Электродвигатель фото: Картинки d1 8d d0 bb d0 b5 d0 ba d1 82 d1 80 d0 be d0 b4 d0 b2 d0 b8 d0 b3 d0 b0 d1 82 d0 b5 d0 bb d1 8c d0 bf d0 b5 d1 80 d0 b5 d0 bc d0 b5 d0 bd d0 bd d0 be d0 b3 d0 be d1 82 d0 be d0 ba d0 b0, Стоковые Фотографии и Роялти-Фри Изображения d1 8d d0 bb d0 b5 d0 ba d1 82 d1 80 d0 be d0 b4 d0 b2 d0 b8 d0 b3 d0 b0 d1 82 d0 b5 d0 bb d1 8c d0 bf d0 b5 d1 80 d0 b5 d0 bc d0 b5 d0 bd d0 bd d0 be d0 b3 d0 be d1 82 d0 be d0 ba d0 b0

Содержание

Yamaha представила очень компактный и очень мощный автомобильный электродвигатель (3 фото + видео) » 24Gadget.Ru :: Гаджеты и технологии


Один из мировых лидеров в производстве мотоциклов, скутеров и велосипедов, японская корпорация Yamaha Motor Company, в последнее время активно продвигается на рынке электрического транспорта. Именно инженеры Yamaha первыми предложили в 1993 году устанавливать электрический двигатель на велосипеды. Тем самым было дано начало целой отрасли в промышленности производящей городские малые средства передвижения. Теперь разработчики Yamaha анонсировали выпуск компактных электродвигателей для мотоциклов, а также более мощного, но также небольшого по размерам, электродвигателя для автомобилей.
Японские инженеры анонсировали экономный малогабаритный мотоциклетный электродвигатель мощностью 35 кВт, соответствующий требованием, предъявляемым к современным электромотоциклам. Именно двигатель такой мощности установлен на популярной модели Zero FXS. Вторым двигателем стал более мощный электромотор на 150 кВт, который предназначен для перспективного автомобиля с задним приводом.

Yamaha, по заявлению разработчиков, предлагает силовые блоки для мотоциклов, автомобилей и других транспортных средств, способные обеспечить уникально высокую удельную мощность. Таким образом компания заявила о намерении расширить ассортимент электрических велосипедов и мотоциклов, а также, в перспективе, и выпуск собственного электромобиля.


Значительное снижение массы и размеров двигателя, было достигнуто благодаря фирменным технологиям и инновационным конструкторским решениям. В результате будет уменьшена общая масса средств передвижения, что обеспечит им более высокие скоростные показатели, приведет к снижению потребления энергии, а также снизит производственные расходы, а как следствие и конечную цену продукции.


В настоящее время Yamaha не раскрывает свои дальнейшие планы по развитию электротранспорта и не сообщает конкретную дату выхода на рынок электротранспорта на сверхкомпактных электродвигателях.

Электродвигатель, вентиляция салона PFN005 PATRON

5 (E39) 520 i – бензин (M52 B20 (206S3)), 150 л. с., выпуск 01.1996 – 30.2000

5 (E39) 525 tds – Дизель (M51 D25 (256T1)), 143 л. с., выпуск 01.1996 – 30.2003

5 (E39) 523 i – бензин (M52 B25 (256S3)), 170 л. с., выпуск 01.1995 – 30.2000

5 (E39) 528 i – бензин (M52 B28 (286S1), M52 B28 (286S2)), 193 л. с., выпуск 01.1995 – 30.2000

5 (E39) 540 i – бензин (M62 B44 (448S1), M62 B44 (448S2)), 286 л. с., выпуск 01.1996 – 30.2003

5 Touring (E39) 520 i – бензин (M52 B20 (206S3)), 150 л. с., выпуск 01.1997 – 30.2000

5 Touring (E39) 523 i – бензин (M52 B25 (256S3)), 170 л. с., выпуск 01.1997 – 30.2000

5 Touring (E39) 540 i – бензин (M62 B44 (448S1), M62 B44 (448S2)), 286 л. с., выпуск 01.1997 – 31.2004

5 (E39) 525 td – Дизель (M51 D25 (256T1)), 116 л. с., выпуск 01.1997 – 30.2003

5 Touring (E39) 528 i – бензин (M52 B28 (286S1), M52 B28 (286S2)), 193 л. с., выпуск 01.1997 – 30.2000

5 (E39) 530 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.1998 – 30.2000

5 Touring (E39) 530 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.1998 – 30.2000

5 (E39) M5 – бензин (S62 B50 (508S1)), 400 л. с., выпуск 01.1998 – 30.2003

5 Touring (E39) 525 tds – Дизель (M51 D25 (256T1)), 143 л. с., выпуск 01.1997 – 31.2004

5 (E39) 535 i – бензин (M62 B35 (358S2)), 245 л. с., выпуск 01.1999 – 30.2003

5 (E39) 520 i – бензин (M52 B20 (206S3)), 136 л. с., выпуск 01.1999 – 30.2003

5 Touring (E39) 520 i – 

бензин (M52 B20 (206S3)), 136 л. с., выпуск 01.1999 – 31.2004

5 (E39) 520 d – Дизель (M47 D20 (204D1)), 136 л. с., выпуск 01.2000 – 30.2003

5 Touring (E39) 520 d – Дизель (M47 D20 (204D1)), 136 л. с., выпуск 01.2000 – 30.2003

5 (E39) 525 d – Дизель (M57 D25 (256D1)), 163 л. с., выпуск 01.2000 – 30.2003

5 Touring (E39) 525 d – Дизель (M57 D25 (256D1)), 163 л. с., выпуск 01.2000 – 31.2004

X5 (E53) 4.4 i – бензин (M62 B44 (448S2)), 286 л. с., выпуск 01.2000 – 31.2003

X5 (E53) 3.0 d – Дизель (M57 D30 (306D1)), 184 л. с., выпуск 01.2001 – 31.2003

X5 (E53) 4.6 is – бензин (M62 B46 (468S1)), 347 л. с., выпуск 01.2002 – 31.2003

X5 (E53) 3.0 i – бензин (M54 B30 (306S3)), 231 л. с., выпуск 01.2000 – 31.2006

X5 (E53) 4.4 i – 

бензин (N62 B44, N62 B44 A), 320 л. с., выпуск 01.2003 – 30.2006

X5 (E53) 3.0 d – Дизель (M57 D30 (306D2)), 218 л. с., выпуск 01.2003 – 31.2006

X5 (E53) 4.8 is – бензин (N62 B48 A), 360 л. с., выпуск 01.2004 – 30.2006

Электродвигатель малогабаритный 6 Вт 1300 об/мин 220 В 60YS06WDV22X

Электродвигатель 6 Вт 1300 об/мин 220 В

Малогабаритный асинхронный однофазный электродвигатель 60YS06WDV22X типоразмера 60YS (фланец 60 мм) мощностью 6 Вт с крутящим моментом 0.047 Н*м используются в различных системах автоматизации, для аналитического приборостроения, в упаковочном, фасовочном оборудовании, медицинском оборудовании. Электродвигатель однофазный асинхронный четырехполюсный с номинальной частотой вращения 1300 об/мин и с номинальным напряжением питания 220 В.

Крепление электродвигателя фланцевое, 4 отверстия диаметром 5.5 мм.

Чертеж электродвигателя

Серия 60YS06 мощностью 6 Вт с редуктором GK

Серия 60YS06 мощностью 6 Вт включает в себя электродвигатель (1300 об/мин) и 23 варианта мотор-редукторов (передаточные отношения от 1:3 до 1:200). Модели в наличии на складе выделены в таблице ниже светло-зелёными фоном строки.

В таблице приведены значения для стандартных передаточных отношений от 1:3 до 1:200.

Максимальный крутящий момент редуктора 60GKH8 при агрегации с мотором мощностью 6 Вт составляет 3 Нм. Класс нагревостойкости изоляции электродвигателя — B (120°).
Ток потребления (1ф х 220 VAC) — 0.11 А.

Такой электродвигатель возможно изготовить в исполнении с возможностью регулировать обороты (тип YT — модель 60YT06WDV22X). Встроенный тахогенератор позволяет управлять скоростью по сигналу обратной связи при помощи простого и надежного однофазного контроллера. Электродвигатель со встроенным тахогенератором также работает в продолжительном режиме. Есть подобный вариант со встроенным тормозом (тип YB, модель 60YB06WDV22X), а также с тахогенератором и с тормозом одновременно (тип YF).

В нашем интернет-магазине вы можете заказать различные асинхронные двигатели с редуктором с питанием 220 В (производитель — WANSHSIN).

Схема подключения

Маркировка электродвигателя 60YS06WDV22X

ТИПОРАЗМЕРТИП
ДВИГАТЕЛЯ
МОЩНОСТЬТИП ВАЛАТИП
ПИТАНИЯ
КЛЕММНАЯ
КОРОБКА
60YS06WDV22X
фланец 60 ммпродолжительный (S1)6 Втвал гладкий1ф x 220 VAC Вбез коробки

Наши преимущества

Коротко о том, почему мы считаем, что Вам выгодно купить электродвигатель 60YS06WDV22X в нашей компании?
  • продукция высокого качества, гарантия 12 месяцев;
  • склад 104 м2 электродвигателей, мотор-редукторов и другого оборудования, 6.5 тонн продукции в наличии на складе;
  • регулярные поставки от производителя, 1 груз в месяц;
  • команда специалистов всегда на связи для решения ваших технических и экономических вопросов;
  • удобный Интернет-магазин с актуальными ценами, остатками и информацией о предстоящих поставках;

Информация о наличии, ценах и характеристиках электродвигателя 60YS06WDV22X обновлена 28.01.2021 в 7:52:27

Сверхпроводник на борту: в России создали мощный электрический авиадвигатель | Статьи

Российские ученые впервые применили сверхпроводниковые материалы для разработки мощных электрических двигателей. Такие моторы могут стать альтернативой реактивным, которые наносят вред окружающей среде и являются источниками повышенного шума. Специалисты из Московского авиационного института (МАИ) сумели добиться большей мощности электродвигателя по сравнению с реактивным, что долгое время оставалось непреодолимой проблемой.

Сегодня реактивные двигатели полностью обеспечивают энергетические потребности самолетов. Их принцип действия основан на сжигании топлива и образовании выхлопных газов, которые и создают силу тяги. Однако использование такого двигателя наносит ущерб экологии. Именно из-за него уровень шума повышен как в салоне самолета, так и на расположенной вблизи аэродрома местности.

Альтернатива реактивному двигателю — электрический. Проблема в том, что удельная мощность современных электродвигателей для авиации не превышает 5 кВт/кг, в то время как реактивные обладают мощностью до 8 кВт/кг. То есть замена повлечет за собой снижение грузоподъемности самолета. Поэтому пока такой переход экономически нецелесообразен.

Однако применение сверхпроводниковых материалов способно увеличить удельную мощность электродвигателей. Ведь главная особенность сверхпроводников — значительное снижение или даже полное отсутствие электрического сопротивления. Следовательно, величина тока, обратно пропорциональная сопротивлению, возрастает, а вместе с ней увеличивается и мощность двигателя.

Ученые МАИ задействовали сверхпроводниковые материалы при создании различных типов электрических машин. Пока это еще не полноценные самолетные двигатели, а лишь база для них — участок, где происходит преобразование энергии из электрической в механическую.

— Наш коллектив рассмотрел концепцию электрического самолета с гибридной силовой установкой и сверхпроводниковыми электрическими машинами, — рассказал «Известиям» завкафедрой «Электроэнергетические, электромеханические и биотехнические системы» МАИ Константин Ковалев. — Эта система состоит из газотурбинного двигателя, вращающего электрический генератор, электродвигателя и кабельной линии, соединяющей их. Удельная мощность такой установки составляет свыше 10 кВт/кг, то есть больше, чем у реактивного двигателя.

Также в установку входит система криогенного обеспечения. Дело в том, что сверхпроводники обладают низким сопротивлением только при очень низких температурах. Сейчас для охлаждения разработчики применяют жидкий азот, температура которого -196 градусов по Цельсию. Использование хладагента также практически полностью блокирует возможность возгорания в случае короткого замыкания проводки, что повышает безопасность на борту самолета. Поддерживать криогенную температуру планируется бортовыми системами криообеспечения, которые сегодня достаточно компактны для применения в авиации.

— Основная сложность перевода летательных аппаратов с реактивных на электрические двигатели заключается в необходимости перестроения всех внутренних систем самолета, — пояснил доцент МАИ Дмитрий Дежин. — Чтобы такой переход был эффективен с точки зрения экономики, необходимо не просто сравнять удельную мощность электрических двигателей с турбинными, а значительно увеличить. 

По мнению авторов работы, это можно будет осуществить, перейдя на охлаждение сверхпроводниковых двигателей жидким водородом (-253 градуса по Цельсию). Данная степень охлаждения сверхпроводников способна повысить удельную мощность двигателя до 30 кВт/кг. Но на данный момент проблема применения жидкого водорода заключается в том, что он взрывоопасен, дорого стоит и требует немало энергии для производства.

По словам ведущего научного сотрудника лаборатории сверхпроводящих метаматериалов НИТУ «МИСиС» Александра Карпова, использовать сверхпроводящие электромоторы может быть выгодно скорее для больших кораблей, чем для самолетов, причем основной интерес будет вызывать уменьшение размеров и веса, а не экологические факторы, пока зарядка батарей для электродвигателя осуществляется от станций, сжигающих газ или мазут.

ЧИТАЙТЕ ТАКЖЕ

 

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
 

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
 

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
 

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
 

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
 

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
 

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
 

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Конструкция асинхронного электродвигателя — 160 фото, схемы, чертежи и примеры использования

Асинхронные электродвигатели – это один из самых широко применяемых видов двигателей. Их можно встретить везде – в стиральной машинке, вентиляторе, вытяжке и т.п. вещах. Об особенностях конструкции подобных устройств и пойдёт речь в этой статье.

Краткое содержимое статьи:

Понятие асинхронного электрического двигателя

Как видно на фото асинхронного двигателя, подобный агрегат представляет собой электромашину, назначение которой заключается в преобразовании электроэнергии в энергию механического типа. Другими словами, подобное оборудование, потребляя электроток, даёт крутящий момент. Именно он позволяет вращать многие агрегаты.

Название «асинхронный» значит «неодновременный». Если изучить описание асинхронных двигателей, то можно заметить, что в таких устройствах ротор вращается с меньшей частотой, чем электромагнитное поле статора.

Данное отставание или, как его ещё называют, скольжение можно высчитать, используя следующую формулу:

S = (n1— n2)/ n1 — 100%, где

n1 – частота электромагнитного поля статора;

n2 – частота вращения вала.

Конструкционное решение электродвигателя асинхронного типа

Статор, ротор, подшипниковые щиты и подшипники, вентилятор, клеммный короб – все это элементы конструкции асинхронного двигателя.

Статор – это стационарная деталь конструкции, на которой располагается обмотка. Именно она создаёт электромагнитное поле.

Ротором называется подвижная комплектующая прибора. Именно в нём создаётся электромагнитный момент, способствующий движению как самого ротора, так и исполнительного механизма.

Сердечники двух вышеописанных элементов изготавливаются из электротехнической стали толщиной 1/2 мм. Обязательно присутствует изоляция: у статора её роль отводится лаковой плёнке, а у ротора – окалине. Роторную обмотку чаще всего делают из алюминия.

Сегодня производятся два типа асинхронных электромашин – одно- и трёхфазные. Чтьо касается последних, то они делятся на:

Машины, оснащённые короткозамкнутым ротором

Короткозамкнутый вариант ротора – это вал с насаженными на него наборными листами из стали, которые образуют сердечник. Его пазы заполняют сплавом алюминия. Он, застывая, формирует стержни. С краёв всё соединяют кольца из того же материала.

Устройства с фазным ротором

Фазный ротор состоит из вала с сердечником, оборудованным 3-мя обмотками. Часть концов, соединяясь, образуют звезду, а остальные крепятся к токосъёмным кольцам, которые подают электроток.

Наиболее широкая область использования у трёхфазных электродвигателей с короткозамкнутым ротором.

Принцип работы

Принцип работы асинхронного электродвигателя с короткозамкнутым ротором заключается в следующем: при подаче на статорные обмотки тока возникает магнитный поток, который, вращаясь, способствует возникновению тока и магнитного поля в роторе. Роторное и статорное поле, взаимодействуя друг с другом, приводят ротор двигателя в движение.

У оборудования с фазным ротором принцип действия схожий. Поэтому не будем повторно описывать весь процесс работы устройства.

Положительные и отрицательные стороны электрических двигателей асинхронного типа

К преимуществам асинхронных машин с короткозамкнутым ротором относятся:

  • Простота конструкционного исполнения и, как следствие, быстрота изготовления.
  • Низкая стоимость.
  • Несложная схема включения.
  • Относительное постоянство скорости вращения вала при увеличении напряжения сети.
  • Устойчивость к кратковременным перегрузкам.
  • Возможность подключить к однофазной сети трёхфазный аппарат.
  • Высокая степень надёжности.
  • Универсальность.
  • Значительный КПД.

Минусы:

  • Отсутствие возможности контроля скорости вращения ротора без мощностных потерь.
  • Уменьшение момента при увеличении нагрузки.
  • Недостаточно высокое значение пускового момента.
  • Если недогрузить устройство, то параметр cosφ резко увеличивается.
  • Достаточно высокие значения пускового тока

Теперь разберём достоинства агрегатов с ротором фазного типа:

  • Более высокий показатель вращающегося момента.
  • Возможность функционировать в условиях малой перегрузки.
  • Постоянство частоты, с которой вращается вал.
  • Малое значение пускового тока.
  • Возможность использовать АПУ.

Есть и недостатки:

  • Крупногабаритность.
  • Более низкий уровень КПД и cosφ.
  • Необходимость обслуживать щёточный механизм.

Как выбрать асинхронный двигатель? На что следует обращать внимание? Ответы на эти и многие другие вопросы вам лучше уточнить у опытных мастеров. Они с удовольствием окажут вам посильную помощь в выборе подходящей модели.

Фото асинхронного электродвигателя


Вам понравилась статья? Поделитесь 😉  

Схемы подключения электродвигателя 380 и 220 (фото, видео)

Одним из ключевых моментов, обеспечивающих нормальную работу привода, является правильная схема подключения электродвигателя – ключевого звена цепи. Соблюдение всех соединений гарантирует отсутствие нештатных ситуаций, повреждения обмоток, долговечную работу и прогнозируемую агрегата. Важно понимать, что существуют общепринятые решения для включения эл. моторов одно- и трехфазных (220 и 380 В), с потреблением постоянного/переменного тока, с пускателем и защитой теплового реле, а также специфические схемы, например, моторы с фазным ротором, или П 41, работающие на 110/220 В, выходящие за привычные рамки.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Круглый и Круглый с простыми двигателями

1. Дайте определение термину «электродвигатель».

Сообщите классу, что электродвигатель — это устройство, преобразующее электрическую энергию в механическую. Магнетизм играет важную роль в этом процессе. Объясните, что ученики собираются построить простой электродвигатель, который они будут использовать в эксперименте для проверки гипотезы. Во-первых, они примут участие в демонстрации частей двигателя.

2.Продемонстрируйте, что у магнитов есть два полюса и что когда два магнита сводятся вместе, эти полюса могут заставить объект двигаться.

Покажите магниты второго класса. Спросите: Что произойдет, если эти два магнита сблизить? (Магниты будут притягиваться друг к другу на противоположных полюсах, и они будут отталкиваться друг от друга на одинаковых полюсах.) Продемонстрируйте с помощью магнитов и попросите учащихся изложить свои наблюдения. Объясните: у магнитов есть два полюса, по одному с обоих концов, северный и южный.Когда противоположные полюса (север и юг) находятся рядом друг с другом, они притягиваются друг к другу. Когда одинаковые полюса находятся рядом друг с другом (например, север и север), они отталкиваются друг от друга. Для демонстрации прикрепите один магнит к задней части маленькой игрушечной машинки. Используйте второй магнит, чтобы заставить машину двигаться, держа столбы рядом друг с другом. Предложите учащимся попробовать передвинуть машину с помощью магнитов. Спросите: Будет ли машина двигаться, если держать друг напротив друга противоположные столбы? Попросите одного студента-добровольца продемонстрировать.

3.Продемонстрируйте взаимосвязь между текущим электричеством и магнетизмом.

Продемонстрируйте, что катушка с проволокой и гвоздь могут действовать как магнит, когда через провод проходит электричество. Поднимите гвоздь, чтобы все могли видеть. Спросите: Смогу ли я поднять скрепки этим гвоздем? Будет ли это действовать как магнит? Прижмите гвоздь к скрепкам, чтобы продемонстрировать, что вы не можете поднять скрепки, используя только гвоздь. Теперь вставьте гвоздь в катушку, которую вы создали перед уроком.Спросите: Смогу ли я поднять скрепки гвоздем, теперь, когда он завернут в металлическую катушку? Прижмите гвоздь с катушкой к скрепкам, чтобы продемонстрировать, что вы по-прежнему не можете поднять скрепки. Объясните, что вы собираетесь превратить гвоздь и катушку в электромагнит с помощью батарейки.

Следуйте инструкциям в разделе «Настройка», чтобы создать электромагнит перед занятием. В классе поместите батарею ячейки D в держатель батареи ячейки D. Приклейте один конец провода к каждой клемме держателя батареи.Попросите класс предсказать, что произойдет, если вы будете держать гвоздь, завернутый в катушку и подключенный к батарее, рядом со скрепками. Держите гвоздь рядом со скрепками. Объясните, что теперь скрепки подбираются, потому что вы создали электромагнит, добавив электричество. Гвоздь намагничен, потому что через катушку течет электрический ток. Обязательно отсоедините провода от аккумулятора, чтобы он не перегрелся.

4. Объясните, что электричество и магнетизм можно использовать для создания крутящего момента.

Объясните, что крутящий момент — это мера силы вращения. Продемонстрируйте крутящий момент для своего класса. Вызовите добровольца вперед и попросите ученика держать резинку за два конца. Вставьте пластиковую ложку в центр резинки и крутите ее, пока резинка не станет туго натянутой и перекрученной. Попросите класс предсказать, что произойдет, когда вы отпустите ложку. Отпустите ложку. Объясните, что при приложении кручения, скручивающего движения к резиновой ленте, была создана сила вращения, называемая крутящим моментом.Крутящий момент может использоваться для питания механических устройств, таких как роботизированные руки и системы мобильности, где шестерни используются для регулирования скорости, с которой этот крутящий момент применяется. Крутящий момент — это также сила вращения, которую вы используете, открывая бутылку с газировкой или используя гаечный ключ для ослабления или затягивания гайки.

Скажите классу, что крутящий момент может быть создан с помощью сил электричества и магнетизма — притяжения и отталкивания, проявляемых магнитами, свидетелями которых они были ранее. Объясните, что они будут строить в классе простой мотор, в котором используются эти принципы.

5. Учащиеся разрабатывают гипотезу о двигателях, слушают инструкции по технике безопасности, а затем конструируют простой двигатель для проверки своей гипотезы.

Задайте вопрос: Как можно использовать движение, создаваемое простым двигателем, для движения другого объекта? Напишите предложения студентов на доске. Продолжайте задавать вопросы, пока предложения не сведутся к одной проверяемой гипотезе, разработанной как класс. (Гипотеза предоставляется в разделе «Советы», если она вам нужна.) Объясните, что учащиеся построят простой мотор, который будет использовать в эксперименте для проверки этой гипотезы.

Перед тем, как раздавать материалы, скажите студентам, что они никогда не должны соединять положительную и отрицательную стороны батареи напрямую друг с другом с помощью провода или чего-либо еще, что является проводящим, так как это вызовет короткое замыкание и приведет к сильному разряду батареи. горячий и может привести к болезненному шоку. Кроме того, попросите студентов немедленно разобрать свой проект, если какая-либо часть станет горячей, а затем проинформируйте инструктора.

Разделите студентов на группы по 2-4 человека. Раздайте каждой группе раздаточный материал «Как построить простой двигатель» и рабочий лист «Научный метод ». Просмотрите с классом шаги в раздаточном материале «Как построить простой мотор», затем попросите каждую группу отправить по одному члену для сбора предметов, которые потребуются группе для создания мотора. Попросите каждую группу заполнить разделы с проблемами / вопросами и гипотезами в своем рабочем листе по научным методам. Студенты также будут записывать информацию о создании своего двигателя в разделе процесса.Следите за прогрессом каждой группы по мере ее создания. Спроецируйте фотогалерею «Построить простой двигатель», в которой при необходимости документируется каждый шаг раздаточного материала «Как построить простой двигатель». Задавайте вопросы каждой группе и помогайте по мере необходимости.

6. Учащиеся планируют эксперимент, чтобы проверить свою гипотезу, используя простой мотор.

Когда все группы успешно построят свои моторы, предложите им поделиться своим опытом с остальным классом. Затем, работая в группах, попросите учащихся разработать эксперимент, используя свои двигатели, чтобы проверить гипотезу, разработанную классом ранее.Попросите учащихся нарисовать схему эксперимента в своих группах, пометить свои рисунки и написать полное описание шагов, которые они предпримут, в процедурной части рабочего листа «Научный метод».

7. Попросите группы поделиться своими описаниями экспериментов и обсудить в классе сходства и различия между всеми экспериментами для проверки одной и той же гипотезы .

Задайте вопрос: Что общего между экспериментами? Чем отличались эксперименты? Если позволяет время, организуйте демонстрацию, где группы могут изучить схемы экспериментов других групп.Предложите студентам представить, как двигатель может приводить в движение более крупные объекты, например робота. (Двигатели обычно используются для обеспечения движения механических структур робота; например, колеса для перемещения робота или руки для взаимодействия с окружающей средой.)

Институт

— История — Изобретение электродвигателя 1800-1854

Унив. Проф. Д-р инж. Мартин Доппельбауэр

Сводка

С изобретением батареи (Алессандро Вольта, 1800 г.), генерации магнитного поля из электрического тока (Ганс Кристиан Эрстед, 1820 г.) и электромагнита (Уильям Стерджен, 1825 г.) был заложен фундамент для создания электродвигателей.В то время еще оставалось открытым вопрос, должны ли электродвигатели быть вращающимися или возвратно-поступательными машинами, то есть имитировать шток плунжера паровой машины.

Во всем мире многие изобретатели работали параллельно над этой задачей — это была проблема «моды». Новые явления открывались почти ежедневно. Изобретения в области электротехники и ее приложений витали в воздухе.

Часто изобретатели ничего не знали друг о друге и самостоятельно разрабатывали подобные решения.Национальная история формируется соответствующим образом до наших дней. Ниже приводится попытка дать исчерпывающую и нейтральную картину.

Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу в 1822 году (Колесо Барлоу).

После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным устройством немецкоязычный прусский Мориц Якоби создал в мае 1834 года первый настоящий вращающийся электродвигатель , который действительно развил замечательную механическую выходную мощность.Его мотор установил мировой рекорд, который был улучшен только четыре года спустя, в сентябре 1838 года, самим Якоби. Его второй мотор был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку. Только в 1839/40 году другим разработчикам во всем мире удалось создать двигатели с аналогичными, а затем и с более высокими характеристиками.

Уже в 1833 году немец Генрих Фридрих Эмиль Ленц опубликовал статью о законе взаимности магнитоэлектрических и электромагнитных явлений, т.е.е. Реверсивность электрогенератора и двигателя . В 1838 году он дал подробное описание своих экспериментов с генератором Pixii, который он использовал в качестве двигателя.

В 1835 году двое голландцев Сибрандус Стратинг и Кристофер Беккер построили электродвигатель, который приводил в движение небольшую модель автомобиля. Это первое известное практическое применение электродвигателя. В феврале 1837 года первый патент на электродвигатель был выдан американцу Томасу Дэвенпорту.

Однако все ранние разработки Якоби, Стратинга, Давенпорта и других в конечном итоге не привели к электродвигателям, которые мы знаем сегодня.

Двигатель постоянного тока был создан не на основе этих двигателей, а в результате разработки генераторов энергии (динамометров). Основы были заложены Уильямом Ричи и Ипполитом Пикси в 1832 году с изобретением коммутатора и, что наиболее важно, Вернером Сименсом в 1856 году с двойным Т-образным якорем и его главным инженером Фридрихом Хефнер-Альтенеком в 1872 году с помощью барабанная арматура. Двигатели постоянного тока по-прежнему занимают доминирующее положение на рынке в диапазоне малой мощности (ниже 1 кВт) и низкого напряжения (ниже 60 В).

В период с 1885 по 1889 год была изобретена трехфазная электроэнергетическая система , которая является основой для современной передачи электроэнергии и современных электродвигателей. Единого изобретателя трехфазной системы питания назвать нельзя. Есть несколько более или менее известных имен, которые принимали активное участие в изобретениях (Брэдли, Доливо-Добровольский, Феррарис, Хазельвандер, Тесла и Венстрём). Сегодня трехфазный синхронный двигатель используется в основном в высокодинамичных приложениях (например, в роботах) и в электромобилях.Впервые он был разработан Фридрихом Августом Хазельвандером в 1887 году.

Очень успешный трехфазный асинхронный двигатель был построен Михаилом Доливо-Добровольским в 1889 году. Сегодня это наиболее часто производимая машина в диапазоне мощностей от 1 кВт и выше.

Расписание 1800 — 1834: Первые эксперименты с электромагнитными устройствами
1800 Впервые Allessandro Volta (итальянский) производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из пакета серебряных и цинковых пластин.
1820 Ганс Кристиан Эрстед (Дениш) обнаруживает генерацию магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механическое движение было вызвано электрическим током.
1820 Андре-Мари Ампер (французский язык) изобретает цилиндрическую катушку (соленоид).
1821 Майкл Фарадей (британский) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита.
Вращающийся провод Фарадея, 1821
Фотография любезно предоставлена ​​Отделом труда и промышленности Национального музея американской истории Смитсоновского института
1822 Питер Барлоу (британец) изобретает прялку (колесо Барлоу = униполярная машина).
Колесо Барлоу, 1822
Philosophical Magazine, 1822, vol. 59
1825-1826 William Sturgeon (Великобритания) изобретает электромагнит , катушку проводов с железным сердечником для усиления магнитного поля.

Первый электромагнит Стерджена, 1825 г.
Труды Общества поощрения художеств, мануфактур и торговли, 1824 г., т.43, пл. 3
1827-1828 Istvan (Ányos) Jedlik (венгерский) изобретает первую роторную машину с электромагнитами и коммутатором.
Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна.

До сих пор многие венгры считают, что Едлик изобрел электродвигатели. Функциональная модель его аппарата выставлена ​​в художественном музее в Будапеште.

Хотя на самом деле это может быть первый электродвигатель, необходимо понимать, что это устройство не оказало влияния на дальнейшее развитие электрических машин. Изобретение Джедлика долгое время оставалось скрытым, и изобретатель не преследовал его. Электротехника ничем не обязана Джедлику.


Поворотное устройство Jedlik, 1827/28
Фото: Wikipedia

Электромобиль Jedlik, 1827/28
Фото: Wikipedia
перед
1830
Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям проф.Андреас фон Баумгартнер (австрийский физик; с 1823 г. профессор физики и прикладной математики в Вене).

Этот аппарат был приобретен в 1830 году Инсбрукским университетом по цене 50 жидких кубометров. Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена.


Двигатель Баумгартнера, построенный Эклингом до 1830 года
Фотография любезно предоставлена ​​Университетом Инсбрука, Музей экспериментальной физики, Ao.Univ. Проф. Маг. Доктор Армин Денот.
1831 Майкл Фарадей (Великобритания) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основы развития электрогенератора.
1831 Джозеф Генри (американец) находит, что закон индукции не зависит от Фарадея, и строит небольшой магнитный рокер.Он описывает это как «философскую игрушку».

В статье для английского журнала Philosophical Magazine, в 1838 году англичанин Ф. Уоткинс подробно описывает устройство Генри и называет его первым электродвигателем, когда-либо известным. Эта точка зрения распространяется и по сей день в основном на британскую литературу.


Магнитная качалка Генри, 1831
Американский журнал науки, 1831, т. 20, стр. 342
Апрель
1832
Savatore dal Negro (итальянский) создает устройство, которое может поднять 60 граммов за одну секунду на 5 сантиметров и, следовательно, развивает механическую мощность почти 30 мВт.

Вероятно, он был вдохновлен магнитным рокером Генри и создал аналогичную возвратно-поступательную машину. Однако устройство Даль Негро может производить движение с помощью специальной передачи.

Даль Негро описывает свои эксперименты в письме от апреля 1832 года, а затем в научной статье « Nuova Macchina élettro-Magnetica » в марте 1834 года.
Его устройства хранятся в Музее истории физики при университете Падуи. К сожалению, они не отображаются.


Электромагнитный маятник Даль Негро, 1832
Annali delle Scienze de Regno Lombardo-Veneto, März 1834, pl. 4
июль
1832
Первое публичное описание вращающейся электрической машины .

Автор — анонимный писатель с инициалами П.М. Теперь его с большой вероятностью опознали как ирландца Фредерика Мак-Клинтока из Дублина.

Майкл Фарадей, получатель письма 26 июля 1832 г., немедленно его публикует. Впервые публично описана вращающаяся электрическая машина.


Первое описание вращающейся электрической машины П.М., 1832 г.
Philosophical Magazine, 1832, стр. 161–162
июль
1832
Hippolyte Pixii (французский язык) создает первое устройство для генерации переменного тока из вращения.

Устройство было публично представлено в сентябре 1832 года на заседании Académie des Sciences . Его описание напечатано уже в июльском номере журнала Annales de Chimie .

Pixii улучшил свое устройство в том же году, добавив переключающее устройство. Теперь он может производить пульсирующий постоянный ток.


Первый генератор постоянного тока Pixii, 1832/33
F.Niethammer, Ein- und Mehrphasen-Wechsel-strom-Erzeuger, Verlag S. Hirzel, Leipzig 1906
1832 Уильям Ритчи (британский) сообщил в марте 1833 года об устройстве, которое, как он утверждал, было построено девятью месяцами ранее летом 1832 года. Это вращающийся электромагнитный генератор с четырьмя катушками ротора, коммутатором и щетками.

Ричи считается изобретателем коммутатора.

В конце своей статьи Ричи описывает, как он смог вращать электрический магнит, используя магнитное поле Земли. Он мог поднять вес на несколько унций (50-100 грамм). Коммутация производилась двумя концами провода, которые входили в два полукруглых желоба с ртутью.


Первый генератор постоянного тока с коммутатором, 1832/33

Вращающаяся катушка Ричи, 1833
Philosophical Trans.Лондонского королевского общества, 1833, Vol. 132, стр.316, пл.7
Янв
1833
A Доктор Шультесс читает лекцию в Обществе инженеров в Цюрихе в 1832 году, в которой описывает свои идеи электродвигателя. В январе 1833 года он успешно продемонстрировал машину перед тем же цюрихским обществом.
Более подробная информация отсутствует.
Март
1833
Осенью 1832 года Уильям Стерджен строит вращающееся электрическое устройство, которое он публично демонстрирует в марте 1833 года в Лондоне.

Как и в случае с Джедликом, нет никаких определенных доказательств даты и деталей его строительства. Осетр сообщил об этом изобретении в 1836 году в первом выпуске своего собственного журнала.


Ротационное устройство Осетровых, 1832
Осетровые Летопись Электричества, 1836/37, т. 1
декабрь
1833
В первые годы развития электротехники проводилось строгое различие между магнитно-электрическими машинами, т.е.е. электрические генераторы и электромагнитные машины, то есть электродвигатели.

Генрих Фридрих Эмиль Ленц (немецкий) обнаружил « закон взаимности магнитоэлектрических и электромагнитных явлений », то есть обратимость электрического генератора и двигателя.

Его научный текст читается в конце 1833 года в Санкт-Петербургской Академии наук и опубликован в 1834 году в «Annalen der Physik und Chemie » Поггендорфа.Его идеи постепенно становятся обычным явлением, особенно в 1838 году после нескольких сообщений об успешных экспериментах по обращению.

Иногда утверждают, что принцип обращения был открыт в 1861 году итальянцем Пачинотти или даже только в 1873 году случайно на Всемирной выставке в Вене. Оба утверждения ложны. Эмиль Ленц широко сообщил еще в 1838 году в Annalen der Physik und Chemie Поггендорфа , как он использовал генератор Pixii в качестве двигателя.

июль
1834
Джузеппе Доменико Ботто (итальянец), профессор физики из Турина, в июле 1834 года публикует в женевском журнале Bibliotheque Universelle описание электродвигателя, над которым он работает.

Его устройство соответствует метроному (похожему на конструкции Генри и Даль Негро), действующему на маятник с помощью двух электромагнитов.Вращательное движение создается штоком поршня.

Реплика устройства сейчас выставлена ​​в Museo Galileo во Флоренции.


Роторная машина Ботто, июль 1834 г. (реконструкция)
Фото любезно предоставлено Museo Galileo, Флоренция

Расписание 1834 — 1837: Первые настоящие электродвигатели
Май
1834
Мориц Герман Якоби (немецкоязычный прусский, натурализованный русский) начинается с экспериментов с подковообразным электромагнитом в начале 1833 года в Кенигсберге (тогда Пруссия, ныне Россия).В январе 1834 года он пишет в письме Поггендорфу, редактору журнала Annalen der Physik und Chemie , о своих успехах.

Он переходит к созданию электродвигателя, которое он завершает в мае 1834 года. Его двигатель поднимает вес от 10 до 12 фунтов со скоростью один фут в секунду, что эквивалентно примерно 15 ваттам механической мощности.
В ноябре 1834 года он отправляет отчет Академии наук в Париже и публикует подробные научные мемуары весной 1835 года.Позже за эту работу он получил звание почетного доктора факультета Кенигсбергского университета. Его текст разделен на 23 раздела и был расширен в 1837 году еще на 15 разделов.

Якоби прямо заявил в меморандуме 1835 года, что он не единственный изобретатель электромагнитного двигателя. Он указывает на приоритет изобретений Ботто и Даль Негро.

Однако Якоби, несомненно, был первым, кто создал пригодный для использования вращающийся электродвигатель.

Полнофункциональная копия его двигателя выставлена ​​в Институте электротехники (ETI) Технологического института Карлсруэ (KIT) по адресу Engelbert-Arnold-Strasse 5 (Building 11.10) в Карлсруэ, Германия.


Первый настоящий электродвигатель
Мориц Якоби, Кенигсберг, май 1834 г.
Октябрь
1834
Американец T. Эдмундсон создает электромагнитное вращающееся устройство, напоминающее водяное колесо.
Электромагнитное колесо Эдмундсона
Американский журнал науки, 1834, т. 26, стр. 205
1834-1835 В декабре 1833 года кузнец Томас Дэвенпорт (американец) покупает соленоид непосредственно у Джозефа Генри и начинает эксперименты вместе с Orange Smalley (американец) в мастерской в ​​Форестдейле, штат Вермонт.

В июле 1834 года двое мужчин создают свою первую роторную машину. Они улучшают устройство в несколько этапов, прежде чем впервые публично продемонстрировать его в декабре 1834 года.

В следующем году Давенпорт отделяется от Смолли.

Летом 1835 года Давенпорт едет в Вашингтон, округ Колумбия, чтобы продемонстрировать свою машину в патентном бюро и зарегистрировать ее. Однако из-за отсутствия денег ему пришлось безуспешно вернуться домой.


Первый двигатель Давенпорта из его первой заявки на патент в июне 1835 года
Август
1835
Фрэнсис Уоткинс (британец) создает электрическую «игрушку», с помощью которой он может приводить во вращение несколько магнитных игл. Он описывает аппарат в статье для философского журнала Philosophical Magazine .

Он признается, что его вдохновила электромагнитная машина (генератор) Джозефа Сакстона, которая выставлена ​​в публичной галерее в Лондоне с августа 1833 года.

Watkins можно считать одним из первых, кто понял принцип реверсирования двигателя и генератора.


Игрушка Ваткина, 1835
Philosophical Magazine , 1835, vol. 7, стр. 112
1835 Sibrandus Stratingh и Christopher Becker (голландский) создают небольшой (30 x 25 см) трехколесный автомобиль с электрическим приводом и весом около 3 кг.Он может проехать по столу от 15 до 20 минут, пока батарея не разрядится.

Stratingh и Becker публикуют отчет о своем успехе в том же году. Стратинг знал работы Якоби и в 1840 году хотел построить настоящий электромобиль, но ему это так и не удалось.


Электромодель Стрейтинга и Беккера, 1835 год
май
1836
Johann Philipp Wagner (немецкий) представляет электродвигатель на Stiftungsfest из Sencken-bergischen naturforschenden Gesellschaft .Его аппарат похож на устройство, созданное Стратингом и Беккером. Он может работать около 10 минут, пока батарея не разрядится.

Вагнер хранит свою конструкцию в секрете, поэтому есть отчеты о демонстрации, но нет чертежей машины. В последующие годы Вагнер продолжает развивать свой двигатель и публично демонстрирует улучшенные версии.

1836
1837
Давенпорт продолжает совершенствовать свои устройства.В 1836 году он находит нового партнера в лице Ransom Cook и переезжает в Саратога-Спрингс, штат Нью-Йорк, для дальнейшего развития своих двигателей. С помощью Кука он строит модель патентного бюро.
24 января 1837 года Давенпорт подает в Вашингтон свое предостережение, а 5 февраля 1837 года он получает первый в США патент на электродвигатель: « Улучшение силового механизма с помощью магнетизма и электромагнетизма ».

Его модель двигателя сейчас выставлена ​​в Смитсоновском институте в Вашингтоне, округ Колумбия.

В запатентованной конструкции

Davenport используются четыре вращающихся электромагнита, которые переключаются с помощью коммутатора, и фиксированные постоянные магниты в форме кольца, сделанные из мягкого железа.

Усовершенствованный двигатель, который он представляет в августе 1837 года, имеет диаметр 6 дюймов, вращается со скоростью около 1000 оборотов в минуту и ​​может поднять 200-фунтовый груз на один фут за одну минуту. Это соответствует мощности 4,5 Вт.

Давенпорт в последующие годы постоянно совершенствовал свои конструкции.

Вместе с Эдвином Вильямсом из Нью-Йорка и его партнером Рэнсомом Куком Давенпорт 3 марта 1837 года формирует объединенную акционерную ассоциацию. Однако Уильямс не может продать достаточное количество акций, и все предприятие рушится всего через год. .


Запатентованный двигатель Давенпорта, февраль 1837 г.

Томас Дэвенпорт — Изобретатель электродвигателя?

Есть несколько текстов пафоса в американо-американской литературе, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на том, что бесспорном Davenport был первым американцем, который создал годный к употреблению электрического двигателя, а также первому, чтобы получить патент на такое устройство в начале 1837.

Однако

Davenport был далеко не первым, кто построил электродвигатель. В Европе (особенно в Англии, Италии и Пруссии) технологии были уже значительно продвинуты. Уже летом 1834 года, за три года до патента, Мориц Якоби представил двигатель, который был в три раза мощнее усовершенствованной машины, которую Давенпорт разработал через несколько месяцев после подачи заявки на патент.Вдобавок мотор Давенпорта работал быстрее, чем у Якоби. Таким образом, выходной крутящий момент двигателя Давенпорта, решающий фактор при сравнении электрических машин, составлял лишь около одной десятой от конструкции Якоби, разработанной тремя годами ранее.

В 1835 году, вскоре после появления двигателя Якоби, двое голландцев Стрейтинг и Беккер уже представили первое практическое применение, управляя небольшой электромобилем.

За годы, прошедшие после патента Давенпорта, продвижение Якоби практически не уменьшилось.В то же время, когда Якоби продемонстрировал свою следующую машину осенью 1838 года, двигатель, который имел выходную мощность 300 Вт и мог вести лодку с 14 людьми через широкую реку, Давенпорт показал крошечную модель поезда.

Мотор

Давенпорта не примечателен в историческом контексте. Его конструкция не является существенным улучшением других современных конструкций.

За прошедшие годы Давенпорт произвел большое количество машин.Но в отличие от Вернера Сименса, Джорджа Вестингауза и Томаса Эдисона он не был основателем важной компании. И в отличие от Николы Теслы, например, Томас Давенпорт никогда не мог продать или лицензировать свой патент.

Davenport не получил патент на электродвигатель как таковой, а только на его особые конструктивные особенности. В период с 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. После того, как Давенпорт модернизировал свой двигатель уже в 1837 году, его патент стал практически бесполезным.

Davenport — это честь быть первым из тысяч инженеров, получивших патент на электродвигатель. Но он не является их изобретателем, и его разработки не оказали сколько-нибудь значительного влияния на дальнейшее развитие электродвигателей.


Расписание 1838 — 1854 гг .: более мощные двигатели, новые применения
февр.
1838
Уоткинс публикует обширную статью в Philosophical Magazine , где он представляет свой двигатель.
Двигатель Уоткина, февраль 1838 г.
Philosophical Magazine, 1838 г., т. 12, пл. 4
Август 1838 В августе 1838 года в Лондоне выставлена ​​крошечная модель поезда с одним из двигателей Давенпорта . Он движется со скоростью 3 мили в час.
Модель поезда Давенпорта, 1838
Фото любезно предоставлено Отделом труда и промышленности Национального музея американской истории Смитсоновского института.
сен.
1838
Якоби переезжает в Санкт-Петербург в августе 1838 года по просьбе русского царя. Он был принят в Петербургскую Академию наук и щедро поддержан царем в его дальнейшей работе над электродвигателями.

13 сентября 1838 года Якоби впервые демонстрирует на Неве лодку с электрическим приводом и гребными колесами длиной около 8 м.

Цинковые батареи имеют 320 пар пластин и весят 200 кг.Они размещены вдоль двух боковых стенок сосуда. Мотор развивает мощность от 1/5 до 1/4 л.с. (300 Вт), лодка движется со скоростью 2,5 км / ч по маршруту длиной 7,5 км. Он может перевозить более десятка пассажиров. Якоби целыми днями разъезжает по Неве. В современных газетных статьях говорится, что после двух-трех месяцев работы потребление цинка составило 24 фунта.


Улучшенный мотор Якоби, 1838
1838 Чарльз Г. Page (американец) начинает всю жизнь заниматься электромоторами.

В течение следующих 20 лет Пейдж будет искать лучшие и более мощные машины. Его двигатели продавались по каталогам в США и достигли высокого уровня осведомленности общественности.

В первые годы многие изобретатели электродвигателей имитировали паровые двигатели с качающимся (возвратно-поступательным) поршнем. Пейдж тоже строит такую ​​машину (см. Справа), но затем обращается к вращающимся устройствам.


Первый двигатель Пейджа, 1838
Американский журнал науки , 1838, т. 35, стр. 264
Август
1839
8 августа года Якоби испытывает усовершенствованный электродвигатель, механические характеристики которого в три-четыре раза превосходят его вторую машину 1838 года (около 1 кВт).Его лодка сейчас развивает скорость 4 км / ч. По словам Уильяма Роберта Гроува, ключевым фактором его успеха является улучшенная цинк-платиновая батарея, которую он сделал сам.

В октябре 1841 года Якоби снова демонстрирует усовершенствованный двигатель, который, однако, лишь немного превосходит модель 1839 года. Это последний электродвигатель, построенный Якоби. Теперь он обращается к теории электродвигателей, а затем переходит к другим электрическим явлениям.

1837-
1842
Роберт Дэвидсон (Шотландия) также занимается разработкой электродвигателей с 1837 года.Сделал несколько приводов для токарного станка и модельных машин.

В 1839 году Дэвидсон руководит постройкой первого автомобиля с электрическим приводом.

В сентябре 1842 года он совершает пробные пробеги на 5-тонном локомотиве длиной 4,8 м на железнодорожной линии Эдинбург — Глазго. Его двигатель развивает около 1 л.с. (0,74 кВт) и развивает скорость 4 мили в час (6,4 км / ч).


Первый электровоз Дэвидсона, 1839
От Т.du Moncel, Электричество как движущая сила , Лондон, 1883 г., рис. 32

В последующие годы начинается поток патентов на электромагнитные машины — около 100 в одной только Англии с 1837 по 1866 год.

Среди изобретателей, имеющих дело с электродвигателями: Джеймс Джоул (англ., 1838 г.), Уильям Тейлор (англ., 1838 г.), Урайа Кларк (1840 г.), Томас Райт (1840 г.), Уитстон (англ., 1841 г.) , де Гарлем (ab 1841), П.Элиас (американец, ок. 1842 г.), Дж. Фромент (франц., Ок. 1844 г.), Мозес Г. Фармер (американец, ок. 1846 г.), Г. К. Колтон (американец, род. 1847 г.), Хьорт (ок. 1849 г.), Томас Холл (американец в США, около 1850 г.), Т.К. Эйвери (около 1851 г.), Серен Хьорт (датчанин, около 1851 г.), Дю Монсель (француз, около 1851 г.), Мари Дэви (франц. 1861)
и другие.

Изначально идет соревнование между колебательными (возвратно-поступательными) и вращательными машинами. Позже колебательные машины полностью исчезают из поля зрения.

Основная проблема первых электродвигателей заключалась в том, что электрический ток от гальванических элементов (цинковых батарей) был слишком дорогим, чтобы конкурировать с паровыми двигателями. Р. Хант сообщил в 1850 году в британском философском журнале «», что электроэнергия даже в самых лучших условиях в 25 раз дороже, чем паровая машина. Только с продолжающейся разработкой электрогенератора (динамо-машины) ситуация начинает меняться.

1840 18 января 1840 года выходит первое издание новой газеты Давенпорта, Electro Magnet and Mechanics Intelligencer . Печатный станок приводится в движение двумя собственными моторами. Моторы выдают якобы около 2 л.с., что составляет около 1,5 кВт.
1841-
1844
По инициативе Вагнера, Германская Конфедерация под руководством Пруссии, Баварии и Австрии устанавливает в 1841 году приз в размере 100000 гульденов за создание электрической машины, мощность которой дешевле, чем мощность лошади, пара или человека. мощность.

Конечно, эта цена привлекает других изобретателей, которые параллельно с Вагнером начинают работать над электродвигателем. Среди них г-н Карл Людвиг Althans из Бюкебурга недалеко от Миндена, Эмиль Stöhrer из Лейпцига, Эмиль Groos из Карлсруэ и Петер Bauer из Нюрнберга. В частности, в 1843 году Штёрер конструирует замечательную машину.

При исследовании последней машины Вагнера в мае и июне 1844 г. во Франкфурте-на-Майне федеральная комиссия определила мощность всего в 50 Вт.Потребление цинка настолько велико, что лошади, пар и рабочая сила значительно дешевле. Из-за этой неудачи Вагнеру отказывают в цене, и он впадает в немилость.

Без мощного электрогенератора это соревнование невозможно было бы выиграть, и человечеству пришлось ждать еще 25 лет.

1851 Page увеличивает мощность двигателей с 8 до 20 л.с.

С двумя двигателями он ведет 10-тонный локомотив с максимальной скоростью 30 км / ч. Он путешествует по маршруту из Вашингтона в Бладенбург за 19 минут.

1854 Другой, 12-тонный локомотив Пейджа едет по маршруту Балтимор — Огайо.
… подробнее в части 2.

Электродвигатели и генераторы

Электродвигатели, генераторы, генераторы и громкоговорители объясняются с помощью анимации и схем.
Это ресурсная страница Physclips, многоуровневого мультимедийного введения в физику (загрузите анимацию с этой страницы).

Двигатели постоянного тока

Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле. В ток в катушке подается через две щетки, которые обеспечивают подвижный контакт с разрезное кольцо. Катушка находится в постоянном магнитном поле. Силы приложили на токоведущих проводах создают крутящий момент на катушке. Сила F на проводе длиной L, по которому течет ток i в магнитном поле. B равно iLB, умноженному на синус угла между B и i, который будет равен 90 °, если поля были равномерно вертикальными.Направление F идет справа правило руки *, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому создают крутящий момент. (Силы на две другие стороны катушки действуют по одной и той же линии и поэтому не создают крутящего момента.)
    * Для запоминания направления силы используется ряд различных символов. Некоторые используют правую руку, некоторые — левую. Для студентов, которые знают векторное умножение, легко использовать силу Лоренца напрямую: F = q v X B , откуда F = i dL Б .Это источник диаграммы, показанной здесь.
Катушку также можно рассматривать как магнитный диполь или небольшой электромагнит, как указано стрелкой SN: согните пальцы правой руки в направление течения, а большой палец — северный полюс. В эскизе Справа изображен электромагнит, образованный катушкой ротора. как постоянный магнит, и тот же крутящий момент (север притягивает юг) действовать, чтобы выровнять центральный магнит.
    Мы используем синий для Северного полюса и красный для Южного. Это просто соглашение, чтобы сделать ориентацию ясной: нет никакой разницы в материалах на обоих концах магнита, и они обычно не окрашиваются в другой цвет.

Обратите внимание на влияние щеток на разрезное кольцо . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (теряется не так много, потому что это точка нулевого момента все равно — силы действовать внутрь).Угловой момент катушки переносит ее через этот разрыв. точка, и ток затем течет в противоположном направлении, что меняет направление на противоположное. магнитный диполь. Итак, после прохождения точки останова ротор продолжает движение. повернуть против часовой стрелки и начать выравнивание в обратном направлении. в В следующем тексте я буду в основном использовать рисунок «крутящий момент на магните», но имейте в виду, что использование щеток или переменного тока может привести к появлению полюсов электромагнит, о котором идет речь, меняет положение, когда ток меняет направление.

Крутящий момент, создаваемый в течение цикла, зависит от вертикального разделения две силы. Следовательно, это зависит от синуса угла между ось катушки и поле. Однако из-за разрезного кольца оно всегда в том же смысле. Анимация ниже показывает его изменение во времени, а вы можно остановить на любом этапе и проверить направление, приложив правую руку правило.

Двигатели и генераторы

Теперь двигатель постоянного тока также является генератором постоянного тока.Взгляните на следующую анимацию. В катушка, разрезное кольцо, щетки и магнит — это то же оборудование, что и двигатель выше, но катушка вращается, что генерирует ЭДС.

Если вы используете механическую энергию для вращения катушки (N витков, область A) с равномерной угловая скорость ω в магнитном поле B , это создаст в катушке синусоидальную ЭДС. ЭДС (ЭДС или электродвижущая сила — это почти то же самое, что и напряжение). Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен НАБ.cos θ. Закон Фарадея дает:

Приведенная выше анимация будет называться генератором постоянного тока. Как и в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что щетки и разрезное кольцо «исправляют» создаваемую ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка проходит мимо мертвой точки, где щетки встречаются зазор в кольце, соединения между концами катушки и внешние клеммы перевернуты.ЭДС здесь (без учета мертвой зоны, которая обычно бывает при нулевом напряжении) равна | NBAω sin ωt |, как нарисовано.

Генератор

Если нам нужен AC, нам не нужно исправление, поэтому нам не нужны разрезные кольца. (Этот это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь Постоянного тока, часто лучше использовать генератор и выпрямлять диоды.)

В следующей анимации две кисти соприкасаются с двумя непрерывными кольцами, поэтому две внешние клеммы всегда подключены к одним и тем же концам катушки.Результатом является не исправленная синусоидальная ЭДС, заданная NBAω sin ωt, который показан на следующей анимации.


Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Выше мы видели, что двигатель постоянного тока также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Тем не мение, это довольно негибкий. (Смотри как настоящие электродвигатели работают для более подробной информации.)

Задний ЭДС

Теперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое.Например, двигатели поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и мощность обратно в сеть. В последнее время несколько производителей начали выпуск автомобилей. рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также используется для зарядки аккумуляторов при остановке автомобиля — это называется регенеративным торможение.

Итак, вот интересное следствие. Каждый двигатель — это генератор . Это правда, в некотором смысле, даже когда он функционирует как двигатель.ЭДС, что мотор генерирует называется обратной ЭДС . Обратная ЭДС увеличивается с увеличением скорость из-за закона Фарадея. Итак, если двигатель не нагружен, он очень сильно крутится. быстро и разгоняется до появления обратной ЭДС плюс падение напряжения из-за потерь, равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»: он останавливает двигатель, вращающийся бесконечно быстро (что избавляет физиков от некоторого затруднения). Когда двигатель нагружен, то фаза напряжения становится ближе к фазе тока (начинает выглядят резистивными), и это кажущееся сопротивление дает напряжение.Итак, спина Требуемая ЭДС меньше, и двигатель вращается медленнее. (Чтобы добавить обратно ЭДС, которая является индуктивной, к резистивной составляющей необходимо добавить напряжения которые не совпадают по фазе. См. AC схем.)

Катушки обычно имеют сердечники

На практике (и в отличие от схем, которые мы нарисовали) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются умеренными токами. Это показано слева в рисунок ниже, на котором статоры (статические магниты) постоянные магниты.

Двигатели универсальные

Магниты статора также могут быть выполнены в виде электромагнитов, как показано выше. справа. Два статора намотаны в одном направлении, чтобы поле в том же направлении, а ротор имеет поле, которое дважды меняет направление за цикл, потому что он подключен к щеткам, которые здесь не указаны. Один Преимущество наличия статоров в двигателе состоит в том, что можно сделать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель .Когда вы едете у такого мотора с переменным током ток в катушке меняется дважды в каждом цикле (помимо изменений со щеток), а вот полярность статоров изменяется одновременно, поэтому эти изменения аннулируются. (К сожалению, кисти все еще остались, хотя я спрятал их в этом эскизе.) Для преимуществ и недостатки постоянного магнита по сравнению со статорами с обмоткой см. ниже. Также смотрите больше на универсальных моторах.

Постройте простой мотор

Чтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (подойдут редкоземельные магниты диаметром около 10 мм, магниты), жёсткий медный провод (не менее 50 см), два провода с крокодилом зажимы на обоих концах, фонарь на шесть вольт, две банки для безалкогольных напитков, два блока дерева, липкой ленты и острого гвоздя.

Сделайте катушку из жесткого медного провода, чтобы не нуждаться во внешних поддерживать. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и два конца радиально направлены наружу в противоположных направлениях. Эти цели будут быть одновременно осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, снимите его на концах.

Опоры оси могут быть выполнены из алюминия, поэтому что они создают электрический контакт. Например, проткнуть безалкогольный напиток банки с гвоздем, как показано.Расположите два магнита с севера на юг, так что магнитное поле проходит через катушку под прямым углом к оси. Заклейте или приклейте магниты к деревянным блокам (не показаны на схеме), чтобы они оставались на нужной высоте, затем переместите блоки поставить их на место, достаточно близко к катушке. Сначала поверните катушку так что магнитный поток через катушку равен нулю, как показано на схеме.

Теперь возьмем аккумулятор и два провода с зажимами типа «крокодил».Соединять два вывода аккумулятора к двум металлическим опорам для катушка и она должна повернуться.

Обратите внимание, что у этого двигателя есть как минимум одна «мертвая зона»: он часто останавливается. в положении, когда на катушке отсутствует крутящий момент. Не уходи он горит слишком долго: он быстро разряжает аккумулятор.

Оптимальное количество витков в катушке зависит от внутреннего сопротивление аккумулятора, качество опорных контактов и тип провода, поэтому вам следует поэкспериментировать с разными значениями.

Как уже говорилось выше, это тоже генератор, но очень неэффективный. Чтобы увеличить ЭДС, используйте больше витков (может потребоваться использовать более тонкую проволоку и рамку для намотки.) Вы можете использовать например, электродрель, чтобы быстро ее повернуть, как показано на рисунке выше. Воспользуйтесь осциллографом, чтобы посмотреть на генерируемую ЭДС. Это переменный или постоянный ток?

У этого двигателя нет разъемного кольца, почему он работает на DC? Проще говоря, если бы он был точно симметричным, это не сработало бы.Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный во время полупериода с большим током, переносит его через полупериод, когда крутящий момент находится в противоположном направлении. По крайней мере, два эффекта могут вызвать асимметрию. Даже если провода полностью зачищены и чистые, контактное сопротивление вряд ли будет одинаковым даже в состоянии покоя. Кроме того, само вращение вызывает прерывистый контакт, поэтому, если во время одной фазы есть более длительные отскоки, этой асимметрии будет достаточно.В принципе, вы можете частично зачистить провода таким образом, чтобы ток был равен нулю за один полупериод.

Альтернативная версия простого двигателя Джеймса Тейлор.
Еще более простой двигатель (который также намного проще для понимания!) — это униполярный двигатель.

Двигатели переменного тока

С помощью переменного тока мы можем изменить направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать дуги, образования озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что кисти контактируют между движущимися поверхностями, они изнашиваются.

Первое, что нужно сделать в двигателе переменного тока, — это создать вращающееся поле. ‘Обычный’ Переменный ток от 2-х или 3-х контактной розетки — это однофазный переменный ток — он имеет одну синусоидальную разность потенциалов создается только между двумя проводами — активным и нейтральным. (Обратите внимание, что заземляющий провод не пропускает ток, за исключением электрические неисправности.) При однофазном переменном токе можно создать вращающееся поле. за счет генерации двух противофазных токов с помощью, например, конденсатора. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальный составляющая магнитного поля синусоидальная, а горизонтальная косусоидальная, как показано. Это дает поле, вращающееся против часовой стрелки.

(* Меня попросили объяснить это: из простого AC Теоретически, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение максимально, когда заряд закончил течь на конденсатор и вот-вот начнет стекать. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток изменяется наиболее быстро, что также, когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрические энергия преобразуется в механическую энергию.)

На этой анимации графики показывают изменение токов во времени. в вертикальной и горизонтальной катушках. График компонент поля B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Он также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный — южный полюс.

Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы положим в катушке, ток которой всегда течет в одном и том же направлении, тогда это становится синхронный двигатель .В широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо этого всего двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов. Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели десятки полюсов и довольно сложные геометрические формы!

Асинхронные двигатели

Теперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать наведенную ЭДС в катушке — или даже просто вихревые токи в проводнике — чтобы ротор магнит.Правильно, если у вас есть вращающееся магнитное поле, вы можете просто вставил проводник и получается. Это дает несколько из преимуществ асинхронные двигатели : отсутствие щеток или коммутатора означает более простое производство, нет износ, отсутствие искр, отсутствие образования озона и отсутствие связанных с этим потерь энергии с ними. Слева внизу схематическое изображение асинхронного двигателя. (Для фотографий настоящие асинхронные двигатели и подробнее см. Индукция. двигатели.)

Анимация справа представляет двигатель с короткозамкнутым ротором .Белка клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют катушка — на что указывают синие черточки на анимации. (Только два из для простоты показано много возможных схем.)

На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором. Реальность иная: фотографии и подробности см. В разделе «Индукция». моторы. Проблема с показанными асинхронными двигателями и двигателями с короткозамкнутым ротором в этой анимации показано, что конденсаторы высокой стоимости и высокого напряжения стоят дорого.Одним из решений является двигатель с экранированным полюсом, но его вращающийся поле имеет некоторые направления, в которых крутящий момент небольшой, и имеет тенденцию бежать назад при некоторых условиях. Самый простой способ избежать этого — использовать многофазные двигатели.

Трехфазные асинхронные двигатели переменного тока

Однофазный используется в домашних условиях для приложений с низким энергопотреблением, но у него есть недостатки. Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мигают с такой скоростью, потому что ваши глаза слишком медленные: даже 25 изображений в секунду на экране телевизора достаточно, чтобы дать иллюзия непрерывного движения.) Во-вторых, это делает неудобным для создания вращающихся магнитных полей. По этой причине некоторая высокая мощность (несколько кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение широко использовать трехфазный двигатель, трехфазный асинхронный двигатель является стандартным рабочая лошадка для приложений большой мощности. Три провода (не считая земли) несут три возможных разности потенциалов, которые не совпадают по фазе с каждым другое на 120 °, как показано на анимации ниже. Таким образом, три статора плавно вращающееся поле.(Видеть это ссылку для получения дополнительной информации о трехфазном питании.)

Если поместить постоянный магнит в такой набор статоров, он станет синхронным. трехфазный мотор . На анимации изображена беличья клетка, в которой простота показана только одна из многих петель наведенного тока. Без механической нагрузки, он вращается практически синхронно с вращающимся полем. Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который будет переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем.Такая компоновка может дать асинхронный двигатель , обладающий высокой эффективностью, высокая мощность и высокие крутящие моменты в диапазоне скоростей вращения.

Двигатели линейные

Набор катушек можно использовать для создания магнитного поля, которое переводит, скорее, чем вращается. На паре катушек на анимации ниже подается импульс от слева направо, поэтому область магнитного поля перемещается слева направо. А постоянный или электромагнит будет стремиться следовать за полем. Так что простой плита из проводящего материала, потому что наведенные в ней вихревые токи (не показаны) содержат электромагнит.В качестве альтернативы мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда индуцируется, чтобы противодействовать любому изменению в магнитном потоке, а силы на токах, вызванные этой ЭДС, сохраняют поток в плите почти постоянный. (Вихревые токи на этой анимации не показаны.)

В качестве альтернативы мы могли бы иметь комплекты катушек с питанием в подвижной части, и индуцировать вихревые токи в рельсе. В любом случае получается линейный двигатель, что было бы полезно, скажем, для поездов на магнитной подвеске.(В анимации геометрия как обычно на этом сайте, в высшей степени идеализирован, и только один вихревой ток показано.)

Некоторые примечания о двигателях переменного и постоянного тока для приложений большой мощности

    Этот сайт изначально был написан в помощь старшеклассникам. и учителя в Новом Южном Уэльсе, Австралия, где в новой учебной программе по истории и приложениям физики за счет самой физики, был введен. В новой программе в одной из точечных точек указано следующее: озадачивающее требование: «объясните, что двигатели переменного тока обычно имеют малую мощность связывают это с их использованием в электроинструментах «.
Двигатели переменного тока используются для приложений с большой мощностью, когда это возможно. Три фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе тяжелая индустрия. Однако такие двигатели непригодны, если многофазность недоступна, или трудно доставить. Электропоезда тому пример: строить проще линии электропередач и пантографы, если нужен только один активный проводник, так что это обычно имеет постоянный ток, и многие двигатели поездов работают на постоянном токе. Однако из-за недостатков постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем бегут трехфазные двигатели.

Однофазные асинхронные двигатели имеют проблемы с объединением приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле. Конденсатор может использоваться для подачи тока в один набор впереди катушки, но дорогие высоковольтные конденсаторы стоят дорого. Затененный Вместо них используются полюсы, но крутящий момент на некоторых углах невелик. Если нельзя создают плавно вращающееся поле, и если груз «проскальзывает» далеко за поле, то крутящий момент падает или даже меняется на противоположное.

В электроинструментах и ​​некоторых приборах используются щеточные электродвигатели переменного тока. Кисти вводят потери (плюс образование дуги и озона). Полярность статора изменена. 100 раз в секунду. Даже если материал сердечника выбран так, чтобы минимизировать гистерезис потери («потери в железе»), это способствует неэффективности и возможности перегрева. Эти моторы можно назвать универсальными. двигатели, потому что они могут работать на постоянном токе. Это дешевое, но грубое решение. и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно экономически не важна.

Если доступен только однофазный переменный ток, можно исправить переменный ток и использовать Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас они становятся все более дорогими. менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пора перейти к Как настоящие электродвигатели работают Джона Стори. Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах.


Громкоговорители

Громкоговоритель — это линейный двигатель с небольшим диапазоном.Имеет одинарное перемещение катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому нет кистей.
The катушка движется в поле постоянного магнита, который обычно имеет форму для создания максимального усилия на катушке. Подвижная катушка не имеет сердечника, поэтому его масса невелика, и он может быстро ускоряться, что позволяет частота движения. В громкоговорителе катушка прикреплена к легкому весу. бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми, плиссированные бумажные «пружины».На фотографии ниже динамик выходит за рамки нормальный верхний предел его перемещения, поэтому катушка видна над полюса магнита.

Для низкочастотного звука с большой длиной волны необходимы большие диффузоры. Диаметр показанного ниже динамика составляет 380 мм. Колонки, предназначенные для низкие частоты называются вуферами. Они имеют большую массу и поэтому трудно быстро разогнаться для высокочастотных звуков. На фотографии ниже часть вырезана, чтобы показать внутренние компоненты.

Твитеры — громкоговорители, предназначенные для высоких частот — могут быть просто динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы. В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.

Громкоговорители представляют собой линейные двигатели со скромным диапазоном — возможно, десятки мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто используется для радиального перемещения считывающей и записывающей головки на дисководе.
Громкоговорители как микрофоны
На картинке выше вы можете видеть, что картонная диафрагма (конус громкоговорителя) соединена с катушкой с проводом в магнитном поле. Если звуковая волна перемещает диафрагму, катушка будет двигаться в поле, создавая напряжение. Это принцип динамического микрофона — хотя в большинстве микрофонов диафрагма гораздо меньше конуса громкоговорителя. Итак, громкоговоритель должен работать как микрофон. Хороший проект: все, что вам нужно, это громкоговоритель и два провода для подключения его ко входу осциллографа или микрофонному входу вашего компьютера.Два вопроса: как вы думаете, что масса диффузора и катушки повлияет на частотную характеристику? Как насчет длины волны звуков, которые вы используете?

Предупреждение: настоящие двигатели сложнее

Эскизы двигателей были схемами, чтобы показать принципы. Пожалуйста, не сердитесь, если, когда вы разбираете мотор, он выглядит больше. сложно! (Смотри как настоящие электродвигатели работают.) Например, типичный двигатель постоянного тока вероятно, будет иметь много отдельно намотанных катушек для обеспечения более плавного крутящего момента: всегда есть одна катушка, для которой синусоидальный член близок к единице.Это показано ниже для двигателя с обмотанными статорами (вверху) и постоянные статоры (внизу).

Трансформаторы

На фотографии изображен трансформатор, предназначенный для демонстрационных целей: первичная и вторичная обмотки четко разделены и могут быть удалены. и заменен поднятием верхней части сердечника. Для наших целей отметим что у катушки слева меньше катушек, чем у правой (вставки показать крупные планы).

На эскизе и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, достаточно разместить источник справа, а нагрузку — слева. ( Важно Примечание по безопасности : для настоящего трансформатора вы можете только «подключить его задом наперед» только после проверки соответствия номинального напряжения.) Итак, как трансформатор работает?

Сердечник (заштрихован) имеет высокую магнитную проницаемость, т.е. материал, образующий магнитное поле намного легче, чем свободное пространство, из-за ориентации атомных диполей.(На фотографии сердечник — ламинированное мягкое железо.) В результате поле сконцентрировано внутри ядра, и почти силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано. Из Фарадея По закону ЭДС на каждом витке первичной или вторичной обмотки составляет −dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод напряжение равно ЭДС. Для N p витков первичной обмотки, это дает

Для N с витков вторичной обмотки это дает Разделение этих уравнений дает уравнение трансформатора где r — коэффициент поворотов.А что с током? Если пренебречь потерями в трансформатор (см. ниже раздел об эффективности), и если мы предположим, что напряжение и ток имеют одинаковое фазовое соотношение в первичной обмотке и вторичный, то из сохранения энергии мы можем записать в установившемся состоянии:
    Power in = power out, поэтому

    V p I p = V s I s , откуда

    I с / I p = N p / N с = 1 / r.

Так что ничего не получишь даром: если увеличишь напряжение, то уменьшишься. ток (по крайней мере) в тот же коэффициент. Обратите внимание, что на фотографии катушка с большим количеством витков имеет более тонкий провод, потому что она предназначена для меньшего ток, чем тот, с меньшим количеством витков

В некоторых случаях целью упражнения является уменьшение силы тока. В силе линии передачи, например, потери мощности при нагревании проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, передача электроэнергии от электростанции позволяет сэкономить много энергии. в город при очень высоких напряжениях, так что токи невелики.

Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что резистор во вторичной цепи «похож» на первичную цепь. В первичном контуре:

    V p = V s / r и I p = Я s .r так

    V p / I p = V s / r 2 I s = Р / р 2 .

R / r 2 называется отраженным сопротивлением . При условии, что частота не слишком высока, и при наличии сопротивления нагрузки (условия обычно встречается в практических трансформаторах), индуктивное сопротивление первичной обмотки намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя как если бы источник управлял резистором номиналом R / r 2 .
КПД трансформаторов
На практике реальные трансформаторы имеют КПД менее 100%.
  • Во-первых, это резистивные потери в катушках (потеря мощности I 2 .r). Для данного материала сопротивление катушек можно уменьшить, сделав их поперечное сечение большое. Удельное сопротивление также можно сделать низким, используя медь высокой чистоты. (См. Дрейф скорости и закон Ома.)
  • Во-вторых, в сердечнике наблюдаются потери на вихревые токи. Это может быть уменьшается за счет ламинирования сердечника. Ламинирование уменьшает площадь цепей в ядре, и, таким образом, уменьшите ЭДС Фарадея, и, таким образом, текущий текущий в ядре, и таким образом теряется энергия.
  • В-третьих, в сердечнике есть гистерезисные потери. Намагничивание и кривые размагничивания магнитных материалов часто немного отличаются (гистерезис или зависимость от истории), и это означает, что требуемая энергия намагничивать сердечник (при увеличении тока) не совсем восстанавливается во время размагничивания. Разница в энергии теряется в виде тепла. в основном.
  • Наконец, геометрический дизайн, а также материал сердечника могут быть оптимизированным, чтобы гарантировать, что магнитный поток в каждой катушке вторичной обмотки почти такой же, как и в каждой катушке первичной обмотки.
Подробнее о трансформаторах: генераторы переменного и постоянного тока
Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока. Трансформеры позволяют понижать 240 В до уровня, удобного для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В). Трансформеры повышайте напряжение для передачи, как упомянуто выше, и понижайте для безопасности распределение. Без трансформаторов потери электроэнергии при распределении сети, и без того высокие, были бы огромными.Возможно преобразование напряжения в DC, но сложнее, чем в AC. Кроме того, такие преобразования часто неэффективно и / или дорого. Дополнительным преимуществом переменного тока является то, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений большой мощности.

Другие наши ресурсы

Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

  • Гиперфизика: Электромоторы с сайта HyperPhysics в штате Джорджия. Отлично сайт в целом, и моторный отсек для этого идеально подходит. Хороший использование веб-графики. Предлагает двигатели постоянного, переменного тока и асинхронные двигатели, а также ссылки
  • Громкоговорители .. Еще больше хороших материалов от Государственной Гиперфизики Джорджии. Хорошая графика, хорошие объяснения и ссылки. Этот громкоговоритель сайт также включает в себя вложения.
  • http://members.tripod.com/simplemotor/rsmotor.htm A сайт, описывающий двигатель, построенный студентами.Ссылки на другие двигатели, построенные тот же студент и ссылки также на сайты о моторах.
  • http://www.specamotor.com A сайт, который сортирует двигатели различных производителей в соответствии со спецификациями, введенными пользователем.

В чем разница между постоянными магнитами и наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле?

Когда я получил этот вопрос на Высшем Доска объявлений школьной физики, я отправил ее Джону Стори, выдающийся астроном и строитель. электромобилей.Вот его ответ:

В общем, для маленького мотора намного дешевле использовать постоянные магниты. Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими что даже правительство время от времени присылает вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет энергии тратится на создание магнитного поля. Так зачем вообще использовать раневое поле? Двигатель постоянного тока? Вот несколько причин:

  • Если вы строите действительно большой двигатель, вам понадобится очень большой магнит и в какой-то момент раневое поле может подешеветь, особенно если очень для создания большого крутящего момента необходимо сильное магнитное поле.Имейте это в виду если вы проектируете поезд. По этой причине у большинства автомобилей есть стартеры. которые используют поле раны (хотя некоторые современные автомобили теперь используют постоянные магнитные двигатели).
  • У постоянного магнита магнитное поле имеет фиксированное значение (т.е. что означает «постоянный»!) Напомним, что крутящий момент, создаваемый двигателем заданная геометрия равна произведению тока через якорь и напряженность магнитного поля. С электродвигателем с возбужденным полем у вас есть возможность изменения тока через поле и, следовательно, изменения моторные характеристики.Это открывает ряд интересных возможностей; вы ставите обмотку возбуждения последовательно с якорем, параллельно, или кормить из отдельно контролируемого источника? Пока есть достаточно крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д., чем слабее магнитное поле, тем * быстрее * двигатель будет вращаться (при фиксированном Напряжение). Сначала это может показаться странным, но это правда! Итак, если вы хотите двигатель, который может производить большой крутящий момент в состоянии покоя, но при этом сильно вращаться скорости при низкой нагрузке (как продвигается конструкция поезда?), возможно раневое поле — вот ответ.
  • Если вы хотите, чтобы ваш двигатель работал как от переменного, так и от постоянного тока (так называемый «универсальный» двигатель), магнитное поле должно менять свою полярность каждые полупериод Электропитание переменного тока, чтобы крутящий момент на роторе всегда был в одном и том же направлении. Очевидно, что для достижения этой цели вам понадобится мотор с возбужденным полем.

Мнения, выраженные в этих заметках, принадлежат мне и не обязательно отражают политика Университета Нового Южного Уэльса или Школы физики.В анимации сделал Джордж Hatsidimitris.
Джо Вулф / [email protected]/ 61-2-9385 4954 (UT + 10, +11 окт-март)

Общие типы электродвигателей

Электродвигатель — это электрическое устройство, преобразующее электрическую энергию в механическую. Механическая сила может использоваться для вращения вентиляторов, миксера, конвейеров или шин электромобиля. Электродвигатель — это рабочая лошадка в отрасли передачи электроэнергии.

Все двигатели обладают определенными характеристиками, поэтому мы можем классифицировать их на основе конкретных характеристик или стандартов.

В двигателях

, используемых в Северной Америке, чаще всего используются стандарты NEMA (Национальная ассоциация производителей электрооборудования). Обычно называемые двигателями NEMA. Практически во всем остальном мире используется метрическая версия, называемая SI или международным стандартом, известная как стандарты IEC. Часто называют двигателями IEC. NEMA использует лошадиные силы и дюймы, IEC использует миллиметры и киловатты

.

Мы классифицируем 2 типа электродвигателей в зависимости от источника питания:

  • Двигатели постоянного или постоянного тока
  • Двигатели переменного или переменного тока


Двигатели постоянного тока Двигатели постоянного тока

были первой разновидностью двигателей, широко используемых, поскольку они могли питаться от существующих систем распределения электроэнергии постоянного тока.Они обычно снабжены постоянными магнитами в их статической части, но есть и другие, которые содержат электромагниты вместо постоянных магнитов в своем статоре. Скорость двигателя постоянного тока можно регулировать в широком диапазоне, используя либо переменное напряжение питания, либо изменяя силу тока в его обмотках возбуждения. Небольшие двигатели постоянного тока используются в игрушках, инструментах и ​​приспособлениях.

Двигатели переменного тока

Переменный ток, это означает, что ток вместо того, чтобы течь в одном направлении, движется вперед и назад, меняет направление с определенной частотой в герцах.В большинстве стран в качестве частоты переменного тока используется 50 Гц (50 Гц или 50 циклов в секунду). Лишь немногие используют 60 Гц. Стандарт в США — электричество переменного тока частотой 60 Гц.

Мы классифицируем 2 основных типа двигателей переменного тока по фазам:

Однофазный двигатель

Однофазный двигатель работает от однофазного источника питания. Они содержат два типа проводки: горячую и нейтральную. Их мощность может достигать 3 кВт.Они могут использоваться в основном в домах, офисах, магазинах и небольших непромышленных компаниях, а также во многих других устройствах, таких как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

Трехфазный двигатель

Трехфазный двигатель работает от трехфазного источника питания. Они управляются тремя переменными токами одинаковой частоты, которые достигают максимума в переменные моменты времени. Они могут иметь мощность до 300 кВт и скорость от 900 до 3600 об / мин.Из-за высокой эффективности и низкой стоимости трехфазный двигатель переменного тока является наиболее часто используемым двигателем в промышленных приложениях.

Мы также можем классифицировать двигатели по типу корпуса. Мы расскажем об этом в другой статье.
Читайте здесь: Самые распространенные типы корпусов электродвигателей

Применение электродвигателей

Электроэнергия — это наиболее экономичный способ передачи энергии на очень большие расстояния по проводам.Однако практически невозможно использовать электричество напрямую, например, для перекачивания воды, для чего требуется механическая энергия. В этом случае нам необходимо производить механическую энергию из электричества так или иначе для выполнения механической работы. По этой причине мы используем электродвигатели, которые потребляют электричество на входе и выдают механическую энергию на выходе.

Ознакомьтесь с некоторыми приложениями, в которых требуются электродвигатели:

  • Промышленное использование — Существуют различные процессы во всех отраслях промышленности, в которых нам требуется механическая энергия от электродвигателей, например смешивание, подъем, вытягивание и т. Д.

  • Домашнее хозяйство — Для комфортной жизни мы полагаемся на многие электрические приборы, для которых требуются электродвигатели, такие как кондиционер, электрические вентиляторы, пылесос, водяной насос, измельчитель, миксер и т. Д.

Не стесняйтесь: Свяжитесь с нами , если у вас есть какие-либо вопросы, вам нужна дополнительная информация или если вы заинтересованы в покупке электродвигателей.

HVH Industrial Solutions является авторизованным дистрибьютором следующих производителей электродвигателей: Elektrim Motors, Aurora Motors, Worldwide Electric , 24 . Мы тесно сотрудничаем с их инженерными командами, чтобы обеспечить превосходное обслуживание и поддержку клиентов.

Сделать запрос


Владимир Арутюнян

Владимир Арутюнян — основатель HVH Industrial.Он имеет степень магистра машиностроения и более 10 лет опыта работы в области передачи механической энергии.

Не стесняйтесь связываться с Владом на Linkedin: https://www.linkedin.com/in/vladharut



Управление температурным режимом электродвигателя

| Исследования транспорта и мобильности

NREL проводит исследование управления тепловым режимом электродвигателя, на основе которого получены экспериментальные данные и процессы моделирования для моделирования, анализа, проектирования и строительства новых электрических моторы.

Управление тепловым режимом электродвигателя предполагает многогранное взаимодействие работы двигателя. условия, распределение тепловой нагрузки, температурные ограничения материала, пассивное тепловое распространение тепла и активное конвективное охлаждение.

Отраслевые партнеры хотят лучше понять теплопередачу в электродвигателях в их усилиях по разработке надежных двигателей с уменьшенными размерами и стоимостью.Исследование NREL решает эту проблему и поддерживает широкий отраслевой спрос на данные, методы анализа и экспериментальные методы для улучшения управления тепловым режимом двигателя.

Исследования по характеристике и улучшению терморегулирования двигателя включают следующее:

  • Разработка технологий охлаждения на основе жидкости (трансмиссионное масло, вода-этиленгликоль) для статора и ротора

  • Геометрическая характеристика столкновения и потока жидкости автоматической коробки передач репрезентативные поверхности и предоставление проверенных моделей вычислительной гидродинамики

  • Выполнение тепловых характеристик пассивной батареи и улучшение статора и ротор, включая пластинки, концевые обмотки и пазовые обмотки

  • Сотрудничество с другими национальными лабораториями и отраслевыми партнерами для измерения тепловых производительность материалов, улучшение характеристик двигателя и терморегулирования, а также облегчение будущая лабораторная тепловая оценка компонентов электродвигателя

  • Поддержка проекта терморегулирования для двигателей, разработанных партнерами NREL.

Пример использования мониторинга состояния

для большого электродвигателя

Фото 1. Рассматриваемый огромный двигатель на химическом заводе Eastman

.

В организациях по обеспечению надежности мы уделяем так много внимания применению технологий и экономии средств, связанных с обнаружением проблемы и предотвращением незапланированного простоя или катастрофического отказа.Много раз мы повторяем эту же процедуру, снова и снова по всему предприятию, потому что мы останавливаемся на выявлении физической проблемы, а наши результирующие действия не устраняют скрытую причину. Мы должны стать более активными и сделать следующий шаг при выявлении проблем с технологиями мониторинга состояния, определить систему или скрытую причину и применить последующее решение и / или полученные знания на всем предприятии. В следующем примере рассматривается электродвигатель мощностью 450 лошадиных сил, 1200 об / мин, 4160 вольт (Фото 1).

В этом исследовании специалист по анализу вибрации отметил значительное увеличение уровней вибрации на двигателе объекта (График 1).


Фото 1. Огромный двигатель, о котором идет речь, на химическом заводе Eastman.

Уровни вибрации повысились с менее 0,1 дюйма в секунду до 0,25 дюйма в секунду. Никаких других изменений связанного с ним машинного поезда не произошло. Анализ спектра подвесных подшипников двигателя выявил пик с высокой амплитудой около 7200 циклов в минуту и ​​еще один значительный пик около 71-кратной скорости вращения двигателя (График 2).


График 2. Анализ спектра выходных подшипников двигателя.

Первым подозрением аналитика была проблема с электродвигателем, связанная с электричеством. Поэтому он попросил группу моторного анализа оценить подозрительный мотор. Группа анализа двигателя провела анализ тока (График 3) и анализ мощности рассматриваемого двигателя, и никаких электрических проблем выявлено не было.


График 3. Текущие показания анализа для рассматриваемого двигателя.

Затем специалист по анализу вибрации решил продолжить более глубокий анализ. Был получен низкочастотный спектр с высоким разрешением, который показал, что фактический пик примерно в два раза превышающий частоту линии на самом деле составлял 7 239 имп / мин. Дальнейший анализ компонентов двигателя показал, что эта частота эквивалентна частоте прохода шарика наружного кольца (BPFO) внутреннего подшипника двигателя. На основании этих выводов и того факта, что у нас ранее были проблемы с этим приложением, было принято решение о замене двигателя во время предстоящего планового профилактического обслуживания машинного поезда.

Не останавливайтесь на достигнутом — найдите первопричину

Часто наши группы надежности хотят остановиться на этом и потребовать экономии за предотвращение незапланированного отключения или катастрофического отказа. Но чтобы получить больше преимуществ от наших технологий мониторинга состояния, мы должны сделать следующий шаг.

Наша группа по анализу двигателей проследовала за рассматриваемым двигателем в нашу местную ремонтную мастерскую, чтобы проверить проблему с подшипником и попытаться определить причины этой проблемы.После снятия маслозаливной и сливной трубок команда отметила, что смазка в заливной трубке не была рекомендованной нами смазкой для двигателей. В заправочной трубке находилась смазка Interlube Red Hi-Lo, а в качестве моторной смазки мы использовали Exxon Polyrex EM (фото 2).


Фото 2. Анализ заполнения и слива
пробки выявляют проблемы.

При демонтаже внутреннего подшипника бригада и ремонтная мастерская также отметили, что смазка в подшипнике затвердела.Дальнейший анализ смазки, содержащейся в выпускной трубке, показал, что подшипник был смазан консистентной смазкой Chevron Black Pearl, когда он был ранее восстановлен. Стороны определили, что две смазки несовместимы и привели к затвердеванию смазки. Дальнейший анализ подшипников также подтвердил, что внешнее кольцо подшипника было повреждено.

Также было отмечено, что мы использовали сферический роликовый подшипник в ременной передаче. Было принято решение заменить подшипник на цилиндрический роликоподшипник для увеличения радиальной грузоподъемности.

И здесь не останавливайся

Часто наши группы по надежности испытывают искушение остановиться на этом этапе, и мы похлопываем себя по плечу и заявляем, что наша проблема решена путем корректировки спецификации подшипников и смазки на рассматриваемом двигателе. Но чтобы получить максимальную пользу от нашей технологии мониторинга состояния, мы должны сделать следующий шаг. Мы должны определить систему или скрытую причину сбоя и устранить эти причины, чтобы получить максимальную выгоду для нашей компании. Как неправильная смазка попала в этот подшипник? Есть ли в этом районе или на предприятии другие двигатели, которые используют не указанные в спецификации смазки? Почему мастерская по ремонту двигателей использует не ту смазку, которую мы указали для наших двигателей на заводе?

Вот некоторые из других действий, которые были предприняты в результате выводов и последующего анализа первопричин:

  1. Полученные данные были переданы в нашу группу смазочных услуг, чтобы убедиться, что рассматриваемая смазка не использовалась в других областях.Хотя мы больше не указывали эту смазку ни на каком заводском оборудовании, было установлено, что многие лубрикаторы все еще имеют запасы этой смазки на своих участках. Смазка Interlube Red Hi-Lo была удалена из всех зон хранения смазки.

  2. Группа смазочных услуг изменила спецификацию пластичной смазки на заводе, но об этом не было сообщено затронутым поставщикам услуг. Состоялась встреча с представителями нашей моторной мастерской, чтобы сообщить о наших выводах, результате смешивания несовместимых смазок и наших ожиданиях на будущее.

  3. В результате этого и нескольких других серьезных отказов двигателя была разработана новая спецификация ремонта. Спецификация смазки была включена в спецификацию ремонта. Предыдущая спецификация ремонта не содержала спецификации пластичной смазки.

  4. В результате этих выводов и выводов по нескольким другим двигателям было принято решение разработать процесс и команду для оценки ремонта двигателей.

Этот случай демонстрирует дополнительные преимущества перехода вашей программы мониторинга состояния на новый уровень. Став более активным и делая следующий шаг при выявлении проблем с технологиями мониторинга состояния, вы можете определить систему или скрытую причину и применить последующее решение и / или полученные знания на всем предприятии.

Том Уиттемор-младший работает в группе Reliability Technologies Group в подразделении Eastman Chemical Company в Теннесси.

Управление температурным режимом электродвигателя для тяговых электроприводов (презентация) (конференция)

Беннион К., Кузино Дж. И Морено Г. Управление температурным режимом электродвигателя для тяговых электроприводов (презентация) . США: Н. П., 2014. Интернет.

Беннион К., Кузино Дж. И Морено Г. Управление температурным режимом электродвигателя для тяговых электроприводов (презентация) . Соединенные Штаты.

Беннион К., Кузино Дж. И Морено Г. Мон. «Терморегулирование электродвигателя для тяговых электроприводов (презентация)».Соединенные Штаты. https://www.osti.gov/servlets/purl/1168783.

@article {osti_1168783,
title = {Управление температурным режимом электродвигателя для тяговых электроприводов (презентация)},
author = {Беннион, К. и Кузино, Дж. и Морено, Г.},
abstractNote = {Температурные ограничения накладывают существенные ограничения на конечную работу электродвигателей.Анализ методом конечных элементов и моделирование вычислительной гидродинамики все чаще используются при проектировании и анализе электродвигателей. По мере того, как модели становятся более сложными, важно иметь подробные и точные сведения о тепловых свойствах материала и коэффициентах конвективной теплопередачи. В данной работе были измерены термические свойства и термоконтактное сопротивление между слоями для различных материалов слоистого материала статора. Кроме того, были измерены коэффициенты конвективной теплопередачи форсунок жидкости для автоматической трансмиссии (ATF), чтобы лучше понять теплопередачу ATF, попадающую на медные обмотки двигателя.Для количественной оценки влияния этих параметров на коэффициенты теплопередачи были проведены эксперименты при различных температурах ATF и скоростях струи.},
doi = {},
url = {https://www.osti.gov/biblio/1168783}, journal = {},
number =,
объем =,
place = {United States},
год = {2014},
месяц = ​​{9}
}

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *