Глухозаземленная и изолированная нейтраль отличия: отличия, заземление, понятие и принцип действия

Содержание

отличия, заземление, понятие и принцип действия

Чаще всего в электроустановках для защиты людей от удара током используется глухозаземленная нейтраль. В результате при аварийной ситуации потенциалы быстро уравниваются, а защитное оборудование работает более эффективно. Для грамотного использования этого механизма необходимо хорошо знать и уметь применять на практике нормы ПУЭ.

Преимущества и недостатки изолированной нейтрали

Сегодня в электроустановках используется два защитных механизма — изолированная и глухозаземленная нейтраль. Главное преимущество заключается в отсутствии необходимости экстренного отключения первого однофазного замыкания на землю. Также следует помнить, что в области повреждения электросети создается небольшой ток, но это справедливо только при низкой токовой емкости на землю. Однако есть несколько недостатков, из-за которых изолированная нейтраль используется сравнительно редко:

  • Возможно появление перемежающегося дугового напряжения.
  • Не исключается вероятность появления большего количества повреждений по причине пробоя изоляции проводников в местах появления дугового перенапряжения.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Воздействие дугового перенапряжения на изоляцию носит продолжительный характер.
  • Часто возникают сложности с обнаружением мест повреждений.
  • При однофазном замыкании правильная работа систем релейной защиты не может быть гарантирована.

Все эти недостатки полностью нивелируют преимущества такого способа заземления нейтрали. В то же время этот метод защиты в некоторых ситуациях продолжает оставаться эффективным и не противоречит нормам ПУЭ.

Например, изолированная нейтраль может стать хорошим решением для защиты высоковольтных линий, так как позволяет избежать аварийного отключения. В свою очередь, требованиям защиты сетей конченого потребителя электроэнергии он не удовлетворяет.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Однако это неидеальный способ и ему присущи некоторые недостатки. Начать стоит с того, что риски получения повреждений от удара электротоком сохраняются, хотя их и можно считать незначительными. Кроме этого, из-за большого замыкания тока на землю могут появиться помехи и даже повреждения сети.

Требования ПУЭ

Сегодня в электротехнике достаточно активно используются оба способа — глухозаземленная и изолированная нейтраль. Различия между ними в первую очередь заключаются в способе подключения трансформатора к заземляющему элементу. Вся необходимая информация по выбору способа защиты изложена в ПУЭ.

Если говорить о бытовой сети на 220 вольт, то место заземления можно расположить около трансформатора, и для решения поставленной задачи применяется отдельный проводник. Это позволит уменьшить путь прохождения тока и одновременно сократить расходы. В загородном доме допускается соединение с металлическим каркасом строения, расположенным в глубине земли.

Если же заземляющим элементом является фундамент, то к его арматуре необходимо выполнить подключение минимум в двух точках.

Изолированная и глухозаземленная нейтраль

В процессе производства, преобразования, транспортировки, распределения и потребления электроэнергии используется трехфазная симметричная система проводов. Достичь такой симметричности стало возможно путем приведения фазных и линейных напряжений в одинаковое состояние. В результате, на всех фазах образуется равномерная токовая загрузка, а также одинаковый сдвиг фаз токов и напряжений.

Во время функционирования всей этой системы рано или поздно возникают аварийные ситуации в виде обрыва провода, пробоя изоляции и прочих специфических неисправностей, приводящих к нарушениям симметрии трехфазной системы.

Последствия таких нарушений должны быть устранены как можно скорее. Большую роль в этом играет степень быстродействия релейной защиты, на работу которой влияет изолированная и глухозаземленная нейтраль. Каждый из этих режимов имеет свои достоинства и недостатки и применяется в наиболее подходящих условиях. В любом случае от их состояния во многом зависит нормальное функционирование релейной защиты.

Изолированная нейтраль

Изолированная нейтраль нашла достаточно широкое применение в отечественных энергетических системах. Данный способ заземления применяется для генераторов или трансформаторов. В этом случае их нейтральные точки не соединяются с заземляющим контуром. В распределительных сетях на 6-10 киловольт нейтральной точки может не быть вообще, поскольку соединение трансформаторных обмоток выполняется методом треугольника.

В соответствии с ПУЭ, режим изолированной нейтрали может быть ограничен емкостным током, представляющим собой ток однофазного замыкания на землю сети. Его компенсация с помощью дугогасящих реакторах предусматривается при следующих значениях:

  • Ток свыше 30 ампер, напряжение 3-6 киловольт;
  • Ток свыше 20 ампер, напряжение 10 киловольт;
  • Ток свыше 15 ампер, напряжение 15-20 киловольт;
  • Ток свыше 10 ампер, напряжение 3-20 киловольт, с металлическими и железобетонными опорами воздушных ЛЭП
  • Все электрические сети с напряжением 35 киловольт.
  • В блоках «генератор-трансформатор» при токе 5 ампер и генераторном напряжении 6-20 киловольт.

Компенсация тока замыкания на землю может быть заменена резистивным заземлением нейтрали с помощью резистора. В этом случае алгоритм действия релейной защиты будет изменен. Впервые заземление в режиме изолированной нейтрали было применено в электроустановках со средним значением напряжения.

Достоинства и недостатки изолированной нейтрали

Несомненным достоинством режима изолированной нейтрали является отсутствие необходимости быстрого отключения первого однофазного замыкания на землю. Кроме того, в местах повреждений образуется малый ток, при условии малой токовой емкости на землю.

Однако этот режим имеет ряд существенных недостатков, из-за которых его использование существенно ограничено.

Основные недостатки изолированной нейтрали:

  • Возможные дуговые перенапряжения перемежающегося характера дуги малого тока в месте однофазного замыкания на землю.
  • Повреждения могут возникнуть во многих местах по причине пробоя изоляции на других соединениях, где возникают дуговые перенапряжения. По этой причине выходят из строя сразу многие кабели, электродвигатели и другое оборудование.
  • Дуговые перенапряжения воздействуют на изоляцию в течение продолжительного времени. В результате, в ней постепенно накапливаются дефекты, что приводит к снижению срока эксплуатации.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Места повреждений довольно сложно обнаружить.
  • Реальная опасность поражения людей электротоком в случае продолжительного замыкания на землю.
  • При однофазных замыканиях не всегда может быть обеспечена правильная работа релейной защиты, поскольку значение реального тока замыкания полностью связано с режимом работы сети, в частности, с количеством включенных присоединений.

Таким образом, большое количество недостатков перекрывает все достоинства данного режима заземления. Однако в определенных условиях этот метод считается достаточно эффективным и не противоречит требованиям ПУЭ.

Глухозаземленная нейтраль

Более прогрессивным способом считается режим глухозаземленной нейтрали. В этом случае нейтраль генератора или трансформатора непосредственно соединяется с заземляющим устройством. В некоторых случаях соединение осуществляется с использованием малого сопротивления, например, трансформатора тока. В отличие от защитного, такое заземление нейтрали называется рабочим. Значение сопротивления заземляющих устройств, соединенных с нейтралью, не должно превышать 4 Ом в электроустановках с напряжением 380/220 вольт.

В электроустановках, где используется глухозаземленная нейтраль, поврежденный участок должен быстро и надежно отключаться в автоматическом режиме в случае возникновения замыкания между фазой и заземляющим проводником. С связи с этим, при напряжении до 1000 вольт, корпуса оборудования должны обязательно соединяться с заземленной нейтралью установок. Таким образом, обеспечивается быстрое отключение поврежденного участка в случае короткого замыкания с помощью реле максимального тока или предохранителя.

Особенности глухого заземления

Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.

В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.

Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.

Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.

Глухозаземленная нейтраль. Устройство и работа. Применение

Схема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.

Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.

Глухозаземленная нейтраль — устройство и работа

Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.

Рис 1

Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
  • Эффективно заземленной нейтралью.
  • Незаземленной нейтралью.
  • Компенсированной нейтралью.

Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.

Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.

Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения. Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.

Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.

Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.

Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.

Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.

Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.

Пример аварийного случая

На некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.

Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.

В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.

Возможные случаи поражения людей током:
  • Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
  • Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
  • Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
  • Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.

Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.

При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.

Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.

Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.

Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.

Требования ПУЭ

Заземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.

Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.

Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.

В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.

Некоторые ограничения ПУЭ
  • Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
  • Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
  • на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
    • При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
  • 10 мм2 – медный провод.
  • 16 мм2 – алюминиевый проводник.
  • 75 мм2 – стальной проводник.

Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.

В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.

Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.

Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.

Похожие темы:

Что такое эффективно заземленная нейтраль и в чем ее преимущества

Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Содержание:

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:

Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:

Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

  • В схемах с ЭЗН происходит стабилизация потенциала нейтрали и исключение вероятности возникновения устойчивых заземляющих дуг и последствий возникающих вследствие КЗ.
  • При КЗ на землю и переходных процессах, на изоляцию не воздействуют большие напряжения. Что дает возможность применить изоляцию с меньшим запасом прочности. А это в свою очередь дает значительный экономический эффект от применения менее дорогостоящей изоляции, что снижает эксплуатационные затраты сетей.
  • Применение быстродействующей селективной автоматики. Мгновенная работа защиты не позволяет усугубить возникшую неисправность.

Кроме очевидных достоинств, сети имеют и недостатки.

К ним относятся:

  • При любом КЗ на землю происходит обесточивание неисправного участка. При этом релейные системы защиты оборудуются средствами автоматического повторного включения. При отключении напряжения средствами автоматики, происходит нарушение бесперебойной подачи напряжения, что негативно сказывается на потребителях. А в некоторых случаях, ответственные потребители, вынуждены устанавливать устройства подачи бесперебойного напряжения.
  • В момент короткого замыкания возникает повышенный электромагнитный импульс. Он отрицательно влияет на средства связи. Их приходится дополнительно экранировать.
  • Применение сложных быстродействующих средств защиты.
  • Выход генератора из синхронизма при значительных токах короткого замыкания. Т.е. в момент КЗ происходит «притормаживание» генератора.
  • Значительные токи короткого замыкания могу вызвать повреждение кабеля с повреждением изоляции, механическое разрушение изоляторов на ЛЭП, повреждение железа статора генератора в случае пробоя изоляции на землю и т.п.
  • Возникает опасность поражения людей электрическим током вследствие повышенного и шагового напряжения при коротком замыкании на землю.
  • Изготовление заземляющих устройств. Отсутствие дублирующего заземления может оставить оборудование без защиты, если произойдет обрыв нейтрального провода.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Материал взят с сайта: https://samelectrik.ru/

Заземление с глухозаземленной нейтралью — Вместе мастерим

Схема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.

Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.

Глухозаземленная нейтраль — устройство и работа

Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.

Рис 1

Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
  • Эффективно заземленной нейтралью.
  • Незаземленной нейтралью.
  • Компенсированной нейтралью.

Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.

Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.

Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения. Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.

Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.

Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.

Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.

Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.

Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.

Пример аварийного случая

На некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.

Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.

В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.

Возможные случаи поражения людей током:
  • Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
  • Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
  • Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
  • Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.

Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.

При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.

Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.

Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.

Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.

Требования ПУЭ

Заземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.

Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.

Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.

В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.

Некоторые ограничения ПУЭ
  • Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
  • Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
  • на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
    • При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
  • 10 мм 2 – медный провод.
  • 16 мм 2 – алюминиевый проводник.
  • 75 мм 2 – стальной проводник.

Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.

В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.

Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.

Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.

Уберечь человека от поражения электрическим током во время возникновения аварийных ситуаций помогает глухозаземленная нейтраль, обеспечивающая его защитное отключение. Это становится возможным за счет выравнивания потенциалов и срабатывания устройства в момент возрастания силы тока.

Нужно понимать, что использование этого механизма в реальной жизни так же, как и с изолированной нейтралью, строго регулируется специальными правилам устройства электроустановок (ПУЭ).

Принцип действия

Согласно Правилам, под этим термином стоит понимать соединение трансформатора (нейтрали генератора) с устройством для заземления. Так, например, если речь идет о трехпроводной сети, прокладываемой к жилому дому от источника питания, нейтраль будет распределена по щиткам с последующим к ней подключением контуров заземления электрооборудования дома. Цепь такого рода не допускает установку предохранителей, подверженных плавлению, и устройств, способных выступить в роли разрушителей единства цепи.

Рабочий ноль — проводник, работающий в тандеме с третьим проводом. Они помогают создавать в доме нужное для работы основных электроприборов напряжение.

Плакат по электробезопасности «Установки с глухозаземленной нейтралью»

Рассмотрим пример аварийной ситуации. В стиральной машине вибрация стала причиной отсоединения фазного провода от места крепления, что привело к его контакту с металлическим корпусом. Что происходит? Короткое замыкание, в процессе чего сила тока быстро набирает обороты. Автовыключатель справится с задачей — питание отключится. Человек, случайно коснувшийся провода, не будет поражен током, так как сопротивление R0 окажется меньше, чем при прохождении тока через человеческое тело.

Для эффективной работы системы с глухозаземленной нейтралью или с изолированной нейтралью (без подключения к устройству заземления) в ответственный момент важно опять же следовать Правилам.

Достоинства и недостатки метода

Система имеет как плюсы, так и минусы.

К достоинствам можно отнести следующие факты:

  1. Сеть незаменима в процессе подавления перенапряжений.
  2. Нейтраль данного типа открывает возможности в использовании оборудования с таким уровнем изоляции, который изначально предполагает фазное напряжение.
  3. Не потребуется специальная схема защиты, достаточно будет обычных функций защиты от тока перегрузки в фазах для удаления глухих замыканий фазы на землю.

К минусам стоит отнеси:

  1. Сети с нейтралью глухозаземленного типа — это риск повреждений и помех вследствие большого замыкания тока на землю.
  2. Фидер после повреждения будет работать со сбоями.
  3. Сохраняется опасность для человека во время действия повреждения в результате создания высокого напряжения прикосновения.

3-фазная сеть с глухозаземленной нейтралью

Немного о применении метода заземления с глухозаземленной нейтралью: его не выбирают для создания подземных или воздушных сетей среднего напряжения в Европе, зато активно используют в распределительных сетях североамериканских объектов. Целесообразно использование глухозаземленной нейтрали в случаях маломощности источника при коротком замыкании.

Что такое системы TN

TN будут называться системы с использованием глухозаземленной нейтрали для подключения защитных и нулевых функциональных проводников. Важный момент — в таких системах к нулевому проводнику, в свою очередь соединенному с нейтралью, должны быть подключены все корпусные электропроводящие детали.

Такая система отличается подключением нейтрали к контуру заземления вблизи трансформаторной подстанции. Нейтраль в этом случае не заземляется с помощью дугогасящего реактора.

На предприятиях промышленного типа наиболее целесообразными являются четырехпроводные трехфазные сети с глухозаземленной нейтралью напряжением 380/220 В со вторичной обмоткой, объединенной в звезду и наглухо соединенной нейтральной точкой с устройством для заземления.

Двигатели при подключении к фазам сети питаются при линейном напряжении, источником питания ламп является фазное напряжение при подключении их между нейтральными и фазными проводами. N -проводу отводится сразу две роли — он является рабочим, необходимым для присоединения однофазных приемников, и проводом зануления с присоединенными металлическими корпусами установок, которые не находятся под нормальным напряжением.

Зануление пробоя изоляции обмотки двигателя приведет к появлению большого тока короткого замыкания и срабатыванию механизма защиты, в результате чего двигатель будет отключен от сети. В случае отсутствия зануления корпуса двигателя повреждение изоляции обмотки приведет к созданию опасной ситуации на корпусе касательно земли.

В случае однофазного КЗ на землю относительно нее напряжения на целых фазах остается прежним, поэтому изоляция может быть устроена с уклоном не на линейное, а на фазное напряжение.

Итак, глухозаземленной нейтралью называется нейтраль генератора или трансформатора, которая подсоединена к заземляющему устройству.

Главным преимуществом ее использования является возможность предотвращения воспламенения электропроводки за счет автоматического отключения поврежденного участка от сети. Кроме того, в случае короткого замыкания между нейтральным проводом и поврежденной фазой и соответственно увеличивающимся током срабатывают токовые реле, опасность поражения сводится к минимуму.

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Нейтраль трансформатора, назначение заземления нейтрали

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле,
  • пределяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

Используются следующие режимы нейтрали:

  • глухозаземленная нейтраль,
  • изолированная нейтраль,
  • эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок. при однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.

Глухозаземленная нейтраль

Глухозаземленная нейтраль трансформатора

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью.

Изолированная нейтраль

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.

Компенсированная нейтраль

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВ Режим нейтрали Примечание
0,23 Глухозаземленная нейтраль Требования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69 Изолированная нейтраль Для повышения надежности электроснабжения
3,3
6
10
20
35
110 Эффективно заземленная нейтраль Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Назначение заземления нейтрали трансформатора для повышения чувствительности защиты от однофазных замыканий на землю.

В нормальном режиме высокоомный резистор, и при необходимости дугогасящий реактор (ДГР) подключаются к нейтрали специального трансформатора заземления нейтрали (ТЗН).

Чтобы обеспечить чувствительность и селективность защиты от ОЗЗ необходимо кратковременно увеличить ток через устройство защиты. Обоснование возможности кратковременного индуктивного заземления нейтрали специальным трансформатором заземления нейтрали. При возникновении на линии ОЗЗ трансформатор через 0,5 с кратковременно подключается выключателем к сборным шинам. Благодаря глухому заземлению нейтрали создается ограниченный индуктивностью ТЗН ток однофазного короткого замыкания, достаточный для обеспечения чувствительности от ОЗЗ и создания условия гашения дуги.

Защита действует без выдержки времени на отключение линии. Выключатель с заданной выдержкой времени отключается. Отключение линии предотвращает двойные замыкания на землю (ДЗЗ) и многоместные замыкания на землю (МЗЗ), неизбежные в сетях напряжением 6-10 кВ с высокой изношенностью кабелей и оборудования.

Такой режим отключения поврежденных кабельных линий несколько лет проходит опытную эксплуатацию в ОАО «Пятигорские электрические сети». Однако, отключение линий возможно только при наличии надежного резервирования и в случаях, оговоренных правилами устройств электроустановок.

Предотвращения перехода ОЗЗ в ДЗЗ или МЗЗ осуществляется резистором Rн (см. рисунок 1), подключенным к нейтрали ТЗН. В нормальном режиме выключатель Q3) в цепи ТЗН отключен. При ОЗЗ срабатывают реле контроля изоляции KSV1 и (или) реле тока КА1, или устройство определения поврежденной фазы (см. рисунок 1).

После замыкания контактов срабатывает реле времени КТ1, замыкающиеся контакты которого включают выключатель Q3. Выключатель Q3 шунтирует сопротивление Rн и ДГР.

Рис.1 — Поясняющая схема и схема автоматического заземления нейтрали

Замыкающиеся контакты реле КТ1 с выдержкой времени 0,3 с отключают выключатель Q3. При замыкании этих контактов срабатывает промежуточное реле KL1. Размыкающие контакты реле разрывают цепь КТ1. Возврат схемы осуществляется дежурным с помощью ключа SА. При этом реле К13 замыкает свои контакты в цепи реле КТ1. После отключения выключателя Q3 сеть вновь переходит в режим с заземленной нейтралью через высокоомное сопротивление и при необходимости через ДГР.

При увеличении тока через реле срабатывает защита от ОЗЗ с действием на сигнал с выдержкой времени 0,2 с. Отключение выключателя выполняется с выдержкой времени 0,2 с. Сеть вновь переходит в режим с нейтралью, заземленной через резистор.

Видео: Виды заземления нейтрали

Поделиться ссылкой:

Кликните на звездочку чтобы выставить рейтинг страницы

[Total: 0 Average: 0]

В чем разница между заземлением и занулением, чем отличается нейтраль от земли?

Зачем нужно зануление и заземление

Сегодня существует большое количество различных приборов и инструментов, основная задача которых – это обеспечение безопасности при работе с электроустановками. Если возникают какие-либо неполадки, то наиболее опасным последствием неисправности может стать попадание напряжения на металлические части или корпус оборудования.

В зависимости от силы тока, человек может получить повреждения различной степени тяжести. К примеру, при 25 мА может возникнуть паралич мышц, который будет препятствовать попытке прервать контакт с поверхностью, находящейся под напряжением. Если сила тока, прошедшего через изоляцию, равна от 50 до 100 мА, то контакт с ней приведет к серьёзным повреждениям, таким как нарушение циркуляции крови в организме или даже летальному исходу.

Чтобы избежать вышеописанных ситуаций, при работе с электроустановками используют различные приспособления, соответствующие правилам общепринятой техники безопасности.

Обязательным условием эксплуатации электрооборудования является защитное заземление и зануление электроустановок, которые предотвращают поражение током при нарушении изоляции установки.

Чтобы понимать, в чем разница между этими приспособлениями, нужно знать, что собой представляет каждое из них.

Заземление

Под понятие заземления попадают конструкции, соединяющие установки, которые используют электроэнергию, с землей. Благодаря этому при прикосновении к поверхности, находящейся под напряжением, полученный человеком заряд сводится к минимуму.

Используют данный способ только в электрооборудовании с изолированной нейтралью. Благодаря соединению земли с корпусом установки, при повреждении изоляции ток должен уходить по заземляющей части из-за меньшего сопротивления.

Заземление частного дома

Еще одна функция, выполняющаяся заземлением – это увеличение аварийного тока замыкания. Это необходимо, чтобы защитное электрическое устройство срабатывало во время попадания нетоковедущих частей под напряжение. Обусловлено это тем, что установке заземления, которое имеет достаточно высокий уровень сопротивления, может быть недостаточно тока замыкания. Такая ситуация опасна тем, что несмотря на аварийное состояние оборудования, защита не срабатывает и опасность поражения рабочего персонала остается высокой.

Заземляющее устройство по своему строению представляет собой один или целую группу проводников, которые соединяют токопроводящие элементы с землей. Существует несколько основных типов заземления:

  1. Рабочий тип. Основное предназначение – обеспечение бесперебойной работы электрооборудования как при штатном режиме функционирования, так и при аварийном.
  2. Защитный тип. Предназначен для обеспечения безопасности при работе с электроустановками. Главной причиной возникновения опасности в оборудовании является пробой токоведущего провода на рабочую поверхность или корпус.
  3. Грозозащитный тип. Главное предназначение – отвод разряда молнии, попавшего в разрядник или молниеотвод.

Кроме разделения на типы, заземляющие устройства отличаются в следующем:

  • Искусственно изготовленное заземление. Данный вид конструкций изготавливается специально для обеспечения защиты от напряжения. Состоят они из таких элементов, как провода и стержни из металла, трубы некондиционного типа, стальные уголковые приспособления.
  • Естественное заземление. К этой категории относятся конструкции, изготовленные из металла, но изначально не предназначенные для обеспечения защиты от напряжения. Обычно в качестве естественного заземления используют обсадные трубы, трубопровод, сооружения из железобетона.

Опознавательный знак заземления

Стоит отметить, что естественный вид заземления используют при соблюдении определенных правил. Основное из них – это запрет на эксплуатацию конструкций, которые предназначены для передачи горючих жидкостей или газов. Также для вышеупомянутой цели не подходят проводники, сделанные из алюминия или трубы, поверхность которых покрыта антикоррозийным слоем изоляции.

Зануление


Зануление отличается от заземления как по предназначению, так и по принципу монтажа. Подключают данную систему защиты к металлическим деталям или корпусу вместо заземления, которые в нормальном режиме работы не проводят электрический ток. Подключают зануление к нейтрали, используемой источником пониженного трехфазного напряжения. Также оно может монтироваться и при помощи генератора однофазного напряжения, а именно подключают к заземленному выводу.

Зануление – один из вариантов защиты от поражения электрическим током

Главная задача зануления – защита рабочего персонала за счет своевременного срабатывания коммутационного автоматического оборудования. Принцип работы заключается в создании искусственного короткого замыкания во время пробоя изоляции и попадания тока на рабочую часть оборудования. Благодаря возникшему КЗ, срабатывают следующие устройства защиты:

  • автоматический выключатель;
  • предохранитель;
  • современные системы защиты от короткого замыкания.

Разница зануления и заземления, как правило, заключается в монтаже и использовании вместо более простого и надежного способа при эксплуатации оборудования, в котором присутствует глухо заземленная нейтраль. Но перед тем как приступить к монтированию данного устройства защиты, нужно учесть, что ток короткого замыкания, который будет создан при помощи нулевого провода, должен быть достаточно высоким, чтобы защитное приспособление срабатывало со 100% вероятностью.

Если же его не будет достаточно для срабатывания автоматического выключателя или разрыва плавкой вставки, то это приведет к возникновению напряжения на всех остальных частях электрооборудования, на которые раньше не попадал ток. Такая ситуация может привести к большой опасности для жизни рабочего персонала и повлиять на производственный процесс.

Подключение зануления к автомату

Для монтажа зануления необходимо соблюдать некоторые правила, обеспечивающие бесперебойную и безопасную работу электроустановок. К примеру, строго запрещается устанавливать какое-либо коммутирующее оборудование в нулевой провод, так как его разрыв может привести к появлению тока в местах с занулением.

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор. с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль ) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами » (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью «. Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным. а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали «. Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику «!

Рекомендуем также прочитать:

Заземление и зануление — в чем разница? Заземление и зануление электрооборудования

October 17, 2016

Направленное движение заряженных частиц, которое называется электрическим током, обеспечивает комфортное существование современному человеку. Без него не работают производственные и строительные мощности, медицинские приборы в больницах, нет уюта в жилище, простаивает городской и междугородный транспорт. Но электричество является слугой человека только в случае полнейшего контроля, если же заряженные электроны смогут найти другой путь, то последствия окажутся плачевными. Для предупреждения непредсказуемых ситуаций применяют специальные меры, главное — понять, в чем разница. Заземление и зануление защищают человека от удара током.

Направленное движение электронов осуществляется по пути наименьшего сопротивления. Чтобы избежать прохождения тока через человеческое тело, ему предлагается другое направление с наименьшими потерями, которое обеспечивает заземление или зануление. В чем разница между ними, предстоит разобраться.

Заземление представляет собой один проводник или составленную из них группу, находящуюся в соприкосновении с землей. С его помощью выполняется сброс поступающего на металлический корпус агрегатов напряжения по пути нулевого сопротивления, т. е. к земле.

Такое электрическое заземление и зануление электрооборудования в промышленности актуально и для бытовых приборов со стальными наружными частями. Прикосновение человека к корпусу холодильника или стиральной машины, оказавшегося под напряжением, не вызовет поражения электрическим током. С этой целью используются специальные розетки с заземляющим контактом.

Принцип работы УЗО

Для безопасной работы промышленного и бытового оборудования применяют устройства защитного отключения (УЗО). используют приборы автоматических дифференциальных выключателей. Их работа основана на сравнении входящего по фазному проводу электрического тока и выходящего из квартиры по нулевому проводнику.

Нормальный режим работы электрической цепи показывает одинаковые значения тока в названых участках, потоки направлены в противоположных направлениях. Для того чтобы они и далее уравновешивали свои действия, обеспечивали сбалансированную работу приборов, выполняют устройство и монтаж заземления и зануления.

Пробой в любом участке изоляции приводит к протеканию тока, направляющегося к земле, через поврежденное место с обходом рабочего нулевого проводника. В УЗО показывается дисбаланс силы тока, прибор автоматически выключает контакты и напряжение исчезает во всей рабочей схеме.

Для каждого отдельного эксплуатационного условия предусмотрены различные установки для отключения УЗО, обычно диапазон наладки составляет от 10 до 300 миллиампер. Устройство срабатывает быстро, время отключения составляет секунды.

Два пути устройства заземления

Системы защиты и отвода напряжения подразделяют на:

Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.

Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.

Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.

Помимо заземления, в некоторых случаях используют зануление, нужно различать, в чем разница. Заземление и зануление отводят напряжение, только делают это разными способами. Второй метод является электрическим соединением корпуса, в нормальном состоянии не под напряжением, и выводом однофазного источника электричества, нулевым проводом генератора или трансформатора, источником постоянного тока в его средней точке. При занулении напряжение с корпуса сбрасывается на специальный распределительный щиток или трансформаторную будку.

Зануление используется в случаях непредвиденных скачков напряжения или пробоя изоляции корпуса промышленных или бытовых приборов. Происходит короткое замыкание, ведущее к перегоранию предохранителей и мгновенному автоматическому выключению, в этом заключается разница между заземлением и занулением.

Заземление и зануление, в чем разница?

Между этими двумя способами существуют отличия:

  • при заземлении избыточный ток и возникшее на корпусе напряжение отводятся непосредственно в землю, а при занулении сбрасываются на ноль в щитке;
  • заземление является более эффективным способам в вопросе защиты человека от поражения электрическим током;
  • при использовании заземления безопасность получается за счет резкого уменьшения напряжения, а применение зануления обеспечивает выключение участка линии, в которой случился пробой на корпус;
  • при выполнении зануления, чтобы правильно определить нулевые точки и выбрать метод защиты потребуется помощь специалиста электрика, а сделать заземление, собрать контур и углубить его в землю может любой домашний мастер-умелец.

Заземление является системой отвода напряжения через находящийся в земле треугольник из металлического профиля, сваренного в местах соединения. Правильно устроенный контур дает надежную защиту, но при этом должны соблюдаться все правила. В зависимости от требующегося эффекта выбирается заземление и зануление электроустановок. Отличие зануления в том, что все элементы прибора, которые в нормальном режиме не находятся под током, подсоединяются к нулевому проводу. Случайное касание фазы к зануленным деталям прибора приводит к резкому скачку тока и отключению оборудования.

Сопротивление нейтрального нулевого провода в любом случае меньше этого же показателя контура в земле, поэтому при занулении возникает короткое замыкание, которое в принципе невозможно при использовании земляного треугольника. После сравнения работы двух систем становится понятно, в чем разница. Заземление и зануление отличаются по способу защиты, так как велика вероятность отгорания со временем нейтрального провода, за чем нужно постоянно следить. Зануление применяется очень часто в многоэтажных домах, так как не всегда есть возможность устроить надежное и полноценное заземление.

Заземление не зависит от фазности приборов, тогда как для устройства зануления необходимы определенные условия подключения. В большинстве случаев первый способ превалирует на предприятиях, где по требованиям техники безопасности предусматривается повышенная безопасность. Но и в быту в последнее время часто устраивается контур для сброса возникающего излишнего напряжения непосредственно в землю, это является более безопасным методом.

Защита при заземлении касается непосредственно электрической цепи, после пробоя изоляции за счет перетекания тока в землю значительно снижается напряжение, но сеть продолжает действовать. При занулении полностью отключается участок линии.

Заземление в большинстве случаев используют в линиях с устроенной изолированной нейтралью в системах IT и ТТ в трехфазных сетях с напряжением до 1 тыс. вольт или свыше этого показателя для систем с нейтралью в любом режиме. Применение зануления рекомендовано для линий с заземленным глухо нейтральным проводом в сетях TN-C-S, TN-C, TN-S с имеющимися в наличии N, PE, PEN проводниками, это показывает в чем разница. Заземление и зануление, несмотря на отличия, являются системами защиты человека и приборов.

Виды защитных систем

Классификация систем является основной характеристикой, по которой устраивается защитное заземление и зануление. Общие технические сведения описаны в третьей части ГОСТ Р 50571.2-94. В соответствии с ней заземление выполняется по схемам IT, TN-C-S, TN-C, TN-S.

Система TN-C разработана в Германии в начале 20 века. В ней предусмотрено объединение в одном кабеле рабочего нулевого провода и РЕ-проводника. Недостатком является то, что при отгорании нуля или возникшем другом нарушении соединения на корпусах оборудования появляется напряжение. Несмотря на это система применяется в некоторых электрических установках до нашего времени.

Системы TN-C-S и TN-S разработаны взамен неудачной схемы заземления TN-C. Во второй схеме защиты два вида нулевых провода разделялись прямо от щитка, а контур являлся сложной металлической конструкцией. Эта схема получилась удачной, так как при отсоединении нулевого провода на кожухе электроустановки не появлялось линейное напряжение.

Система TN-C-S отличается тем, что разделение нулевых проводов выполняется не сразу от трансформатора, а примерно на середине магистрали. Это не было удачным решением, так как если обрыв нуля случится до точки разделения, то электрический ток на корпусе будет представлять угрозу для жизни.

Схема подсоединения по системе ТТ обеспечивает непосредственную связь деталей под напряжением с землей, при этом все открытые части электроустановки с присутствием тока связаны с грунтовым контуром через заземлитель, который не зависит от нейтрального провода генератора или трансформатора.

По системе IT выполняется защита агрегата, устраивается заземление и зануление. В чем разница такого подсоединения от предыдущей схемы? В этом случае передача излишнего напряжения с корпуса и открытых деталей происходит в землю, а нейтраль источника, изолированая от грунта, заземляется посредством приборов с большим сопротивлением. Эта схема устраивается в специальном электрическом оборудовании, в котором должна быть повышенная безопасность и стабильность, например, в лечебных учреждениях.

Виды систем зануления

Система зануления PNG является простой в конструкции, в ней нулевой и защитный проводники совмещаются на всей протяженности. Именно для совмещенного провода применяется указанная аббревиатура. К недостаткам относят повышенные требования к слаженному взаимодействию потенциалов и проводникового сечения. Система успешно используется для зануления трехфазных сетей асинхронных агрегатов.

Не разрешается выполнять защиту по такой схеме в групповых однофазных и распределительных сетях. Запрещается совмещение и замена функций нулевого и защитного кабелей в однофазной цепи постоянного тока. В них применяется дополнительный нулевой провод с маркировкой ПУЭ-7.

Есть более совершенная система зануления для электроустановок, питающихся от однофазной сети. В ней совмещенный общий проводник PEN присоединяется к глухозаземленной нейтрали в источнике тока. Разделение на N и РЕ проводники происходит в месте разветвления магистрали на однофазных потребителей, например, в подъездном щите многоквартирного жилища.

В заключение следует отметить, что защита потребителей от поражения током и порчи электрических бытовых приборов при скачках напряжения является главной задачей энергообеспечения. Чем отличается заземление от зануления, объясняется просто, понятие не требует специальных знаний. Но в любом случае меры по поддержанию безопасности бытовых электроприборов или промышленного оборудования должны осуществляться постоянно и на должном уровне.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Про заземление и зануление для «чайников»

Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

«Заземление» и «зануление»

Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».

В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.

Контур заземления

Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.

Читайте также по этой теме: Заземление и зануление — в чем разница?

От чего защищает заземление?

Основное предназначение заземления в электрической сети – это защита. Для работы электрических приборов в электропроводке предусмотрено два провода: фазный и нулевой.

Защита, которую обеспечивает заземление заключается в подключении третьего проводника, соединенного непосредственно с заземлителем который в свою очередь соединен с контуром заземления. Благодаря заземлению можно не беспокоиться о том, что возникшая по вине неисправности бытового прибора аварийная ситуация приведет к удару электрическим током кого либо из окружающих.

Друзья давайте разберемся, какие аварийные ситуации могут возникнуть и в чем заключается принцип работы защитного заземления?

Опасность поломки электрического прибора заключается в том, что его корпус может оказаться под напряжением, тем самым сделав его опасным. Такое обстоятельство может возникнуть в том случае, если повреждается внутренняя изоляция. Например, когда провода прибора со временем ссыхаются или плавятся, и соприкасается с металлическим корпусом бытового прибора.

Визуально заметить такую аварийную поломку невозможно, однако достаточно дотронуться к электроплите или стиральной машинке, удар током пройдет незамедлительно.

У многих после таких ситуаций возникает вопрос: как работает заземление, и может ли оно эффективно защитить. Сила такого удара может быть разной в зависимости от состояния человека и окружающих условий.

Что произойдет, если корпус не соединен с заземлением? Сама по себе такая поломка ничего собой не представляет. Стиральная машинка с пробитым корпусом как работала, так и будет работать. Она будет отлично выполнять свои функции, пока вы к ней не дотронетесь.

Все дело в том, что человек больше чем на 70% состоит из воды и является прекрасным проводником электричества. Когда вы стоите на полу или прикасаетесь к стене, то ваше тело может послужить проводником. При прикосновении к поврежденному корпусу ток начнет протекать через ваше тело в землю.

Конечно, можно избежать удара током, если одеть резиновые перчатки или обувь, но в доме так никто не ходит. Если у вас в доме нет заземления, и прибор бьется током, следует помнить, что даже невысокое напряжение может привести к плачевным обстоятельствам.

Величина в 50 мА уже является опасной для человека. Такое маленькое значение тока может привести к фибрилляции сердца и даже к смертельному случаю.

Для того чтобы не беспокоиться за свою жизнь и здоровье семьи важно, чтобы в доме было подключено заземление. В этом случае опасный потенциал, имеющийся на корпусе прибора, будет уходить в землю, защищая вас от удара. В этом заключается принцип работы заземления. К тому же дополнительно заземлению рекомендуется устанавливать УЗО, которое отключит поврежденное оборудование при малейших утечках.

Как работает заземление электрооборудования

Что касается жителей частного сектора, то в основном, на этих районах электричество на участки подводится воздушными линиями электропередач. Как правило, это двухпроводные линии, которые состоят из фазного и нулевого провода. В нашей стране линии электропередач оставляют желать лучшего, ведь на одном кабеле, идущем по основной линии, может быть много скруток.

Порывы ветра, падающие ветки и осадки могут в любой момент оборвать силовой кабель и если у вас в доме не установлена система защиты в виде заземления и устройства УЗО, то пострадать может не только владелец дома, но и вся его техника. Здесь установка заземления особенно актуальный вопрос.

Сегодня можно самостоятельно создать хорошую защиту для дома и создать заземление собственными руками, обеспечивая сохранность приборов и здоровья домочадцев.

Правильно изготовленная и установленная система защиты сможет уберечь электроприборы даже в момент обрыва линии идущей к дому. В настоящее время индивидуальная работа заземления дома в совокупности с УЗО считается популярными средствами защиты от удара током в собственном доме.

Работа заземления в частном секторе

В данном разделе разберем, как работает заземление на примере частного дома. Схема питания дома, изображенная на рисунке состоит из воздушной линии. Воздушная линия – двухпроводная, наиболее часто встречающаяся в частном секторе. Состоит из двух проводов фазного (на рисунке обозначен красным цветом) и нулевого (синего цвета). Нулевой провод является нулевым рабочим и защитным одновременно. То есть совмещенным проводником. В электротехнической литературе обозначается как PEN проводник.

Для того чтобы разделить этот проводник на два независимых рабочий и защитный, во вводном щите дома делается специальное ответвление на заземляющий контур. После этого с вводного щита выходит два нулевых проводника которые имеют разное назначение. Один из них рабочий ноль, который служит для работы приборов. Другой защитный ноль — заземляющий проводник, должен иметь желто-зеленую маркировку и обозначение PE.

В «Правилах Устройства Электроустановок» такая система заземления обозначается как TN-C-S. Внутренняя электропроводка дома должна быть трехпроводной, то есть фаза, ноль и заземление. Все розетки в доме должны быть соответственно с заземляющим контактом. В этом случае корпус потенциально опасного прибора будет подключен к защитному проводнику через заземляющий контакт розетки. В зону риска особенно входит так называемая мокрая техника это водонагреватели, насосы, посудомоечные и стиральные машинки.

Если в ходе эксплуатации фазный провод в результате пробоя изоляции соприкасается с корпусом прибора (для примера это корпус холодильника), то между фазным проводом (красным) и заземляющим (желто-зеленым) произойдет замыкание, в результате чего отключится силовой автомат.

Мнимая защита или неправильное заземление

Бывают ситуации, когда заземление может быть опасным. Это при условии НЕПРАВИЛЬНОГО ПОДКЛЮЧЕНИЯ. Друзья сейчас рассмотрим случай неправильного подключения заземления и сравним его со случаем рассмотренным выше.

На рисунке изображена схема неправильного заземления. Суть его заключается в подключении заземляющего проводника (провода заземления в электропроводке) к нулевому рабочему. Нулевой провод же заземлен на подстанции, почему же от него не заземлиться? К сожалению, встречаются специалисты в нашей отрасли, которые совершают такие ошибки.

В чем заключается опасность? В исправном состоянии техника будет работать без нареканий, все электрические приборы будут выполнять свою работу. Друзья давайте теперь рассмотрим другую ситуацию когда нулевой провод на линии был оборван в результате сильного ветра, при этом красный все еще остался целым.

При замыкании фазного провода на корпус в этом случае короткого замыкания не возникнет, так как заземляющий провод, который одновременно является и нулевым рабочим оборван по пути к дому, разности потенциалов между фазным и заземляющим проводом нет, и короткого замыкания не произойдет. Отсюда не сложно догадаться, что автоматический выключатель не отключится, так как ему просто не на что реагировать (нет тока короткого замыкания).

Из этого следует, что корпус холодильника, находясь под опасным напряжением, будет ждать свою жертву. Сила удара током в этой ситуации будет напрямую зависеть от того какая соприкосаемость человека с землей. Чем лучше контакт, тем сильнее ударит.

В некоторых случаях удар током через корпус прибора может быть фатальным, чтобы не случилось неприятностей нужно знать, как работает заземление в доме.

К примеру, вы прикасаетесь к пробиваемой электрической водогрейке и одновременно беретесь за водопроводную трубу. Также опасно браться за корпус прибора, который находится под напряжением при этом стоять босым на бетонных полах. Такой пол может служить проводником.

Как работает узо с заземлением

Чувствительность системы заземления, а соответственно и электробезопасность можно повысить установив в электрощите устройство защитного отключения (УЗО). Данный прибор реагирует на утечку тока и отключается при ее появлении тем самым обестачивая технику с поврежденной изоляцией. УЗО срабатывает даже в тех случаях если происходит малейшая утечка тока.

В реальности утечка тока может происходить как через заземленный корпус прибора, так и через тело человека (если заземления в доме отсутствует), что менее приятно. На рисунке показана ситуация когда ток проходит через тело человека.

К примеру, человек касается корпуса неисправного прибора, корпус которого не заземлен. В момент прикосновения через человека начинает протекать ток, и УЗО реагируя на него мгновенно отключится. Продолжительность удара током для человека в этом случае будет равна времени отключения УЗО. Обычно она равняется десятым долям секунды.

Незначительное и кратковременное воздействие тока в большинстве случаев приносить незначительный вред, человек получает болевые неприятные ощущения и испуг, который проходит уже через несколько минут.

Казалось бы идеальный вариант защиты, но не все так гладко. Даже такая система защиты имеет свои недостатки:

  • • если прибор не имеет заземления, то, следовательно, УЗО не сможет зафиксировать утечку, а понять поломку можно будет только после пусть небольшого, но удара током;
  • • по сути УЗО — это сложный электронный прибор, который не может сработать моментально, для отключения требуется время, следовательно, защита только с помощью УЗО может оказаться слишком медленной.
  • • за счет высокой стоимости на УЗО домовладельцы, как правило, экономят и покупают устройства низкого качества либо устанавливают одно УЗО на весь дом, а в этом случае сложно гарантировать своевременное срабатывание.

Не стоит использовать устройства УЗО сомнительного качества и малоизвестных брендов. Ответственность за свою защиту, каждый человек несет самостоятельно, поэтому покупать нужно только оригинальный и сертифицированный товар. В настоящий момент рынок переполнен электрооборудованием различных производителей и нужно ответственно относиться, к такой покупке.

Друзья мы с вами рассмотрели принцип работы заземления, и что может произойти при неправильном способе заземления. Основное преимущество такой схемы подключения заключается в том, что у нее имеется свой индивидуальный контур заземления и в случае обрыва провода на линии электропередач он не сможет никак повлиять на работоспособность.

Важно! Не стоит думать, что если у дома есть заземление, то не нужно использовать УЗО. Даже при малейшей утечке прибор может зафиксировать проблему и отключить поврежденный участок сети, обеспечив безопасность и здоровье человека.

Электричество – это друг и враг человека, поэтому чтобы не произошло чего-то непредвиденного необходимо правильно делать электропроводку, и знать, как работает заземление в доме. Если нет знаний и опыта работы с электричеством, то такую работу лучше доверить профессионалам, которые все сделают, не только быстро, но и качественно с учетом всех норм и требований.

Понравилась статья — сохрани на стену!

Сравнение методов заземления нейтрали

Методы заземления нейтрали

Системы заземления нейтрали очень похожи на автоматические выключатели в том, что они ничего не делают, пока что-то в системе не выйдет из строя! Существует несколько методов заземления системы, которые в целом можно разделить на три основные категории: изолированное заземление, твердое заземление (наиболее распространенное устройство системы), заземление по сопротивлению через резистор и индукционную катушку или катушку гашения дуги (катушка Петерсена).

Сравнение методов заземления нейтрали (фото предоставлено ISSCO GROUP)

Содержание:

  1. Изолированное заземление
  2. Сплошное заземление (наиболее распространенная компоновка системы)
  3. Заземление через резистор, реактивную катушку или дугогасящую катушку ( Катушка Петерсена)
  4. Таблица сравнения

СИСТЕМА ИЗОЛИРОВАННОЙ НЕЙТРАЛИ (без преднамеренного заземления)

Схема системы с изолированной нейтралью

Нейтраль не заземляется напрямую. На самом деле электрическая система заземлена через емкость системы на землю .

Замыкание на землю вызывает ток короткого замыкания в несколько ампер из-за емкостного тока кабеля, и напряжение исправных фаз не поднимается выше линейного напряжения. Таким образом, система может работать при текущем замыкании на землю, улучшая целостность системы и питание.

Обнаружение места неисправности очень сложно . Основными компонентами детектирования являются вольтметр .Этот метод обычно используется для сетей низкого напряжения .

Перейти к указателю ↑


ТВЕРДО ЗАЗЕМЛЕНИЕ ИЛИ ПРЯМОЕ ЗАЗЕМЛЕНИЕ

Схема прямого заземления

Нейтраль силовых трансформаторов или генератора напрямую соединена с землей станции .

Ток повреждения = трехфазный симметричный ток короткого замыкания и может увеличиваться от 20 до 30 раз по сравнению с номинальным током. Перенапряжение в исправной фазе не должно превышать линейное напряжение на землю.

Нет ограничения тока короткого замыкания , когда система надежно заземлена.

Перейти к указателю ↑


ИМПЕДАНСНОЕ ЗАЗЕМЛЕНИЕ

Целью этого метода является для ограничения тока короткого замыкания для большей безопасности . Существует три типа импедансного заземления через: резистор

  1. , реактивное сопротивление
  2. или дугогасящая катушка (катушка Петерсена)
  3. .

Перейти к индексу ↑


1.ЗАЗЕМЛЕНИЕ ЧЕРЕЗ РЕЗИСТОР
Схема заземления через резистор

Нейтраль соединена с землей через один резистор. Ток повреждения ограничен выбранным значением: I f = V / R

R = значение сопротивления резистора (Вт)
В = линейное напряжение (кВ)

Система, должным образом заземленная резистором, не подвержена разрушительным переходным перенапряжениям.

Причины ограничения тока резистором могут быть одной или несколькими из следующих:

  • Для уменьшения эффектов горения и плавления в неисправном электрооборудовании,
  • Для уменьшения механических напряжений в цепях и аппаратах, несущих токи повреждения ,
  • Для уменьшения опасности поражения электрическим током персонал может вызвать паразитные токи замыкания на землю в обратном пути заземления.

Существует два класса: Высокое значение сопротивления или низкое значение сопротивления , отличающееся уровнем замыкания на землю , разрешенным для протекания (Нет признанных стандартов для уровня тока замыкания на землю, который определяет эти два класса).

На практике разница очевидна.

  • Для высокого значения сопротивления обычно используется с уровнями тока замыкания на землю 10 А или менее .
  • Низкое значение сопротивления обычно использует , уровни тока замыкания на землю от 10 А до 3000 А .

Оба класса предназначены для ограничения тока замыкания на землю, а — для защиты системы от переходных перенапряжений ( поддерживается на безопасном уровне ). Однако метод высокого сопротивления обычно не требует немедленного устранения замыкания на землю, поскольку ток замыкания ограничен очень низким уровнем, схема защиты, связанная с высоким значением сопротивления, обычно является обнаружением и сигнализацией.

Метод с низким сопротивлением имеет преимущество немедленного и выборочного отключения заземленной цепи , но требует, чтобы минимальный ток замыкания на землю был достаточно большим для положительного срабатывания реле замыкания на землю.

Перейти к индексу ↑ | Перейти к заземлению через полное сопротивление ↑


2. ЗАЗЕМЛЕНИЕ ЧЕРЕЗ РЕАКТИВНОСТЬ
Заземление через схему реактивности

Нейтраль подключена к земле через реактор.

Замыкание на землю, которое может протекать, зависит от реактивного сопротивления нейтрали, уровень тока короткого замыкания часто используется в качестве критерия для описания степени заземления.

В этом методе ток замыкания на землю должен составлять не менее 60% от тока трехфазного замыкания , чтобы предотвратить серьезные переходные перенапряжения . Это значительно выше, чем желаемый уровень тока короткого замыкания в системе с резистором, и поэтому реактивное заземление обычно не рассматривается как альтернатива системе с резистором.

Эта система используется, когда трансформатор нейтрали системы недоступен. ( Система с треугольным соединением ) в этом случае реактор используется в качестве заземления трансформатора для получения нейтрали.

Перейти к индексу ↑ | Перейти к заземлению через импеданс ↑


3. ЗАЗЕМЛЕНИЕ ЧЕРЕЗ КАТУШКУ ДЛЯ ПОДАВЛЕНИЯ ДУГИ (катушка Петерсена)
Схема заземления через дуговую катушку

Заземляющий реактор, подключенный между нейтралью системы и землей и имеющий специально подобранный, относительно высокий значение реактивного сопротивления так, чтобы реактивный ток на землю в условиях короткого замыкания уравновешивал емкостной ток на землю, протекающий по линиям, так что ток замыкания на землю ограничивается практически нулем

Если замыкание на землю происходит в воздухе, например пламя изолятора, возможно самозатухание. Этот метод заземления используется в основном в системах 110 кВ , состоящих в основном из воздушных линий передачи или распределения.

Так как системы такой конструкции редко используются в промышленных или коммерческих энергосистемах .

Перейти к индексу ↑ | Перейти к заземлению через полное сопротивление ↑


Сравнительная таблица

Методы заземления нейтрали

X0 : Реактивное сопротивление нулевой последовательности системы
X1 : Реактивное сопротивление положительной последовательности системы
R0 : По фазе нулевой последовательности сопротивление системы
XC0 : Распределенная по фазам емкостное сопротивление относительно земли системы
В : Напряжение линии на землю

Перейти к указателю ↑

Ссылка: Microelettrica Scientifica — M.S. Resistances

Заземленная система — обзор

1.

Мгновенная защита от замыканий на землю

Двигатели мощностью более 50 л.с., питаемые от заземленной системы, должны быть защищены от замыканий на землю, чтобы уменьшить повреждение и аварии. риск, особенно двигатели, не защищенные дифференциальной защитой.

Ротор также защищен от замыканий на землю.

2.

Дифференциальные защиты

Обычно они устанавливаются в машинах мощностью 1000 л.с. и выше.

Поперечная дифференциальная защита может использоваться от межвитковых замыканий, когда обмотки статора разделены на две или более цепи.

3.

Защита от перегрузки и опрокидывания

Тепловые реле используются для защиты от перегрузки, а также отдельное реле опрокидывания используется в условиях остановки двигателя.

4.

Мгновенная максимальная токовая защита с высокой уставкой

Может быть включена с тепловыми реле перегрузки.

5.

Защита от дисбаланса

Защита от небаланса или обратной последовательности фаз должна использоваться в качестве нагрева ротора из-за несимметричных токов, являющихся функцией составляющей обратной последовательности линейных токов.

Когда двигатель останавливается из-за потери одной фазы, нагрев концентрируется в одной части ротора, и блок мгновенной обратной последовательности может обеспечить полную защиту.

6.

Защита от восстановления питания

Синхронные машины должны быть защищены от этого состояния, потому что они могут не синхронизироваться с питанием после прерывания.Для этого состояния используется чувствительное реле пониженной частоты.

Асинхронные двигатели защищены от этого состояния расцепителем обесточивания на пускателе, поскольку напряжение на клеммах двигателя быстро падает при потере питания.

7.

Защита от обратного чередования фаз

Для обнаружения этого состояния можно использовать реле обратного чередования фаз и пониженного напряжения.

8.

Защита подшипников от отказов

Отказ подшипника может вызвать остановку двигателя.На неисправный подшипник указывают повышение температуры и вибрация, а также небольшое повышение тока двигателя. Датчик температуры, встроенный в подшипники, дает соответствующее предупреждение.

9.

Потеря синхронизма и обрыв поля в защите синхронного двигателя

Обработка нейтральной точки | Сеть с надежным заземлением

ELCOME Дорогие друзья техники защиты и управления. В предыдущем посте мы рассмотрели электрические сети с изолированным заземлением нейтрали, сегодня мы рассмотрим глухозаземленную сеть.Удачи и поехали!

Сеть с глухим заземлением

Мы всегда говорим о сети с глухим заземлением, если точка нейтрали одного или нескольких генераторов, трансформаторов или заземляющих трансформаторов эффективно заземлена, а заземление выполняется практически без сопротивления. Слово «прочно» здесь означает, что сопротивление заземления практически равно нулю. Строго говоря, глухозаземленная сеть, таким образом, представляет собой особую форму эффективно заземленной или активной сети, которая также включает в себя заземление нейтрали с низким импедансом и характеризуется коэффициентом заземления менее 1.4.

Сеть с глухим заземлением

Еще раз запомните

Коэффициент заземления — это отношение нарастания значений фазных напряжений на землю исправных фаз в случае замыкания на землю к фазе на землю. напряжение в безупречном состоянии. В изолированной сети мы показали, что напряжение в исправной фазе стационарно повышается в 1,73 раза по сравнению со значением до замыкания на землю.

Коэффициент заземления изолированной сети

Мы определили магический предел коэффициента заземления равным 1.4 и сказал: Если коэффициент заземления больше 1,4, мы говорим о сети, которая не заземлена activ. С другой стороны, в нашей надежно заземленной сети и во всех надежно заземленных сетях коэффициент заземления 1,4 не превышается ни в какой точке.

Сети и коэффициент заземления

Теперь, когда происходит однополюсное замыкание на землю, мы говорим о коротком замыкании, причем не напряжение, а ток буквально проходит через крышу. Благодаря проводящему соединению между нейтралью и землей цепь может эффективно замыкаться.

Жестко заземленная сеть с коротким замыканием на землю

Таким образом, величина входящего тока короткого замыкания в решающей степени зависит от положительного и нулевого импеданса сети. Это, в свою очередь, формируется всеми компонентами, находящимися в зоне короткого замыкания, такими как генераторы, трансформаторы, линии, а также импедансом звезды, который практически равен нулю в нашей нынешней системе с глухим заземлением.

Короткое замыкание в компонентной сети

Еще одним решающим фактором для уровня ожидаемого тока короткого замыкания является сопротивление в месте повреждения, которое мы также традиционно называем:

Устойчивость к повреждению.

Таким образом, наш однополюсный ток короткого замыкания на землю рассчитывается следующим образом:

Формула для однополюсных коротких замыканий на землю в глухозаземленных сетях

Положительный импеданс в сумме удваивается, поскольку положительный и отрицательный импеданс одинаковы размер и Z2 был упрощен заменен.

Другие важные особенности

Системы с глухим заземлением имеют большое преимущество, заключающееся в значительном уменьшении переходных колебаний и быстром и автоматическом отключении замыкания на землю.Это приводит к более низкому напряжению изоляции, чем в компенсированных или изолированных сетях. Прежде всего, высокие требования к изоляции по напряжению в области максимального напряжения означают, что надежное заземление является первым выбором наших операторов систем передачи и что сети 220 кВ и 380 кВ предпочтительно имеют надежное заземление.

Особенности системы с глухозаземленной нейтралью

Однако, поскольку токи короткого замыкания в сети с глухим заземлением могут достигать нескольких 1000 ампер, также возникают более высокие контактные напряжения, чем в сетях с изолированной нейтралью или с компенсацией замыкания на землю.С другой стороны, очень короткое время выключения, которое эффективно ограничивает риск косвенного ущерба для здоровья из-за более протекающих токов короткого замыкания на землю, является преимуществом.

Конечно, поскольку каждое короткое замыкание на землю приводит к отключению затронутого компонента, всегда логическим следствием является прерывание питания. Из-за тока короткого замыкания в сети среднего и низкого напряжения возникает дополнительное падение напряжения, которое продолжается даже в исправных розетках до тех пор, пока неисправный отходящий фидер не будет отключен защитным устройством.

В нашем двуполярном мире, как всегда, есть свои преимущества и недостатки.
Особенности системы с глухим заземлением

В следующем посте мы остановимся на эффективно заземленных сетях и подробно рассмотрим особенности систем с заземлением с низким сопротивлением.

В следующий раз: заземление с низким сопротивлением

С уважением

Электрическое заземление с использованием изолированного (или незаземленного) метода

Заземление системы является основным элементом любой электрической системы.Правильно подобранное заземление системы улучшает рабочие характеристики, обеспечивает источник реле тока замыкания на землю и повышает безопасность персонала.

Эта статья является частью серии, в которой обсуждаются различные методы заземления системы, подчеркиваются их преимущества, недостатки и области применения. Обладая этой информацией, человек может качественно оценить систему заземления, оценить, правильно ли она выбрана и применена, и при необходимости посоветовать улучшения.Формы заземления, обсуждаемые в этой статье, относятся к системам переменного тока.

Инженеры

Power System сделали значительные шаги в управлении частотой отказов, чтобы улучшить непрерывность обслуживания, быстро обнаруживая и выделяя области неисправности или неисправности. В этом процессе они анализируют поведение энергосистем в нормальных и неисправных (как сбалансированных, так и несбалансированных) условиях.

Самые ранние энергосистемы не были заземлены по двум ключевым причинам: для обеспечения непрерывности работы в случае временного заземления и для сокращения затрат на заземляющее оборудование и проводники.Однако инженеры продолжали сталкиваться с множеством трудностей, связанных с неисправностями. Статистика неисправностей показала, что большинство из них связано с землей, поэтому они разработали способы подключения к ней частей, находящихся под напряжением. Эта практика позволяет более высокому току короткого замыкания возвращаться к источнику и позволяет защитным устройствам улавливать его и срабатывать.

Что такое заземление системы?

Системное заземление соединяет токоведущий компонент электрической системы с землей: нейтрали трансформаторов, нейтрали вращающегося оборудования, линии передачи и распределения.Доступен выбор методов, которые при осмотрительном применении позволяют добиться значительных улучшений даже в сложных обстоятельствах. Среди наиболее известных методов — незаземление, нейтрализатор замыкания на землю, заземление по сопротивлению, заземление по реактивному сопротивлению и твердое или эффективное заземление. Все эти термины относятся к природе внешней цепи от нейтрали системы до земли.

От одного полюса к другому существует несколько степеней заземления, которые зависят от отношения реактивного сопротивления нулевой последовательности к субпереходному реактивному сопротивлению прямой последовательности (Xₒ / X1) и отношения сопротивления нулевой последовательности к субпереходному реактивному сопротивлению прямой последовательности ( Rₒ / X1), если смотреть с места повреждения.Согласно стандартам ANSI, когда Xₒ / X1≤3.0 и Rₒ / X1≤1, система эффективно заземлена, что означает отсутствие импеданса между нейтралью системы и землей, и мы обозначаем это как твердое заземление.

Мнения и темы, связанные с заземлением системы, демонстрируют разнообразие, которое варьируется от догматических убеждений до непредубежденного рассмотрения альтернатив, от удовлетворения пациента до желания совершенства. Выбор метода зависит от применимых требований норм, напряжений, технических характеристик установки, а также опыта и личных предпочтений инженера.

Обзор метода симметричных компонент

Хотя тщательный анализ метода симметричных компонентов выходит за рамки данной статьи, быстрое повторение полезно для изучения несбалансированных состояний.

Когда нет симметрии в трех фазах энергосистемы — в результате несимметричных нагрузок, несбалансированных неисправностей или коротких замыканий — полезно использовать метод симметричных компонентов в расчетах характеристик.Этот метод позволяет преобразовать несимметричную систему в три уравновешенные системы, сначала получив симметричные составляющие тока в месте повреждения. Анализируя их как однофазные, он позволяет точно прогнозировать значения тока и напряжения во всей системе.

Первая статья, показывающая возможности разделения несбалансированной системы токов на составляющие прямой и обратной последовательности, как они теперь известны, была опубликована L.G. Стоквис в 1912 году.Эти компоненты были побочным продуктом попытки Stokvis найти метод определения величины напряжения третьей гармоники, создаваемого несимметричными линиями между фазой и нагрузкой.

В 1913 г. Fortescue начал поиск способа преобразовать несбалансированную систему из n связанных векторов в n систем сбалансированных векторов, называемых симметричными компонентами исходных векторов. Он назвал общую структуру термином «Симметричные координаты». N векторов каждого набора компонентов имеют одинаковую длину, а соседние векторы имеют равные углы между собой.Его выводы были представлены в статье AIEE под названием «Метод симметричных координат, применяемый к решению многофазных сетей в 1918 году». В этой работе была представлена ​​концепция напряжений и токов нулевой последовательности.

Другие разработанные системы — это система положительно-отрицательной, положительно-отрицательной отрицательной и нулевой последовательности, а также компоненты α, β, 0.

Оценка этого метода

Метод, оцениваемый в этой статье, будет состоять из симметричных компонентов из-за его широкого распространения.Компоненты последовательности, полученные в результате преобразования, представляют собой положительную последовательность, отрицательную последовательность и нулевую последовательность. В каждом наборе будет три количества, по одному на фазу.

С исходными векторами, обозначенными как a, b и c, три вектора прямой последовательности равны по величине и смещены на 120 ° с фазовой последовательностью в качестве исходных векторов (abc). Векторы обратной последовательности имеют те же характеристики, но последовательность фаз противоположна последовательности фаз исходных векторов (acb). Синфазные векторы нулевой последовательности равны по величине.Три набора векторов вращаются с одинаковой угловой скоростью, обычно против часовой стрелки.

Нижний индекс для компонентов прямой последовательности равен 1, для отрицательной последовательности равен 2, а для нулевой последовательности равен 0. Следовательно, вектор напряжения прямой последовательности фазы a будет равен Va1, а отрицательной последовательности — Va2, и нулевой последовательности Va0, как показано на рисунке 1.

Рисунок 1. Симметричные компоненты трех несимметричных векторов

Добавление компонентов положительной, отрицательной и нулевой последовательности приводит к исходным несбалансированным векторам, показанным на рисунке 2.

Рис. 2. Добавление симметричных компонентов

Ток любой одной последовательности протекает в независимой цепи, известной как цепь последовательности, которая включает в себя источник, если таковой имеется, и полное сопротивление последовательности.

Падение напряжения в цепи последовательности равно импедансу последовательности, умноженному на ток последовательности. Импедансы прямой (Z1), обратной (Z2) и нулевой (Z0) последовательности могут иметь разные значения, как показано на рисунке 3.

Рисунок 3. Сети последовательностей

Импеданс — это комплексное число, состоящее из отношения двух векторов: напряжения и тока (Z = V / I). Он имеет реальную составляющую, сопротивление (R), и мнимую составляющую, реактивное сопротивление (X). Тогда полное сопротивление последовательной цепи равно

Z = R + jX

для индуктивного реактивного сопротивления или

Z = R-jX

для емкостного реактивного сопротивления.

Полные сопротивления последовательности, выраженные в сопротивлении и реактивном сопротивлении, равны

.

Z1 = R1 + jX1

Z2 = R2 + jX2

Z0 = R0 + jX0

Взаимосвязь цепей последовательности зависит от исследуемой неисправности.

Изолированные или незаземленные системы

Это естественный факт, что все энергосистемы так или иначе заземлены. С точки зрения электрической системы, изолированный или незаземленный означает отсутствие намерения заземления. Однако проводники всего электрического оборудования имеют распределенную естественную емкость между ними и землей. Также существуют конденсаторы, используемые для коррекции коэффициента мощности и поддержки напряжения, но мы не рассматриваем их. Незаземленная система — это система, заземленная через емкость.

Эта естественная емкость является результатом перемещения электрических зарядов между проводниками под напряжением через диэлектрическую среду, включая землю. В воздушных линиях диэлектрической средой является окружающий воздух, а в кабелях — изоляция. В нормальных условиях в линиях протекает симметричный набор трехфазных емкостных токов, независимо от подключенной нагрузки: зарядный ток , .Рисунки 4 и 5 иллюстрируют эти концепции.

Рисунок 4. Распределенная естественная емкость относительно земли и емкостные (зарядные) токи
Рисунок 5. Напряжения и емкостные (зарядные) токи при нормальных условиях

Обычно в воздушных линиях зарядный ток меньше, чем в кабелях, из-за большей емкости последних.

При замыкании линии на землю ток короткого замыкания (обозначенный на схеме ниже как If) возвращается к источнику через распределенные собственные емкости. Этот ток небольшой по величине и недостаточен для срабатывания защитных устройств, оставляя систему в работе. Это свойство означает меньшее количество перебоев в работе линий передачи и распределения, бесперебойное обслуживание заводов и критически важных систем.

Рис. 6. Одиночное замыкание линии на землю в фазе a.

Представьте себе распределительную линию по пересеченной местности с волнообразным движением вблизи ветвей деревьев в ветреный день. Если одна из ветвей контактирует с линейным проводом, это замыкание на землю. Как указывалось ранее, низкий ток короткого замыкания будет искать источник через распределенные естественные емкости системы, и никакое защитное устройство не улавливает его. Скорее всего, неисправность будет кратковременной, и линия продолжит работу.

Теперь представьте себе завод с высокими простоями.Грызуны получают доступ к изоляции кабеля, съедают ее и вызывают замыкание на землю. Энергосистема не остановится (грызуны!). Устраните неисправность, когда оборудование не используется — нет необходимости в простоях или остановках производства.

Эти два примера показывают, почему многие инженеры считают незаземленные системы преимуществом. Но в реальной жизни работа не всегда так проста, и есть некоторые недостатки, как мы увидим в следующих параграфах.

Недостатки незаземленных систем

Опыт показывает, что по мере роста длины и напряжения систем передачи и распределения большая часть кратковременных заземлений — кратковременные заземления и молнии — больше не самоочищаются.Это происходит потому, что увеличение емкости увеличивает ток короткого замыкания до значительных значений.

Перед замыканием на землю нейтраль незаземленной системы остается близкой к потенциалу земли, заблокированная там сбалансированной емкостью трех фаз. Повреждение вызывает сдвиг потенциала нейтрали, и линейное напряжение появляется во всей системе между землей и двумя неповрежденными линиями — увеличение на 73% — до тех пор, пока неисправность не будет устранена. Пример этого можно увидеть ниже на рисунке 7.

Рисунок 7. Смещение нейтрального напряжения при замыкании на землю

Если координация изоляции недостаточна и неисправность может сохраняться в течение длительного времени, изоляция может значительно сократить срок ее службы или полностью выйти из строя. Это вызовет отказы вращающегося оборудования, трансформаторов, кабелей и прочего электрического оборудования, нарушая тем самым нормальную работу. Национальный электротехнический кодекс (NEC) требует использования детекторов заземления для индикации возникновения неисправности, а квалифицированный обслуживающий персонал должен как можно скорее отследить и удалить заземление.

С экономической точки зрения, более высокий уровень изоляции означает более высокие затраты. Например, кабели доступны с тремя уровнями изоляции: 100% для устранения неисправности менее одной минуты, 133% для менее чем одного часа и 173% для неопределенного времени. Чем выше процент, тем выше ценник.

Еще одно неудобство заключается в том, что для поиска неисправностей, обнаруженных наземными детекторами, требуются время и деньги. Если второе замыкание на землю совпадает в другой фазе (что очень часто), это приводит к высокому току короткого замыкания.Этот ток вызовет срабатывание одного или двух защитных устройств, приведет к значительному повреждению оборудования и создаст опасность поражения электрическим током для персонала.

На рисунке 5 показана векторная диаграмма напряжения источника и емкостных токов в нормальных условиях, а на рисунке 8 показана векторная диаграмма напряжений и емкостных токов при одиночном замыкании на землю в фазе a. Обратите внимание на влияние линейных напряжений, управляющих емкостями неповрежденных линий: напряжение относительно земли и зарядные токи увеличиваются на √3, а фазовое соотношение токов изменяется от 120 ° до 60 °.

Рис. 8. Напряжения и емкостные токи при одиночном замыкании на землю в фазе А

Другие проблемы незаземленных систем обнаруживаются в переходных перенапряжениях от дуговых замыканий на землю и феррорезонансных эффектов .

Дуга-земля — ​​это форма последовательного отключения и повторного зажигания, которая может создавать перенапряжения, превышающие стандартное напряжение более чем в пять раз.Ток короткого замыкания, хотя и небольшой, может быть достаточным для поддержания этой дуги. Феррорезонанс — это нелинейное явление, вызванное резонансом емкости системы с возбуждающим реактивным сопротивлением трансформаторов, что создает очень большую амплитуду и искаженные формы сигналов. Эти два события являются существенными факторами, препятствующими практике эксплуатации энергосистем без заземления.

Исследование поведения системы методом симметричных компонент

Давайте рассмотрим поведение системы с трансформатором, подключенным по схеме треугольник-треугольник, во время замыкания на землю с помощью метода симметричных компонентов.Сначала мы последовательно соединяем три последовательные сети (рисунок 9).

Рисунок 9. Последовательные сети при замыкании на землю

Во-вторых, обратите внимание, что значения распределенных емкостных сопротивлений X 1 c, X 2 c и X 0 c велики по сравнению со значениями последовательного импеданса Z 1 с, Z 2 с , ZTx, Z 1 линия, Z 2 линия и Zₒline.Для грубого расчета предположим, что Z 1 s и ZTx закорачивают X 1 c в сети прямой последовательности и что Z 2 s и ZTx коротко замыкают X 2 c в сети обратной последовательности. . Кроме того, сумма импедансов источника, трансформатора и линии приближается к нулю относительно X 0 c. Следовательно, ключевым компонентом для расчета тока повреждения является емкостное реактивное сопротивление нулевой последовательности X 0 c.

Тогда напряжение источника Vs = V (фаза-нейтраль)

I1 = I2 = Iₒ = V ւո / Xₒc.

Ток повреждения If = Ia = 3Iₒ = 3V ւո / Xₒc = √3V ււ / Xₒc, где V ււ = √3V ւո = линейное напряжение источника.

Получите токи в фазах b и c, используя векторную диаграмму на Рисунке 8.

Пусть Ia = -1 на единицу, тогда Ib = 0,577 Ia∠ + 30 ° pu и Ic = 0,577 Ia I-30 ° pu.

Обратите внимание, что Iₒ = зарядный ток, а абсолютное значение Ia = √3Ib = √3Ic = 3x зарядный ток.

Для расчета зарядного тока и тока короткого замыкания на этапе проектирования обычно используют типичные зарядные емкости (Cₒ) из таблиц для всех компонентов энергосистемы и складывают их, чтобы найти общую зарядную емкость в микрофарадах (мкФ) на фазу.Тогда Xₒc = 1 / 2πꬵ Cₒ = 1 / 120πCₒ Ω / фаза для частоты 60 Гц.

В установленных низковольтных системах лучший способ определить величину зарядного тока — это испытание путем намеренного заземления одной фазы с помощью специального устройства. Однако соблюдайте осторожность, поскольку это рискованная операция.

Пример 1

Рассчитайте зарядный ток и ток короткого замыкания на землю для незаземленной энергосистемы 13,8 кВ, общая зарядная емкость которой была оценена по таблицам в 0.658 мкФ на фазу.

Сначала рассчитайте емкостное реактивное сопротивление нулевой последовательности = Xₒc = 10⁶ / (120×3,14×0,658) = 4031 Ом / фаза.

Тогда зарядный ток = Iₒ = V ւո / Xₒc = 13,8 кВ / (√3×4,031) = 1,98 А / фаза.

Наконец, ток повреждения Если = 3Iₒ = 3×1,98 = 5,94 A

Пример 2

В незаземленной энергосистеме 69 кВ происходит замыкание одной линии на землю в фазе a. Зарядный ток на фазу — 19.7А. Рассчитайте емкостное реактивное сопротивление нулевой последовательности, ток повреждения и токи в фазах b и c, пока повреждение активно.

Во-первых, из Iₒ = V / Xₒc, емкостное реактивное сопротивление Xₒc = V ւո / Iₒ = 69 кВ / √3×19,7 = 2,022 Ом / фаза.

Тогда ток короткого замыкания Если = Ia = 3Iₒ = 3×19,7 = 59,1 A.

Наконец, из рисунка 8, Ib = 0,577 мкм + 30 ° = 0,577×59,1∠ + 30 ° = 34,1∠ + 30 ° A.

Ic = 0.577Ia∠-30 ° = 0,577×59,1∠-30 ° = 34,1∠-30 ° A.

Значения, используемые в этих примерах, взяты из реальных энергосистем. Типичные зарядные токи для распределительных систем на промышленных предприятиях составляют от менее 1 А до 20 А. Системы распределения электроэнергии будут иметь более высокие значения из-за большей длины проводника.

Благоприятные характеристики и недостатки

Основное преимущество незаземленной системы на промышленных предприятиях заключается в возможности поддерживать обслуживание всей сети, включая неисправный участок, при устранении неисправности во время профилактического отключения, тем самым сокращая время простоя.В линиях передачи и распределения обслуживание не прерывается во время временных неисправностей, таких как молния или случайный контакт с растительностью или животными.

С этим преимуществом следует уравновесить недостатки, такие как сложность автоматической ретрансляции неисправности, сложность ее локализации, длительное перенапряжение изоляции неповрежденных фаз, опасность наличия нескольких заземлений в разных фазах, переходные перенапряжения из-за к заземлению дуги, эффектам феррорезонанса и повышенной стоимости изоляции всех электрических компонентов.

Области применения

Выбор метода заземления зависит от режима энергосистемы и допустимой степени отключения электроэнергии. Системы питания на большинстве старых заводов были незаземленными, трехфазными, трехпроводными, треугольником, и многие из них используются до сих пор. Они основывали свой выбор на трех факторах: непрерывность работы, меньшее использование меди (требуется меньше проводов) и отсутствие необходимости в заземляющем оборудовании. Однако у него высокая дополнительная стоимость утеплителя.

В настоящее время общая рекомендация в промышленных системах — не использовать незаземленный метод, за исключением случаев, когда требуется непрерывность обслуживания или определенные требования кодекса. Он также не рекомендуется для систем передачи и распределения в коммунальных службах.

Сводка

Заземление системы — решающий фактор для правильной работы любой энергосистемы. Он заключается в соединении токоведущих проводов, таких как нейтрали, на землю либо жестко, либо с помощью устройства ограничения тока.

Все электрические компоненты имеют распределенную естественную емкость относительно земли. Когда подается переменное напряжение, небольшой ток (зарядный ток) течет на землю через емкость.

Подключение изолированных или незаземленных систем к земле осуществляется через распределенную естественную емкость. Когда происходит замыкание на землю, заземление замыкает емкость этой фазы, и напряжение на землю и зарядные токи незаземленных фаз увеличиваются на √3.

Эту систему следует рассматривать только тогда, когда последствия внезапного отключения более серьезны, чем последствия небольшого тока замыкания на землю, протекающего в течение некоторого времени. Однако недостатки в использовании незаземленных систем противоречат его практике, наиболее существенными недостатками являются перенапряжения дуги на землю и феррорезонансные условия. Th

Типы заземления нейтрали в распределительных сетях

Типы заземления нейтрали в распределительных сетях:

Введение:
  • В ранних системах питания нейтраль в основном была незаземленной из-за того, что первое замыкание на землю не требовало отключения системы.Незапланированный останов при первом замыкании на землю был особенно нежелателен для производств с непрерывным производством. Для этих энергосистем требовались системы обнаружения заземления, но часто было сложно определить место неисправности. Несмотря на достижение первоначальной цели, незаземленная система не обеспечивала контроль переходных перенапряжений.
  • В типичной распределительной системе между проводниками системы и землей существует емкостная связь. В результате эта последовательная резонансная цепь L-C может создавать перенапряжения, значительно превышающие линейное напряжение, когда подвергается повторяющимся повторным ударам одной фазы на землю.Это, в свою очередь, сокращает срок службы изоляции, что может привести к отказу оборудования.
  • Системы заземления нейтрали похожи на предохранители тем, что они ничего не делают, пока что-то в системе не выйдет из строя. Затем они, как предохранители, защищают персонал и оборудование от повреждений. Повреждение возникает из-за двух факторов: как долго длится короткое замыкание и насколько велик ток замыкания. Реле заземления отключают выключатели и ограничивают продолжительность короткого замыкания, а резисторы заземления нейтрали ограничивают величину тока замыкания.

Важность заземления нейтрали:
  • Существует множество вариантов заземления нейтрали для энергосистем низкого и среднего напряжения.Нейтральные точки трансформаторов, генераторов и вращающегося оборудования относительно сети заземления обеспечивают опорную точку нулевого вольт. Эта защитная мера имеет много преимуществ по сравнению с незаземленной системой, например,
  • .
  1. Пониженная величина переходных перенапряжений
  2. Упрощенное определение места замыкания на землю
  3. Улучшенная защита системы и оборудования от неисправностей
  4. Сокращение времени и затрат на техническое обслуживание
  5. Повышенная безопасность персонала
  6. Улучшенная молниезащита
  7. Снижение частоты неисправностей.

Метод заземления нейтрали:
  • Существует пять методов заземления нейтрали.
  1. Незаземленная нейтральная система
  2. Система с твердым заземлением нейтрали.
  3. Система резистивного заземления нейтрали. Резонансная система заземления нейтрали.
    1. Заземление с низким сопротивлением.
    2. Заземление с высоким сопротивлением.
  4. Система резонансного заземления.
  5. Заземление Заземление трансформатора.

(1) Незаземленные нейтральные системы:
  • В незаземленной системе нет внутренней связи между проводниками и землей.Однако в системе существует емкостная связь между проводниками системы и соседними заземленными поверхностями. Следовательно, «незаземленная система» в действительности является «емкостной заземленной системой» в силу распределенной емкости.
  • В нормальных условиях эксплуатации эта распределенная емкость не вызывает проблем. Фактически, это выгодно, потому что фактически устанавливает нейтральную точку для системы; В результате фазные проводники подвергаются напряжению только между фазой и нейтралью над землей.
  • Но проблемы могут возникнуть в условиях замыкания на землю. Замыкание на землю в одной линии приводит к появлению полного линейного напряжения во всей системе. Таким образом, на всей изоляции системы присутствует напряжение в 1,73 раза превышающее нормальное. Эта ситуация часто может вызывать отказы старых двигателей и трансформаторов из-за пробоя изоляции.

  1. После первого замыкания на землю, если предположить, что оно остается единичным, схема может продолжать работу, позволяя продолжать производство до тех пор, пока не будет запланировано удобное отключение для обслуживания.
  1. Взаимодействие между неисправной системой и ее распределенной емкостью может вызвать переходные перенапряжения (в несколько раз нормальные), возникающие при переходе от линии к земле во время нормального переключения цепи, имеющей короткое замыкание на землю (короткое замыкание). Эти перенапряжения могут вызвать нарушения изоляции в точках, отличных от первоначального повреждения.
  2. Вторая ошибка на другой фазе может произойти до того, как первая ошибка будет устранена. Это может привести к очень высоким токам замыкания между фазами, повреждению оборудования и разрыву обеих цепей.
  3. Стоимость повреждения оборудования.
  4. Complicate для поиска неисправностей, включая утомительный процесс проб и ошибок: сначала изолировать правильный фидер, затем ответвление и, наконец, неисправное оборудование. Результат — излишне длительные и дорогостоящие простои.

(2) Системы с глухозаземленной нейтралью:
  • Системы с глухим заземлением обычно используются в системах с низким напряжением 600 вольт или меньше.
  • В системе с глухим заземлением нейтраль соединена с землей.
  • Solidly Neutral Grounding немного снижает проблему переходных перенапряжений, обнаруживаемых в незаземленной системе, а предусмотренный путь для тока замыкания на землю находится в диапазоне от 25 до 100% от тока трехфазного замыкания системы. Однако, если реактивное сопротивление генератора или трансформатора слишком велико, проблема переходных перенапряжений не будет решена.
  • Хотя системы с глухим заземлением являются улучшением по сравнению с незаземленными системами и ускоряют обнаружение неисправностей, им не хватает способности ограничения тока резистивного заземления и дополнительной защиты, которую оно обеспечивает.
  • Для поддержания работоспособности и безопасности системы нейтраль трансформатора должна быть заземлена, и заземляющий провод должен проходить от источника до самой дальней точки системы в пределах той же кабелепровода или кабелепровода. Его цель состоит в том, чтобы поддерживать очень низкий импеданс к замыканиям на землю, чтобы протекать относительно высокий ток короткого замыкания, таким образом гарантируя, что автоматические выключатели или предохранители быстро устранят повреждение и, следовательно, минимизируют повреждения. Это также значительно снижает опасность поражения персонала электрическим током.
  • Если система не имеет прочного заземления, нейтральная точка системы будет «плавать» по отношению к земле в зависимости от нагрузки, подвергая нагрузки между фазой и нейтралью несимметриями напряжения и нестабильностью.
  • Ток однофазного замыкания на землю в системе с глухим заземлением может превышать ток трехфазного замыкания. Величина тока зависит от места повреждения и сопротивления замыкания. Один из способов уменьшить ток замыкания на землю — оставить некоторые нейтрали трансформатора незаземленными.
  • Преимущество:
  1. Основным преимуществом систем с глухим заземлением является низкое перенапряжение, что делает конструкцию заземления обычной при высоких уровнях напряжения (ВН).
  1. Эта система включает в себя все недостатки и опасности высокого тока замыкания на землю: максимальное повреждение и помехи.
  2. Непрерывное обслуживание неисправного фидера.
  3. Опасность для персонала во время неисправности высока, так как создаваемое напряжение прикосновения велико.
  1. Распределенный нейтральный провод.
  2. 3 фазы + нейтраль.
  3. Использование нейтрального проводника в качестве защитного проводника с систематическим заземлением на каждом полюсе передачи.
  4. Используется при низкой мощности короткого замыкания источника.

(3) Системы с заземлением через сопротивление:
  • Резистивное заземление уже много лет используется в трехфазных промышленных системах и решает многие проблемы, связанные с глухозаземленными и незаземленными системами.
  • Resistance Grounding Systems ограничивает токи междуфазных замыканий на землю. Причины ограничения тока замыкания между фазой и землей путем заземления сопротивления:
  1. Для уменьшения эффектов горения и плавления в неисправном электрическом оборудовании, таком как распределительное устройство, трансформаторы, кабели и вращающиеся машины.
  2. Для уменьшения механических напряжений в цепях / оборудовании, несущем токи короткого замыкания.
  3. Для снижения опасности поражения персонала электрическим током из-за случайного замыкания на землю.
  4. Для уменьшения опасности возникновения дуги или вспышки.
  5. Для уменьшения кратковременного провала сетевого напряжения.
  6. Для одновременного контроля переходных перенапряжений.
  7. Для улучшения обнаружения замыкания на землю в энергосистеме.
  • Заземляющие резисторы обычно подключаются между землей и нейтралью трансформаторов, генераторов и заземляющих трансформаторов , чтобы ограничить максимальный ток короткого замыкания в соответствии с Законом об Омах до значения, которое не повредит оборудование в энергосистеме и обеспечит достаточный поток ток короткого замыкания для обнаружения и срабатывания реле защиты от земли для устранения замыкания.Хотя можно ограничить токи короткого замыкания с помощью резисторов заземления нейтрали с высоким сопротивлением, токи короткого замыкания на землю можно значительно снизить. В результате этого устройства защиты могут не распознавать неисправность.
  • Таким образом, это наиболее распространенное приложение для ограничения однофазных токов короткого замыкания с помощью резисторов заземления нейтрали с низким сопротивлением приблизительно до номинального тока трансформатора и / или генератора.
  • Кроме того, ограничение токов повреждения до заранее определенных максимальных значений позволяет проектировщику выборочно координировать работу защитных устройств, что сводит к минимуму нарушение работы системы и позволяет быстро локализовать место повреждения.
  • Существует две категории резистивного заземления:

(1) Заземление с низким сопротивлением.

(2) Заземление с высоким сопротивлением.

  • Ток замыкания на землю, протекающий через резистор любого типа при замыкании одной фазы на землю, увеличивает межфазное напряжение двух оставшихся фаз. В результате, номинальные характеристики изоляции проводов и ограничителя перенапряжения должны основываться на межфазном напряжении . Это временное увеличение напряжения между фазой и землей также следует учитывать при выборе двух- и трехполюсных выключателей, установленных в заземленных через сопротивление низковольтных системах.
  • Повышение напряжения между фазой и землей, связанное с токами замыкания на землю, также препятствует подключению нагрузок между фазой и нейтралью непосредственно к системе. Если присутствуют нагрузки между фазой и нейтралью (например, освещение 277 В), они должны обслуживаться системой с глухим заземлением. Это может быть достигнуто с помощью изолирующего трансформатора, который имеет трехфазную первичную обмотку треугольником и трехфазную четырехпроводную вторичную обмотку звезды
  • Ни одна из этих систем заземления (с низким или высоким сопротивлением) не снижает опасность возникновения дугового разряда, связанного с межфазными замыканиями, но обе системы значительно снижают или практически устраняют опасность возникновения дугового разряда, связанного с замыканиями на землю.Оба типа систем заземления ограничивают механические нагрузки и уменьшают тепловые повреждения электрического оборудования, цепей и аппаратов, по которым проходит ток короткого замыкания.
  • Разница между заземлением с низким сопротивлением и заземлением с высоким сопротивлением зависит от восприятия и, следовательно, не имеет четкого определения. Вообще говоря, заземление с высоким сопротивлением относится к системе, в которой сквозной ток NGR составляет менее 50-100 А. Заземление с низким сопротивлением означает, что ток NGR будет выше 100 А.
  • Лучшее различие между двумя уровнями — только тревога и отключение. Система только для сигнализации продолжает работать с единичным замыканием на землю в системе в течение неопределенного времени. В системе отключения замыкание на землю автоматически устраняется с помощью реле защиты и устройств прерывания цепи. Системы только сигнализации обычно ограничивают ток NGR до 10 А или меньше.
  • Рейтинг резистора заземления нейтрали:
  1. 1. Напряжение: линейное напряжение системы, к которой он подключен.
  2. 2. Начальный ток: начальный ток, который будет протекать через резистор при приложенном номинальном напряжении.
  3. 3. Время: «Время включения», в течение которого резистор может работать без превышения допустимого повышения температуры.

(A). Низкое сопротивление, заземленное:
  • Заземление с низким сопротивлением используется для больших электрических систем, где требуются большие инвестиции в капитальное оборудование или длительный отказ оборудования имеет значительные экономические последствия, и обычно не используется в системах низкого напряжения, потому что ограниченный ток замыкания на землю слишком велик. низкий для надежной работы автоматических расцепителей или предохранителей.Это затрудняет достижение избирательности системы. Более того, системы с заземлением с низким сопротивлением не подходят для 4-проводных нагрузок и, следовательно, не используются на коммерческих рынках.
  • Резистор подключается от нейтральной точки системы к земле и, как правило, рассчитан на пропускание только 200A до 1200 ампер тока замыкания на землю. Должен протекать достаточный ток, чтобы защитные устройства могли обнаружить неисправную цепь и отключить ее, но не такой большой, чтобы вызвать серьезное повреждение в точке повреждения.

  • Поскольку полное сопротивление заземления представляет собой сопротивление, любые переходные перенапряжения быстро затухают, и все явления переходного перенапряжения больше не применяются. Хотя теоретически возможно применение в системах с низким напряжением (например, 480 В), значительная часть напряжения системы падает на заземляющий резистор, но на дуге недостаточно напряжения, заставляющего протекать ток, для надежного обнаружения неисправности. По этой причине низкоомное заземление не используется для низковольтных систем (ниже 1000 вольт между линиями).
  • Преимущества:
  1. Ограничивает токи между фазой и землей до 200-400 А.
  2. Снижает ток дуги и, в некоторой степени, ограничивает опасность возникновения дуги, связанную только с условиями дугового тока между фазой и землей.
  3. Может ограничить механическое повреждение и термическое повреждение закороченных обмоток трансформатора и вращающегося оборудования.
  1. Не препятствует работе сверхтоковых устройств.
  2. Не требует системы обнаружения замыкания на землю.
  3. Может использоваться в системах среднего и высокого напряжения.
  4. Изоляция проводов и ограничители перенапряжения должны быть рассчитаны на линейное напряжение. Нагрузки между фазой и нейтралью должны обслуживаться через разделительный трансформатор.
  • Используется: До 400 А в течение 10 секунд обычно используются в системах среднего напряжения.

(B) .Заземление с высоким сопротивлением:
  • Заземление с высоким сопротивлением почти идентично заземлению с низким сопротивлением, за исключением того, что величина тока замыкания на землю обычно ограничивается значением 10 ампер или менее .Заземление с высоким сопротивлением выполняет две задачи.
  • Во-первых, величина тока замыкания на землю достаточно мала, например , чтобы не было нанесено заметных повреждений в точке замыкания. Это означает, что неисправная цепь не должна отключаться в автономном режиме при первом возникновении неисправности. Означает, что если неисправность действительно возникает, мы не знаем, где она находится. В этом отношении он работает как незаземленная система.
  • Во-вторых, он может контролировать явление переходного перенапряжения , присутствующее в незаземленных системах, если оно спроектировано должным образом.
  • В условиях замыкания на землю сопротивление должно преобладать над зарядной емкостью системы, но не до такой степени, чтобы пропускать чрезмерный ток и тем самым исключать непрерывную работу
  • Системы заземления с высоким сопротивлением (HRG) ограничивают ток короткого замыкания, когда одна фаза системы замыкается или замыкается на землю, но на более низком уровне, чем системы с низким сопротивлением.
  • В случае замыкания на землю HRG обычно ограничивает ток до 5-10А.
  • HRG рассчитаны на длительный ток, поэтому описание конкретного устройства не включает временной рейтинг. В отличие от NGR, ток замыкания на землю, протекающий через HRG, обычно не имеет значительной величины, чтобы привести к срабатыванию устройства защиты от перегрузки по току. Поскольку ток замыкания на землю не прерывается, необходимо установить систему обнаружения замыкания на землю.
  • Эти системы включают байпасный контактор, подключенный к части резистора, которая пульсирует (периодически размыкается и замыкается).Когда контактор разомкнут, ток замыкания на землю протекает через весь резистор. Когда контактор замкнут, часть резистора обходится, что приводит к немного меньшему сопротивлению и немного большему току замыкания на землю.
  • Чтобы избежать переходных перенапряжений, резистор HRG должен быть такого размера, чтобы величина тока замыкания на землю , которую устройство допускает протекание, превышала зарядный ток электрической системы. Как показывает практика, зарядный ток оценивается в 1 А на 2000 кВА емкости системы для низковольтных систем и 2 А на 2000 кВА емкости системы на 4.16кВ.
  • Эти расчетные токи заряда увеличиваются при наличии ограничителей перенапряжения. Каждый набор ограничителей, установленных в системе низкого напряжения, дает примерно 0,5 А дополнительного зарядного тока, а каждый набор ограничителей, установленных в системе 4,16 кВ, добавляет 1,5 А дополнительного зарядного тока.
  • Система с мощностью 3000 кВА при 480 В будет иметь расчетный ток зарядки 1,5 А. Добавьте один комплект ограничителей перенапряжения, и общий ток зарядки увеличится на 0.От 5А до 2,0А. В этой системе можно использовать стандартный резистор на 5 А. Большинство производителей резисторов публикуют подробные оценочные таблицы, которые можно использовать для более точной оценки зарядного тока электрической системы.
  • Преимущества:
  1. Позволяет обнаруживать повреждения с высоким сопротивлением в системах со слабым емкостным подключением к земле
  2. Некоторые КЗ между фазой и землей устраняются автоматически.
  3. Можно выбрать сопротивление нейтральной точки, чтобы ограничить возможные переходные перенапряжения до 2.В 5 раз больше максимального напряжения основной частоты.
  4. Ограничивает межфазные токи до 5-10А.
  5. Снижает ток дуги и существенно устраняет опасность возникновения дуги, связанную только с условиями дугового тока между фазой и землей.
  6. Устранит механическое повреждение и может ограничить термическое повреждение закороченных обмоток трансформатора и вращающегося оборудования.
  7. Предотвращает работу устройств перегрузки по току, пока не будет обнаружена неисправность (когда только одна фаза замыкается на землю).
  8. Может использоваться в системах низкого или среднего напряжения до 5 кВ. Стандарт IEEE 141-1993 гласит, что «заземление с высоким сопротивлением должно быть ограничено системами класса 5 кВ или ниже с зарядными токами около 5,5 А или меньше и не должно применяться к системам 15 кВ, если не используется надлежащее реле заземления».
  9. Изоляция проводов и ограничители перенапряжения должны быть рассчитаны на линейное напряжение. Нагрузки между фазой и нейтралью должны обслуживаться через разделительный трансформатор.
  1. Создает сильные токи замыкания на землю в сочетании с сильным или умеренным емкостным подключением к земле.
  2. Требуется система обнаружения замыкания на землю, чтобы уведомить инженера объекта о возникновении замыкания на землю.

(4) Система с резонансным заземлением:
  • Добавление индуктивного реактивного сопротивления от нейтральной точки системы к земле — это простой метод ограничения доступного замыкания на землю от максимальной емкости трехфазного короткого замыкания (тысячи ампер) до относительно низкого значения (от 200 до 800 ампер).
  • Для ограничения реактивной части тока замыкания на землю в энергосистеме можно подключить реактор с нейтралью между нейтралью трансформатора и системой заземления станции.
  • Система, в которой хотя бы одна нейтраль подключена к земле через
  1. Индуктивное реактивное сопротивление.
  2. Катушка Петерсена / Дугогасящая катушка / Нейтрализатор замыкания на землю.
  • Ток, генерируемый реактивным сопротивлением во время замыкания на землю, приблизительно компенсирует емкостную составляющую однофазного тока замыкания на землю, называется системой с резонансным заземлением.
  • Система редко когда-либо точно настраивается, т. Е. Реактивный ток не в точности равен емкостному току замыкания на землю системы.
  • Система, в которой индуктивный ток немного больше, чем ток емкостного замыкания на землю, с избыточной компенсацией. Система, в которой индуцированный ток замыкания на землю немного меньше, чем ток емкостного замыкания на землю, не компенсируется
  • Однако опыт показал, что это индуктивное сопротивление относительно земли резонирует с шунтирующей емкостью системы относительно земли в условиях дугового замыкания на землю и создает в системе очень высокие переходные перенапряжения.
  • Для контроля переходных перенапряжений конструкция должна допускать протекание не менее 60% тока трехфазного короткого замыкания в условиях подземного замыкания.
  • Пример. Заземляющий реактор на 6000 А для системы, имеющей мощность трехфазного короткого замыкания 10000 А. Из-за большой величины тока замыкания на землю, необходимого для контроля переходных перенапряжений, индуктивное заземление редко используется в промышленности.
  • Катушки Петерсена:
  • Катушка Петерсена подключается между нейтральной точкой системы и землей и рассчитана таким образом, что емкостной ток при замыкании на землю компенсируется индуктивным током, проходящим через катушку Петерсена .Небольшой остаточный ток останется, но он настолько мал, что любая дуга между поврежденной фазой и землей не будет поддерживаться, а короткое замыкание погаснет. Незначительные замыкания на землю, такие как сломанный штыревой изолятор, могут сохраняться в системе без прерывания питания. Переходные сбои не приведут к перебоям в подаче электроэнергии.
  • Хотя стандартная «катушка Петерсона» не компенсирует весь ток замыкания на землю в сети из-за наличия резистивных потерь в линиях и катушке, теперь можно применить «компенсацию остаточного тока», подав дополнительные 180 ° наружу. фазного тока в нейтраль через катушку Петерсона.Таким образом, ток короткого замыкания снижается практически до нуля. Такие системы известны как «Резонансное заземление с компенсацией остатка» и могут рассматриваться как частный случай реактивного заземления.
  • Резонансное заземление может снизить EPR до безопасного уровня. Это связано с тем, что катушка Петерсена часто может эффективно действовать как высокоимпедансный NER, который существенно снижает любые токи замыкания на землю и, следовательно, также любые соответствующие опасности ЭПР (например, напряжения прикосновения, ступенчатые напряжения и передаваемые напряжения, включая любые опасности ЭПР, воздействующие на близлежащие участки). телекоммуникационные сети).
  • Преимущества:
  1. Малый реактивный ток замыкания на землю не зависит от емкости системы между фазой и землей.
  2. Обеспечивает обнаружение неисправностей с высоким импедансом.
  1. Риск обширных активных потерь при замыкании на землю.
  2. Связанные с высокими затратами.

(5) Трансформаторы заземления:
  • Для случаев, когда нет нейтральной точки для заземления нейтрали (например,грамм. для обмотки треугольником) может использоваться заземляющий трансформатор для обеспечения обратного пути для токов однофазного замыкания
  • В таких случаях полное сопротивление заземляющего трансформатора может быть достаточным, чтобы действовать как эффективное полное сопротивление заземления. При необходимости можно последовательно добавить дополнительный импеданс. Для заземления обмоток треугольником иногда используется специальный «зигзагообразный» трансформатор, чтобы обеспечить низкий импеданс нулевой последовательности и высокий импеданс прямой и обратной последовательности для токов короткого замыкания.

Заключение:
  • Системы резистивного заземления имеют много преимуществ перед системами с глухим заземлением, включая снижение опасности возникновения дуги, ограничение механических и тепловых повреждений, связанных с повреждениями, и контроль переходных перенапряжений.
  • Системы заземления с высоким сопротивлением также могут использоваться для поддержания непрерывности работы и помощи в обнаружении источника неисправности.
  • При проектировании системы с резисторами инженер-проектировщик / консультант должен учитывать особые требования к номинальным характеристикам изоляции проводов, номинальным характеристикам ограничителей перенапряжения, номинальным характеристикам однополюсного выключателя и способу обслуживания нагрузок между фазой и нейтралью.

Сравнение системы заземления нейтрали:
Состояние ООН с заземлением с твердым заземлением Заземленный с низким сопротивлением Заземление с высоким сопротивлением Реактивное заземление
Устойчивость к переходным перенапряжениям Хуже Хорошо Хорошо Лучшее Лучшее
Увеличение напряжения напряжения на 73% при замыкании линии на землю Плохо Лучшее Хорошо Плохо
Защищенное оборудование Хуже Плохо Лучше Лучшее Лучшее
Безопасность персонала Хуже Лучше Хорошо Лучшее Лучшее
Надежность обслуживания Хуже Хорошо Лучше Лучшее Лучшее
Стоимость обслуживания Хуже Хорошо Лучше Лучшее Лучшее
Простота обнаружения первого замыкания на землю Хуже Хорошо Лучше Лучшее Лучшее
Разрешает проектировщику координировать защитные устройства Невозможно Хорошо Лучше Лучшее Лучшее
Снижение частоты неисправностей Хуже Лучше Хорошо Лучшее Лучшее
Разрядник освещения Незаземленная нейтраль Тип заземления-нейтраль Незаземленная нейтраль Незаземленная нейтраль Незаземленная нейтраль
Ток при замыкании фазы на землю в процентах от тока трехфазного замыкания Менее 1% Варьируется, может быть 100% или больше от 5 до 20% Менее 1% от 5 до 25%

Артикул:

  • Майкл Д.Сил, П.Е., старший инженер по спецификациям GE.
  • Стандарт IEEE 141-1993, «Рекомендуемая практика распределения электроэнергии для промышленных предприятий»
  • Don Selkirk, P.Eng, Саскатун, Саскачеван, Канада

Нравится:

Нравится Загрузка …

Связанные

О Джигнеш Пармар (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар завершил M.Tech (управление энергосистемой), B.E (электричество). Он является членом Института инженеров (MIE) и CEng, Индия. Номер участника: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электрической энергии, технического обслуживания и электротехнических проектов (планирование-проектирование-технический обзор-координация-выполнение). В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Индустриал Электрикс» (австралийские энергетические публикации).Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки. Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновить свои знания по различным инженерным темам.

Электрическое заземление с использованием эффективных, твердотельных и низкоомных методов

Эффективное заземление обладает лучшими характеристиками для управления переходными перенапряжениями, простотой переключения и стоимостью, среди прочего.Однако этот метод создает самые высокие токи замыкания на землю с потенциально опасными последствиями. Метод с низким импедансом снижает уровни тока замыкания на землю до безопасных значений, сохраняя некоторые преимущества эффективного заземления. Эта схема требует вставки импеданса (реактора или резистора) в нейтраль энергосистемы.

В предыдущих статьях подчеркивалось назначение нейтрали системы заземления: ограничение перенапряжений на фазах звука, управление током замыкания на землю для уменьшения повреждений, повышение безопасности и обеспечение возможности защитных устройств обнаруживать и устранять неисправность.Компромисс необходим, так как эти свойства могут противоречить друг другу. Вот где пригодится эффективное заземление.

Сравнение надежного и эффективного заземления

Лучшим методом контроля перенапряжений является эффективное заземление.

Этот метод обеспечивает питание подключенных нагрузок между фазой и нейтралью без риска обнаружения опасных напряжений между нейтралью и землей при возникновении замыкания на землю. Кроме того, простые схемы заземления изолируют дефектные участки сети.

Однако эффективно заземленная система также имеет самые высокие значения токов замыкания на землю, которые могут быть в диапазоне от нуля до трехкратного значения трехфазного тока короткого замыкания.

Прежде чем двигаться дальше, необходимо пояснить разницу между надежным и эффективным заземлением.

Что такое надежное заземление?

Жесткое заземление означает, что между нейтралью и землей силовых трансформаторов, заземляющих трансформаторов или генераторов намеренно не установлено полное сопротивление.Но это не цепь нейтрали с нулевым сопротивлением, потому что электрические машины и системные атрибуты налагают реактивное сопротивление в цепи нулевой последовательности. Величина тока замыкания на землю зависит от постоянных и конфигурации энергосистемы, любого сопротивления замыкания и местоположения замыкания.

Что такое эффективное заземление?

Термин «твердое заземление» ограничен и превратился в высшую концепцию эффективного заземления, которая рассматривает электрические постоянные сети в том виде, в каком они видны при неисправности.

Разумный способ определить степень заземления энергосистемы — это отношение тока замыкания на землю к току трехфазного замыкания. Чем выше коэффициент, тем выше заземление, например, 25%, 60%, 100%.

Стандарты ANSI / IEEE заявляют, что система или ее часть эффективно заземлены, когда отношение реактивного сопротивления нулевой последовательности к реактивному сопротивлению прямой последовательности не превышает трех (Xₒ / X1 ≤ 3), а отношение сопротивление нулевой последовательности реактивному сопротивлению прямой последовательности не превышает единицы (Rₒ / X1 ≤ 1) для любых условий работы и любой величины подключенной мощности генератора.Это означает, что одна и та же энергосистема может быть эффективно заземлена в одной части, но не в других частях, в зависимости от соотношений сетевых постоянных, обнаруженных при неисправности.

Заземление с низким реактивным сопротивлением

Заземление с низким реактивным сопротивлением осуществляется путем подключения нейтрали к земле через реактор, что делает его отличным от твердотельного.

Степень заземления зависит от соотношений сетевых постоянных, упомянутых выше, а не от полного сопротивления нейтрали.Когда импеданс представляет собой реактор, система питания не будет заземлена по реактивному сопротивлению, если отношения констант показывают, что она эффективно заземлена.

Исходя из соотношений постоянных сетей, критерии для определения реактивного сопротивления заземленного:

Xₒ / X1> 3

при неисправности, но меньше значения, необходимого для резонансного заземления.

Вставка низкого реактивного сопротивления, такого что

Xₒ / X1 ≤ 3

неисправен, это не реактивное заземление.

При использовании глухозаземленного заземляющего трансформатора его реактивное сопротивление может быть таким, что

Xₒ / X1> 3

, и система считается заземленной по реактивному сопротивлению.

Неправильно подвергать обмотку генератора токам короткого замыкания, превышающим трехфазный ток на выводах. В генераторах токи замыкания на землю выше, чем токи трехфазного замыкания, потому что внутреннее сопротивление замыкания на землю меньше, чем полное сопротивление трехфазных замыканий. Сильный ток вызывает чрезмерный нагрев и механические силы.

Подходящий токоограничивающий импеданс, такой как реактор с низким реактивным сопротивлением, должен быть установлен в нейтрали, чтобы избежать повреждения генератора.

В системах передачи и распределения без прямого подключения вращающихся машин нейтрали трансформаторов обычно эффективно заземлены, а реакторы не являются типичными.

Ток замыкания на землю должен находиться в диапазоне от 25% до 100% тока трехфазного замыкания. Менее 25% может вызвать опасные переходные перенапряжения. Выберите значение реактивного сопротивления, необходимое для ограничения тока замыкания на землю до желаемой величины.

Соотношение

  • Xₒ / X1 = 10 при 25%

  • Xₒ / X1 = 1 при 100%

  • Xₒ / X1 = 3 при 60%

Ограничение тока замыкания на землю до 60% от тока трехфазного замыкания является границей между эффективным заземлением и заземлением по реактивному сопротивлению.

При установке 100% реактора в нейтрали генератора система не заземлена по реактивному сопротивлению, а эффективно заземлена, по определению, и максимальный вклад тока короткого замыкания этого генератора в короткое замыкание линии на землю в любом месте системы за пределами генератор будет его трехфазным током короткого замыкания.

Низкоомное заземление

В США низкоомное заземление является наиболее популярным методом ограничения тока замыкания на землю. Значение сопротивления намного ниже, чем при высокоомном методе, и составляет от 5% до 20% от тока трехфазного замыкания.Некоторые приложения ограничивают ток заземления примерно от 50 до 600 А.

Типичный резистор на 400 А пропускает ток, достаточный для срабатывания защитных реле для быстрого устранения неисправности. Эти резисторы также рассчитаны на время. Стандартное значение — 10 с, потому что, как и при эффективном заземлении, ответвление отключится после первого замыкания на землю.


Плюсы и минусы эффективного и низкоомного заземления

Эффективный метод заземления не вызывает чрезмерных переходных перенапряжений, поиск неисправностей прост, защитные реле выборочно отделяют поврежденную зону, требуемый уровень изоляции невелик, а стоимость минимальна.Однако величины тока замыкания на землю могут существенно колебаться от очень малого до значения выше трехфазного, что оказывает вредное воздействие на энергосистему.

Метод низкого импеданса ограничивает ток замыкания на землю до значения, которое не повреждает генераторы, силовые трансформаторы или другие устройства в энергосистеме и соответствует схеме защиты, необходимой для выборочного устранения повреждения. Неисправности устраняются немедленно, и метод обеспечивает более высокую безопасность, но стоимость массива выше, чем при эффективном заземлении.

Есть некоторые особенности для низкоомного и низкоомного заземления:

  • Низкое реактивное сопротивление не может адекватно ограничить ток замыкания на землю до уровня менее 25% от тока трехфазного замыкания, поскольку могут возникнуть повреждающие переходные перенапряжения.

  • Низкое сопротивление может ограничивать ток замыкания на землю до значений ниже, чем при низком реактивном сопротивлении, и иметь такой же риск повреждения от перенапряжений, защиты оборудования и угрозы безопасности людей.

Области применения

NEC требует, чтобы большинство низковольтных систем питания было надежно заземлено. В части II статьи 250, озаглавленной «Заземление системы», перечислены правила, которые можно и нельзя делать при напряжениях менее и более 1 кВ.

Как правило, рекомендуется эффективное заземление для систем низкого (≤ 1 кВ) и среднего (> 15 кВ) напряжения в промышленных и коммерческих приложениях. При напряжении выше 15 кВ по экономическим соображениям необходимо использовать эффективное заземление, что может привести к снижению уровней изоляции и отсутствию необходимости в заземляющем оборудовании.

Системы передачи и распределения коммунальных услуг — это в основном воздушные линии, которые не имеют потенциальной опасности больших токов заземления, как при использовании изолированных кабелей. Следовательно, рекомендация является эффективным заземлением.

Линии передачи и распределения очень длинные, что делает преобладающим полное сопротивление нулевой последовательности и снижает величину тока замыкания на землю до значения ниже, чем ток трехфазного замыкания. Ограничение тока в нейтрали в распределительных сетях усложняет обнаружение удаленных неисправностей, создавая угрозу для людей и имущества.

Эффективное заземление может обеспечить ток короткого замыкания, достаточный для плавления предохранителей в трансформаторах с первичной защитой только при замыкании на землю вторичной обмотки.

Заземление с низким сопротивлением не рекомендуется в системах низкого напряжения (≤ 1 кВ), поскольку тока короткого замыкания может быть недостаточно для срабатывания автоматических выключателей и предохранителей, защищающих от межфазных замыканий и замыканий на землю.

Низкое сопротивление является предпочтительным методом в энергосистемах среднего напряжения (1000

При достижении низких значений тока короткого замыкания улучшенные характеристики переходных перенапряжений заземления с низким сопротивлением способствуют использованию этого метода в генераторах, а заземление с низким сопротивлением в большинстве случаев заменяет заземление с низким реактивным сопротивлением.

Заземление с низким реактивным сопротивлением используется в генераторах для снижения токов замыкания на землю до величин, равных или меньших, чем ток трехфазного замыкания, но не ниже 25% от последнего для предотвращения переходных перенапряжений.

Автотрансформаторы

имеют низкое реактивное сопротивление нулевой последовательности, что помогает генерировать большие токи замыкания на землю. Реактор, вставленный в нейтраль, снижает ток до трехфазного значения или меньше.

Гибридное заземление с высоким сопротивлением (HHRG)

Как упоминалось в предыдущей статье, заземление генераторов среднего напряжения через низкое сопротивление обеспечивает достаточный ток замыкания на землю для стабилизации смещения нейтрали и обеспечивает правильную работу схемы защиты от замыкания на землю.Но когда неисправность находится внутри генератора, заземление с низким сопротивлением не может предотвратить повреждение, вызванное током замыкания на землю.

Рабочая группа IEEE / IAS предложила метод гибридного высокоомного заземления (HHRG). Цель HHRG — минимизировать повреждение генераторов при внутреннем замыкании на землю. При использовании метода HHRG обычная система заземляется с низким сопротивлением, правильно реагирует на внешние замыкания на землю и переключается на заземление с высоким сопротивлением (HRG) в случае внутреннего замыкания на землю генератора.

Для получения дополнительной информации см. «Анализ переходных процессов переключения и спецификации для практических приложений гибридных заземленных генераторов с высоким сопротивлением», подготовленный рабочей группой IEEE / IAS, представленный на конференции IEEE IAS по целлюлозно-бумажной промышленности в Бирмингеме, штат Алабама, в 2009 году.

Обзор эффективного и низкоомного заземления

В глухозаземленной энергосистеме соединение с землей генератора, трансформатора или нейтрали заземляющего трансформатора не включает намеренно введенный импеданс.Но нейтраль не имеет нулевого импеданса из-за импедансов в цепи нулевой последовательности. Отношение тока замыкания на землю / тока трехфазного замыкания обычно описывает степень заземления. Стандарты ANSI / IEEE используют константы энергосистемы, чтобы определить, что система или ее часть эффективно заземлены, когда Xₒ / X1 ≤ 3 и Rₒ / X1 ≤ 1.

Эффективно заземленные сети генерируют самый высокий ток замыкания на землю. Это значение может варьироваться от низкого до нескольких тысяч ампер, что представляет опасность для людей и оборудования.

Метод заземления с низким импедансом в основном используется для защиты генераторов путем ограничения уровня тока замыкания на землю до значения, меньшего или равного току трехфазного замыкания. Импеданс может быть реактором или резистором.

Нижний предел тока замыкания на землю при заземлении с низким реактивным сопротивлением составляет 25% от тока трехфазного замыкания. Более низкие значения могут вызвать разрушительные переходные перенапряжения.

Заземление с низким сопротивлением может ограничивать ток замыкания на землю до более низких значений, чем заземление с низким реактивным сопротивлением, с меньшим риском создания повреждающих перенапряжений.Эта способность к более высокому ограничению тока является основной причиной предпочтения заземления с низким сопротивлением заземлению с низким реактивным сопротивлением.

Подробнее о том, как рассчитать эффективное и низкоомное заземление для энергосистемы s.

Заземление нейтрали подстанции — EE Publishers

28 февраля 2018 г., Опубликовано в статьях: Energize

Майка Райкрофта, EE Publishers

Распределительные системы заземлены для создания эталонной точки для напряжения системы, для облегчения обнаружения и отличительной изоляции неисправностей, связанных с контактом с землей, и для ограничения перенапряжений в переходных условиях.Система заземления нейтрали — это система, в которой нейтраль соединена с землей либо жестко, либо через сопротивление или реактивное сопротивление, величина которого достаточна для существенного уменьшения переходных процессов и обеспечения достаточного тока для работы устройств селективной защиты от замыканий на землю. Чувствительные детекторы повреждений позволяют снизить токи повреждения до очень низких значений.

Незаземленные нейтрали использовались в прошлом, потому что первое замыкание на землю не требовало отключения системы.Незапланированный останов при первом замыкании на землю был особенно нежелателен для отраслей, основанных на непрерывных процессах и где было необходимо продолжение подачи даже в условиях единичного замыкания. Несмотря на достижение первоначальной цели, незаземленная система не обеспечивала контроля переходных перенапряжений.

Системы заземления нейтрали похожи на предохранители в том, что они ничего не делают, пока что-то в системе не выйдет из строя. Затем они, как предохранители, защищают персонал и оборудование от повреждений.Повреждение возникает из-за двух факторов: как долго длится короткое замыкание и насколько велик ток замыкания. Реле замыкания на землю отключают выключатели и ограничивают продолжительность замыкания, а резисторы заземления нейтрали ограничивают величину тока замыкания.

Существует пять методов заземления нейтрали:

  • Незаземленная нейтраль
  • Система с твердым заземлением нейтрали
  • Система заземления нейтрали через сопротивление
    o Заземление с низким сопротивлением
    o Заземление с высоким сопротивлением
  • Резонансная система заземления нейтрали
  • Система заземления трансформатора

Незаземленные системы

В системе с незаземленной нейтралью нет внутреннего соединения между проводниками и землей.Однако существует емкостная связь между проводниками системы и прилегающими заземленными поверхностями. Следовательно, «незаземленная система» на самом деле является «емкостной заземленной системой» благодаря распределенной емкости. В результате эта последовательная резонансная цепь L-C может создавать перенапряжения, значительно превышающие линейное напряжение, когда подвергается повторяющимся повторным ударам одной фазы на землю. Это, в свою очередь, снижает срок службы изоляции, что может привести к выходу оборудования из строя (рис.1).

Рис.1: Емкостная связь незаземленной распределительной системы [5].

В нормальных условиях эксплуатации эта распределенная емкость не вызывает проблем. Фактически, это выгодно, потому что фактически устанавливает нейтральную точку для системы. В результате фазные проводники подвергаются напряжению только при напряжении между фазой и нейтралью, превышающем потенциал земли. Но проблемы могут возникнуть в условиях замыкания на землю. Замыкание на землю в одной линии приводит к появлению полного линейного напряжения во всей системе между проводниками и заземленными поверхностями.Таким образом, на всей изоляции системы присутствует напряжение, в 1,73 раза превышающее нормальное. Эта ситуация часто может вызвать отказ трансформаторов из-за пробоя изоляции.

Системы с глухим заземлением

В системе с глухозаземленной нейтралью нейтральная точка подключается непосредственно к земле, либо напрямую, либо через трансформатор виртуальной нейтрали. Как правило, все низковольтные системы надежно заземлены. Для систем среднего и высокого напряжения сплошное заземление является самым дешевым методом, но имеет ряд серьезных недостатков.

  • Высокие токи короткого замыкания с последующим повреждением оборудования
  • Большой ток вызовет отключение всех фаз

Резисторы заземления нейтрали используются для ограничения тока короткого замыкания в трансформаторах. При возникновении фазы замыкания на землю ток замыкания ограничивается только сопротивлением почвы. Этот ток, который может быть очень большим, может повредить обмотки. Сети низкого напряжения обычно надежно заземлены, а резистивное заземление нейтрали обычно применяется только к линиям среднего и высокого напряжения.

Рис. 2: Система с глухим заземлением [4].

Системы с резистивным заземлением

Основными причинами ограничения тока фазы на землю путем заземления через сопротивление являются:

  • Для уменьшения эффектов горения и плавления в неисправном электрическом оборудовании, таком как распределительное устройство, трансформаторы, кабели.
  • Для уменьшения механических напряжений в цепях / оборудовании, несущем токи повреждения.
  • Для снижения опасности поражения персонала электрическим током из-за случайного замыкания на землю.
  • Для уменьшения опасности возникновения дуги или вспышки.
  • Для уменьшения кратковременного провала сетевого напряжения.
  • Для одновременного контроля переходных перенапряжений.
  • Для улучшения обнаружения замыкания на землю в энергосистеме.

Заземляющие резисторы обычно подключаются между землей и нейтралью трансформаторов подстанции (рис. 3), чтобы ограничить максимальный ток короткого замыкания до значения, которое не приведет к повреждению оборудования, в то же время обеспечивая достаточный ток замыкания для срабатывания реле защиты от замыканий на землю.Хотя можно ограничить токи короткого замыкания с помощью резисторов заземления нейтрали с высоким сопротивлением, токи короткого замыкания на землю могут быть значительно уменьшены, и устройства защиты могут не распознавать замыкание.

Рис. 3: Резистивное заземление нейтрали [4].

Обычно ограничивают токи однофазных замыканий с помощью низкоомных заземляющих резисторов нейтрали приблизительно до номинального тока трансформатора. Кроме того, ограничение токов короткого замыкания до заданных максимальных значений позволяет выборочно согласовывать защитные устройства, что сводит к минимуму нарушение работы системы и позволяет быстро обнаруживать повреждения.

Сопротивление заземления можно разделить на типы с высоким и низким значением. Сопротивление также классифицируется в зависимости от времени, в течение которого они могут выдерживать ток короткого замыкания. Типичная продолжительность составляет 1 с, 10 с, 1 мин и 10 мин. Резистор с увеличенным номиналом времени используется в системах, где надежность системы критична. В этих ситуациях используется высокое сопротивление, которое может выдерживать короткое замыкание в течение длительного периода. Когда происходит замыкание на землю одной фазы, генерируется аварийный сигнал. Однако система продолжает работать до следующего запланированного выключения.

Ток замыкания на землю, протекающий через резистор любого типа при замыкании одной фазы на землю, увеличивает межфазное напряжение двух оставшихся фаз. В результате характеристики изоляции проводов и разрядника должны быть основаны на межфазном напряжении. Это временное увеличение напряжения между фазой и землей также следует учитывать при выборе двух- и трехполюсных выключателей, установленных в заземленных через сопротивление системах низкого напряжения

.

Высокоомные системы заземления нейтрали

Системы заземления с высоким сопротивлением предназначены для ограничения токов замыкания фазы на землю в распределительных сетях с помощью заземленного резистора между нейтралью трансформатора или нейтралью генератора и землей.При таком типе системного заземления нет необходимости отключать соответствующий автоматический выключатель в случае замыкания фазы на землю. Система выдает сигнал тревоги только тогда, когда неисправный фидер остается в рабочем состоянии, пока неисправность не будет обнаружена и устранена. Эта функция требуется в определенных электрических приложениях, где риски, связанные с прерыванием подачи электроэнергии, выше, чем риск запуска системы с замыканием фазы на землю, ограниченным резистором.

Рис.4: Заземление трансформатора звездой треугольником [4].

Помимо предотвращения отключения фидера за счет ограничения тока короткого замыкания, система заземления с высоким сопротивлением имеет следующие преимущества:
  • Снижение переходных перенапряжений
  • Снижение риска возникновения дугового разряда
  • Выявление неисправности легко

Недостатком является то, что в случае одиночного замыкания на землю напряжение на двух других исправных фазах стремится достичь значения линейного напряжения, в зависимости от соотношения между нулевым и прямым последовательным сопротивлением, наблюдаемым при КЗ. .Это повышение фазного напряжения увеличивает вероятность второго замыкания на землю в другой фазе и другом фидере. В этом случае ток короткого замыкания между фазой и землей будет протекать с величиной, ограниченной:

  • Полный импеданс земного тракта
  • Возможное возникновение дугового разряда

Резистор заземления нейтрали не может ограничить величину этого повреждения, потому что резистор находится за пределами своей траектории. Неисправность будет развиваться до тех пор, пока не будет окончательно отключена максимальной токовой защитой задействованных фидеров, и риски, связанные с внезапным прерыванием, не будут устранены.Вторая система защиты от замыкания на землю была разработана для предотвращения этой ситуации путем отключения только одного из фидеров, имеющего самый низкий приоритет, в случае второго замыкания фазы на землю, оставляя остальную систему работающей только с одним замыкание фазы на землю ограничивается по величине резистором заземления нейтрали.

Согласование с максимальной токовой защитой автоматических выключателей и уставками приоритета являются важными соображениями. Если второе замыкание фазы на землю в другой фазе происходит в том же фидере, в котором произошло исходное короткое замыкание, вторая система защиты от замыкания на землю не сработает, а ответственность за отключение или отключение фидера возлагается на максимальную токовую защиту автоматического выключателя или предохранители. .

Рис. 5: Заземление нейтрали трансформатора зигзагом [4].

Низкоомные системы заземления нейтрали

Заземление с низким сопротивлением используется в больших электрических сетях среднего и высокого напряжения, где имеется большое количество капитального оборудования, а перебои в работе сети имеют значительный экономический эффект. Эти NER обычно имеют размер, чтобы ограничить ток повреждения до уровня, достаточного для срабатывания защитных устройств, но недостаточного для создания серьезного повреждения в точке повреждения.

Заземление через трансформатор или нейтральный электромагнитный соединитель (NEC)

Если нейтральная точка недоступна, можно создать искусственное заземление с помощью трансформатора.Трансформатор заземления используется для обеспечения пути к незаземленной системе или когда нейтраль системы недоступна по какой-либо причине, например, когда система подключена по схеме треугольника. Он обеспечивает путь к нейтрали с низким импедансом, а также ограничивает переходные перенапряжения при замыканиях на землю в системе. Заземление системы может быть выполнено следующим образом:

Трансформатор заземления Delta-Star

В случае трансформатора заземления по схеме треугольник-звезда, сторона треугольника замкнута, чтобы обеспечить путь для тока нулевой последовательности.Обмотка звездой должна иметь такое же номинальное напряжение, что и цепь, которая должна быть заземлена, тогда как номинальное напряжение треугольника может быть любым стандартным уровнем напряжения.

Рис. 6: Система катушек Петерсена [4].

Трансформатор зигзагообразный

Зигзагообразный трансформатор может использоваться для заземления трансформатора. Он обеспечивает изоляцию между землей и компонентом, чтобы на компонент системы не влияли токи короткого замыкания. Зигзагообразный трансформатор подавляет гармоники энергосистемы.Он также защищает энергосистему, снижая напряжение, возникающее при неисправности. Трансформатор зигзагообразный не имеет вторичной обмотки. Это трехлепестковый (разветвленный) трансформатор, в котором каждая конечность имеет две одинаковые обмотки. Один набор обмоток соединен звездой для обеспечения нейтральной точки. Другие концы этого набора обмоток подключены ко второму набору обмоток, как показано на рисунке ниже. Направление тока в двух обмотках на каждом плече противоположно друг другу.

При нормальных условиях эксплуатации общий поток в каждом плече пренебрежимо мал. Следовательно, трансформатор потребляет очень небольшой ток намагничивания. В условиях повреждения полное сопротивление заземляющего трансформатора очень низкое.

Чтобы ограничить ток короткого замыкания, резистор подключен последовательно к точке заземления нейтрали. Он рассчитан на кратковременную номинальную мощность в кВА и выдерживает номинальный ток в течение очень короткого времени.

Резонансная заземленная нейтраль

Токи повреждения можно также уменьшить, заземлив нейтраль через индуктивный импеданс.Добавление индуктивного реактивного сопротивления от нейтральной точки системы к земле — это простой метод ограничения доступного замыкания на землю от значения, близкого к максимальной емкости трехфазного короткого замыкания, до относительно низкого значения. Для ограничения реактивной части тока замыкания на землю в энергосистеме можно подключить реактор с нейтралью между нейтралью трансформатора и системой заземления станции.

Рис. 7: Плунжерный тип NERC (траншейный).

Заземление катушки Петерсена

Катушка Петерсона

A — это регулируемый реактор с железным сердечником, используемый для нейтрализации емкостного тока замыкания на землю в энергосистеме.Когда в незаземленных трехфазных системах происходит замыкание фазы на землю, фазное напряжение неисправной фазы снижается до потенциала земли, поскольку емкость неисправной линии разряжается в месте повреждения, фазное напряжение двух других фаз возрастает в √3 раза. Между этими емкостями между фазой и землей возникает зарядный ток, который будет продолжать протекать через путь короткого замыкания, пока остается.

Современная плавно регулируемая катушка Петерсена состоит из реактора с железным сердечником, подключенного между нейтралью трансформатора подстанции и землей в трехфазной системе.В случае короткого замыкания емкостный ток замыкания на землю (I r + I y ) теперь нейтрализуется током в реакторе (Ir), поскольку он равен по величине, но сдвинут по фазе на 180 °. . Катушки Петерсена регулируются автоматически для компенсации тока замыкания на землю. На рис. 7 показана регулируемая катушка Петерсена плунжерного типа.

Значение индуктивности в катушке Петерсена должно соответствовать значению емкости сети, которая может изменяться, когда и когда выполняется переключение в сети.Современные контроллеры катушек постоянно контролируют напряжение нулевой последовательности и обнаруживают любые возникающие изменения. Когда происходит изменение емкости сети, контроллер автоматически настраивает катушку Петерсена на этот новый уровень, чтобы гарантировать, что она настроена на правильную точку, чтобы немедленно нейтрализовать любое замыкание на землю, которое может произойти. Это быстрое ограничение тока замыкания на землю происходит автоматически без какого-либо дальнейшего вмешательства со стороны системы [2].

Катушка Петерсена также может называться дугогасящей катушкой (ASC).

Рис. 8: Жидкий резистор заземления нейтрали (Powertech).

Технология и дизайн

Жидкостные резисторы заземления нейтрали (LNER)

Жидкостный резистор заземления нейтрали представляет собой большой резервуар, содержащий раствор электролита (дистиллированная вода с небольшим количеством электролитического порошка). (Рис.8) Внешний корпус резервуара жестко соединен с точкой заземления. Внутренний электрод, изолированный от бака, обеспечивает соединение с нейтралью трансформатора.При вводе в эксплуатацию в воду добавляют небольшое количество электролита для увеличения проводимости раствора до достижения калиброванного уровня сопротивления. Конечным результатом является жидкость с высокой пропускной способностью по току и высоким сопротивлением в очень прочном и низком техническом обслуживании.

LNER имеет фиксированную конструкцию в отличие от более привычных резисторов или реостатов для жидкого стартера, и поэтому его проще сконструировать и откалибровать. Количество жидкости в баке обеспечивает высокую способность поглощения тепла.Проблемы с LNER включают широкий допуск по значениям сопротивления и необходимость регулярной калибровки.

Рис. 9: Сплошной резистор заземления (Postglover).

Твердотельные резисторы заземления

Резисторы заземления с твердой нейтралью состоят из катушек из резистивного материала, намотанных на изоляторы. В резисторе используется не принудительное воздушное охлаждение, и требуется тщательная конструкция, чтобы не допускать превышения температурных пределов. Резистивным материалом обычно является нержавеющая сталь или другой сплав.

Твердый заземляющий резистор может включать в себя трансформатор тока для управления устройством защиты. Трансформатор тока должен выдерживать ток повреждения. Однако в случае резистивного заземления ток короткого замыкания значительно снижается, и конструкция ТТ не такая уж серьезная.

Список литературы

[1] Дж. Пармар: «Типы заземления нейтрали в распределительной сети (часть 1)», Портал электротехники.
[2] HV Power: «Катушки Петерсена — основные принципы и применение», www.hvpower.co.nz
[3] Trench: «Системы защиты от замыканий на землю: катушки для подавления дуги», брошюра Trench, www.trenchgroup.com
[4] Mytech: «Методы электрического заземления», www.mytech-info.com/ 2016/07 / electric-earthing-methods.html
[5] Eqbal: «Обзор системы заземления (незаземленной)», Портал электротехники.

Отправляйте свои комментарии на адрес [email protected]

Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт новых построек ГЭС, Eskom — нет.
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *