В двигателях с конденсаторным пуском центробежный выключатель отключает пусковой конденсатор, когда двигатель набирает определенную скорость (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Пусковой конденсатор затем ускоряет запуск двигателя, а рабочий конденсатор переключается на работу, когда двигатель набирает номинальную скорость.
Двигатели с постоянным разделением конденсаторов
В двигателях с постоянным разделением конденсаторов используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного переключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, используемый в предыдущих двух конструкциях. Однако эти двигатели выигрывают от того, что не нуждаются в пусковом механизме (переключателе, кнопке и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа.Двигатели с постоянным разделением конденсаторов также реверсивны и, как правило, более надежны, чем другие однофазные двигатели.
Двигатели с экранированными полюсами
В этом типе однофазного двигателя не используются обмотки или пускатели для запуска двигателя. Вместо этого в этом двигателе используется схема, показанная на Рисунке 1 ниже:
Рис. 1: Схема двигателя с экранированными полюсами. Обратите внимание на то, что заштрихованные катушки являются продолжением основной обмотки статора.
Этот двигатель более прост, чем другие однофазные двигатели, поскольку не требует дополнительных цепей пускателя или переключателей.Корпус двигателя с C-образным сердечником изготовлен из магнитопроводящего материала (обычно железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затененных» полюса создаются путем расширения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-образный сердечник, он «затеняет» намотанные половины, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток).Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.
Заявки и критерии выбора
Для некоторых приложений требуются определенные однофазные двигатели. В таблице 1 приведены качественные рабочие характеристики каждого типа двигателя.
Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.
|
Пусковой момент |
КПД |
Надежность |
Стоимость |
Двухфазный двигатель |
Низкая |
Низкая |
Низкая |
Низкая |
Конденсатор-пуск |
Средний |
Средний |
Высокая |
Средний |
Конденсатор постоянного разделения |
Низкая |
Высокая |
Высокая |
Средний |
Конденсатор пуско-конденсаторный |
Высокая |
Высокая |
Высокая |
Высокая |
Шторка |
Низкая |
Низкая |
Низкая |
Низкая |
Двигатели
с расщепленной фазой имеют относительно простую конструкцию, что снижает их стоимость и производительность.Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с малой мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота цикла; при таком использовании электродвигатели с расщепленной фазой почти наверняка сгорят.
Двигатели с конденсаторным пуском имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие рабочие циклы.В результате они получили более широкое применение и являются основой для промышленных двигателей общего назначения. К ним относятся, среди прочего, конвейеры с ременным приводом, большие нагнетатели и редукторы. Их главный недостаток — стоимость, так как они дороже двигателей с расщепленной фазой.
Электродвигатели с постоянным разделением на конденсаторы, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и иметь превосходный КПД и надежность. Они двусторонние благодаря отсутствию пускового механизма и могут регулироваться по скорости.Их единственный серьезный недостаток заключается в том, что они не могут справиться с высокими крутящими моментами, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любого другого приложения с низким крутящим моментом, которое требует мгновенного реверсирования.
Конденсаторные двигатели с пусковым конденсатором сочетают в себе преимущества как конденсаторных двигателей с постоянным разделением, так и конденсаторных пусковых двигателей при удвоенной стоимости. Они могут приводить в действие приложения, которые слишком сложны для других однофазных двигателей, такие как воздушные компрессоры, насосы высокого давления, вакуумные насосы, приложения мощностью 1-10 л.с. и т. Д.используя их высокий пусковой крутящий момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если мощность, надежность и эффективность являются приоритетами, а стоимость не вызывает беспокойства, рассмотрите этот тип однофазного двигателя.
Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку их легко производить и их дешевле заменить, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с низкой мощностью.К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. Д. Если для проекта требуется лишь небольшая мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.
Сводка
В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.
Источники:
- https://geosci.uchicago.edu
- http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
- http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
- https://people.ucalgary.ca
- https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
- https://www.electrical4u.com/types-of- однофазный асинхронный двигатель /
Прочие изделия из двигателей
Больше от Machinery, Tools & Supplies
Как работает однофазный двигатель?
Чтобы понять, как работает однофазный асинхронный двигатель переменного тока, полезно понять основы работы с трехфазным асинхронным двигателем.
Ток в статоре трехфазного двигателя (неподвижные катушки в двигателе) создает вращающееся магнитное поле. Магнитное поле вращается из-за сдвига фазы на 120 ° в каждой фазе источника питания. Это вращающееся магнитное поле индуцирует ток в стержнях ротора. Ток в роторе создает собственное магнитное поле. Взаимодействие между магнитными полями статора и ротора заставляет ротор вращаться. Одна важная вещь, которую следует отметить для трехфазных двигателей, заключается в том, что, поскольку они работают на трех фазах, которые смещены друг относительно друга, они самозапускаются.(См. Верхний рисунок.)
Как он «вращается»
Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они работают только от одной фазы. Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле (см. Нижний рисунок). Из-за этого у настоящего однофазного двигателя нулевой пусковой момент. Однако, как только ротор начинает вращаться, он продолжает вращаться в результате колебания магнитного поля в статоре.
Спустя годы инженеры придумали умные способы запуска однофазных двигателей. Большинство из них связано с созданием второй фазы, которая помогает создавать вращающееся магнитное поле в статоре. Эту фазу часто называют стартовой или вспомогательной.
Типы однофазных двигателей
Некоторыми из различных типов однофазных двигателей являются двигатель с экранированными полюсами, двигатель с расщепленной фазой, двигатель с постоянным разделенным конденсатором (также называемый двигателем с однофазным конденсатором) и двигатель с двумя конденсаторами.Основное различие в конструкции этих двигателей заключается в том, как производится вторая фаза. В двигателях с экранированным полюсом и в двигателях с разделенной фазой конденсатор не используется, в то время как в двигателях с постоянным разделенным конденсатором (PSC) и двумя номинальными конденсаторами используется. Двигатели с разделенной фазой и конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы запуска, когда двигатели набирают скорость, в то время как двигатели с экранированным полюсом и двигатели PSC не имеют переключателя.
У каждого из этих двигателей также есть свои компромиссы в производительности.Двигатели с экранированными полюсами — очень простые двигатели и, как правило, недорогие, но они имеют низкий КПД и, как правило, предназначены для применения с малой мощностью. Двигатели с расщепленной фазой, как правило, недорогие, но у них низкий пусковой момент и высокий пусковой ток. Двигатели PSC обеспечивают более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.
>> Хотите узнать больше об асинхронных двигателях? Прочтите в нашем блоге о синхронных и асинхронных двигателях или посмотрите наше видео о том, как выбрать мотор-редуктор.
ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ (Электродвигатель)
1,2
Существует много типов однофазных электродвигателей. В этом разделе обсуждение будет ограничено теми типами, которые наиболее распространены для двигателей с интегральной мощностью от 1 л.с. и выше.
В промышленных приложениях по возможности следует использовать трехфазные асинхронные двигатели. В целом трехфазные электродвигатели имеют более высокий КПД и коэффициент мощности и более надежны, поскольку не имеют пусковых переключателей или конденсаторов.
В тех случаях, когда трехфазные электродвигатели недоступны или не могут использоваться из-за источника питания, для промышленного и коммерческого применения рекомендуются следующие типы однофазных электродвигателей: (1) электродвигатель с конденсаторным пуском, (2) ) двигатель с двумя конденсаторами и (3) двигатель с постоянным разделением конденсаторов.
Краткое сравнение характеристик однофазных и трехфазных асинхронных двигателей поможет лучше понять, как работают однофазные двигатели:
1. Трехфазные двигатели имеют фиксированный крутящий момент, потому что в воздушном зазоре в состоянии покоя имеется вращающееся поле. .Однофазный двигатель не имеет вращающегося поля в состоянии покоя и, следовательно, не развивает крутящий момент заторможенного ротора. Дополнительная обмотка необходима для создания вращающегося поля, необходимого для запуска. В однофазном двигателе со встроенной мощностью это часть сети RLC.
2. В трехфазном двигателе ток ротора и потери ротора незначительны без нагрузки. Однофазные двигатели имеют значительный ток ротора и потери в роторе без нагрузки.
3. Для заданного момента пробоя однофазный двигатель требует значительно большего магнитного потока и более активного материала, чем эквивалентный трехфазный двигатель.
4. Сравнение потерь между однофазными и трехфазными двигателями показано на рис. 1.11. Обратите внимание на значительно более высокие потери в однофазном двигателе.
Общие характеристики этих типов однофазных асинхронных двигателей следующие.
1.2.1
Двигатели с конденсаторным пуском
Двигатель с конденсаторным пуском — это однофазный асинхронный двигатель, основная обмотка которого предназначена для прямого подключения к источнику питания, а вспомогательная обмотка подключена последовательно с конденсатором и пусковым выключателем для отключения вспомогательной обмотки от источника питания после запуска.На рис. 1.12 представлена принципиальная схема двигателя с конденсаторным пуском. Наиболее часто используемый тип пускового выключателя — это выключатель с центробежным приводом, встроенный в двигатель. Рисунок
РИСУНОК 1.11 Сравнение потерь в процентах одно- и трехфазных двигателей.
РИСУНОК 1.12 Однофазный двигатель с конденсаторным пуском.
1.13 иллюстрирует каплезащищенный однофазный двигатель с конденсаторным пуском промышленного качества; обратите внимание на механизм переключения с центробежным приводом.
Однако другие типы устройств, такие как реле, чувствительные к току и напряжению, также используются в качестве пусковых переключателей.Совсем недавно были разработаны твердотельные переключатели, которые используются в однофазном двигателе с конденсаторным пуском.
РИСУНОК 1.13. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
в ограниченной степени. Твердотельный коммутатор станет коммутатором будущего, поскольку он будет усовершенствован, а затраты уменьшены.
Все переключатели установлены так, чтобы оставаться замкнутыми и поддерживать цепь вспомогательной обмотки в работе до тех пор, пока двигатель не запустится и не разгонится примерно до 80% от скорости полной нагрузки. На этой скорости переключатель размыкается, отключая цепь вспомогательной обмотки от источника питания.
Двигатель тогда работает от основной обмотки как асинхронный двигатель. Типичные характеристики скорости-момента для двигателя с конденсаторным пуском показаны на рис. 1.14. Обратите внимание на изменение крутящего момента двигателя в точке перехода, в которой срабатывает пусковой выключатель.
Типичные рабочие характеристики асинхронных двигателей со встроенной мощностью 1800 об / мин с конденсаторным пуском приведены в таблице 1.6. Для этих однофазных двигателей будет значительно более широкий разброс значений крутящего момента заторможенного ротора, крутящего момента пробоя и тягового момента, чем для сопоставимых трехфазных двигателей, и такое же изменение также существует для КПД и коэффициента мощности. (ПФ).Обратите внимание, что в однофазных двигателях крутящий момент является фактором, обеспечивающим запуск с высокоинерционными или трудно запускаемыми нагрузками. Поэтому важно знать характеристики конкретного двигателя с конденсаторным пуском, чтобы быть уверенным, что он подходит для применения.
1.2.2
Двухзначные конденсаторные двигатели
Двухзначный конденсаторный двигатель — это конденсаторный двигатель с разными значениями емкости для запуска и работы. Очень часто двигатель этого типа называют двигателем с конденсаторным запуском.
Изменение значения емкости от пускового к рабочему режиму происходит автоматически с помощью пускового переключателя, который аналогичен переключателю, используемому для двигателей с конденсаторным пуском. Предусмотрены два конденсатора: емкость с высоким значением для пусковых условий и меньшее значение для рабочих условий. Пусковой конденсатор обычно электролитического типа, который обеспечивает высокую емкость на единицу объема. Рабочий конденсатор обычно представляет собой блок из металлизированного полипропилена, рассчитанный на непрерывную работу.На рисунке 1.15 показан один из способов установки обоих конденсаторов на двигатель.
Принципиальная схема двигателя с конденсатором на две величины показана на рис. 1.16. Как показано, при запуске и запуске, и работе
РИСУНОК 1.14 Кривая скорость-крутящий момент для двигателя с конденсаторным пуском. Конденсаторы
включены последовательно со вспомогательной обмоткой. Когда пусковой переключатель размыкается, он отключает пусковой конденсатор от цепи вспомогательной обмотки, но оставляет рабочий конденсатор последовательно с вспомогательной обмоткой, подключенной к источнику питания.Таким образом, как основная, так и вспомогательная обмотки находятся под напряжением во время работы двигателя и вносят свой вклад в мощность двигателя. Типичный
ТАБЛИЦА 1.6 Типовые характеристики двигателей с конденсаторным пуском3
л.с. | Производительность при полной нагрузке | Крутящий момент, фунт-фут | |||||
об / мин | A | Эфф. | PF Крутящий момент | Заблокировано | Разбивка | Подтягивание | |
1 | 1725 | 7.5 | 71 | 70 3,0 | 9,9 | 7,5 | 7,6 |
2 | 1750 | 12,5 | 72 | 72 6,0 | 17,5 | 14,7 | 11,5 |
3 | 1750 | 17,0 | 74 | 79 9,0 | 23,0 | 21,0 | 18,5 |
5 | 1745 | 27,3 | 78 | 77 15.0 | 46,0 | 32,0 | 35,0 |
a Четырехполюсные однофазные двигатели 230 В. Источник: любезно предоставлено Magnetek, Сент-Луис, Миссури. Кривая скорость-момент
для двухклапанного конденсаторного двигателя показана на рис. 1.17.
Для данного двигателя с конденсаторным пуском эффект добавления рабочего конденсатора в цепь вспомогательной обмотки следующий:
Повышенный момент пробоя: 5-30% Повышенный крутящий момент заторможенного ротора: 5-10% Повышенная эффективность при полной нагрузке: 2-7 точек
РИСУНОК 1.15 Двухзначный конденсатор, однофазный двигатель. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
РИСУНОК 1.16 Двухзначный конденсатор, однофазный двигатель.
Повышенный коэффициент мощности при полной нагрузке: 10-20 баллов Сниженный рабочий ток при полной нагрузке Пониженный магнитный шум Работает охладитель
Добавление рабочего конденсатора к однофазному двигателю с правильно спроектированными обмотками позволяет достичь рабочих характеристик, приближающихся к характеристикам трехфазный мотор. Типичные характеристики двухзначных конденсаторных двигателей с интегральной мощностью показаны в таблице 1.7. Сравнение этих характеристик с характеристиками, показанными в таблице 1.6 для двигателей с конденсаторным пуском, показывает улучшение как КПД, так и коэффициента мощности.
Оптимальные характеристики, которые могут быть достигнуты в однофазном двигателе с конденсаторами с двумя номиналами, зависят от экономических факторов, а также от технических соображений при проектировании двигателя. Чтобы проиллюстрировать это, в таблице 1.8 показаны характеристики однофазного двигателя с конструкцией, оптимизированной для различных значений рабочей емкости./ кВтч. Обратите внимание, что основное улучшение характеристик двигателя происходит при первоначальном переходе от конденсаторного запуска к двухзначному конденсаторному двигателю с относительно низким значением рабочей емкости. Это первоначальное изменение конструкции также показывает самый короткий период окупаемости.
Определение оптимального двухзначного конденсаторного двигателя для конкретного применения требует сравнения стоимости двигателя и энергопотребления всех имеющихся двигателей. / кВтч, срок окупаемости этих двигателей составил 8-20 месяцев.
ТАБЛИЦА 1.8 Сравнение рабочих характеристик конденсаторного пускового и двухзначного конденсаторных двигателей
Тип двигателя | |||||
Конденсатор пусковой | Конденсатор двухзначный | ||||
Рабочий конденсатор, MFD | 0 | 7,5 | 15 | 30 | 65 |
КПД при полной нагрузке | 70 | 78 | 79 | 81 | 83 |
Полная нагрузка PF | 79 | 9-1 | 97 | 99a | 99: 1 |
Снижение потребляемой мощности,% | 0 | 10.1 | 11,5 | 13,3 | 15 |
Стоимость,% | 100 | 130 | 110 | 151 | 196 |
Ориентировочный срок окупаемости | – | 1,3 | 1,0 | 1,8 | 2,9 |
a Опережающий коэффициент мощности.
ТАБЛИЦА 1.9 Сравнение эффективности: стандартные и энергоэффективные однофазные двигатели для бассейнов со скоростью 3600 об / мин
л.с. | Стандартные эффективные двигатели | Энергоэффективные двигатели |
0.75 | 0,677 | 0,76 |
1,00 | 0,709 | 0,788 |
1,50 | 0,749 | 0,827 |
2,00 | 0,759 | 0,85 |
3,00 | 0,809 | 0,869 |
РИСУНОК 1.18 Сравнение эффективности энергоэффективных и стандартных однофазных двигателей бассейновых насосов. (Предоставлено Magnetek, Санкт-Петербург).Луис, Миссури)
РИСУНОК 1.19 Годовая экономия на энергоэффективном двигателе для бассейнов мощностью 1 л.с., работающем 365 дней в году. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
1.2.3
Двигатели с постоянным разделенным конденсатором
Однофазные асинхронные двигатели с постоянными разделенными конденсаторами определяются как конденсаторные двигатели с одинаковым значением емкости, используемым как для запуска, так и для работы. Этот тип двигателя также называют однозначным конденсаторным двигателем.Применение однофазного двигателя этого типа обычно ограничивается прямым приводом таких нагрузок, как вентиляторы, нагнетатели или насосы, для которых не требуется нормальный или высокий пусковой крутящий момент. Следовательно, основным применением электродвигателя с постоянным разделенным конденсатором были вентиляторы и нагнетатели с прямым приводом. Эти двигатели не подходят для систем с ременным приводом и обычно ограничиваются более низкими значениями мощности в лошадиных силах.
Принципиальная схема двигателя с постоянным разделением конденсаторов показана на рис.1.20. Обратите внимание на отсутствие пускового переключателя. Этот тип двигателя по существу аналогичен двигателю с двухзначным конденсатором
РИСУНОК 1.20 Однофазный двигатель с постоянным разделенным конденсатором
, работающий от рабочего соединения, и будет иметь примерно такие же характеристики крутящего момента. Поскольку только рабочий конденсатор (который имеет относительно низкую емкость) последовательно соединен со вспомогательной обмоткой при запуске, пусковой момент значительно снижается. Пусковой крутящий момент составляет всего 20-30% крутящего момента при полной нагрузке.Типичная кривая скорости-момента для двигателя с постоянным разделением конденсаторов показана на рис. 1.21. Рабочие характеристики этого типа двигателя с точки зрения КПД и коэффициента мощности такие же, как у двухзначного конденсаторного двигателя. Однако из-за низкого пускового момента его успешное применение требует тесной координации между производителем двигателя и производителем приводного оборудования.
Специальная версия конденсаторного двигателя используется для многоскоростных приводов вентиляторов. Этот тип конденсаторного двигателя обычно имеет главную обмотку с ответвлениями и ротор с высоким сопротивлением.Ротор с высоким сопротивлением используется для улучшения стабильной скорости и увеличения пускового момента. Существует ряд вариантов и способов намотки двигателей. Наиболее распространенная конструкция — двухскоростной двигатель, имеющий три обмотки: основную, промежуточную и вспомогательную. Для сети 230 В обычное соединение обмоток называется Т-образным соединением. Принципиальные схемы двухскоростных двигателей с Т-образным соединением показаны на рис. 1.22 и 1.23. Для
РИСУНОК 1.21 Кривая скорость-крутящий момент для двигателя с постоянным разделением конденсаторов.
высокоскоростной режим работы, промежуточная обмотка не включена в схему, как показано на рис. 1.23, и линейное напряжение подается последовательно на основную обмотку и вспомогательную обмотку и конденсатор. Для работы на малой скорости промежуточная обмотка подключается последовательно с основной обмоткой и вспомогательной цепью, как показано на рис. 1.23. Это соединение снижает напряжение, приложенное как к основной обмотке, так и к вспомогательной цепи, тем самым уменьшая крутящий момент
РИСУНОК 1.22 Однофазный двигатель с постоянным разделенным конденсатором, Т-образное соединение и двухскоростной режим.
двигатель будет развиваться и, следовательно, скорость двигателя будет соответствовать требованиям нагрузки. Величина снижения скорости является функцией соотношения витков между основной и промежуточной обмотками и характеристиками крутящего момента ведомой нагрузки. Следует понимать, что с этим типом двигателя изменение скорости достигается за счет снижения скорости двигателя до необходимого минимума.
РИС. 1.23 Однофазный двигатель с постоянным разделенным конденсатором с Т-образным соединением и расположением обмоток.
скорость; это не многоскоростной двигатель с более чем одной синхронной скоростью.
Пример кривых скорость-крутящий момент для конденсаторного двигателя с ответвленной обмоткой показан на рис. 1.24. Кривая нагрузки типичной нагрузки вентилятора накладывается на кривые скорость-крутящий момент двигателя, чтобы показать снижение скорости, полученное при низкоскоростном соединении.
РИСУНОК 1.24 Кривые скорость-крутящий момент для однофазного двигателя с постоянным разделенным конденсатором и ответвленной обмоткой.
Основы однофазного двигателя
В электротехнике однофазная электроэнергия — это распределение электроэнергии переменного тока с использованием системы, в которой все напряжения источника питания изменяются в унисон. Вот некоторые основы однофазного двигателя.
Однофазное распределение используется, когда нагрузка в основном связана с освещением и отоплением, с небольшим количеством больших электродвигателей в домах, коммерческих и промышленных помещениях. Однофазная система более экономична.
Однофазные асинхронные двигатели можно легко собрать с меньшими затратами, и они надежны с точки зрения ремонта и технического обслуживания. Эти преимущества делают однофазную систему полезной для таких предметов, как вентиляторы, пылесосы, стиральные машины, воздуходувки, центробежные насосы и даже небольшие игрушки.
Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле. В результате настоящий однофазный двигатель имеет нулевой пусковой момент.После того, как ротор начинает вращаться, он продолжает вращаться из-за колеблющегося магнитного поля в статоре.
Для сборки однофазного асинхронного двигателя требуются обычно две основные части: ротор и статор. Ротор — это вращающаяся часть двигателя, и он связан с механической нагрузкой через вал. Однофазные асинхронные двигатели имеют концентрические катушки. Статор — это неподвижная часть двигателя, и на статор подается однофазный переменный ток.
Однофазный источник переменного тока поступает на обмотку статора двигателя, и переменный ток начинает течь через статор. Этот переменный ток создает переменный поток, известный как основной поток. Основной поток соединяется с проводниками ротора, которые затем разрезаются.
В роторе начинает течь ток, и этот ток называется током ротора. Поток ротора создается из этого тока. Два потока, основной поток и поток ротора, создают крутящий момент, необходимый для вращения двигателя.
Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стального ламината, типичного для многофазных асинхронных двигателей.
Есть несколько типов однофазных двигателей:
Двигатель с экранированными полюсами. Это очень простые двигатели, в которых не используется конденсатор. Их низкий КПД делает их пригодными для приложений с низким энергопотреблением.
Двигатель с расщепленной фазой. В этом двигателе также не используется конденсатор.Они недороги и обладают низким пусковым моментом и высоким пусковым током.
Двигатель с постоянным разделенным конденсатором (PSC). Этот двигатель часто называют однозначным конденсаторным двигателем. Он может использовать центробежный переключатель для отключения фазы пуска, когда двигатели набирают обороты. Поскольку в нем используется конденсатор, этот тип двигателя обеспечивает более высокий пусковой момент и более высокую эффективность, чем двигатели без конденсатора.
Конденсаторный двигатель с двумя номиналами. Этот тип имеет те же преимущества, что и двигатель PSC.Конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы пуска, когда двигатель набирает обороты. Он имеет более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.
Большинство сбоев происходит из-за их использования в неподходящем приложении. Обратите особое внимание на требования к применению, прежде чем выбирать двигатель для замены вышедшего из строя или для новой конструкции.
Днем или ночью служба IER Services дежурит, чтобы ваши системы работали на полной скорости.У нас есть службы экстренной помощи 24 часа в сутки, 7 дней в неделю. Позвоните в IER Services сегодня по телефону 614-298-1600.
Двигатель однофазный с коротким замыканием. Однофазные асинхронные двигатели. Устройство и принцип работы
Простота преобразования переменного напряжения сделала его наиболее широко используемым в источниках питания. В области конструирования электродвигателей было обнаружено еще одно преимущество переменного тока: возможность создания вращающегося магнитного поля без дополнительных преобразований или с их минимальной величиной.
Таким образом, даже несмотря на определенные потери из-за реактивного (индуктивного) сопротивления обмоток, простота создания электродвигателей переменного тока способствовала победе над источниками постоянного тока в начале 20 века.
В принципе двигатели переменного тока можно разделить на две группы:
Асинхронные
В них скорость вращения ротора отличается от скорости вращения магнитного поля, поэтому они могут работать с разными скоростями.Этот тип электродвигателей переменного тока наиболее распространен в наше время. Синхронный
Эти двигатели имеют жесткую зависимость между скоростью вращения ротора и скоростью вращения магнитного поля. Они более сложны в изготовлении и менее гибки в применении (изменение скорости при фиксированной частоте питающей сети возможно только путем изменения числа полюсов статора).
Они находят применение только при больших мощностях в несколько сотен киловатт, где их больший КПД по сравнению с асинхронными электродвигателями значительно снижает тепловые потери.
ИНДУКЦИОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА
Самым распространенным типом асинхронного двигателя является электродвигатель с короткозамкнутым ротором, у которого в наклонных пазах ротора с концов, соединенных кольцами, уложен набор токопроводящих стержней.
История этого типа электродвигателей насчитывает более ста лет, когда было обнаружено, что проводящий объект, помещенный в зазор сердечника электромагнита переменного тока, стремится вырваться из него из-за возникновения индукции ЭДС с встречно направленный вектор.
Таким образом, асинхронный двигатель с короткозамкнутым ротором не имеет никаких механически контактирующих компонентов, кроме подшипников ротора, что обеспечивает этот тип двигателя не только низкой ценой, но и высочайшей долговечностью. Благодаря этому электродвигатели этого типа получили наибольшее распространение в современной промышленности.
Однако у них есть определенные недостатки, которые необходимо учитывать при проектировании асинхронных электродвигателей этого типа:
Большой пусковой ток — поскольку в момент включения асинхронного бесщеточного электродвигателя реактивное сопротивление статора на обмотку по-прежнему не действует магнитное поле, создаваемое ротором, возникает сильный скачок тока, в несколько раз превышающий номинальный ток потребления.
Эта особенность работы двигателей данного типа должна быть заложена во все проектируемые источники питания во избежание перегрузок, особенно при подключении асинхронных электродвигателей к мобильным генераторам с ограниченной мощностью.
Низкий пусковой момент — электродвигатели с короткозамкнутой обмоткой имеют ярко выраженную зависимость момента от оборотов, поэтому включение их под нагрузкой крайне нежелательно: время выхода на номинальный режим и пусковые токи значительно увеличиваются, обмотка статора перегружен.
Например, это происходит при включении глубинных насосов — в электрических цепях их питания необходимо учитывать пяти-семикратный запас по току.
Невозможность прямого пуска в однофазных цепях тока — чтобы ротор начал вращаться, необходимо запустить толчковый режим или ввести дополнительные фазные обмотки, сдвинутые по фазе относительно друг друга.
Для пуска асинхронного двигателя переменного тока в однофазной сети либо вручную отключают пусковую обмотку после раскрутки ротора, либо включают вторую обмотку через фазовращающий элемент (чаще всего конденсатор необходимой емкости) .
Нет возможности получения высокой скорости — Хотя вращение ротора не синхронизировано со скоростью вращения магнитного поля статора, оно не может превзойти ее, поэтому в сети 50 Гц максимальные обороты для асинхронного двигателя с белкой обоймы ротора не более 3000 об / мин.
Увеличение скорости асинхронного двигателя требует использования преобразователя частоты (инвертора), что делает такую систему более дорогой, чем коллекторный двигатель. Кроме того, с увеличением частоты возрастают реактивные потери.
Сложность организации реверса — это требует полной остановки двигателя и перегруппировки фаз, в однофазном варианте — смещения фаз в пусковой или второй фазной обмотке.
Наиболее удобно использование асинхронного электродвигателя в промышленной трехфазной сети, так как создание вращающегося магнитного поля осуществляется самими фазными обмотками без дополнительных устройств.
Фактически, цепь, состоящая из трехфазного генератора и электродвигателя, может рассматриваться как пример электрической передачи: привод генератора создает в ней вращающееся магнитное поле, которое преобразуется в колебания электрического тока, который в свою очередь приводит во вращение магнитное поле в двигателе.
Кроме того, именно при трехфазном питании асинхронные двигатели имеют наибольший КПД, так как в однофазной сети магнитное поле, создаваемое статором, фактически может быть разложено на два противофазных поля, что увеличивает бесполезные потери. по насыщенности сердечника. Поэтому мощные однофазные электродвигатели обычно выполняются по коллекторной схеме.
КОЛЛЕКТОР ЭЛЕКТРОДВИГАТЕЛЯ
В электродвигателях этого типа магнитное поле ротора создается фазными обмотками, подключенными к коллектору.Собственно, коллектор двигателя переменного тока отличается от двигателя постоянного тока только тем, что в его расчет входит реактивное сопротивление обмоток.
В некоторых случаях создаются даже типовые коллекторные двигатели, в которых обмотка статора имеет ответвление от неполной части для подключения к сети переменного тока, а источник тока может быть подключен на всю длину обмотки.
Преимущества этого типа двигателя очевидны:
Возможность работы на высоких оборотах позволяет создавать коллекторные электродвигатели со скоростью до нескольких десятков тысяч оборотов в минуту, знакомые всем по электродрели.
Нет необходимости в дополнительных триггерах в отличие от двигателей с короткозамкнутым ротором.
Высокий пусковой момент, ускоряющий выход на рабочий режим, в том числе под нагрузкой. Более того, крутящий момент коллекторного двигателя обратно пропорционален оборотам, и когда нагрузка увеличивается, это позволяет избежать снижения скорости вращения.
Легкость регулирования скорости — поскольку они зависят от напряжения питания, достаточно иметь простейший симисторный стабилизатор напряжения, чтобы регулировать скорость вращения в самых широких пределах.При выходе из строя регулятора коллекторный двигатель можно подключить напрямую к сети.
Меньше инерция ротора — его можно сделать намного компактнее, чем при коротком замыкании, так что сам коллекторный двигатель станет заметно меньше.
Также коллекторный двигатель можно элементарно реверсировать, что особенно важно при создании разнообразных электроинструментов и ряда станков.
По этим причинам коллекторные двигатели широко распространены у всех однофазных потребителей, где необходимо гибкое регулирование скорости: в ручных электроинструментах, пылесосах, кухонных приборах и т. Д.Однако ряд конструктивных особенностей определяют специфику работы коллекторного двигателя:
Коллекторные двигателитребуют регулярной замены щеток, которые со временем изнашиваются. Изнашивается и сам коллектор, а вот мотор с короткозамкнутым ротором, как уже было сказано выше, при нечастой замене подшипников практически вечен.
Неизбежное искрение между коллектором и щетками (причина появления привычного запаха озона при работе двигателя коллектора) не только дополнительно снижает ресурс, но и требует повышенных мер безопасности при эксплуатации из-за вероятности возгорание горючих газов или пыли.
© 2012-2017 г. Все права защищены.
Все материалы на сайте носят исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов.
Электродвигатель однофазный 220В — это отдельный механизм, который широко используется для установки в различные устройства. Его можно использовать в бытовых и промышленных целях. Питание электродвигателя осуществляется от обычной розетки, где обязательно есть мощность не менее 220 вольт. Стоит обратить внимание на частоту 60 герц.
На практике доказано, что однофазный двигатель 220 В продается вместе с устройствами , помогающими преобразовывать энергию электрического поля , а также накапливать необходимый заряд с помощью конденсатора. Современные модели, которые изготавливаются по инновационным технологиям, электродвигатели 220В дополнительно оснащаются оборудованием для освещения рабочего места устройства. Это касается внутренних и внешних частей.
Важно помнить, что емкость конденсатора должна сохраняться с соблюдением всех основных требований.Оптимальный вариант — это место, где температура воздуха остается неизменной и не подвержена каким-либо колебаниям. В помещении не следует понижать температурный режим до минусового значения.
Во время эксплуатации двигателя специалисты рекомендуют время от времени измерять емкость конденсатора.
Асинхронные двигатели сейчас широко используются в различных производственных процессах. Для разных приводов используется данная модель электродвигателя. Однофазные асинхронные конструкции служат для привода деревообрабатывающих станков, насосов, компрессоров, промышленных вентиляционных устройств, конвейеров, лифтов и многого другого оборудования.
Электродвигатель также используется для привода малой механизации. Сюда входят измельчители кормов и бетономешалки. Покупайте эти конструкции только у проверенных поставщиков. Перед приобретением желательно проверить сертификаты соответствия и гарантию производителя.
Поставщики должны предоставить своим клиентам обслуживание электродвигателя в случае поломки или поломки. Это одна из основных составляющих, которая завершается при сборке насосного агрегата.
Существующие серии электродвигателей
Сегодня промышленные предприятия выпускают однофазные электродвигатели 220В следующих серий:
Абсолютно все двигатели подразделяются на конструкцию , способ установки, а также степень защиты. Это позволяет защитить конструкцию от влаги или механических частиц.
Характеристики электродвигателей серии А
Электродвигатели однофазные серии А унифицированных асинхронных исполнений.Они закрываются от внешних воздействий посредством короткозамкнутого ротора.
В конструкции двигателя имеются следующие группы исполнения:
Стоимость однофазного мотора 220В зависит от серии.
Какие бывают типы двигателей?
Двигатели однофазные предназначены для комплектования электроприводов бытового и промышленного назначения. Такие конструкции изготавливаются в соответствии с государственными стандартами.
Области использования. Асинхронные двигатели малой мощности (15-600 Вт) используются в автоматических устройствах и электроприборах для привода вентиляторов, насосов и другого оборудования, не требующего регулирования скорости.В электроприборах и автоматах обычно используются однофазные микродвигатели, так как эти устройства и устройства обычно питаются от однофазной сети переменного тока.
Принцип работы и устройство однофазного двигателя. Обмотка статора однофазного двигателя (Рисунок 4.60, a) расположена в канавках, которые занимают примерно две трети окружности статора, что соответствует паре полюсов. В итоге
(см. Главу 3), распределение MDS и индукции в воздушном зазоре близко к синусоидальному.Поскольку переменный ток проходит через обмотку, MDS пульсирует с частотой сети во времени. Индукция в произвольной точке воздушного зазора
дюймов x = дюймов sinωtcos (πx / τ) .
Таким образом, в однофазном двигателе обмотка статора создает стационарный поток, который изменяется со временем, а не круговой вращающийся поток, как в трехфазных двигателях с симметричной мощностью.
Для упрощения анализа свойств однофазного двигателя представим (4.99) в виде
При x = 0,5 В, sin (ωt — πx / τ) + 0,5 В sin (ωt + πx / τ), .
, то есть мы заменяем фиксированный пульсирующий поток суммой одинаковых круговых полей, вращающихся в противоположных направлениях и имеющих одинаковые частоты вращения: n 1pr = n 1ob = n 1. Поскольку свойства асинхронного двигателя с вращающимся круговым полем подробно рассматриваются в § 4.7 — 4.12, анализ свойств однофазного двигателя может быть сведен к рассмотрению совместного действия каждого из вращающихся полей.Другими словами, однофазный двигатель можно представить в виде двух одинаковых двигателей, роторы которых жестко связаны (рис. 4.60, б), с противоположным направлением вращения магнитных полей и создаваемых ими моментов. М пр и М обр. Поле, направление вращения которого совпадает с направлением вращения ротора, называется прямым; поле обратного направления — обратное или обратное.
Предположим, что направление вращения роторов совпадает с направлением одного из вращающихся полей, например с n пр.Затем скольжение ротора относительно потока F, и т. Д.
s pr = (n 1pr — n 2) / n 1pr = (n 1 — n 2) / n 1 = 1 — n 2 / n 1. .
Скольжение ротора относительно потока
s ob = (n 1obr + n 2) / n 1obr = (n 1 + n 2) / n 1 = 1 + n 2 / n 1. .
Из (4.100) и (4.101) следует, что
с o6p = 1 + n 2 / n 1 = 2 — с пр. .
Электромагнитные моменты M пр и M обр, образованные прямым и обратным полями, направлены в противоположные стороны, и результирующий момент однофазного двигателя M Разрез равен разности моментов при одинаковая частота вращения ротора.
На рис. 4.61 приведена зависимость M = f (s) для однофазного двигателя. Рассматривая чертеж, можно сделать следующие выводы:
а) однофазный двигатель не имеет пускового момента; он вращается в том направлении, в котором его приводит в движение внешняя сила; б) частота вращения однофазного двигателя на холостом ходу меньше, чем у трехфазного двигателя, из-за тормозного момента, создаваемого возвратным полем;
в) характеристики однофазного двигателя хуже, чем у трехфазного; имеет повышенное скольжение при номинальной нагрузке, меньший КПД, меньшую перегрузочную способность, что также объясняется наличием обратного поля;
г) мощность однофазного двигателя составляет примерно 2/3 мощности трехфазного двигателя такого же размера, так как в однофазном двигателе рабочая обмотка занимает только 2/3 пазов статора.Заполнить все канавки статора
из-за небольшого коэффициента намотки расход меди увеличивается примерно в 1,5 раза, а мощность увеличивается только на 12%.
Пусковые устройства. Для получения пускового момента однофазные двигатели имеют пусковую обмотку, смещенную на 90 электрических градусов относительно основной рабочей обмотки. На период пуска пусковая обмотка подключается к сети через фазосдвигающие элементы — емкость или активное сопротивление.После окончания разгона двигателя пусковая обмотка отключается, при этом двигатель продолжает работать как однофазная обмотка. Поскольку пусковая обмотка работает непродолжительное время, она сделана из провода с меньшим сечением, чем рабочая, и набита в меньшее количество канавок.
Рассмотрим подробно процесс пуска при использовании в качестве фазовращающего элемента емкости С (рис. 4.62, а). На пусковой обмотке P напряжение
дюйм = Ú
1– Ú
С = Ú
1 + jÍ 1 P X C , т.е.е., оно сдвинуто по фазе относительно сетевого напряжения U 1, приложенного к рабочей обмотке R . Следовательно, векторы тока в рабочих обмотках I 1p и пусковых I In смещены по фазе на некоторый угол. Выбирая определенным образом емкость фазосдвигающего конденсатора, можно получить пусковой режим, близкий к симметричному (рис. 4.62, б), т. Е. Получить круговое вращающееся поле. На рис. 4.62 на представленных зависимостях M = f (s) для двигателя с включенным (1) и выключенной пусковой обмоткой (кривая 2).Запуск двигателя осуществляется по детали ab Характеристики 1; в точке b отключается пусковая обмотка, и в дальнейшем двигатель работает на части cO характеристики 2.
Поскольку включение второй обмотки значительно улучшает механические характеристики двигателя, в некоторых случаях используются однофазные двигатели, у которых обмотки A и B
включены постоянно (рис. 4.63, а). Такие двигатели называют конденсаторными.
Обе обмотки конденсаторных двигателей, как правило, занимают одинаковое количество канавок и имеют одинаковую мощность. Когда конденсаторный двигатель запускается для увеличения пускового момента, рекомендуется иметь увеличенную емкость C p + C n. После разгона двигателя в соответствии с характеристикой 2 (рисунок 4.63, б) и уменьшения тока некоторые конденсаторы Cn отключаются, так что при номинальном режиме работы (когда ток двигателя становится меньше, чем при пуске), увеличивается емкостное сопротивление и обеспечить работу двигателя в условиях, близких к работе при круговом вращающемся поле.В этом случае двигатель работает по характеристике 1.
Конденсаторный двигатель имеет высокий cos φ. Недостатками его являются относительно большая масса и габариты конденсатора, а также появление несинусоидального тока с искажениями питающего напряжения, что в некоторых случаях приводит к пагубному воздействию на линию связи.
При легких пусковых условиях (небольшой момент нагрузки в период пуска) пускают двигатели R (рисунок 4.64, а).Наличие активного сопротивления в цепи пусковой обмотки обеспечивает меньший сдвиг фаз φ n между напряжением и током в этой обмотке (рисунок 4.64, б), чем сдвиг фаз φ p в рабочей обмотке. В связи с этим токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол φ p — φ n и образуют несимметричное (эллиптическое) вращающееся поле, за счет которого возникает пусковой момент. Двигатели с пусковым сопротивлением надежны в эксплуатации, выпускаются серийно.Пусковое сопротивление встроено в корпус двигателя и охлаждается тем же воздухом, который охлаждает весь двигатель.
Однофазные микродвигатели с экранированными полюсами. В этих двигателях обмотка статора, соединенная с сеткой, обычно сосредоточена и усилена на четко выраженных полюсах (рис. 4.65, а), листы которых штампуются вместе со статором. На каждом полюсе один из наконечников покрыт вспомогательной обмоткой, состоящей из одного или нескольких короткозамкнутых витков, которые экранируют от 1/5 до 1/2 полюсов.Ротор двигателя короткозамкнутый обычного типа.
Магнитный поток машины, создаваемый обмоткой статора (ток полюса), можно представить как сумму двух составляющих (рис. 4.65, б), где n — поток, проходящий через часть полюса, не покрытую коротким замыканием. -замкнутая катушка; Ф n2 — поток, проходящий через часть полюса, экранированную короткозамкнутым витком.
Потоки Ф п1 и Ф n2 проходят через разные части полюсного наконечника, то есть смещены в пространстве на угол β.Кроме того, они сдвинуты по фазе относительно обмоток статора MDS F n под разными углами — γ 1 и γ 2. Это объясняется тем, что каждый полюс описываемого двигателя можно рассматривать в первом приближении как трансформатор, первичная обмотка которого является обмоткой статора, а вторичная обмотка — короткозамкнутой обмоткой. Обтекание обмотки статора вызывает короткое замыкание ЭДС E на (рисунок 4.65, c), в результате чего возникает ток I to и MDS F to, развивающийся с MDS F. н обмотки статора.Реактивная составляющая тока I k уменьшает поток Φ n2, а активная смещает его по фазе относительно MDS F и т. Д. Поскольку поток Ф п1 не включает короткозамкнутый виток, угол γ 1 имеет относительно небольшая величина (4-9 °) — примерно такая же, как фазовый угол между током трансформатора и МДС первичной обмотки в режиме холостого хода. Угол γ 2 намного больше (около 45 °), т.е. как в трансформаторе со вторичной обмоткой, закороченной (например, в трансформаторе измерения тока).Это объясняется тем, что потери мощности, от которых зависит угол γ 2, определяются не только магнитными потерями мощности в стали, но и электрическими потерями в короткозамкнутой катушке.
Рис. 4.65. Расчетные схемы однофазного двигателя с экранированными полюсами и его векторная диаграмма
:
1
— статор; 2 —
обмотка статора; 3 —
шприц
катушка; 4 —
Ротор ; 5
— полюс
Потоки Ф п1 и Ф n2, смещенные в пространстве на угол β и сдвинутые по фазе во времени на угол γ = γ 2 — γ 1, образуют эллиптическое вращающееся магнитное поле (см. Главу 3), компенсирующее вращательный момент воздействуя на ротор двигателя в направлении от первого полюсного наконечника, не охваченного короткозамкнутым витком, ко второму наконечнику (в соответствии с чередованием максимумов «фазовых» потоков).
Для увеличения пускового момента рассматриваемого двигателя за счет приближения его вращающего поля к круговому применяют различные методы: между полюсными наконечниками соседних полюсов, магнитные шунты, усиливающие магнитную связь между основной обмоткой и закороченным витком. и улучшить форму магнитного поля в воздушном зазоре; увеличить воздушный зазор под наконечником, не перекрытый короткозамкнутым витком; используйте два или более короткозамкнутых витка на одном наконечнике с разными углами охвата.Также существуют двигатели без короткозамкнутых витков на полюсах, но с асимметричной магнитной системой: различные конфигурации отдельных частей полюса и разные воздушные зазоры. Такие двигатели имеют меньший пусковой момент, чем двигатели с экранированными полюсами, но их КПД выше, так как у них нет потерь мощности в короткозамкнутых витках.
Рассмотренные конструкции двигателей с экранированными полюсами нереверсивны. Для реализации реверса в таких двигателях вместо короткозамкнутых катушек используются катушки В1, В2, В3 и АТ 4 (рисунок 4.65, на ), каждая из которых охватывает половину полюса. Замыкая пару катушек IN 1 и AT 4 или AT 2 и AT 3 , можно экранировать одну или другую половину полюса и, таким образом, изменить направление вращения магнитного поля и ротор.
Двигатель с экранированными полюсами имеет ряд существенных недостатков: относительно большие габаритные размеры и масса; низкий cos φ ≈ 0,4 ÷ 0,6; низкий КПД η = 0,25 ÷ 0,4 из-за больших потерь в короткозамкнутой катушке; малый пусковой момент и др.Достоинства двигателя — простота конструкции и, как следствие, высокая надежность в эксплуатации. Из-за отсутствия зубцов на статоре шум двигателя незначителен, поэтому его часто используют в устройствах для воспроизведения музыки и речи.
3-7. УСТРОЙСТВО АСИНХРОННЫХ ОДНОФАЗНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
На рис. 3-16 показано устройство асинхронного однофазного двигателя типа АОЛБ со встроенным пусковым резистором. Статор электродвигателя собран из штампованных листов электротехнической стали 15, спрессован и залит в алюминиевый корпус (корпус статора) с двойными стенками 13.Между стенками образованы каналы для воздушного охлаждения поверхности статора. На заточку корпуса статора ставятся две крышки 2 и 17, отлитые из алюминиевого сплава.
Передняя крышка 17 снабжена штампованной крышкой 18 с отверстиями на торце. Через эти отверстия при вращении ротора вентилятор 19, установленный на конце вала ротора, забирает воздух. Вентилятор отлит из алюминиевого сплава и крепится к валу винтом.
В листах статора выбито 24 паза грушевидной формы.Из них 16 пазов заняты проводам рабочей обмотки, а 8 пазов — проводам пусковой обмотки. Выводные концы рабочей и пусковой обмоток подводятся к контактным винтам 4, расположенным в клеммной коробке 11. Сердечник ротора собирается из листов электротехнической стали 12 и прижимается к гофрированной поверхности средней части вала 1. При этом сердечник ротора собирается из листов электротехнической стали 12. Алюминиевая обмотка 14 с замыкающими кольцами и лопастями вентилятора заделана в пазы ротора. Назначение вентилятора — отводить нагретый воздух к охлаждаемым внешним стенкам корпуса.
Центробежный выключатель пусковой обмотки установлен на роторе. Он состоит из двух рычагов 7 с противовесами 9, установленных на осях 8, которые прижаты к четырем лопастям вентилятора. Рычаги прижимаются пальцами 6 к пластмассовой втулке 5, свободно сидящей на валу. При разгоне ротора, когда частота его вращения приближается к номинальной, противовесы расходятся под действием центробежной силы, поворачивая рычаги вокруг осей.
В этом случае втулка 5 перемещается вправо, сжимая пружину 10, и освобождает контакт пружины 4, замыкающий цепь пусковой обмотки.Этот контакт с неподвижным ротором замыкается концом втулки с неподвижным контактом 3.
Подвижный и неподвижный контакты закреплены на изоляционной пластине к задней крышке электродвигателя 2. На ней закреплено тепловое реле, отключающее электродвигатель от сети при его перегреве. Стенд 16 с четырьмя шпильками служит для крепления двигателя.
Схема включения электродвигателя представлена на рис. 3-17.
Напряжение питания подается на клеммы C 1 и C 2.С этих выводов напряжение подается на рабочую обмотку через контакты теплового реле РТ, состоящего из обмотки, биметаллической пластины и контактов. При нагреве мотора выше допустимой пластины контакты загибаются и размыкаются. При коротком замыкании обмотки теплового реле будет протекать большой ток, пластина будет быстро нагреваться и размыкать контакты. В этом случае рабочая C и пусковая P обмотки будут обесточены, так как обе запитаны через тепловое реле.Таким образом, тепловое реле защищает двигатель как от перегрузки, так и от короткого замыкания.
Пусковая обмотка запитана от выводов С 1 и С 2 через перемычку С 2 -P 1, контакты центробежного выключателя VC, перемычку VC-RT, контакты теплового реле PT. При запуске двигателя, когда ротор достигает скорости 70-80% от номинальной, контакты центробежного выключателя размыкаются и пусковая обмотка отключается от сети. При включении электродвигателя, когда частота вращения ротора уменьшается, контакты центробежного переключателя снова замыкаются и пусковая обмотка будет готова к следующему пуску.
На рис. 3-18 показана конструкция асинхронного электродвигателя типа АВЕ. Эти двигатели подключены к сети с постоянно включенной вспомогательной обмоткой, цепь которой последовательно соединена с конденсатором (рисунки 3-9). Электродвигатели типа ABE не имеют твердого тела и поэтому называются встраиваемыми. С приводным механизмом моторы крепятся фланцем или кронштейном.
Корпус электродвигателя представляет собой пакет сердечника статора 1, который собран из листов электротехнической стали 0.Толщиной 5 мм. Пакет запрессован и герметизирован алюминиевым сплавом. На концах статора расположены нажимные кольца 5 и четыре алюминиевых стержня, стягивающие их вместе. Катушки 6 рабочей и вспомогательной обмоток заделаны в пазы статора. На нажимных кольцах 5, подшипниковых щитках 4 и 7. Через резиновую втулку 9 в подшипниковом щите концы обмоток 8 выводятся в сеть. Щиты подшипников стянуты четырьмя шпильками.
Ротор электродвигателя собран из листов электротехнической стали и покрыт алюминием 2. Наряду с обмоткой ротора отформованы крылья вентилятора для охлаждения электродвигателя. Ротор вращается в двух шарикоподшипниках 3.
Электродвигателиимеют буквенно-цифровые и цифровые обозначения типа, например электродвигатель ABE 041-2 расшифровывается следующим образом: A — асинхронный, В — встроенный, E — однофазный,
4 — номер оболочки, 1 — порядковый номер длины сердечника статора и цифра 2 через тире — количество полюсов.
3-8. СИНХРОННЫЕ ОДНОФАЗНЫЕ ЭЛЕКТРОДВИГАТЕЛИ
В некоторых случаях требуются электродвигатели, скорость вращения которых должна быть строго постоянной независимо от нагрузки. В качестве таковых используются синхронные двигатели, в которых частота вращения ротора всегда равна частоте вращения магнитного поля и определяется из (3-2). Есть много типов синхронных двигателей как для трехфазного, так и для однофазного тока. Здесь мы рассматриваем только два самых простых типа однофазных синхронных двигателей: реактивный и конденсаторный реактивный.
На рис. 3-19 показана схематическая диаграмма простейшего однофазного реактивного двигателя, известного в данной области техники, называемого колесом La Cura. Статор 1 и ротор 2 собраны из экструдированных листов электротехнической стали. Катушка, питаемая от однофазной сети переменного тока, намотана на статор, создавая пульсирующее магнитное поле. Название реактивного двигателя связано с тем, что ротор вращается за счет реакций двух сил магнитного притяжения.
При пульсирующем поле двигатель не имеет пускового момента и должен раскручиваться вручную.Магнитные силы, действующие на зубья ротора, всегда стремятся разместить его напротив полюсов статора, поскольку в этом положении сопротивление магнитному потоку будет минимальным. Однако ротор по инерции проходит это положение в то время, когда пульсирующее поле уменьшается. При следующем увеличении магнитного поля магнитные силы действуют на другой зубец ротора, и его вращение продолжится. Для стабильности хода ротор реактивного двигателя должен иметь большую инерцию.
Реактивные двигатели стабильно работают только на небольшой скорости около 100-200 об / мин. Их мощность обычно не превышает 10-15 Вт. Частота ротора определяется частотой питающей сети f и числом зубьев ротора Z. Поскольку за один полупериод изменения магнитного потока ротор вращается на 1 / Z оборота, то в За 1 минуту, содержащую 60 полупериодов 2 f, он повернется на 60 оборотов 2 f / Z. При частоте переменного тока 50 Гц частота вращения ротора составляет:
Для увеличения крутящего момента увеличьте количество зубцов на статоре.Наибольшего эффекта можно добиться, сделав на статоре столько же зубцов, сколько на роторе. В этом случае магнитное притяжение будет действовать одновременно не на пару зубцов, а на все зубья ротора, и крутящий момент значительно возрастет. В таких двигателях обмотка статора состоит из небольших катушек, намотанных на обод статора между зубьями. В электрических регистраторах старых типов применялся электродвигатель с 77 зубьями на статоре и роторе, обеспечивающий скорость вращения диска 78 об / мин.Ротор находился заодно с диском, на котором размещалась пластина. Для запуска электродвигателя необходимо было нажать пальцем на диск.
Статор синхронного конденсаторного реактивного двигателя ничем не отличается от статора конденсаторного асинхронного электродвигателя. Ротор электродвигателя можно изготовить из ротора асинхронного электродвигателя, выполнив в нем пазы по количеству полюсов (рисунки 3-20). При этом у беличьей клетки частично срезаются стержни.При изготовлении таких электродвигателей с листами ротора штампованными с выступами полюсов часть стержней с короткозамкнутым ротором играет роль пусковой обмотки. Ротор начинает вращаться так же, как ротор асинхронного электродвигателя, затем он втягивается синхронно с магнитным полем, а затем вращается с синхронной частотой.
Качество работы конденсаторного двигателя сильно зависит от рабочего режима, в котором электродвигатель имеет круговое вращающееся поле.Эллиптичность поля в синхронном режиме приводит к увеличению шума, вибраций и нарушению равномерности вращения. Если круговое вращающееся поле возникает в асинхронном режиме, двигатель имеет хороший пусковой момент, но небольшие моменты входа и выхода из синхронизма. Когда круговое поле смещается в сторону более высоких частот, пусковой крутящий момент уменьшается, а время входа и выхода синхронизма увеличивается. Наибольшие моменты входа и выхода из синхронизма получаются в том случае, когда круговое вращающееся поле имеет место в синхронном режиме.Однако в этом случае пусковой момент значительно снижается. Для его увеличения обычно несколько повышают сопротивление короткозамкнутой обмотки ротора.
Недостатком некоторых типов конденсаторных реактивных двигателей является заедание ротора, которое заключается в том, что при запуске ротор не вращается, а останавливается в любом положении.
Обычно заедание ротора проявляется в двигателях с неудачным соотношением размеров впадин и выступов полюсов.Наибольший реактивный момент при небольшой мощности, потребляемой электродвигателем, получается, когда отношение полюсной дуги bn к делению полюсов t составляет примерно 0,5-0,6, а глубина желобов h в 9-10 раз больше, чем у воздуха. зазор между полюсными выступами и статором.
Положительным свойством конденсаторных реактивных двигателей является высокий коэффициент мощности, который значительно выше, чем у трехфазных электродвигателей, и иногда достигает 0,9-0,95. Это связано с тем, что индуктивность конденсаторного двигателя в значительной степени компенсируется емкостью конденсатора.
Синхронные реактивные двигатели являются наиболее распространенными синхронными двигателями благодаря простоте конструкции, невысокой стоимости и отсутствию скользящих контактов. Они нашли применение в схемах синхронной связи, в установках звукового кино, звукозаписи и телевидения.
3-9. ИСПОЛЬЗОВАНИЕ ТРЕХФАЗНЫХ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ КАК ОДНОФАЗНЫЕ
На практике встречаются случаи, когда трехфазный электродвигатель необходимо подключать к однофазной сети.Ранее считалось, что для этого требуется перемотка статора электродвигателя. В настоящее время разработано и испытано на практике множество схем включения трехфазных электродвигателей в однофазную сеть без изменения обмоток статора.
Конденсаторы используются как пусковые элементы.
Выводы обмотки статора трехфазного электродвигателя имеют следующие обозначения: С1 — начало первой фазы; C2 — начало второй фазы; СЗ-начало третьей фазы; С4 — окончание первой фазы; С5 — конец второй фазы; C6 — конец третьей фазы.Эти обозначения проштампованы на металлических бирках на подводящих проводах обмотки.
Обмотка трехфазного электродвигателя может быть соединена в звезду (рисунок 3-21, а) или в треугольник (рисунок 3-21, б). При подключении к звезде начало или конец всех трех фаз подключаются к одной точке, а остальные три клеммы подключаются к трехфазной сети. Соединяя в треугольник, соедините конец первой фазы с началом второй, конец второй с началом третьей, а конец третьей с началом первой.Из точек подключения возьмите выводы для подключения мотора к трехфазной сети.
Трехфазная система различает фазные и линейные напряжения и токи. При присоединении к звезде между ними сохраняются следующие отношения:
при соединении в треугольник
Большинство трехфазных электродвигателей производятся на два линейных напряжения, например, 127/220 В или 220/380 В. При более низком сетевом напряжении обмотка соединяется треугольником, а при более высоком напряжении — к звезда.У таких электродвигателей на плате: выводят все шесть выводных проводников обмотки.
Однако есть электродвигатели на одно сетевое напряжение, в которых обмотка соединена звездой или треугольником внутри электродвигателя, а к клеммной колодке подключены только три проводника. Конечно, в этом случае можно было бы разобрать электродвигатель, отключить межфазные соединения и сделать три дополнительных вывода. Однако этого нельзя сделать, используя одну из схем двигателя в однофазной сети, которые приведены ниже.
Принципиальная схема подключения трехфазного электродвигателя с шестью выводами к однофазной сети представлена на рис. 3-22, а. Для этого две фазы соединяются последовательно и подключаются к однофазной сети, а третья фаза подключается к ним параллельно, включая пусковой элемент 1 с переключателем 2. Пусковым элементом может быть активное сопротивление или конденсатор. В этом случае рабочая обмотка займет 2/3 пазов статора, а пусковая 1/3.Таким образом, трехфазная обмотка обеспечивает необходимое соотношение пазов между рабочей и пусковой обмотками. При таком подключении угол между рабочей и пусковой обмотками составляет 90 ° эл. (Рисунок 3-22, б).
При последовательном соединении двух фаз необходимо убедиться, что они включены в соответствии с, а не наоборот, когда n. из. подключенные фазы вычитаются. Как видно из схемы на рис. 3-22, а, концы второй и третьей фаз C 5 и C 6 соединены с общей точкой.
Можно использовать трехфазный электродвигатель и в качестве конденсатора по схеме на рис. 3-23 с одним рабочим конденсатором 1 или с рабочим 1 и пусковым 2 конденсаторами. При такой схеме переключения емкость рабочего конденсатора мкФ определяется по формуле:
где I — номинальный ток двигателя, А; U — напряжение сети, В.
Трехфазный электродвигатель с тремя выводами и обмоткой статора, соединенной звездой, подключается к однофазной сети, как показано на рис.3-24. В этом случае емкость рабочего конденсатора определяется по формуле
Напряжение конденсатора U 1 = 1,3 U.
Трехфазный электродвигатель с тремя выводами и обмоткой статора, соединенной треугольником, подключается к однофазной сети, как показано на рис. 3-25. Емкость рабочего конденсатора определяется по формуле
Напряжение конденсатора U = 1,15 В.
Во всех трех случаях емкость пусковых конденсаторов может быть приблизительно определена из соотношения
При выборе схемы подключения следует руководствоваться напряжением, на которое рассчитан трехфазный двигатель, и напряжением однофазной сети.Фазное напряжение трехфазного
Пример. Трехфазный электродвигатель мощностью 250 Вт, напряжением 127/220 В с номинальным током 2 / 1,15 А следует включать в однофазную сеть напряжением 220 В.
При использовании схемы на рис. 3-24 емкость рабочего конденсатора:
напряжение на конденсаторе U 1 = 1,3 220 = 286 В.
Емкость пускового конденсатора
При использовании трехфазного электродвигателя в качестве однофазного его мощность снижается до 50%, в качестве однофазного конденсатора — до 70% от номинальной мощности трехфазного электродвигателя.
Н.В. Виноградов, Ю.Н. Виноградов
Как рассчитать и изготовить электродвигатель
Москва 1974