Энергосберегающие лампы что внутри: Разбилась энергосберегающая лампа

Содержание

Разбилась энергосберегающая лампа

Содержание статьи:

Когда только появились энергосберегающие лампочки, многих очень интересовал вопрос их утилизации. Ведь они содержат ртуть, которая очень опасна для здоровья человека и экологии. По этой причине запрещено выбрасывать их в мусорное ведро. В данной статье мы подробно рассмотрим, в чем особенность энергосберегающих ламп, почему их опасно разбивать, и что такое процесс демеркуризации.

Конструктивные особенности энергосберегающих ламп

Энергосберегающую лампу можно назвать разновидностью ламп низкого давления с газоразрядным устройством. По сути, это люминесцентная лампа, только компактная и имеющая разнообразные формы. Отличием энергосберегающей лампочки от люминесцентной является наличие электронного балласта (пускорегулирующего устройства). Конструкция лампочки также состоит из цоколя, колбы и корпуса. Подробнее об этом читайте тут.

Несомненно, экономка имеет множество преимуществ в сравнении с лампой накаливания как помощник в освещении дома и экономии электроэнергии, но у этого источника освещения имеются и негативные стороны.

Люминесцентные лампы содержат ртуть

Известно, что энергосберегающие лампочки содержат высокотоксичное химическое вещество, которое очень опасно – ртуть. Пары ртути могут вызвать отравление, ввиду того, что ядовиты. В состав ртути входят такие соединения, как цианид ртути, каломель, сулема – они могут нанести сильный вред нервной системе человека, почкам, печени, желудочно-кишечному тракту, а также дыхательным путям. Именно через дыхательные пути ртуть проникает в организм: вдыхание ее паров может происходить незаметно, так как ртуть не имеет запаха. Лампы такого типа кроме ртути содержат инертный газ аргон, а их внутренние стенки покрыты люминофором.

Энергосберегающая лампа содержит больше ртути, чем обыкновенный градусник. Для сравнения: градусник содержит 2 мг ртути, а энергосберегающая лампа 3-5 мг этого опасного вещества.

Но не все энергосберегающие лампы содержат в своей конструкции пары ртути. Некоторые производители изготавливают лампы немного по-другому. В саму колбу за место ртути вводится вещество – металлический сплав амальгама кальция. Сплав отличается тем, что в нем ртуть находится в связанном состоянии. Преимущество применения этого вещества в лампах заключается в том, что при комнатной температуре оно не способно испаряться, поэтому исключатся возможность попадания в воздух, которым мы дышим.

Почему опасно разбивать люминесцентные лампы

Опасность от разбития энергосберегающей лампочки все-таки существует – внутри одной такой лампы содержится 3-5 мг ртути. Нельзя сказать, что после разбития лампочки вред здоровью сразу же будет нанесен, так как известны случаи, что после утилизации разбитой лампы никаких признаков ухудшения здоровья замечено не было. Но опасность все же есть – ртуть пагубно влияет на организм человека. Признаками ухудшения здоровья после вдыхания паров ртути считается: утомляемость и слабость, отсутствие аппетита и боли головы, головокружение и рвота, заболевания дыхательной системы, а при вдыхании больших объемов ртути может наступить даже смерть. Избежать всего этого можно либо использованием дорогостоящих светодиодных ламп, либо своевременным реагированием на повреждение экономки.

Что такое для человека 3-5 мг, вряд ли кто-то знает, поэтому нужно разобраться, насколько опасна такая «доза».

Предельно допустимой среднесуточной величиной для человека ртути и других опасных ее соединений является 0, 0003 мг/куб.м.

Можно рассчитать несложную задачку, которая пояснит опасность разбитой энергосберегающей лапочки.

Если в комнате 23 квадратных метров с высотой потолков 3 метра разбилась энергосберегающая лампочка (объем комнаты равен 69 куб.м), и если в лампе содержится максимальное количество ртути 5 мг, то концентрация ртути в рассматриваемой комнате составит 0,072 мг/куб.м – это в 240 раз больше среднесуточной допустимой величины 0,0003 мг/куб.м. К примеру, чтобы не превысить число 0,0003 нужно, чтобы объем комнаты составлял 16666 куб.м. – это очень большая площадь.

Ртуть опасная для здоровья

Как уже говорилось, некоторые лампы содержат амальгаму, которая считается безвредной. Но амальгама – это химический сплав ртути и металла, который находится в связанном состоянии, и, по сути, не должен нести опасности человеку.

Но в энергосберегающих лампах нового поколения для генерирования света применяются амальгамы с высокими температурами. У таких амальгам имеется одна особенность: они становятся опасны, когда температура рабочей среды достигает величины 60 градусов, и из них начинается высвобождаться ртуть. Поэтому мощные энергосберегающие лампы, в которых применен сплав ртути и металла, называемый амальгамами, также опасны, если их разбить — они лишь снижают токсичность ртути.

Какие еще лампы содержат ртуть

Как уже стало понятно, ртуть в энергосберегающих лампах опасна при вдыхании ее паров, и в одной лампочке содержится приличное количество ртути.

Перечислим разновидности ртутных ламп и количество ртути, содержащееся в них в мг:

  • Люминесцентные трубчатые лампы – 40-65;
  • Энергосберегающие лампы (или компактные люминесцентные) – 3-5;
  • Лампы высокого давления с дросселем (ДРЛ) – 75-350;
  • Ламы высокого давления, уличные (ДРТ) – 50-600;
  • Натриевые лампы высокого давления – 30-50;
  • Металлогалогенные лампы – 40-60;
  • Неоновые трубки – 10.

Стоит уточнить, что данные в списке относятся к лампам российского производства. Европейские лампы имеют гораздо меньшее содержание ртути в своей конструкции, но к энергосберегающим лампам данное замечание не относится, они имеют равный показатель ртути – около 5 мг.

Процесс демеркуризации

Демеркуризацией называется трудоемкий процесс устранения паров ртути. Даная процедура является очень важной: помещение, где произошел выброс ртути, нужно вовремя и эффективно обработать. Как известно, ртуть попадает воздушно-капельным путем в организм, поэтому здоровье любого живого существа находится в этот момент под угрозой.

Если в квартире разбился градусник или была пролита ртуть, следует провести демеркуризацию. Если вы самостоятельно решили заняться данной процедурой, нужно строго придерживаться этапов в определенной последовательности:

  1. Перед проведением демеркуризации нужно открыть все форточки в помещении, где это произошло, а также закрыть все двери. Двери закрываются для того, чтобы пары ртути не проникли в коридор и другие комнаты. Следует строго изолировать место, где находятся ртутные капли: если наступить на небольшую каплю, то легко можно разнести опасное вещество по другим помещениям квартиры.
  2. Первым этапом демеркуризации является сбор ртути (он осуществляется механическим способом, то есть – руками). Перед тем как начать, нужно обезопасить себя: надеть бахилы из полиэтилена, резиновые перчатки и марлевую повязку, предварительно смоченную в растворе соды или в обычной воде.
  3. Если разбился градусник, то необходимо собрать все осколки и поместить их в банку с водой, стоит внимательно осмотреть помещение и собрать все осколки, до мельчайших деталей. Воду в банку обязательно нужно налить, благодаря ей ртуть не будет испаряться. К механическому сбору ртути нужно отнестись очень серьезно.
  4. Капли ртути, которые остались на полу, можно собрать при помощи шприца или резиновой груши, а потом поместить эти инструменты в банку с водой.
  5. Ртуть могла оказаться за плинтусом, под паркетом, поэтому стоит снять и проверить все досконально. Процесс демеркуризации помещения может быть очень долгим (в частности, механический сбор ртути), поэтому каждые 15 минут нужно выходить из помещения и менять повязки.
  6. Банку с водой, где собрана ртуть, ни в коем случае нельзя выкидывать. Нужно плотно закрыть банку крышкой и убрать подальше от источников тепла. Банка передается организации, занимающейся сбором ртути.

Не допускайте попадания ртути на кожу

После того, как ртуть тщательно собрана, нужно обработать место разлива ртути раствором марганцовки и хлорной извести (иногда специалисты выполняют химическую чистку при помощи горячего мыльно-содового раствора). Раствор выступает в роли окислителя, и ртуть теряет свои летучие свойства. Целью такой дезинфекции является предотвращение вредных последствий для здоровья. Можно сделать раствор исключительно из концентрированной хлорной извести, которая является наиболее химически активной по сравнению с марганцовкой, и будет эффективно реагировать с ртутью.

Химическую обработку раствором хлорной извести (обычная «Белизна») нужно проводить в два этапа:

  • В емкости из пластика к пяти литрам воды добавляем один литр «Белизны»: нам необходим 17 % раствор. В растворе смочить губку, тряпку или щетку и промыть загрязненную поверхность. Необходимо обработать все места, куда могла попасть ртуть, особое внимание уделить щелям плинтусов и паркета. Раствор после использования лучше не сливать в унитаз, так как он загрязняется ртутью, а сдать вместе с собранной ртутью. Нужно помнить и о соседях: при сливе загрязненного раствора может загрязниться вся канализация, и демеркуризация будет очень трудоемкой.
  • Повторное мытье пола таким же раствором нужно провести еще несколько раз в течение 2-3 недель. Обязательно нужно проветривать помещение. Но при этом нужно обратить внимание на такой момент: при низкой температуре, когда помещение вымораживается благодаря полностью распахнутому окну, ртуть испаряется очень медленно, поэтому лучше держать форточку чуть приоткрытой в течение продолжительного времени.

Сбор ртути осуществляется и специальными приборами для облегчения процесса самостоятельной демеркуризации, к которым относятся озонаторы. Озон вступает в химическую реакцию с ртутью. В результате реакции озон окисляет пары ртути и устраняет ее пары из воздуха.

Для выяснения остаточного количества ртути в воздухе специалисты применяют газо-ртутные анализаторы, которые оперативно показывают, какое количество ртути содержится в атмосферном воздухе.

Разбившийся градусник относится к категории незначительных ртутных загрязнений, но даже его последствия стоит оперативно и качественно устранить. Если произошел выброс ртути в большом количестве, то лучше сразу обратиться в соответствующую компанию, и демеркуризацию проведут специалисты.

Как утилизировать ртуть и разбившуюся энергосберегающую лампу

Утилизация собранной ртути:

  1. Собранную ртуть поместить в банку из стекла вместе с тем предметом, на котором имеются ее остатки: одежда, осколки и пр.;
  2. Банку отнести в центр утилизации по месту жительства (этим занимается специальная служба ЕДДС от МЧС, которая должна быть в каждом районе).

Правильный способ утилизации энергосберегающих ламп рассказывается в этой статье. Требования к утилизации отработавших люминесцентных ламп для обычных потребителей и предприятий отличаются в виду различия в количестве используемых источников света. В первом случае перегоревшие лампы можно отнести в районный ДЭЗ или РЭУ – там должны быть установлены специальные контейнеры. В таких отделениях лампы принимаются бесплатно. Предприятиям же нужно заключить договор с организациями, которые занимаются утилизацией ртутных ламп. Как это сделать, читайте тут.

Утилизация ламп дневного света

Если в квартире вдруг разбилась энергосберегающая лампа, то не нужно организовывать специальные мероприятия по демеркуризации, нужно просто проветрить помещение: ртуть в лампах содержится в виде паров и при проветривании устраняется.

Никто не отрицает, что использование энергосберегающих ламп – это практично, удобно и современно. Но стоит помнить, что перегоревшая энергосберегающая лампа относится к отходам первого класса опасности, потому что имеет в составе ртуть. В Европе утилизация таких ламп практикуется шире: к примеру, в Германии имеются специальные пункты сдачи ламп, где вам за принесенную лампочку спасибо скажут, еще и заплатят небольшую сумму. В России пока, конечно, такого нет, поэтому подавляющее число лам выкидывается на свалку. Нужно осознавать всю серьезность положения и утилизировать перегоревшие лампы по правилам.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Поделиться ссылкой:

Устройство энергосберегающей лампы. Как устроена энергосберегающая лампа

Сегодня люди все чаще стали использовать в быту энергосберегающие лампы. Популярность этих ламп вызвана, прежде всего, их экономичным потреблением энергии. Ведь энергосберегающая лампа позволяет сэкономить деньги. В отличие от лампы накаливания ЭСЛ дает больший световой поток при меньшей потребляемой мощности.

Устанавливается энергосберегающая лампа в такой же патрон, что и обычная лампа накаливания. Достоинства ЭСЛ очевидны, в то время как недостатков практически нет. Поэтому неудивительно, что многие люди уже давно перешли на использование так называемых экономок вместо обычных лампочек накаливания.

Компактная энергосберегающая лампа является разновидностью люминесцентных ламп, уже ставших нам привычными. Данные ЭСЛ легко устанавливаются в патрон вместо лампы накаливания. В нашу жизнь уже прочно вошли лампы такого типа. И вскоре их будут называть не «энергосберегающими лампами», а просто «лампами».

Многие видят в работе этой лампы какую-то загадку, несмотря на всю простоту устройства. Рассмотрим устройство энергосберегающей лампы и попробуем разобраться в принципе ее работы.

Как устроена энергосберегающая лампа

Устройство практически всех энергосберегающих ламп одинаковое. В состав лампы входит несколько деталей. Газоразрядная трубка – это видимая часть лампы, излучающая свет. Газоразрядная трубка соединяется с корпусом. В корпусе находится внутренняя часть лампы, представляющая собой электронную схему пуска и питания. По-другому эту схему называют электронным балластом. Электронная схема выполняет задачу зажигания лампы.

Цоколь имеет контакты для питания лампы и резьбу для вкручивания в патрон. Обычная лампа накаливания имеет практически такой же цоколь, что и ЭСЛ. Устанавливать компактную энергосберегающую лампу можно в небольшие светильники. Существует несколько типов цоколей, которые распространены в России: G4, GU10, E40, E27, E14, G5.3.

Энергосберегающие лампы с цоколем Е40, Е27 и Е14 можно устанавливать в патроны, предназначенные для обычной лампы накаливания. Е27 – патрон стандартный бытовой, имеет резьбу 27 мм, Е14 – уменьшенный патрон, резьба которого 14 мм, Е40 – патрон с резьбой 40 мм, относится к стандартным промышленным патронам.

Трубка, запаянная с двух сторон, называется колбой энергосберегающей лампы. Электроды находятся на противоположных концах этой колбы. ЭС лампа имеет изогнутую колбу, покрытую слоями люминофора. Эта колба содержит инертный газ и небольшое количество ртутных паров. Ионизация паров ртути является причиной свечения лампочки при подключении к ней питания.

Когда на электроды подается напряжение, через них течет ток прогрева. Он разогревает электроды, из-за чего протекает термоэлектронная эмиссия. Когда электроды достигают определенной температуры, они испускают поток электронов. Сталкиваясь с атомами ртути, электроны вызывают излучение ультрафиолета, после чего ультрафиолетовое излучение попадает на люминофор, который преобразовывает это излучение в видимый свет. Цветовая температура лампы зависит от типа люминофора, она может быть 2700-6500К.

Помните, что пары ртути опасны для организма человека, поэтому если энергосберегающая лампа разбилась очень важно правильно утилизировать осколки и обработать место.

Вы ни когда не задумывались почему в энергосберегающей лампе колба имеет причудливо изогнутую форму? Поверьте это сделано не с проста. Изогнутая форма колбы позволяет уменьшить длину всей лампы. За счет спиральной намотки длину самой газоразрядной трубки можно увеличить при этом длина лампы при такой форме будет уменьшена. Если бы этого не делали то не каждая такая лампа помещалась в обычный светильник или люстру.

Для изготовления корпуса лампы применяется негорючий пластик. Колба люминесцентной лампы крепится в верхней части. Пускорегулирующее устройство, соединительные провода и предохранитель находятся в корпусе. На поверхности лампы есть маркировка, в ней указана цветовая температура, мощность, напряжение питания.

Внутреннее устройство энергосберегающей лампы

Внутри корпуса ЭСЛ находится круглая печатная плата. На ней собран высокочастотный преобразователь. В результате использования довольно высокой частоты преобразования нет того «моргания», которое свойственно лампам с электромагнитным балластом (где используется дроссель), работающим на частоте 50 Гц. Современные лампы имеют пускорегулирующий аппарат, оснащенный помехозащитным фильтром. Фильтр защищает от появления помех в сети электропитания.

Добраться до электронной схемы легко. Внимательно рассмотрите лампу, лучше использовать перегоревшую. Кажется, что корпус лампы разобрать невозможно. Но это ошибочное мнение. Ближе к колбе в верхней части лампы есть неглубокая канавка. Возьмите небольшую отвертку или узкое лезвие и попытайтесь разделить корпус. После небольшого усилия у вас в руках будет уже две части. В первый раз могут возникнуть сложности, зато потом эта операция будет занимать считанные секунды.

После отделения цоколя от колбы, эти элементы соединяются между собой проводами которые необходимо аккуратно отделить от платы. Сделать это можно с помощью паяльника, нагрев место пайки, либо просто разрезав провода (но режьте так чтобы, потом можно было их восстановить).

В некоторых видах ламп провода, которые идут от электронной платы в газоразрядную трубку, просто намотаны на специальные штырьки. После того как провода будут откинуты только тогда вы сможете выполнить дальнейший осмотр и диагностику лампы. Далее отсоедините цоколь от электронного блока. Для удобства наращивания проводов, их нужно разрезать посередине.

Внутри вы увидите круглую плату. Это и есть внутреннее устройство энергосберегающей лампы благодаря которому она работает. От перегрева радиоэлементы платы, как правило, почерневшие (если у вас в руках нерабочая лампа).

Проводки от колбы примотаны к четырем штырькам, имеющим квадратное сечение. Они расположены попарно по краям платы. Никакой пайки проводов нет, они именно примотаны, на что стоит обратить внимание.

Предохранитель является основным элементом схемы. Он защищает от перегорания все компоненты электронной платы. Иногда вместо предохранителя используется входной ограничительный резистор. Когда в лампе возникает какая-либо неисправность, в цепи растет ток, что приводит к сгоранию резистора, тогда цепь питания разрывается.

Один вывод резистора соединен с платой, а второй – с резьбовым контактом цоколя. Усажен резистор в термоусадочной трубке. Пульсации выпрямленного напряжения сглаживает конденсатор. Дроссель или тороидальный трансформатор имеет кольцевой магнитопровод, на нем расположены как правило 3 обмотки.

Мигание лампы при частоте сети 50 Гц случается 100 раз в секунду. Поэтому энергосберегающая лампа может неблагоприятно сказываться на общем физическом состоянии человека, его работоспособности, особенно если он находится в условиях такой освещенности длительное время. Все эти вредные составляющие устранены в современных электронных балластах. Поэтому на здоровье окружающих не оказывается никакого негативного влияния.

Современный электронный балласт представляет собой небольшую электронную схему, в ней реализованы функции зажигания лампы без миганий, а также плавный разогрев спиралей катодов лампы. В современной энергосберегающей лампе происходит свечение газа с частотой 30-100 кГц. Шума при работе абсолютно нет, а электромагнитное поле практически отсутствует. На высокой частоте (30-100кГц) за счет близкого к единице коэффициента потребления электроэнергии формируется повышенная светоотдача.

Лампа может зажигаться с полным накалом практически сразу, либо яркость может нарастать постепенно. Это зависит от схемы балласта. В некоторых лампах процесс нарастания яркости может занимать пару минут. В таком случае сразу после включения наблюдается полумрак. К сожалению, на энергосберегающей лампе не указывают, какой используется алгоритм включения. Понять алгоритм можно только после того, как вы вкрутили лампочку в патрон.

Принцип работы энергосберегающей лампы

С вопросом как устроена энергосберегающая лампа, мы разобрались, теперь давайте в общих чертах разберемся, как работает лампа.

С обеих сторон внутри колбы находится два электрода анод и катод, в виде спиралей. Разряд между электродами возникает после того, как произошла подача питания. Ток протекает через смесь ртутных паров и инертного газа. Лампа зажигается, когда быстро движущиеся электроны сталкиваются с медлительными атомами ртути.

Однако, большая часть светового излучения (98%), производимого энергосберегающей лампой – это ультрафиолет. Для человеческого зрения он невиден. Видимый же человеку свет, который идет от лампы, возникает благодаря слоям люминофора.

Под воздействием ультрафиолетового излучения эти слои светятся. От химического состава люминофора зависит цветность освещения, которую вырабатывает люминесцентная лампа. Люминофор нанесен на внутреннюю поверхность стеклянной колбы.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Что внутри у энергосберегающей лампочки?

Прошло больше года с тех пор как я закупил партию энергосберегающих лампочек и писал об этом здесь>>> и вот одна из этих энергосберегающих лампочек стала экономить мне 100% энергии, в смысле перестала включаться вовсе. Остальные горят исправно, единственное, что напрягает, так это медленное разгорание до полной яркости. У меня есть две лампочки, которые загораются в полную силу примерно через минуту, и пару штук, которые загораются практически сразу в течение секунды. Не удержался и разобрал сгоревшую лампочку.  Как вы думаете, ртуть есть внутри?

Начнем с того, что энергосберегающая лампочка – это всего лишь лампа дневного света. Принцип действия такой лампы заключается в свечении люминофора, который нанесен на стенки изнутри. Люминофор светится от ультрафиолетового излучения. А оно, в свою очередь, получается от газового разряда между электродами. Т.е к двум электродам, находящимся с противоположных сторон, прикладывается высокое напряжение и от этого в парах ртути, находящихся в лампе, происходит разряд. Но откуда там высокое напряжение? Ведь в сети у нас 220 вольт. (может не у всех, но у большинства из нас – точно).

Высокое напряжение получают при помощи специальных преобразователей и схем, что не позволяет лампу дневного света включить в нашу электрическую сеть напрямую. Если просто включить лампу в сеть, то она не загорится. Для того чтобы получить газовый разряд внутри лампы дневного света, необходим импульс высокого напряжения. Но есть еще одна неприятная особенность. После того как лампа загорелась, ее сопротивление резко падает, и если не ограничить силу тока, то она быстро выйдет из строя. Вот как раз этим и занимаются специальные схемы – балласты.

В советские времена (да и сейчас в офисах) широко применялась схема электромагнитного балласта с неоновым стартером. В этой схеме есть неоновая лампочка с биметаллической пластиной, которая после включения нагревалась и замыкала цепь в которой находится дроссель (катушка) и конденсаторы, что выдает необходимый импульс и ограничивает ток через лампу после зажигания. После чего биметаллическая пластина размыкается и лампа дальше горит сама. Схема простая и надежная.



Схема подключения лампы дневного света с неоновым стартером
A – лампа, B – сеть, С – стартер, E – конденсатор, D – неоновая лампочка, F – нить накала, G – дроссель

Но как и у всех простых схем у нее есть и недостатки

  • Долгий запуск. До нескольких секунд, сопровождающийся морганием лампы. И чем больше лампа изношена, тем дольше идет “моргание”. В конечном, а при выходе из строя лампы – она моргает постоянно и не зажигается;
  • Большее потребление энергии, чем у электронной схемы. И не удивительно. В сеть подключен дроссель, через который протекает ток.
  • Низкочастотный гул (50Гц), исходящий от дросселя, возрастающий по мере его старения;
  • Мерцание лампы с удвоенной частотой сети, которое может повредить зрение, а иногда бывает опасным из-за стробоскопического эффекта вращающиеся синхронно с частотой сети предметы могут казаться неподвижными. Поэтому люминесцентные лампы с электромагнитным балластом не рекомендуется применять для освещения подвижных частей станков и механизмов. Чтобы его сгладить, лампы часто устанавливают по две, а схема включения сдвигает пик подачи напряжения одной лампы относительно другой;
  • Большие габариты и масса требуются довольно большие медные дроссели и высоковольтные конденсаторы;
  • При температуре ниже 10 °C уменьшается давление газа в лампе, что понижает ее яркость, а при отрицательных температурах лампы по классической схеме могут не зажигаться вовсе.

Сейчас в компактных лампах и в том числе энергосберегающих, применяется электронный балласт, представляющий собой более или менее сложную электронную схему, обеспечивающую работу в трех режимах

  1. Предварительный разогрев электродов лампы. Делает запуск лампы практически мгновенным (1-2 сек) и возможным при низких температурах окружающей среды (зависит от качества схемы).
  2. Поджиг — генерируется импульс высокого (до 1,6 кВ) напряжения, вызывающего пробой газа, наполняющего колбу лампы.
  3. Горение — на электродах лампы поддерживается небольшое напряжение, достаточное для поддержания её горения.

При этом электронный балласт еще и увеличивает частоту напряжения, подаваемого на лампу, чтобы уменьшить мерцание. Таким образом, в цоколе энергосберегающей лампы есть электронная схема, которая и обеспечивает зажигание лампы дневного света, а все вместе называют “энергосберегающей лампой

, если не разбить колбу, то никаких паров ртути, все безопасно.


Разобранная энергосберегающая лампа, хорошо виден электронный балласт

В зависимости от схемы балласта, лампа может зажигаться практически сразу с полным накалом, либо с постепенным нарастанием яркости. В некоторых лампах этот процесс может занимать пару минут, что дает полумрак сразу после включения (лично мне нравится зажигание сразу). К сожалению, на энергосберегающих лампах не пишут какой алгоритм включения используется, и понять это можно только вкрутив лампочку в патрон.

Если энергосберегающая лампа перестала загораться, это означает либо сгорела нить накала, либо элемент электронной схемы. Часто в результате скачков напряжения пробиваются транзисторы, найти аналоги которых в наших условиях – непросто. В любом случае, энергосберегающей лампе уже не помочь (только если вы не специалист в электронике) и она отправляется в утиль. Если такая неприятность произошла с лампой дневного света, то померив тестером или простым пробником сопротивление нити накала, можно понять, следует ли поменять саму лампу или выбросить весь светильник. Если нить накала оборвана, то меняем лампу, если сопротивление нити есть, то вышла из строя электронная схема.

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Энергосберегающие лампы — устройство и принцип работы

Говоря на тему осветительных приборов для бытового использования, нельзя не отметить то, что на сегодняшний день самыми востребованными остаются компактные люминесцентные лампы, или, как их еще называют, энергосберегающие. В свое время подобные приборы произвели практически прорыв в своей области, что и понятно. Ведь по сравнению с их предшественниками – обычными люминесцентными лампами – они не требуют никакого дополнительного оборудования.

Для того чтобы заменить в квартире лампы накаливания (ЛН) на КЛЛ (компактная люминесцентная лампа), не потребуется никаких усилий, нужно всего лишь вывернуть ЛН и вкрутить на ее место энергосберегающую.

Конечно, стоимость компактных люминесцентных ламп несколько выше, но и экономия на электроэнергии получится значительной. Ведь мощность КЛЛ в 5 раз ниже, чем у ламп накаливания без какой-либо потери силы светового потока.

Но как устроена энергосберегающая лампа? В этом вопросе сейчас и попробуем разобраться.

Из чего состоит КЛЛ?

Устройство энергосберегающей лампы

Современные энергосберегающие лампы состоят из трех основных частей:

  • колба – стеклянная трубка;
  • корпус, в котором находится электронный пускорегулирующий аппарат;
  • цоколь.

Но основные детали энергосберегающей лампы – это лишь то, что видно снаружи.

Внутри колбы, запаянной с обеих сторон, находятся электроды, на которые непосредственно и подается электроэнергия. Сама колба изнутри покрыта специальным веществом, называемым люминофор. Полость внутри стеклянной трубки заполнена инертным газом, смешанным с парами ртути.

Что касается электронного пускорегулирующего аппарата, тут все гораздо мудренее. ЭПРА представляет собой сложное устройство, выполняющее, по сути, ту же роль, что в старых люминесцентных лампах выполняли дроссель и стартер, т. е. управляет розжигом и поддержанием свечения в колбе.

Цоколи энергосберегающей лампы могут быть различными. Самый распространенный, конечно же, Е27. Он идентичен цоколю обычной лампы накаливания. Вообще, маркировка «Е» обозначает, что он резьбовой, а следующая за ним цифра – это его диаметр в миллиметрах. Также у компактных энергосберегающих ламп могут быть цоколи Е14 (14 мм) и Е40 (40 мм).

Еще одна маркировка – G – обозначает, что цоколь двухштырьковый, а цифра, которая следует за буквенным обозначением, означает размер между штырями.

Принцип работы энергосберегающей лампы

Как наверняка уже стало понятно, устройство и принцип действия КЛЛ и обычной люминесцентной лампы практически идентичны. Исключение лишь в том, что у энергосберегающего осветительного прибора пускорегулирующий аппарат уже встроен и называется балластом или ЭПРА.

Схема энергосберегающей лампы

Если говорить о конкретике, то принцип действия КЛЛ таков: электрический ток, поступая на электроды, создает пробой, в результате чего воспламеняется смесь паров ртути и инертного газа (аргон или ксенон). В результате возникает ультрафиолетовое свечение, которое человек увидеть не может. При помощи люминофора это свечение трансформируется в видимый свет. Вредное ультрафиолетовое излучение блокируется тем же люминофором и не наносит ущерба человеку.

Действительно, суть работы ЛДС и КЛЛ одинаковы. Что же касается электронного балласта, то разница видна даже несведущему в электротехнике человеку.

Работающей компактной люминесцентной лампы совершенно не слышно, исчезло гудение, издаваемое дросселем старых люминесцентных светильников. Да и зажигается она намного быстрее, имея задержку на каких-то полсекунды.

Ну, если то, из чего состоит и как работает энергосберегающая лампа более или менее понятно, то ее достоинства и недостатки следует рассмотреть подробнее.

Преимущества и недостатки

Конечно, не имей компактная люминесцентная лампа преимуществ, никто не стал бы переходить на подобное освещение, но все же попробуем в них разобраться. Из плюсов, конечно же, первое, что замечают – это ее компактность и малое энергопотребление не только в сравнении с «лампочкой Ильича», но и даже с обычной люминесцентной трубкой. Также отмечается тихая работа и быстрый запуск, о которых уже говорилось. И самое главное – это, конечно же, долгий срок службы. Вот, пожалуй, и все.

Из минусов – оставшиеся от предшественника «болячки». Энергосберегающая лампа плохо запускается и теряет в световом потоке на холоде, а после минус 30 вообще перестает работать.

Наличие ртути в трубке тоже радовать не может, а утилизация – процесс недешевый.

И вот что важно. Подобные осветительные приборы очень плохо переносят кратковременный цикл «включение-выключение». Дело в том, что после подачи питания на энергосберегающую лампу необходимо, чтобы она горела как минимум 3–4 минуты. Так же дело обстоит и с выключением. В противном случае резко сокращается ее срок службы и в итоге никакой экономии не получится, т. к. КЛЛ может выйти из строя, не отработав и половины заявленного производителем времени.

Ну а в основном, конечно, такая лампа вполне имеет право на существование, ведь главную задачу она выполняет – экономия электроэнергии налицо. К тому же она удобна в эксплуатации, не требует никакого дополнительного оборудования при установке, а значит, подобные осветительные приборы еще долго будут светить в домах и квартирах.

Энергосберегающие лампочки | Домашний советник

В чем преимущества и недостатки энергосберегающих ламп, по сравнению с традиционными лампами накаливания?

Нашу жизнь невозможно представить без искусственного освещения. Конструкции квартир, домов, помещений и офисных зданий предполагают наличие искусственного освещения. Для жизни и работы людям просто необходимо освещение с применением ламп.

По традиции мы для освещения своих квартир применяем обычные лампочки накаливания. В зависимости от потребностей необходимого освещения используем различные мощности этих ламп – 40 Вт, 60 Вт, 100 Вт.

Но из школьного курса физики известно, что коэффициент полезного действия в традиционных лампочках накаливания очень мал, и в лучшем случае достигает 50%. Из чего следует, что из той электроэнергии потребляемой лампами накаливания, за которую мы заплатили, только половина пошла на реальное освещение квартиры или помещения. Вторая половина потраченной электроэнергии потрачена на нагрев данной лампочки накаливания.

Технический прогресс не стоит на месте, и терпеть такое расточительство традиционных ламп накаливания современные изобретатели не могли. На смену старой лампе накаливания пришла новая лампа – комплексная люминесцентная лампа (КХЛ) или энергосберегающая лампа.


В чем принципиальное отличие энергосберегающей лампы от лампы накаливания?

С устройством лампы накаливания знакомы многие. Под действием электрического тока вольфрамовая нить в лампочке раскаляется до яркого свечения. Но не все знают, как устроена энергосберегающая лампа.

Энергосберегающие лампы состоят из колбы, наполненной порами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Люминофор, это такое вещество, при воздействии на которое ультрафиолетовым излучением, начинает излучать видимый свет. Когда мы включаем энергосберегающую лампочку, под действием электромагнитного излучения, поры ртути, содержащиеся в лампе, начинают создавать ультрафиолетовое излучение, а ультрафиолетовое излучение, в свою очередь, проходя через люминофор, нанесенный на поверхность лампы, преобразуется в видимый свет.

Люминофор может иметь различные оттенки, и как результат, может создавать разные цвета светового потока. Конструкции существующих энергосберегающих ламп делают под существующие стандартные размеры традиционных ламп накаливания. Диаметр цоколя у таких ламп составляет 14 или 27 мм. Благодаря чему вы можете использовать энергосберегающие лампы в любом светильнике, бра или люстре, для которых вы раньше применяли лампу накаливания.


Преимущества энергосберегающих ламп

Преимущества энергосберегающих ламп

Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.

Долгий срок службы. По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке). Благодаря тому, что энергосберегающие лампы служат долго и не требуют частой замены, их очень удобно применять в тех местах, где затруднен процесс замены лампочек, например в помещениях с высокими потолками или в люстрах со сложными конструкциями, где для замены лампочки приходится разбирать корпус самой люстры.

Низкая теплоотдача. Благодаря высокому коэффициенту полезного действия у энергосберегающих ламп, вся затраченная электроэнергия преобразуется в световой поток, при этом энергосберегающие лампы выделяют очень мало тепла. В некоторых люстрах и светильниках опасно использовать обычные лампочки накаливания, из-за того что они выделяя большое количества тепла могут расплавить пластмассовую часть патрона, прилегающие провода или сам корпус, что в свою очередь может привести к пожару. Поэтому энергосберегающие лампы просто необходимо использовать в светильниках, люстрах и бра с ограничением уровня температуры.

Большая светоотдача. В обычной лампе накаливания свет идет только от вольфрамовой спирали. Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше распространяется по помещению.

Выбор желаемого цвета. Благодаря различным оттенкам люминофора покрывающего корпус лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть мягкий белый свет, холодный белый, дневной свет, и т.д.;


Недостатки энергосберегающих ламп

Недостатки энергосберегающих ламп

Единственным и значительным недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена. Цена энергосберегающей лампочки в 10-20 раз больше обычной лампочки накаливания. Но энергосберегающая лампочка неспроста называется энергосберегающей. Учитывая экономию на электроэнергии при использовании этих ламп и с их срок службы, в итого, применение энергосберегающих ламп станет для вас и вашего бюджета более выгодным.

Есть еще одна особенность применения энергосберегающих ламп, которую нужно отнести к их недостатку. Энергосберегающая лампа наполнена внутри парами ртути. Ртуть считается опасным ядом. Поэтому очень опасно разбивать такие лампы в квартире и помещении. Следует быть очень осторожными при обращении с ними. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации, а выбрасывать такие лампы, по сути, запрещено. Но почему-то при продаже энергосберегающих ламп в магазине, продавцы не объясняют, куда их потом девать.


На что следует обратить внимание при покупке энергосберегающих ламп

Мощность. Энергосберегающие лампы изготавливают с различной мощностью. Диапазон мощностей варьируется от 3 до 90 Вт. Следует учитывать, что коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Поэтому при выборе энергосберегающей лампы, надо придерживаться правила – делить мощность обычной лампы накаливания на пять. Если вы в своей люстре или светильнике применяли обычную лампочку накаливания мощностью 100 Вт, вам будет достаточно приобрести энергосберегающую лампочку мощностью 20 Вт.

Цвет света. Энергосберегающие лампы способны светить разным цветом. Данная характеристика определяется цветовой температурой энергосберегающей лампы.

  • 2700 К – теплы белый свет.
  • 4200 К – дневной свет.
  • 6400 К – холодный белый свет.

Чем ниже характеристика цветовой температуры энергосберегающей лампы, тем спектр цвета смещается к красному, чем выше – спектр цвета смещается к синему. В такой ситуации лучше поэкспериментировать с подбором нужного вам цвета, прежде чем заменить все лампочки в квартире на один цвет. Выбирайте нужный вам цвет, исходя не только из особенностей интерьера вашей квартиры или офиса, но и особенностей вашего зрения и зрения окружающих вас людей. Просто цвет, создаваемый энергосберегающей лампочкой, отличается от привычного света от лампочки накаливания, и многие люди не могут сразу к нему привыкнуть, если цвет подобран неправильно. Для дома и квартиры рекомендуется применять более теплые цвета – мягкий белый цвет (теплое свечение).

Ососбенности энергосберегающих ламп

Размер. Энергосберегающие лампы производят в двух основных формах: U-подобная и в виде спирали. Никакой разницы в принципе работы этих видов ламп нет, отличия заключаются только в размерах. U-подобные лампы просты в производстве, дешевле спиралевидных ламп, но чуть больше по размеру. При покупке таких ламп следует заранее определить – подойдет ли выбранная U-подобная энергосберегающая лампа в вашу люстру, бра или светильник. Спиралевидные лампы сложнее произвести, они чуть дороже U-подобных, но имеют традиционные размеры как у лампочек накаливания, и как результат подходят ко всем световым приборам, где раньше применялись лампочки накаливания.

Тип цоколя. Энергосберегающие лампы, как и традиционные лампочки накаливания, имеют различный тип цоколя. Большая часть световых приборов рассчитана на цоколь Е27. Но есть и такие приборы, которые имеют цоколь Е14. Если в вашу люстру вкручивалась большая лампочка накаливания, то это цоколь Е27. Если у вас светильник с маленькой или средней лампочкой накаливания, то возможно это цоколь Е14.

Все названные характеристики энергосберегающих ламп, производители пишут на упаковке. Например, надпись ESS-02A 20W E27 6400K на упаковке лампочки DeLux означает, что лампа имеет мощностью 20 Вт, с большим цоколем (Е27), излучает холодный белый свет (6400К).


В качестве заключения, можно выделить следующие основные преимущества энергосберегающих ламп – очень низкое потребление электроэнергии и длительный срок службы. Благодаря этим двум преимуществам, энергосберегающие лампы приносят большую экономию при их использовании. На сегодняшний момент, энергосберегающие лампы представлены в широком ассортименте во всех специализирующихся магазинах и пользуются большим спросом у покупателей.

Разбилась энергосберегающая лампочка: что делать?

Хотя в последнее время все переходят на светодиодные лампы, в квартирах и на предприятиях остается немало энергосберегающих, которые не очень-то экологичны. Внутри них содержатся пары ртути, а это очень токсичный металл. Что делать, если лампочка разбилась? Стоит ли паниковать, эвакуировать всех из помещения и вызывать МЧС?

Чем опасна разбитая лампочка

Все мы хорошо знаем, насколько опасны старые градусники. В них содержится чистая ртуть — если такой разбить, мелкие шарики разлетятся по всей комнате и будут отравлять жизнь своим существованием. Конечно, до тех пор, пока вы их не соберете и не утилизируете. С лампами все проще: активной ртути в них нет, только ее пары.

Тем не менее, в пересчете на чистое количество, средняя энергосберегающая лампа содержит 3—5 мг ртути. Такого количества достаточно, чтобы вызвать ухудшение самочувствия. В случае легкого отравления это будет слабость, головная боль и головокружение. Если находиться в контакте с парами достаточно долго, то возможно отравление вплоть до комы.

Что делать, если разбилась энергосберегающая лампа

Главное — не паниковать. Ничего страшного не случится, но действовать нужно сразу.

  1. Если лампа разбилась в комнате, выведите всех домочадцев и питомцев за дверь и плотно ее закройте.
  2. Никаких шариков тут не будет — ртуть, как мы уже говорили, содержится в виде паров. Достаточно открыть форточки/окна, чтобы помещение как можно быстрее проветрилось.
  3. Осколки колбы тоже токсичны, поэтому их нужно собрать. Желательно надеть перчатки и сложить все осколки в газету или на плотный лист бумаги. Потом все это уместить в пакет и плотно его завязать.
  4. Для мелких осколков можно использовать губку. Ее тоже нужно будет отправить в тот же пакет.
  5. Через 5-10 минут можно входить в комнату: все самое страшное уже позади (и в пакете).

Что обычно делают не так?

Собирают осколки веником или пылесосом. Делать этого нельзя: части колбы тоже токсичны.

Включают кондиционер. Обычно он не забирает воздух снаружи, а «гоняет» тот объем, что находится в комнате. Соответственно, пользы от него никакой.

Выбрасывают осколки в мусоропровод. Конечно, ничего критичного при этом не случится, но безопаснее будет утилизировать их как токсичные отходы.

Как избежать неприятностей?

Энергосберегающие лампы были популярны лет 5-7 назад. Если вы до сих пор используете такие, скорее всего, их ресурс уже выработан как минимум наполовину. Лучше заменить таким лампы светодиодными: они нетоксичны, стоят уже недорого и потребляют гораздо меньше мощности. Как это сделать — читайте в нашей статье «Как выбрать светодиодные лампы для дома».

Читайте также:

Фото: Snopes, ТакПросто, Ecobox

Теги безопасность

Сравнение энергоэффективных ламп с традиционными лампами накаливания

По сравнению с традиционными лампами накаливания энергоэффективные лампы накаливания, такие как галогенные лампы накаливания, компактные люминесцентные лампы (КЛЛ) и светоизлучающие диоды (светодиоды), имеют следующие преимущества:

  • Обычно потребляют примерно на 25% -80% меньше энергии, чем традиционные лампы накаливания, экономя ваши деньги.
  • Может прослужить в 3-25 раз дольше.

Сегодняшние энергоэффективные лампы доступны в широком диапазоне цветов и уровней освещенности, которые вы ожидаете.Хотя начальная цена на энергоэффективные лампы обычно выше, чем на традиционные лампы накаливания, новые лампы дешевле в эксплуатации, что позволяет сэкономить деньги в течение всего срока службы лампы. Многие из новых ламп служат значительно дольше, чем традиционные, поэтому вам не придется их так часто менять.

В таблице ниже сравнивается традиционная лампа накаливания мощностью 60 Вт (Вт) с энергоэффективными лампами, обеспечивающими аналогичный уровень освещенности.

Сравнение традиционных ламп накаливания, галогенных ламп накаливания, компактных люминесцентных ламп и светодиодов

60 Вт Традиционные лампы накаливания

43Вт

15 Вт CFL

Светодиод 12 Вт

60 Вт Традиционный 43 Вт Галоген 60 Вт Традиционный 43 Вт Галогенный

%)

~ 25%

~ 75%

~ 65%

~ 75% -80%

~ 72%

Годовой Стоимость энергии *

$ 4.80

3,50 долл. США

1,20 долл. США

1,00 долл. США

Срок службы лампы

1000 часов

от 1000 до 3000 часов

002

002 25000 часов

* Из расчета 2 часа использования в день, тариф на электроэнергию составляет 11 центов за киловатт-час, выраженный в долларах США.

3. Как работают люминесцентные лампы?

3. Как работают люминесцентные лампы?

Люминесцентные лампы бывают из стеклянной трубки, заполненной смесью низкого давления газы, в частности ртуть и благородные газы, такие как аргон, неон, ксенон и криптон. Трубки покрыты внутри флуоресцентным материалом, обычно составом содержащие фосфор.Когда ток включен, пусковые механизмы на каждом конце лампы производят электроны, которые возбуждают газы внутри трубки и заставить их высвободиться ультрафиолетовое излучение. В ультрафиолетовое излучение попадает на флуоресцентное покрытие, и это производит свет.

Различные химические покрытия используются для получения света разные цвета.Например, лампы могут быть сконструированы так, чтобы производить свет, который содержит больше синего света, чем обычный лампы накаливания, а значит лучше имитируют дневной свет. Люминесцентные лампы могут иметь одинарное или двойное стекло. конверт, который резко снижает количество УФ-излучения испускается, поскольку стекло является эффективным УФ-фильтром.

Старые лампы имели пусковые механизмы, которые раньше часто выходили из строя. лампа сделала, что потребовало частой замены ламп. У них были и другие недостатки: издавали гудение, мерцали и были недостаточно энергоэффективными. Все эти недостатки устранены в компактные люминесцентные лампы (КЛЛ) за счет улучшенного конструкция пускового механизма.

Ионизация, возбуждающая газы внутри люминесцентные лампы не забота о здоровье, так как это происходит только внутри лампы. Однако некоторые ультрафиолетовое излучение произведенное может диффундировать через защитную стеклянную оболочку.В покрытие лампы и стеклянная крышка влияют на количество и тип ультрафиолетового излучения, но в целом, КЛЛ могут излучать больше ультрафиолетовое излучение и более высокая доля синего света, чем лампы накаливания. Например, кто-то сидит на расстоянии 20 см от некоторых КЛЛ с одним стеклянным конвертом можно получить десять раз больше UVB, чем если бы лампа накаливания.

Большинство электроприборов производить электричество и магнитные поля слабой частота. КЛЛ излучают электромагнитные поля как низкие, так и промежуточные частоты, хотя точный диапазон зависит от типа лампы.Мало что известно о сильных сторонах этих полей.

Поскольку электроэнергия через электросеть находится в виде переменный ток, интенсивность света, излучаемого любой подключенной к нему лампой изменяется циклически, в зависимости от частота мощности сетка.Если это изменение интенсивности света воспринимается человеческий глаз, то это определяется как мерцание. Мерцание практически незаметен в лампах накаливания, но может быть довольно выраженным в люминесцентных лампах, особенно старые или дефектные. Современные люминесцентные лампы включая КЛЛ были предназначены для значительного уменьшения этого эффекта и поэтому называется «без мерцания».Подробнее …

Энергосберегающие лампы и здоровье

Языки: Deutsch [de] English [en] Español [es] Français [fr]

Энергосберегающие лампы » Уровень 1

Контекст — В настоящее время обычные лампы накаливания заменяются более энергоэффективными лампами, в основном компактными люминесцентными лампами (КЛЛ). Флуоресцентный свет уже много лет используется в накладных люминесцентных лампах, не вызывая каких-либо проблем.Тем не менее, некоторые ассоциации «светочувствительных» граждан выразили озабоченность по поводу компактных люминесцентных ламп.

Эти энергосберегающие лампы усугубляют симптомы у пациентов с определенными заболеваниями?

Оценка Научного комитета Европейской комиссии по возникающим и недавно выявленным рискам для здоровья (SCENIHR)

Ответы на эти вопросы являются точным обобщением научного заключения
, подготовленного в 2008 г. Научным комитетом по новым и недавно идентифицированным Риски для здоровья (SCENIHR):
«Светочувствительность» Подробнее…

2. Как свет, инфракрасное и УФ-излучение взаимодействует с кожей и глазами?

Взаимодействие с кожей и глазами зависит от длины волны радиация
Источник: GreenFacts

Свет необходим для жизни на Земле и влияет на людей и других людей. живые организмы по-разному.Например, взаимодействие света с нашей кожей и глазами влияет на наше восприятие тепла и холода. Это также помогает организму регулировать процессы, которые приводят к бодрствованию и отдыху в течение дня и ночи и в разные времена года.

Когда излучение достигает кожи или глаз, оно может отражаться или может проникать в ткани и быть поглощены или рассеяны в различных направления.Это взаимодействие зависит от длины волны излучения.

  • Мост ультрафиолетовое излучение не проникает дальше верхних слоев кожи. Хотя он имеет некоторые положительные эффекты, такие как помощь в производстве витамина D, в целом это считается вредным, так как может повредить белки и ДНК в коже и глазах, особенно ультрафиолетовое излучение с короткими длинами волн (УФС).Некоторый люди особенно чувствительны к УФ-излучению и становятся загорелые даже после очень низких выдержек или показывают ненормальные кожные реакции, похожие на аллергические.
  • Излучение более длинных волн, в том числе видимый свет а также инфракрасное излучение , обычно безвреден, хотя может нагреться ткань.Взаимодействие видимый свет со светочувствительным клетки в глазу позволяет нам видеть цвета.

Подробнее …

3. Как работают люминесцентные лампы?

Компактная люминесцентная лампа с одним конвертом
Источник: Армин Кюбельбек

Люминесцентные лампы изготавливаются из стеклянная трубка, содержащая смесь газов низкого давления, включая Меркурий.Трубки покрыты флуоресцентные химические вещества. При включении тока пусковой механизмы на каждом конце лампы производят электроны, возбуждающие газы внутри трубки и заставьте их испускать ультрафиолетовое (УФ) излучение. Этот УФ-излучение попадает на флуоресцентное покрытие, которое производит свет. В цвет излучаемого света зависит от химического состава покрытие.Некоторые люминесцентные лампы излучают больше синего света, чем обычные. лампы накаливания и, следовательно, лучше имитировать дневной свет.

Люминесцентные лампы имеют стекло конверт, который отфильтровывает ультрафиолетовое излучение, но в некоторых В некоторых случаях УФ-излучение может пройти.Использование двойных стеклянных конвертов резко снижает количество испускаемого УФ-излучения.

Компактные люминесцентные лампы (КЛЛ) излучают свет и немного ультрафиолета. излучения, но их электронная схема — как и любая электронная или электрическое устройство — также генерирует некоторые электромагнитные поля.В величина этих полей на типичных рабочих расстояниях остается хорошей. ниже допустимого и типичного для бытовой техники.

В отличие от обычных лампы накаливания, которые только генерировать низкую частоту электрические и магнитные поля, компактные люминесцентные лампы генерируют поля как низкой, так и средней частоты.Точный частотный диапазон зависит от типа лампы.

Интенсивность любой лампы может колебаться или «мерцать» при питании от переменный ток. В то время как старше технология люминесцентных ламп показали значительное мерцание из-за необходимой электронной схемы для эксплуатации, эта проблема была значительно уменьшена с текущим технологии, до такой степени, что КЛЛ называются «немерцающими».Подробнее …

4. Могут ли люминесцентные лампы ухудшить состояние здоровья, не связанное с кожей?

Мерцание может вызвать мигрень
Источник: Боб Смит

Некоторые люди, страдающие различными заболеваниями, не связанными с кожа утверждает, что использование люминесцентные лампы усугубляют их симптомы.Такая связь не подтверждается научными данными. Там есть необходимость дополнительных исследований, прежде чем можно будет сделать окончательные выводы относительно нескольких условий. Опасения были приписаны различные характеристики энергосбережения компактные люминесцентные лампы (КЛЛ), а именно мерцание, ультрафиолетовое излучение и синий свет они производят, и электромагнитные поля.

Мерцание в целом может вызвать мигрень и даже приступы у примерно эпилептических пациентов, но таких сообщалось об эффектах при правильной работе КЛЛ.

Есть некоторые свидетельства того, что синий свет в целом может усугубить заболеваний сетчатки у восприимчивых пациентов.

Не исключено, что светобоязнь , ан ненормальная чувствительность к свету, вызванная или усугубляемая различными световые условия.

Нет никаких доказательств того, что флуоресцентный свет отрицательно влияет на люди с аутизм , но влияние нельзя исключать.

Имеется достаточно доказательств того, что использование компактные люминесцентные лампы не усугублять дислексия и Ирлен Мирес — нарушения обучаемости, которые приводят к трудностям с чтением и написание.

О каких-либо эффектах отравления не сообщалось. компактные люминесцентные лампы на лица с синдром хронической усталости, фибромиалгия, диспраксия , или ВИЧ .

Крайне маловероятно, что люминесцентные лампы, используемые для комнаты освещение может вызвать снежная слепота или Катаракта .

Кажется, нет никакой связи между электромагнитные поля, создаваемые компактные или другие люминесцентные лампы а также Электромагнитная гиперчувствительность . Подробнее …

5.Могут ли люминесцентные лампы влиять на людей с кожными заболеваниями?

Лампы, расположенные близко к коже, могут вызвать проблемы у людей, которые чрезвычайно светочувствительны
Источник: Саймон Катодо

Воздействие определенных типов компактные люминесцентные лампы (КЛЛ) с одинарным стеклом конверт может вызвать проблемы у пациентов, которые чрезвычайно чувствительны к солнечный свет, в частности его UVA и компоненты UVB.Это особенно в случае, когда источник находится близко к коже (т.е. 20 см или менее). К крайне чувствительным пациентам относятся люди с наследственным кожные заболевания, вызванные светом, а также люди с некоторыми кожными покровами болезни, причины которых неизвестны. Нефильтрованный УФ-свет от таких компактные люминесцентные лампы могли также вызывают кожные реакции у людей с волчанка.

Некоторые препараты вызывают проблемы с кожей при использовании в сочетании с воздействие света. Компактные люминесцентные лампы бывают вряд ли будет проблемой. В лечении некоторых раковые заболевания, используются несколько препаратов которые активируются воздействием света и могут вызвать проблемы с кожей у некоторых пациентов.Пациенты, получающие такое лечение, потенциально могут показывают немного большую реакцию при воздействии света от компактного люминесцентные лампы по сравнению с свет от ламп накаливания. Ожидается, что эти побочные реакции повлияют только на относительно небольшие количество людей, которых можно избежать, используя двойной конверт КЛЛ, которые лучше фильтруют из ультрафиолета.

Для этих заболеваний необходимы дополнительные исследования, чтобы установить, компактные люминесцентные лампы представляют собой более высокий риск, чем лампы накаливания.

Дозы УФ от компактные люминесцентные лампы по оценкам, слишком мал, чтобы способствовать рак кожи.Подробнее …

6. Представляют ли энергосберегающие лампы риск для некоторых групп пациентов в ЕС?

Некоторые группы пациентов обеспокоены тем, что использование компактные люминесцентные лампы вместо обычных ламп накаливания усугубит некоторые заболевания.Основными причинами для беспокойства являются: мерцание и ультрафиолетовое излучение, электромагнитные поля и синий свет, который производят эти лампы.

Мерцающий свет может усугубить симптомы некоторые заболевания, такие как эпилепсия и мигрени.Однако нет никаких доказательств того, что использование традиционные люминесцентные лампы или компактные люминесцентные лампы имеют те же эффекты.

Нет никаких доказательств того, что Электромагнитные поля от компактных люминесцентных ламп вызывают или усугубляют существующие симптомы у пациентов с определенными болезни.

UVC и излучение синего света потенциально может усугубить симптомы у некоторых пациентов с заболеваниями что делает их ненормально чувствительными к свету. В худшем случае Согласно сценарию, это коснется примерно 250 000 человек в ЕС. Риск от компактные люминесцентные лампы незначительный для широкой публики.Однако при использовании одинарного конверта компактные люминесцентные лампы на длительный время, проведенное рядом с телом (на расстоянии менее 20 см), может привести к ультрафиолетовое облучение приближается к текущему пределу рабочего места, установленному на защитить рабочих от повреждений кожи и сетчатки. Использование двойного конверта энергосберегающие лампы в значительной степени или полностью снизят риски как население в целом, так и светочувствительные люди.Подробнее …

7. Выводы

Лампы с двойной оболочкой снизят риски для светочувствительных пациенты и другие
Источник: GreenFacts

В ГЦНИПЧ изучены характеристики энергосбережения. компактные люминесцентные лампы (КЛЛ) для оценки здоровья риски, связанные с их использованием.На основании этого анализа Комитет пришли к выводу, что:

  • Нет никаких доказательств того, что мерцание и электромагнитные поля от компактные люминесцентные лампы ставят риск для чувствительных людей.
  • Единственное свойство компактных люминесцентных ламп, которое могло дополнительный риск — ультрафиолетовое и синее излучение света, излучаемое такие устройства.В худшем случае это излучение могло усугубить симптомы у примерно 250 000 человек в ЕС, которые редко страдают кожные заболевания, которые делают их особенно чувствительными к свету.
  • Население в целом могло получить значительные суммы ультрафиолетовое излучение, если они подвергаются воздействию света, производимого каким-то компактным люминесцентные лампы на длительное время на расстоянии менее 20 см.
  • Использование энергосберегающих ламп с двойной оболочкой или аналогичных технология снизит риски как для населения в целом, так и для для светочувствительных пациентов.

Подробнее …

Энергоэффективные лампочки: Министерство энергетики собирается изменить правила

Крис Монро / CNET

В 2007 году Конгресс принял Закон об энергетической независимости и безопасности, который установил более высокие стандарты энергоэффективности в США.Закон включал новые стандарты для лампочек, которые были написаны, чтобы побудить светотехническую промышленность выйти из эпохи накаливания и перейти к новым технологиям, таким как светодиоды, которые потребляют значительно меньше энергии.

Сработало. По мере того как производители адаптировались к поступающим стандартам, проходы по освещению хозяйственных магазинов начали заполняться новыми светодиодными опциями, и потребители начали покупать их, чтобы получить экономию энергии. Потребление энергии в стране, связанное с освещением, резко упало — в 2018 году как жилой, так и коммерческий секторы использовали для питания своих фонарей вдвое меньше энергии, чем в 2001 году.

Но в прошлом месяце Министерство энергетики при президенте Дональде Трампе ограничило эти стандарты, ограничив типы лампочек, к которым они могут применяться. Эти пересмотренные исключения, которые вступят в силу с 7 октября, защитят продажу определенных видов ламп накаливания, которые в противном случае могли бы уйти с рынка в ближайшие месяцы из-за низкой энергоэффективности.

«Это действие гарантирует, что выбор способа освещения домов и предприятий останется за американским народом, а не федеральным правительством», — говорится в заявлении представителя Министерства энергетики США.Этот шаг устранит «бремя расходов для американских потребителей и предприятий».

Это положило начало битве с защитниками эффективности, которые говорят, что Белый дом пытается подорвать двухпартийное законодательство, которое работало, как и предполагалось, для борьбы с изменением климата и повышения энергетической независимости Америки. Конечно, это непростой бой, но важный, который затрагивает всех нас. Вот все, что вам следует знать.

Лампы накаливания используют электричество для нагрева вольфрамовой нити до точки, при которой она начинает светиться и создает свет.Это знакомая классика, но по сегодняшним меркам она еще и очень энергоемкая.

Тайлер Лизенби / CNET

Как мы сюда попали?

Во-первых, немного о том, как эволюционировал закон. Давайте начнем почти 45 лет назад, когда Конгресс принял Закон 1975 года о политике и энергосбережении, который был подписан президентом Джеральдом Фордом. США только что пережили острую нехватку нефти в 1973 году, поэтому закон стремился создать всеобъемлющую федеральную энергетическую политику, чтобы помочь предотвратить или смягчить будущие энергетические кризисы.Именно тогда современная концепция «энергетической независимости» впервые обрела свои позиции.

Наряду с созданием стратегического нефтяного резерва оно учредило Программу энергосбережения для потребительских товаров, которая дает Министерству энергетики право разрабатывать, пересматривать и внедрять минимальные стандарты эффективности для бытовой техники, включая электрические лампочки.

Перенесемся на несколько десятилетий вперед, в 2007 год, когда Конгресс принимает Закон об энергетической независимости и безопасности, а президент Джордж У.Буш подписывает закон. Среди других заявленных целей, таких как увеличение производства чистой возобновляемой энергии, законопроект направлен на повышение стандартов эффективности для общественных зданий и бытовой техники. В случае лампочек закон требовал повышения эффективности примерно на 25%, что было поэтапно с 2012 по 2014 год. Закон требует, чтобы в следующем году вступили в силу еще более высокие стандарты эффективности.

Насколько выше?

Закон 2007 года требует экономии энергии, по крайней мере, такой же, какой мы получили бы при минимальном стандарте эффективности 45 люмен на ватт для наиболее распространенных типов лампочек.

Для справки, обычная лампа накаливания мощностью 60 Вт дает около 15 люмен на ватт, если не меньше. Галогенная версия той же лампы подойдет немного лучше, но вряд ли она будет намного выше 20 люмен на ватт.

Между тем, спиральные люминесцентные лампы (КЛЛ) отвечают всем требованиям, имея около 65 люмен на ватт, но лучше всего подходят лампы, в которых используются светодиоды. Они могут выдавать 80 или даже 100 люмен на ватт, поэтому им нужно использовать только часть энергии, которую используют лампы накаливания.

Министерство энергетики может установить любые стандарты, которые сочтет целесообразными в рамках закона, чтобы привести нас к стандарту 45 люмен на ватт, но если он не продвинется вперед или не достигнет этой цели, то предполагается наличие вспомогательного положения. Эта поддержка просто гласит, что секретарь должен запретить продажу лампочек с яркостью менее 45 люмен на ватт с 1 января 2020 года. DOE 13 лет, чтобы довести нас до стандарта эффективности 45 люмен на ватт или выше.Этот срок истекает через три месяца.

Увеличение количества светодиодов на рынке привело к значительному снижению энергопотребления.

Управление энергетической информации США

Закон работал?

Да. Производители вкладывали ресурсы в совершенствование светодиодных технологий, а инновации от новых конкурентов помогли снизить затраты. По мере того, как все больше людей начали покупать, количество энергии, используемой для освещения наших домов и предприятий, резко упало, особенно в период с 2015 по 2018 год.

«Стандарты освещения 2020 года — основная причина, по которой у нас есть так много вариантов выбора светодиодов на сегодняшний день», — говорит Ноа Горовиц, директор Совета по защите природных ресурсов, группы по защите окружающей среды.

Хорошим примером является производитель освещения Cree Lighting из Северной Каролины. Когда в 2013 году компания начала производить и продавать домашние светодиодные лампы, они стоили 10 долларов за штуку. Но сегодня его новейшие лампы стоят чуть меньше 4 долларов каждая, а другие, подобные им, доступны еще дешевле.

«Еще в 2013 году за светодиодную лампочку украли 10 долларов, — говорит Фил Примато, директор Cree Lighting по розничной торговле. Примато добавляет, что домашний бренд Home Depot Ecosmart теперь продает светодиодные лампы всего за 1 доллар, что соответствует традиционной цене ламп накаливания. «Есть варианты светодиодов, которые сегодня стоят примерно в этой ценовой категории, если ваше единственное желание — делать покупки по цене».

Но нужно учитывать не только первоначальную стоимость светодиодных ламп. Вы также должны учитывать экономию энергии.

Сменный 60-ваттный светодиод Cree был первым, который был продан по цене 10 долларов за штуку в 2013 году. Сегодня их можно приобрести менее чем за 4 доллара за штуку.

Крис Монро / CNET

Например, заменяющий 60 Вт светодиод обычно потребляет около 10 Вт или меньше и добавляет около 1 доллара к среднему ежегодному счету за электроэнергию. Эта лампочка прослужит вам десять лет или дольше. Такая же яркая лампа накаливания на 60 Вт добавит к вашему годовому счету около 7 долларов, и вам придется заменить ее гораздо раньше.Даже если лампа накаливания бесплатна, она все равно будет стоить вам больше, чем светодиод за полную стоимость, всего за шесть месяцев использования.

Подобная математика в сочетании с разумными первоначальными затратами — это победа как для потребителей, так и для окружающей среды, а закон 2007 года — это то, что подтолкнуло рынок к достижению этой цели. Но эксперты говорят, что есть еще место для прогресса.

«Несмотря на то, что цены на светодиоды резко упали, неэффективные лампы накаливания и галогенные лампы по-прежнему составляют треть или более продаж новых ламп», — говорит Горовиц.«Стандарты необходимы, чтобы гарантировать, что энергосберегающая лампочка входит в каждую из более чем 1 миллиарда розеток, которые все еще содержат неэффективную лампочку».

Сейчас играет: Смотри: Как купить яркие светодиодные лампы, которые не отстой

2:13

Джейн Харман, бывший представитель Демократической партии в Калифорнии, которая в соавторстве с республиканцем из Мичигана Фредом Аптоном была соавтором стандартов на лампочки 2007 года, считает, что преимущества светодиодного освещения выходят за рамки экономии денег потребителей.

«Электроэнергия, сэкономленная с помощью эффективных лампочек, защищает климат, а также имеет огромные преимущества для национальной безопасности», — писал Харман ранее в этом году в своей статье для The Hill. «Чем меньше энергии потребляет электрическая лампочка, тем меньше энергии требуется домашнему хозяйству и тем меньше энергии потребляет США в целом.

» Национальная безопасность важна в том смысле, что чем меньше энергии требует Соединенные Штаты, тем меньше им нужно полагаться на нефть. , импорт газа и угля », — добавил Харман.« Как видно из названия, Закон об энергетической независимости и безопасности был предназначен для решения таких проблем, и, наряду с экономическими выгодами, акцент на национальной безопасности — это то, что создало пространство для двухпартийного консенсуса. .»

Так что же меняется?

Технически стандарты не меняются — по крайней мере, пока. Вместо этого Министерство энергетики предлагает сократить количество ламп, к которым будут применяться эти растущие стандарты.

Министерство энергетики переход к освобождению таких вещей, как прожекторы, косметические шары и лампы канделябров от новых стандартов эффективности. При президенте Бараке Обаме Министерство энергетики отменило эти исключения в 2017 году, сославшись на наличие энергоэффективных опций, таких как светодиоды канделябров Feit и EcoSmart слева и Прямо здесь.

Крис Монро / CNET

Когда впервые был подписан Закон об энергетической независимости и безопасности, в нем применялись растущие стандарты к «общепромышленному освещению» — широкому отраслевому термину, который относится к широко используемым домашним лампочкам. В эту категорию входят компактные люминесцентные лампы, светодиодные лампы и традиционные лампы накаливания. Но под действие новых стандартов были исключены некоторые специализированные лампы накаливания, в том числе трехходовые лампы, ударопрочные лампы и лампы различной формы, такие как прожекторы, канделябры и шары для умывальника для ванных комнат.

Закон об энергетической независимости и безопасности предписал Министерству энергетики дважды пересмотреть эти льготы до 2020 года, чтобы определить, были ли они по-прежнему необходимы. К концу правления администрации Обамы это то, что сделал Министерство энергетики. В конечном итоге было решено, что многие из этих исключений можно разумно отменить, не создавая чрезмерного бремени для отрасли. Таким образом, растущие стандарты будут применяться и к ним с 1 января 2020 года.

Теперь, при президенте Трампе, Министерство энергетики использует мандат на вторую проверку этих исключений, чтобы практически отменить это решение эпохи Обамы. .

Как это повлияет?

Во-первых, вы не заметите никаких изменений в тарифах на электроэнергию или в цене на лампочки. Спрос на светодиоды продолжает расти, и отрасль будет продолжать двигаться в их направлении.

Тем не менее, восстановление этих исключений и исключение этих лампочек из уравнения — это значительный поворот вспять. Согласно отчету Национальной лаборатории Лоуренса Беркли за 2017 год, запасы ламп, освобожденных от контроля, подобных тем, имеют общенациональный установленный запас примерно на 80% больше, чем у обычных, неиспользованных ламп.

«Они предлагают непропорционально большой потенциал для экономии энергии, поскольку подавляющее большинство в настоящее время являются традиционными или галогенными лампами накаливания», — добавляют авторы отчета. Удерживание таких лампочек в соответствии со стандартами Закона об энергетической независимости и безопасности приведет к предполагаемому сокращению выбросов углекислого газа на 540 миллионов метрических тонн к 2030 году, а также к экономии энергии, которая на 35% больше, чем общее потребление энергии во всем США. жилой сектор в 2016 году.

Исключение этих лампочек может повлиять на прогресс и в других, не исключаемых категориях. Сторонники эффективности указывают на то, что некоторые производители использовали исключения для промышленных грубых условий эксплуатации и небьющихся ламп для производства и продажи «люминесцентных ламп» накаливания. Подобные лампы обычно представляют собой обычные, неэффективные лампы накаливания со специальным покрытием на стекле, которое делает их более долговечными — и, благодаря исключению, это помогает им увернуться и от этого ограничителя.

«Эти лампы-бойницы — особенно плохая сделка для потребителей», — говорят эти критики, указывая на то, что замена 75-ваттной лампочки для грубого ремонта »увеличит затраты потребителя на электроэнергию более чем на 250% по сравнению с галогенной лампой, соответствующей стандартам.«Сделайте это более чем на 600% по сравнению со светодиодом.

Тем не менее, привычки покупать лампочки часто основаны на знакомстве. Когда обычные лампы накаливания начали исчезать с полок магазинов, продажи этих похожих на лазейки ламп резко выросли с 914 000 долларов США. 2011 г. до более чем 7 миллионов в 2015 г. В соответствии с положением о поддержке, которое, по утверждению сторонников повышения эффективности, уже было задействовано, Министерство энергетики должно было бы запретить продажу ламп, подобных тем, которые начинаются в январе. Теперь Министерство энергетики хочет повторно освободить их от растущих стандартов — и это также утверждает, что обратный стопор вообще не сработал.

Положение о поддержке в конце этого раздела EISA является сутью конфликта. Он требует минимального стандарта эффективности 45 люмен на ватт для всех ламп, подпадающих под действие закона, начиная с 1 января 2020 года.

Корнельский закон

Ограничитель обратного хода срабатывает или нет?

Думайте о вспомогательном положении в Законе об энергетической независимости и безопасности как о страховочной сетке для повышения эффективности.Это защитный слой закона, чтобы не дать Министерству энергетики вернуться к стандартам, менее эффективным, чем то, что Конгресс согласовал в 2007 году. Вопрос о том, была ли эта поддержка уже применена, является спорным.

Есть несколько конкретных вещей, которые могут вызвать его. Во-первых, закон установил крайний срок 2014 года для оценки возможности повышения стандартов и отмены изъятий. Несоблюдение этого срока вызывает задержку. То же самое произойдет, если Министерство энергетики изменит стандарты для ламп накаливания без принятия окончательного правила к 2017 году.

И, как было сказано ранее, усилия Министерства энергетики должны сводиться к экономии энергии, превышающей или равной той, которую произвел бы блокиратор обратного хода, — в противном случае он срабатывает как отказоустойчивый, чтобы обеспечить нам гарантированные 45 люмен на ватт в январе 1, 2020.

Критики Министерства энергетики утверждали, что оно не уложилось ни в 2014, ни в 2017 году, и, таким образом, спровоцировали обратную поддержку. Министерство энергетики отвергло аргумент в пользу последнего, указав, что оно никогда не решало, следует ли изменять стандарты для ламп накаливания, и поэтому вообще не было обязано выносить решение по этому вопросу.

Что касается крайнего срока 2014 года для оценки общих стандартов и повторного рассмотрения исключений, Министерство энергетики заявляет, что оно не вынесло своего решения по этому вопросу до 2017 года из-за законопроекта об ассигнованиях 2014 года, который не позволял ему внедрять или обеспечивать соблюдение каких-либо стандартов для лампы накаливания, но этот процесс уже начался.

«Министерство энергетики инициировало первый процесс разработки правил для стандартов общего освещения, опубликовав в декабре 2013 года уведомление о наличии рамочного документа», — написало Министерство энергетики в феврале этого года.Это, как утверждает Министерство энергетики, удовлетворяет требованию закона 2007 г. о том, что «не позднее 1 января 2014 г. секретарь должен инициировать процедуру нормотворчества», которая пересматривает стандарты и исключения в отношении лампочек.

Так что, если не стандарт обратного хода, то что? Министерство энергетики пока не предложило никаких альтернатив, но в его последней документации говорится, что у него нет планов изменять конкретные стандарты для ламп накаливания, и что оно планирует принять отдельное решение о том, что делать с общими стандартами для домашних хозяйств. луковицы.

«Юридические вопросы, связанные со стандартами на лампочки, довольно сложны, — признает Горовиц. «Также вызывает головокружение то, что до 1 января 2020 года осталось всего несколько месяцев, а Министерство энергетики до сих пор не завершило свою работу».

Как к этому относится светотехническая промышленность?

«Важно отметить, что это не был« откат », — говорит Трейси Каллен, представитель Национальной ассоциации производителей электрооборудования. С советом управляющих, в который входят руководители из оплотов освещения проходов, таких как Lutron, Leviton и дочерняя компания Philips Lighting, Signify, торговая организация выразила поддержку шагу Министерства энергетики США по ограничению сферы применения растущих стандартов и утверждает, что на самом деле никакие конкретные стандарты не изменились. .

Линейка галогенных ламп накаливания от GE, которые покрывают нить накала газами, которые помогают рециркулировать вольфрам для небольшого повышения эффективности.

GE Освещение

«Значение этих фактов состоит в том, что они опровергают, что Министерство энергетики откатывает стандарты или отступает в некотором роде, потому что нет стандартов, от которых можно было бы отказаться», — сказал Каллен CNET.

Многие в осветительной отрасли, особенно такие производители, как Signify, Ledvance и GE Lighting, которые продолжают производить и продавать лампы накаливания, похоже, кружат фургонами вокруг этой позиции.

«Signify поддерживает переход к энергосберегающим светодиодам и подключенному светодиодному освещению, и, по сути, мы продвигаем этот переход с помощью наших инноваций», — говорит представитель Signify. «Мы поддерживаем правила Министерства энергетики, которые позволяют упорядоченно отказываться от старых технологий, где это необходимо и применимо (что означает, что эта мера приведет к желаемому результату)».

«Заявления Министерства энергетики США совпадают с намерениями Конгресса в 2007 году, когда он принял Закон об энергетической независимости и безопасности», — говорит Дженнифер Р.Долин, глава отдела по связям с правительством и устойчивому развитию компании Ledvance, которая производит лампы под брендами Osram и Sylvania. «Будущее освещения — за светодиодными технологиями, о чем свидетельствует снижение продаж галогенных ламп и ламп CFL, и дополнительные стандарты не нужны, чтобы догнать уже происходящие преобразования».

GE Lighting отказалась комментировать эту историю.

Единственное исключение из круговорота фургонов — Cree Lighting, которая производит только светодиоды и совсем не балуется лампами накаливания.

«Остальная отрасль по большей части находится в противоречии», — говорит Примато. «Они по-прежнему производят и продают много продуктов предыдущего поколения.

« Я действительно не вижу, чтобы наше поведение, поведение розничных торговцев или поведение потребителей резко менялись, независимо от законодательства или независимо от того, что продолжает администрация. говорить о лампах накаливания », — говорит Примато, кивая на недавние замечания президента Трампа, обвиняющего энергоэффективные лампочки в его цвете кожи.

«Я не уверен, что какой-либо источник света обязательно отвечает за оттенок президента», — говорит Примато.

Итак, что будет дальше?

Согласно Министерству энергетики, восстановленные исключения вступят в силу на следующей неделе, 7 октября. После этого следующим шагом будет открытое собрание 15 октября, на котором Министерство энергетики позволит заинтересованным сторонам поделиться своими взглядами по вопросам, которые могут повлиять на его определения.

Тем временем сторонники эффективности сообщают CNET, что они планируют продолжить борьбу за соблюдение стандартов Закона об энергетической независимости и безопасности.

«Министерство энергетики неправильно истолковало закон», — говорит Ной Горовиц из NRDC. «NRDC будет продолжать противодействовать незаконным откатам Департамента при любой возможности, включая возможные судебные разбирательства».

Что более энергоэффективно

Мы все слышали историю Бенджамина Франклина и его воздушных змеев. И большинство из нас знает о бесконечных попытках Томаса Эдисона создать лампочки.Но в наши дни существует множество различных вариантов освещения. Большинство из них обусловлено эстетикой, но есть и другие факторы.

Для современного потребителя энергоэффективность важнее стиля. Речь идет не только о снижении счетов за коммунальные услуги. Пользователи ламп также заботятся об энергосбережении и защите окружающей среды в целом. Итак, давайте посмотрим, какие лампы лучше всего подходят для вашего кармана.

Понимание того, как работают лампочки

Вы когда-нибудь задумывались, почему в вашей комнате становится холоднее (и тише) во время отключения электроэнергии? Это потому, что энергия не может быть создана или уничтожена.Его можно только преобразовать из одной формы в другую. В случае традиционных лампочек тепловая энергия превращается в энергию света, хотя большая ее часть тратится впустую. К сожалению, это «потраченное впустую тепло» по-прежнему расходует электроэнергию.

Итак, если вы хотите сделать свои лампочки более энергоэффективными, вы можете либо уменьшить выработку тепла, либо использовать больше выделяемого тепла, либо превратить это тепло в свет. Различные типы ламп делают это по-разному. Некоторые создают вакуум внутри колбы, чтобы нить накала светилась ярче и выделяла больше видимого света.Другие используют газы, чтобы сделать свет ярче.

В некоторых лампах нити накала и газы отсутствуют. Вместо этого используются полупроводники. Эти полупроводники пропускают электрический ток через диод с отрицательным зарядом. Электроны внутри тока испускают фотоны, накачанные электромагнитным излучением. Когда эти фотоны сталкиваются и объединяются, они производят яркий свет при минимальном потреблении энергии.

Связь яркости с эффективностью

Когда вы имеете дело с лампочками, некоторые идеи могут показаться чуждыми.Например, существует тенденция использования искусственного светодиодного освещения для выращивания растений для имитации фотосинтеза. Это определяет качество и интенсивность производимого света, а также то, может ли он вызвать прорастание и рост. Но на более элементарном уровне это помогает понять разницу между используемой энергией и производимой энергией.

Для начала давайте посмотрим на термины, используемые в пространстве лампочки. К ним относятся:

  • Напряжение — количество электричества, которое проходит через ваши кабели. Это то количество энергии, к которому вы потенциально можете получить доступ, когда подключаете свое устройство.В США это 110/120 В.
  • Мощность — даже при выходе из розеток 120 В вы не можете использовать все сразу. И для каждого гаджета указано свое. Мощность измеряется в джоулях в секунду.
  • люмен — это свет, который вы действительно можете видеть. Он описывает яркость вашей лампочки. Различные типы ламп могут достигать одинаковой яркости (люмен) при разной мощности.

Чтобы лучше понять это, давайте рассмотрим некоторые общие значения мощности и то, как они преобразуются в яркость.Мы собираемся оценить яркость (люмен на ватт) тусклых и ярких лампочек. Для справки, люмен обозначается аббревиатурой lm, ватт — W, а вольт — V. Грубо говоря, вольфрамовые лампы накаливания производят 10 люменов на ватт, в то время как CFL обеспечивают около 40 люменов на ватт.

Тип лампы Тусклый свет (400-500 лм)

Яркий свет (1300-1500 лм)

Вольфрам

40W 100W
Галоген 28 Вт

70 Вт

CFL

9 Вт 20 Вт
Светодиод 6 Вт

18 Вт

18 Вт

Типы ламп

D Хотя предпосылка лампочек похожа, их особенности различаются.И именно эти вариации определяют, насколько эффективны ваши лампочки. Цель состоит в том, чтобы собрать максимальное количество тепла и плавно преобразовать его в световые волны, поэтому давайте посмотрим, как это делает каждая категория ламп.

Следует отметить, что лампочки маркируются в ваттах до 2011 года, когда Федеральная торговая комиссия (FTC) потребовала маркировать лампы в люменах, а также в ваттах. Это позволило повысить прозрачность для потребителей и упростить покупателям преобразование ламп по мере необходимости.

1.Вольфрамовые лампы накаливания

Вольфрамовые лампы накаливания

Это «оригинальные лампочки». Они сделаны из вольфрамовой нити, прикрепленной к цоколю вашей лампочки. Стеклянный шар окружает нить. Стекло обычно прозрачное, но может быть тонировано или окрашено по вашему желанию. При включенном свете лампа сильно нагревается, поэтому никогда не прикасайтесь к голой лампочке. Вы рискуете обжечься или даже порезаться, если лампочка у вас на руке лопнет.

Внутри стекла производитель может загрузить газообразный азот, чтобы нить накала светилась ярче, испуская большее количество света.Самая распространенная вольфрамовая лампа для домашнего использования — это лампа мощностью 60 Вт. Он производит от 700 до 800 люмен, но при его рассеивании теряется много тепловой энергии.

Это означает, что лампы накаливания сделают вашу комнату значительно теплее. В других типах вольфрамовых ламп стеклянный шар не содержит газа. Вместо этого весь воздух и другие газы отсасываются, оставляя вакуум. В вакууме тепло и свет движутся быстрее, поэтому лампы работают эффективнее.

Вольфрамовые лампы остаются в хорошем рабочем состоянии до 1000 часов использования.В основном они излучают теплый желтый свет с температурой около 2700 ° К (теплый белый или мягкий белый). Эта световая температура часто описывается как «мягкий белый». Эти лампы самые распространенные… и наименее энергоэффективные. Их расчетная эффективность составляет от 8 до 10 люмен на ватт. Остальное потрачено зря.

2. Галогенные лампы

Галогенные лампы

В них используется та же технология, что и в стандартных вольфрамовых лампах накаливания. Центральная нить накала нагревается, и окружающие газы усиливают раскаленное свечение, высвобождая больше люменов.Галогенные лампы получили свое название от галогенового газа, которым наполнены стеклянные шары. Помимо галогена, в эти лампы (или лампы) иногда добавляют бром, йод или другие инертные газы.

В галогенных лампах «наполняющий газ» не касается непосредственно горячей нити накала. Нить накала заключена в прозрачную стеклянную оболочку, которая, в свою очередь, заключена в стеклянный шар большего размера. Галогенные лампы меньше вольфрамовых и служат дольше. Они не такие горячие на ощупь, потому что между пальцами и источником тепла и света есть дополнительный слой газа и стекла.

Яркость галогенных ламп (их чаще называют лампами) составляет примерно от 12 до 15 люмен на ватт. Это небольшое улучшение по сравнению с вольфрамовыми лампами. Итак, если вы хотите заменить вольфрамовую лампу мощностью 60 Вт на галогенную лампу, вы выбираете галогенную лампу мощностью от 40 до 45 Вт. Галогенные лампы иногда устанавливают в светоотражающие чашки, чтобы усилить направление и интенсивность света.

3. Флуоресцентные лампы

Флуоресцентные лампы

Флуоресцентные лампы популярны в теплицах, потому что они обеспечивают освещение, не влияя на температурные настройки ваших растений.Но если вам нужна высокая энергоэффективность для нужд садоводства, вам, вероятно, следует выбрать светодиодный светильник для выращивания растений. Это сократит счета за коммунальные услуги, а это очень важно, поскольку вы также тратите средства на ирригационные системы, удобрения и борьбу с вредителями.

Но пока вы устанавливаете флуоресцентные лампы в своем домашнем саду, подумайте и о конфигурации. Люминесцентные лампы старой школы представляли собой длинные катодные лампы, которым требовалось удлиненное гнездо и пусковой предохранитель. Современные люминесцентные лампы можно легко вставить в вольфрамовую розетку без дополнительной настройки.Эти лампы называются компактными люминесцентными лампами (КЛЛ).

КЛЛ по-прежнему остаются типичными цилиндрическими люминесцентными лампами. Но эти трубки были сложены, скручены или скручены, чтобы занимать столько же места, сколько вольфрамовая лампа. Два конца трубки подключаются к одной розетке, а не к двум катодным полюсам. Как и обычные люминесцентные цилиндры, КЛЛ-лампы наполнены ртутью и другими газами. Они могут длиться до 10 000 часов.

Уровни яркости КЛЛ составляют от 30 до 60 люмен на ватт.Некоторые люминесцентные лампы могут производить до 90 люмен на ватт. А поскольку это люминесцентные лампы, они излучают «холодный свет» или «синий свет». Этот свет имеет температуру примерно 4100 ° Кельвина (ярко-белый или холодный белый). КЛЛ с высоким световым потоком могут достигать температуры от 5000 ° К до 6500 ° Кельвина, что соответствует дневному свету в полдень.

4. Светодиодные лампы

Светодиодные лампы

Эти лампы стали популярными в последние годы, поэтому мы думаем о них как о «новых технологиях». Но первая светодиодная лампа была изобретена в 1962 году Ником Холоняком-младшим.и его коллеги из General Electric (GE). Вместо использования тепла для получения света светодиоды используют фотоны. Светодиодные чипы намного меньше, чем галогенные нити или вольфрамовые нити, и иногда их устанавливают двойными или тройными.

Основа светодиодной микросхемы — отрицательный диод. Когда электричество проходит через диод, электроны испускают фотоны. Эти фотоны смешиваются, чтобы высвободить свет. Поскольку для высвобождения этих фотонов требуется очень мало энергии и поскольку их столкновения производят так много света, светодиоды в конечном итоге оказываются в четыре-пять раз более энергоэффективными, чем их вольфрамовые собратья.

По той же причине светодиоды не так сильно нагреваются, как лампы накаливания. А поскольку диоды такие крошечные, вы можете разместить больше лампочек в том же пространстве. Вот почему светодиодные ленты — один из самых популярных форматов светодиодного освещения. Светодиоды также обычно оснащены фильтрами RGB, которые обеспечивают цветной свет. Вы можете выбрать семь или более цветов в пределах одной светодиодной ленты.

Тип лампы Вт Люмен

Светимость

Вольфрам

60 Вт 700/850 лм w
Галоген 42 Вт 700–850 лм

12–15 лм / Вт

CFL

12 Вт 700–850 лм 30–60 лм / ш
LED 10W от 700 до 850 лм

от 40 до 90 лм / Вт

Также прочитайте наше руководство по покупке светодиодных ламп для чтения

Банковское дело на светодиодах

Из всех ламп мы Я уже посмотрел, светодиоды — самый энергоэффективный вид.Но из-за того, что их микросхемы маленькие, а на лампочку несколько диодов, преобразование не так просто. Если вы хотите заменить вольфрамовую лампу или галогеновую лампу на светодиодную, они должны использовать патрон того же типа. В качестве альтернативы, просто приобретите самоклеящиеся полосы света, которые излучают такое же количество люменов.

Это удобный вариант, поскольку он значительно снижает ваши счета за электроэнергию и не требует затрат на рабочую силу или ремонт. Просто найдите удобное место — предпочтительно в углу стены и пола или стены и потолка — и приклейте полосы светодиодов.Стены идеальны, потому что они отражают свет от светодиодных чипов и помогают «путешествовать» дальше по комнате.

Другим преимуществом сменных светодиодных ламп является резервный фактор. Полоса светодиодов может содержать сорок или даже пятьдесят микросхем на двухфутовой нити. Таким образом, даже если некоторые из лампочек перегорят или выйдут из строя, вы все равно получите много люмен, не тратя лишних денег или электричества. И эти полосы света предлагают необычные функции, такие как выцветание, радуга, прыгающие огни, мерцание или даже ритмичные световые шоу.

Светодиоды для растений

Мы подтвердили, что светодиоды являются лучшим источником недорогого высокоинтенсивного света, поэтому светодиодные лампы для выращивания растений — это разумная покупка для вашей растительности. Для эффективного фотосинтеза растениям необходимы продолжительные периоды «дневного света», которые составляют от 4000 до 6000 ° K. Постоянное обеспечение такого количества света в течение 12 или более часов в день, несомненно, обойдется дорого. Вот где светодиоды спасают положение.

Их диоды могут производить более 7000 ° K при потреблении всего от 500 Вт до 700 Вт в секунду.Вы должны подумать о расстоянии, потому что светодиоды такой яркости могут опалить ваши растения. Поэтому, если мощность вашего светодиодного светильника для выращивания растений не превышает 300 Вт, размещайте его в 30 м от растительности. Если ваша мощность достигает 1000 Вт или больше, вам нужно не менее трех футов между лампами и растениями.

Для комнатных растений с имитацией света светодиоды — самый разумный выбор, поскольку они могут выдержать от 50 000 до 90 000 часов непрерывного использования. Типы светодиодов, используемых в теплице, должны быть оснащены вентиляторами, чтобы они охлаждались.Это предотвращает тепловое повреждение и дорогостоящий ремонт, даже если потребление энергии вашими вентиляторами частично сводит на нет вашу экономию на счетах за коммунальные услуги.

Включите свою экономию

Итак, какой тип лампочки является наиболее энергоэффективным? Вот как это понять:

  • Лампы излучают свет, нагревая спиральные нити.
  • Эти нити становятся докрасными и начинают светиться.
  • Вакуум или газы внутри стекла помогают свету светиться ярче.
  • Энергоэффективные лампы преобразуют больше тепла в свет.
  • Вольфрам менее эффективен, в то время как у КЛЛ более эффективные стеклянные колбы.
  • Яркость измеряется в люменах на ватт.
  • Светодиоды — самые эффективные, они дают в четыре раза большую яркость, чем вольфрам.

Какую лампочку вы используете сейчас? Покажи нам фото в комментариях!

Как покупать энергоэффективные лампочки

Один из самых простых и дешевых способов борьбы с изменением климата, возможно, сейчас подойдет вам. Лампы, которые вы используете для потолка кухни, люстры, прикроватной лампы или туалетного столика в ванной, могут быть либо серьезным источником энергии, либо разумным способом уменьшить вашу энергетическую нагрузку.

Лампы накаливания были откровением, когда они были представлены Томасом Эдисоном в конце 19 века, но эти лампы были настолько неэффективны, что до 90 процентов энергии, которую они использовали, уходило впустую в виде тепла. Это был единственный вариант до 1980 года, когда на рынке появились компактные люминесцентные лампы (известные как КЛЛ) как более эффективная альтернатива. Первые КЛЛ были не только непомерно дорогими, но и слишком громоздкими для большинства ламп и медленно загорались. Но за следующие 20 лет КЛЛ резко улучшились.

Более новая, более эффективная галогенная версия, потребляющая на 25-30 процентов меньше энергии, чем старые лампы накаливания, стала доступна в 2007 году. Совсем недавно инженеры усовершенствовали светодиодную лампу (первоначально представленную в 1962 году). ) и за последние пять лет светодиоды прошли долгий путь. «Сегодня они, безусловно, являются лучшим выбором с точки зрения производительности и экономии энергии», — говорит Ноа Горовиц, директор Центра стандартов энергоэффективности NRDC в программе «Климат и чистая энергия».(В результате, лампы CFL все чаще выводятся с рынка.) И дизайнерские инновации в сочетании с юридическими полномочиями значительно сократили наши потребности в энергии для освещения. Фактически, до недавнего времени на освещение приходилось 15 процентов всего потребления электроэнергии в жилых домах, и приходилось работать десяткам дополнительных электростанций, чтобы эти лампы накаливания горели, говорит Горовиц. Теперь, когда администрация Трампа пытается отменить некоторые из наших правил освещения, еще более важно внести свой вклад в защиту климата и сохранить экологичность ваших розеток.

Сделай математику

В среднем в доме более 40 розеток. Если вы сложите все лампочки, освещающие вашу квартиру, и обнаружите, что у вас такое же количество, учтите следующее: если вы используете лампы накаливания и замените их все на светодиодные, вы сэкономите более 100 долларов в год. В национальном масштабе, если все домохозяйства откажутся от ламп накаливания и галогенов, ежегодная экономия составит 12 миллиардов долларов.

При покупке в групповой упаковке светодиоды, заменяющие лампы накаливания мощностью 60 Вт, стоят около 2 долларов за лампу.Светодиоды на 85 процентов эффективнее старых ламп накаливания, им требуется всего около 10 Вт (единиц мощности) для обеспечения того же количества света, что и старой 60-ваттной лампе.

Декодирование этикеток

Раньше, когда царили лампы накаливания, люди привыкли выбирать лампочки в зависимости от их мощности, хотя это измерение относилось к потреблению энергии, а не к яркости. Теперь все лампочки снабжены информацией о яркости лампы — мерой количества света — напечатанной на этикетке. (Чем выше люмен, тем ярче свет.) Чтобы помочь потребителям, привыкшим к считыванию уровней мощности, производители светодиодов обычно также включают на упаковку мощность, эквивалентную лампе накаливания. Например, на упаковке также может быть указано «замена 60 Вт», хотя светодиод, вероятно, потребляет всего 9 или 10 Вт.

В то время как разные бренды используют разные термины, пакеты светодиодов всегда будут включать этикетку с фактическими данными об освещении со скользящей шкалой, указывающей, является ли лампа «теплой» или «холодной». Теплый или «мягкий белый» напоминает желтоватое свечение от ламп накаливания.На другом конце спектра «холодный белый» излучает свет слегка синего цвета. Вы обнаружите, что эти качества измеряются по шкале Кельвина: лампы в диапазоне от 2700 до 3000 Кельвин излучают теплый свет, а от 5000 до 6000 Кельвин излучают голубоватый свет. Если вы не уверены, что предпочитаете, попробуйте по одному из каждого. «Посмотрите, какая из них вам больше нравится, прежде чем покупать 30 лампочек и модернизировать весь дом», — говорит Горовиц.

По возможности, Горовиц рекомендует выбирать лампы, получившие оценку U.S. Energy Star Агентства по охране окружающей среды. Если лампочка производителя заслужила звезду, это означает, что она соответствует длинному списку требований: она хорошо тускнеет, не мерцает и излучает хороший цвет, при этом соблюдая строгие стандарты энергоэффективности. «Это своего рода неявное подтверждение того, что лампочка будет служить дольше», — добавляет Горовиц.

Поменяйте местами

Если у вас есть лампы накаливания или галогенные лампы, Горовиц предлагает заменить их на светодиоды еще до того, как эти лампы перегорят.(Исключение составляют старые лампы в таких местах, как туалеты или подвалы, где они используются лишь изредка.) «Светодиоды — идеальная замена лампы накаливания один к одному», — говорит Горовиц. «Они делают все, что могут делать лампы накаливания, за исключением одного: они не тратят энергию впустую». Если у вас есть КЛЛ и вы ими довольны, продолжайте использовать их до конца срока службы, поскольку светодиоды лишь немного эффективнее. Но если вы не очень любите свои КЛЛ — скажем, потому что они не тускнеют или вы находите свет, который они излучают, нелестным, — выключите их.

Утилизируйте старые лампы правильно

Лампы накаливания и галогенные лампы можно выбросить, так как они не содержат опасных материалов. Однако из-за небольшого количества ртути, содержащейся в КЛЛ, их следует запечатать в пакет Ziploc и доставить в местный центр утилизации или хозяйственный магазин, такой как Home Depot или Lowe’s. Здесь вы можете найти ближайший к вам центр утилизации.

А когда светодиоды со временем перегорят, их тоже можно выбросить, так как они не содержат опасных материалов.Поскольку в их основе действительно есть электроника, эти лампы могут быть переработаны в будущем, при условии, что будут внедрены новые системы для более эффективной утилизации этих материалов.

Принять меры

Законодательство о лампах имеет значение для всей планеты. В 2007 году президент Джордж Буш подписал Закон об энергетической независимости и безопасности, который установил минимальные стандарты эффективности, которые позволили бы постепенно отказаться от каждой неэффективной лампочки в более чем шести миллиардах розеток в Америке. Как прямой результат, когда первая фаза правил вступила в силу в 2012 году, многие люди заменили свои старые лампы накаливания на галогенные лампы, каждая из которых потребляла на 28 процентов меньше энергии.Совсем недавно произошел всплеск продаж светодиодов благодаря огромному количеству доступных вариантов на рынке, а производители стимулировали новые стандарты эффективности, чтобы продолжать внедрять инновации. (Сотни различных разновидностей светодиодных ламп в настоящее время соответствуют требованиям.)

К сожалению, администрация Трампа намерена воспрепятствовать этому прогрессу. Ранее в этом году, поддавшись лоббистскому давлению отраслевых групп, включая Национальную ассоциацию производителей электрооборудования, Министерство энергетики США (DOE) предложило отменить правила, касающиеся лампочек.В частности, Министерство энергетики хочет исключить некоторые типы ламп накаливания и галогенные лампы (например, трехходовые, рефлекторные и канделябры в форме свечи), которые в совокупности составляют почти половину проданных ламп, от следующего этапа обновления нормативных требований. намечено на 2020 год. Если это произойдет, только в 2025 году это будет стоить стране 12 миллиардов долларов потерянных сбережений. Это также сделает Соединенные Штаты местом свалки неэффективных лампочек. Это связано с тем, что, хотя лампы накаливания и галогены уже были выведены из употребления в Европе и появятся во многих других странах в ближайшем будущем, они все еще производятся в таких странах, как Мексика и Китай.А поскольку они номинально дешевле, чем светодиоды, многие потребители могут продолжать покупать лампы накаливания и галогены, если они есть в наличии, несмотря на их более высокую долгосрочную стоимость.

Если Министерству энергетики удастся нарушить эти стандарты эффективности, приблизительно 2,7 миллиарда розеток, в которых все еще используются лампы накаливания или галогенные лампы в этой стране, не могут быть заменены энергосберегающими светодиодами. Если эти лампы не заменить, придется вырабатывать дополнительно 25 угольных электростанций, производящих 34 миллиона тонн дополнительных выбросов углерода в год.

Что вы можете сделать: Замените лампы накаливания в вашем доме на светодиодные и поощряйте своих соседей и друзей сделать то же самое. Вы также можете связаться со своими местными розничными продавцами и призвать их прекратить продажу ламп накаливания и галогенов с 1 января 2020 года. Даже если правительство решит продвинуться вперед в своем обещанном дерегулировании, покупатели могут взять на себя обязательство работать в направлении большей энергоэффективности. эффективное будущее.

Светодиодное домашнее освещение Руководство по энергосбережению

Справочник по энергии освещения


С появлением сертификата LEED и общей тенденцией к экологически чистым технологиям и повышению эффективности дома, технология освещения становится все более важным компонентом «экологичности».Несмотря на то, что из них получаются красивые крылатые фразы, мы надеемся глубже погрузиться в предмет и предоставить прочную базу знаний для тех, кто хочет лучше понять энергоэффективность применительно к технологиям освещения.

Техника домашнего освещения

Некоторые из самых популярных технологий освещения для жилых и коммерческих помещений включают:

Лампа накаливания: Эта лампа состоит из стеклянной колбы с проволочной нитью.Электрический ток проходит через нить накала, которая затем нагревается и излучает энергию в виде видимого света. Лампы накаливания были наиболее распространенным типом ламп на протяжении более 100 лет и долгое время соответствовали стандартам цветопередачи и ожиданиям потребителей относительно того, как лампочка должна работать, но постепенно отменяются Законом об энергетической независимости и безопасности 2007 г. к его неэффективности. Большинство ламп накаливания будет снято с производства к концу 2015 года. Лампы накаливания также излучают значительную часть своей энергии в виде ультрафиолетового и инфракрасного излучения, которое невидимо для человеческого глаза, но потенциально может повредить драгоценные и / или светочувствительные объекты.Узнайте больше о замене ламп накаливания и наших затемняющих устройствах.

Галоген: Более совершенная форма лампы накаливания, галогенная лампа использует газообразный галоген и вольфрамовую нить для увеличения светоотдачи и эффективности лампы накаливания. Они известны несколько более высокой эффективностью, чем обычные лампы накаливания, и более ярким и белым светом, чем оригинальные лампы накаливания. Галогенные лампы обычно являются первым выбором для домовладельцев, поскольку они лучше подходят для направленного наведения светильников и обеспечивают более сфокусированную диаграмму направленности при использовании в форматах рефлекторных ламп.Галогенные лампы часто используются на съемочной площадке и в автомобильных фарах, а также обычно используются в прожекторах и прожекторах. General Electric первой запатентовала и продала эту лампочку в 1959 году. Самый большой недостаток? Исключительно короткий срок службы ламп, аналогичный сроку службы ламп накаливания, делает их обслуживание дорогостоящим, особенно в высоких или труднодоступных местах. Узнайте больше о замене галогенного освещения и наших продуктов затемнения Mini Warm Glow Dimming.

Компактный люминесцентный: КЛЛ не используют нить накала для получения света; вместо этого они используют стеклянную трубку, покрытую люминофором, которая содержит небольшое количество паров аргона и ртути и электроды на одном конце.Когда подается электричество, электроды генерируют невидимый ультрафиолетовый свет, который затем возбуждает флуоресцентное покрытие на внутренней стороне трубки для получения видимого света. Первоначально лампочка включается немного дольше, но после включения она потребляет примерно на 70% меньше энергии, чем эквивалентная лампа накаливания. Качество цвета компактных люминесцентных ламп обычно не на должном уровне по сравнению с галогенными и лампами накаливания, а затемнение также не такое плавное, редко снижаясь до минимальных уровней освещенности, которые могут быть у ламп накаливания и галогенных ламп.Однако срок службы лампы значительно больше — до 10 000 часов и более. Узнайте больше о замене компактного люминесцентного освещения и наших продуктов затемнения по кривой цвета.

Галогенид металла: Технология разряда высокой интенсивности — это технология дуговых ламп, которая была разработана в 1960-х годах. Внутри стеклянной оболочки, заполненной газообразным аргоном, находится дуговая трубка, сделанная из кварца или керамики и содержащая соли галогенидов ртути и металлов. Смесь газа, ртути и галогенидных солей внутри трубки излучает интенсивный яркий белый свет при нагревании находящейся внутри электрической дуги.Металлогалогенные лампы очень эффективны, имеют отличный срок службы лампы (около 20000 часов) и способны испускать огромное количество света, поэтому их обычно используют для высоких потолков, где требуется много света, освещения стадионов и т. Д. освещение проезжей части, стоянки и другое внешнее освещение. Главный недостаток металлогалогенных ламп связан с переключением и диммированием. Большинство металлогалогенных ламп не могут включиться, пока они «горячие», а это означает, что при отключении питания потребуется время повторного зажигания от 15 до 20 минут, чтобы лампы остыли и снова включились.Кроме того, их практически невозможно затемнить. Так что, хотя они отлично справляются с тем, чтобы испускать много света, надеюсь, это то, что вам нужно — потому что есть только одна настройка, и это на 100%. Узнайте больше о замене металлогалогенных ламп и наших продуктах Max Output 5.0.

Светодиод: Светодиоды, или светодиоды, представляют собой твердотельную технологию, в которой нет нити накала, стеклянной оболочки, газа или ртути. Светодиоды излучают свет за счет движения электронов, возникающего в результате приложения разницы электрического напряжения к полупроводниковому материалу.Каждый полупроводниковый материал излучает свет определенного диапазона длин волн, поэтому сами по себе светодиоды не способны производить белый свет. Подобно другим технологиям, белый свет может генерироваться с помощью люминофорного покрытия, в то время как энергия возбуждения обычно обеспечивается светодиодом синего света. Хотя они не нагреваются в традиционном смысле, светодиоды выделяют тепло, но оно просто не на пути света: оно выходит на противоположный конец, и правильное рассеивание этого тепла за счет тщательного управления температурой имеет решающее значение для определения срока службы источник света.Горячий светодиод выйдет из строя, но хорошо спроектированный светодиодный источник света может быть рассчитан на срок службы 50 000 часов и более (в лабораторных условиях срок службы некоторых светодиодов превышает 100 000 часов). Это на десятки тысяч часов превышает срок службы лампы накаливания. Хотя светодиодное домашнее освещение по-прежнему не является самой распространенной формой домашнего освещения, светодиодные фонари уже много лет используются в таких вещах, как сотовые телефоны, рождественские огни, светофоры и телевизоры. Светодиодное домашнее освещение также популярно, потому что светодиоды потребляют на 90% меньше энергии, чем лампы накаливания, экологически безопасны, не имеют выбросов УФ или ртути и очень долговечны.Просмотрите всю нашу продукцию для светодиодного освещения.

Понимание стоимости и эффективности

Основными факторами, влияющими на расчет эффективности и затрат, являются:

  • Стоимость приспособления
  • Срок службы лампы (стоимость и частота замены лампы)
  • Стоимость лампы
  • Мощность на приспособление
  • Люмен и люмен на ватт (и, следовательно, количество необходимых светильников)
  • Использование (часы / день x дни / неделя x недели / год)
  • Затраты энергии

Для данной ситуации мы сделали следующие допущения, чтобы оценить стоимость владения на трехлетний период:

  • Фонари горят 12 часов в день, семь дней в неделю, 52 недели в году
  • Средняя стоимость энергии составляет 0 долларов США.12 за кВт · ч

* Эти числа являются примером для отдельного приспособления, фактические числа могут варьироваться в зависимости от приобретенных приспособлений, схем энергопотребления и размера проекта.

Ссылки на экологическое освещение

Ниже приводится список внутренних и внешних ресурсов по вопросам энергосбережения для освещения жилых и коммерческих помещений.

  • DTE Energy: дает советы по освещению, бытовой технике, отоплению и охлаждению, а также экономии воды.
  • Energy.Gov: Советы по внутреннему и внешнему освещению.
  • Duke Energy: 100 способов экономии энергии дома.
  • JEA: Советы по освещению и оборудованию вашего офиса.
  • CEC: Стандарты энергоэффективности, заголовок 24 Калифорнийской энергетической комиссии.

Доступные скидки и налоговые льготы

Следующие ссылки помогут вам найти информацию о получении скидок и налоговых льгот для энергоэффективных осветительных приборов:

  • Energy Star: добавьте свой почтовый индекс, а затем прокрутите вниз, чтобы увидеть результаты для лампочек и осветительных приборов (зачем им добавлять почтовый индекс?)
  • Consumers Energy: в их таблице стимулирования освещения есть вся информация о том, как переключиться и какие скидки вы получите.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *