Инвертор с чистым синусом своими руками – принцип работы, плюсы и минусы

принцип работы, плюсы и минусы

Инвертор — это необходимый элемент в системе автономного дома, который приспосабливает параметры вырабатываемой альтернативными источниками энергии к параметрам, необходимым для питания технических приборов. Почитайте подробнее об опыте выстраивания такой системы здесь.

Принцип работы

Инвертор — это прибор для преобразования напряжения. Например, он может преобразовать постоянный ток с напряжением в 12 Вольт (полученный при помощи солнечной панели) в переменный с напряжением в 220 Вольт (подходит для питания бытовых устройств). Без этого небольшого устройства практически невозможно полноценное использование энергии гелиопанелей и ветряков для домашних нужд.

Инверторы бывают разные. В зависимости от конструкции прибора и его предназначения он выдает выходной сигнал разной формы:

  • синусоида;
  • квазисинусоида;
  • импульсный.

Увидеть форму можно, если подключить к цепи специальный измерительный прибор — осциллограф. Он как бы разворачивает сигнал во времени: по оси Х мы видим временной интервал, а по оси У — уровень напряжения.

Принцип работы

Самое качественное напряжение, близкое по параметрам к внешней электросети, выдает инвертор «чистый синус». Принцип его работы заключается в следующем:

  • При подаче энергии с аккумулятора на инвертор, она изменяется с 12 Вольт на 220 Вольт.
  • Преобразованная электроэнергия попадает на мостовой инвертор, где постоянный ток превращается в переменный.
  • Высокочастотный фильтр низких частот определяет форму чистой синусоиды у напряжения на выходе.

Плюсы и минусы

Если вы планируете превратить свое жилище в умный дом или поэкспериментировать с отдельными источниками альтернативной энергии, то рано или поздно вы придете к проблеме выбора инвертора для вашей системы. Иначе вы просто не сможете запитать бытовые приборы от сгенерированной и накопленной энергии.

Плюсы использования устройства с чистым синусом:

  • Параметры выходного напряжения близки параметрам внешней электросети.
  • Возможность безопасного подключения сложных устройств, которые требовательны к качеству напряжения.
  • Улучшаются условия использования сетевой нагрузки: меньше шумов, перепадов напряжения и так далее.
  • Бытовые приборы и устройства, питаемые от инвертированной энергии, дольше служат.

Плюсы и минусы

К минусам прибора можно отнести лишь его высокую стоимость по сравнению с инверторами, выдающими выходное напряжение другого вида. Но с этим недостатком можно бороться, если сделать прибор самостоятельно. Составляющие элементы стоят значительно дешевле готового устройства.

Самодельный инвертор с чистым синусом

Цена ценой, но это достаточно сложный прибор. Поэтому за самостоятельное его изготовление стоит браться только при наличии определенного опыта. Пригодятся уверенные знания схемотехники, а также навыки и опыт пайки, монтажа схем, использования измерительных приборов и настройки элементов микросхемы.

Инвертор «чистый синус»: схема

Самодельный инвертор с чистым синусом

Рассмотрим эту простую, но популярную даже в промышленности схему чуть подробнее. Сигналы генерируются при помощи микросхемы КП1114ЕУ. Два транзистора IRFZ44N используются как ключи. Конденсатор служит фильтром высокочастотного шума, а трансформатор обеспечивает выходное напряжение в 220 Вольт.

В первый раз схему лучше собрать на макетной плате. Для получения чистого синуса многие элементы придется подбирать или дополнительно настраивать (ориентируясь на показания осциллографа). Неопытным схемотехникам потребуется изрядная доля терпения, поэтому лучше заранее найти специалиста, у которого можно будет попросить совета или помощи.

altenergiya.ru

Преобразователь 12/220В с синусом на выходе.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Преобразователь 12/220В с синусом на выходе.

Предисловие.
Около месяца назад я искал в нете схему простого преобразователя 12/220в с «чистым» синусом на выходе и к своему удивлению обнаружил, что её нет. Всё что обычно предлагается, сводится либо к получению псевдосинуса путём преобразования без использования низкочастотного повышающего трансформатора, либо к совету использовать усилитель D-класса, управляемый опорным синусоидальным напряжением. В качестве устройства управления и генерации синусоиды предлагается применять микроконтроллер. Либо даётся ссылка на смартапс. В общем, получается не слишком просто. Пришлось потратить довольно много отпускного времени, чтобы разработать схему более отвечающую требованиям простоты и «чистоты» синуса.

Характеристики:
Входное напряжение 12…14В
Выходное напряжение 50Гц 220+/-2В
Максимальная мощность 50Вт
КПД 84…90%.

Работа.
Задающий генератор, источник опорного напряжения и компаратор собраны на DA2. Внешние элементы DD1 и DD2 повторяют внутреннюю структуру TL494, в той её части, которая неустойчиво работает на низких частотах (ложные срабатывания D-триггера).
Далее с помощью ФНЧ подавляются верхние гармонические составляющие ШИМ. ФНЧ состоит из двух частей. Первая- DA1.1, ФНЧ с гладкой характеристикой АЧХ. Второй- DA1.2 режекторный фильтр с частотой подавления 150Гц. Анализ показывает, что в ШИМ содержаться только первая и нечётные гармоники, потому такого фильтра оказывается достаточно, чтобы сформировать «красивый» синус (осциллограмма 2). А, поскольку уровень первой гармоники практически линейно зависим от скважности, то получаем хорошо управляемый синус с точной постоянной составляющей, равной +2,5В. Далее, дополнительно получаем инверсную синусоиду (вывод 14 DA1.4).

На DA3, DA5, VT1, VT2 собран первый канал УНЧ класса D. Второй канал соответственно собран на DA4, DA7, VT3, VT4. На выходе первого и второго канала УНЧ формируются противофазные синусоиды (осциллограмма 3).
С выхода трансформатора, через диодный мост подаётся обратная связь по выходному напряжению. Таким образом выходное напряжение стабилизируется.

Конструкция и детали.


Трансформатор TV1 это доработанный ТП60-2, который применялся в знаменитом видеомагнитофоне «Электроника ВМ-12». С трансформатора сматываются все вторичные обмотки, и вместо них наматывается одна обмотка, содержащая 33 витка обмоточного провода диаметром 0,7мм, сложенного всемеро. Можно использовать и медную шину, подходящую по площади сечения. При подаче напряжения 220В на вторичной (в преобразователе она первичная) обмотке трансформатора, на холостом ходу, напряжение составляет 6,5В.
Дроссели L1 и L2 наматываются на ферритовых кольцах типоразмера 24*13*9,7мм и содержат 22 витка обмоточного провода диаметром 1,5мм. К сожалению марка и магнитная проницаемость этих ферритовых колец мне неизвестна. Они используются во вторичных цепях импульсных компьютерных блоков питания типа ATX.
Транзисторы и микросхемы драйверов DA5, DA7 можно найти на материнских платах.
Все транзисторы устанавливаются на один радиатор площадью 15…20см2. Для их изоляции от радиатора используются слюдяные прокладки.
Конденсаторы С21…С24 типа К73-17 на напряжение 63В.
Конденсатор С25 типа К73-17 на напряжение 630В.
Диоды можно использовать любые, с максимальным обратным напряжением не менее 400В.
Резисторы R44, R45 мощностью не менее 0,25Вт.

Настройка.
1. Отсоединить первичную обмотку трансформатора.
2. Резистором R9 установить частоту следования импульсов 100Гц на выходе DA2 (осциллограмма 1).
3. Проверить наличие синусоидального сигнала (осциллограмма 2) на выводах 7 и 14 DA1. Сигналы должны быть противофазны, но одинаковы по форме.
4. Резисторами R22 и R31 установить сигнал на выходе первого канала УНЧ согласно осциллограмме 3. Тоже проделать со вторым каналом (R24 и R34).

5. Установить подвижный контакт резистора R4 в верхнее по схеме положение.
6. Подключить к выходу преобразователя эквивалент нагрузки. Можно использовать лампу накаливания мощностью 25Вт.
7. Подключить первичную обмотку трансформатора.
8. Резистором R4 установить напряжение 220В на выходе преобразователя.

P.S.
По моему схема легко поддаётся масштабированию в сторону увеличения мощности. В принципе, схема, с соответствующими доработками пригодна и для получения других выходных частот. Например, 60Гц или 400Гц.
КПД, можно несколько увеличить, если заменить дроссели L1 и L2 на более мощные.
Есть и недостатки. К ним можно отнести отсутствие гальванической развязки между входным и выходным напряжением, что несколько сужает область применения преобразователя. Впрочем, этот недостаток можно исправить, если использовать развязку обратной связи по напряжению с помощью оптопары. Другой неприятной особенностью является некоторый дрейф частоты. По моим наблюдениям дрейф составляет до 1,5 Гц при прогреве.

Буду благодарен за доработку схемы, а также за трассировку платы, если кто-нибудь возьмётся её сделать.

Вопросы, как всегда в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Мощный авто преобразователь с чистым синусом на выходе – Поделки для авто

Как-то этот инвертор выслали мне почтой в сломанном виде, а с меня требовалось его отремонтировать. Сегодня рассмотрим все то, что с ним связано , стоит купить, какие достоинства и недостатки.

Этот инвертор имеет заявленную мощность в 2500 ватт и пусковую мощность в 5000 ватт, настоящий зверь…

Мощный авто преобразователь с чистым синусом на выходе

Имеет защиту от коротких замыканий и перегрузки на выходе, функцию мягкого старта, термозащиту и активное охлаждение в виде кулера, охлаждение работает исходя от нагрева корпуса, т.е терморегулировка.
На этом защиты не закончились. По входу инвертор имеет защиту от пониженного и повышенного входного напряжения, защиту от переполюсовки питания.

Внутри 5 предохранителей по 40 Ампер, суммарный ток их срабатывания составляет аж 200 Ампер.

Мощный авто преобразователь на выходе

Схема тут обычная, 4 силовых трансформатора, по 4 ключа на раскачку каждого, всего ключей 60. Задающий генератор построен на К7500, рабочая частота 45кГц. Высокое напряжение с выхода трансформаторов (а они все подключены последовательно) выпрямляется мостом из быстрых диодов. Дальше питание поступает на фильтрующие конденсаторы, общая емкость батареи конденсаторов 440 мкФ, а их напряжение 450 Вольт.

Мощный с чистым синусом на выходе

Далее питание поступает на мощные IGBT транзисторы, на базе которых собран мост. Синус формируется специальной платой, микросхемой EG810, на этой же плате имеется драйверные микросхемы IR2110  для управления мостом из IGBT ключей. Ключи тут аж на 40 Ампер (40N60).

 преобразователь с чистым синусом на выходе

Дальше для получения идеального синуса на выходе имеется LC фильтр в виде двух громоздких дросселей и пленочного конденсатора на 4,7мкФ.

ь с чистым синусом на выходе

В конце стоит еще один дроссель, но уже фильтрующий, с двумя независимыми обмотками на одном сердечнике.

Большой кулер отвечает за охлаждение, выдувает отработанный воздух из-под корпуса, ну сам корпус сделан из алюминия и проблем с нагревом никак не может быть, даже при максимальной выходной мощности, хотя термозащита у инвертора также предусмотрена.Мощный авто преобразователь с чистым синусом на выходе

Сни

На счет мощности – заявленных 2500 ватт тут нет (что и стоило ожидать), защита от перегрузки срабатывает при мощности около 1700-1800 ватт, но резерв у схемы есть. По входу имеется конденсаторная батарея, суммарная емкость составляет около 30,000 мкФ. Толстые силовые провода и комплект с запасной партией предохранителей идет в комплекте.

Силовая разводка на высоком уровне, хотя и флюс не смыт с завода, но это можно понять. На счет работы – все как и должно быть, напряжение на выходе стабилизировано за счет ОС по напряжению, держится на уровне 215-225 Вольт в зависимости от входного напряжения.

Сним

Такой вариант инвертора имеет входное напряжение 12 Вольт, следовательно, предназначено для работы от бортовой сети автомобиля, но тут то было!

Мощный авто преобразователь с чистым синусом на выходе

Представьте, что случится с автомобильным аккумулятором при максимальной мощности инвертора? Он может кушать токи около 150-180 Ампер (с учетом КПД), а при пуске …

В общем если решили в машине запускать сварочные аппараты, бетономешалки и т.п – инвертор может и прокатит, но аккуму придет конец и не зависимо от того заведена машина или нет. Устройство в большей степени подходит для автономных систем, например ветровой или солнечной станции и может эксплуатироваться  совместно со стационарными аккумуляторами большой емкости, но это уже другая история…

И ещё хочу отметить один момент, многие ищут на свои иномарки дефлекторы на боковые окна, вот тут есть всё. Заходите и заказывайте на свой автомобиль и не надо больше лазить и искать где купить.

Автор; АКА Касьян.

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Формирователь синуса — ЭЛЕКТРОНИКА — Обзоры

Товар  можно купить тут

Эта плата представляет из себя формирователь чистой синусоиды из постояннки, внедряется в повышающие преобразователи напряжения. 

 

 


Купил для своего инвертора, который будет серьезно переделан, можно сказать соберу с нуля, выкину вторичную цепь, заменю драйвер низковольтной цепи, добавлю еще одну пару трансформаторов с ключами для раскачки и поставим эту платку, чтобы получить инвертор с чистым синусом . в общем будет крутая доработка.

 


 


Отвечу на популярный вопрос — зачем чистый синус в инверторе. 
Дело в том, что некоторые нагрузки, как например железные трансформаторы и асинхронные двигатели нуждаются в чистой синусоиде, работать будут и от модифицированной, но при этом будут издавать своеобразный звук, который связан с формой импульсов напряжения и нагреваться гораздо больше допустимого, что сокращает их срок службы, а также теряется полезная мощность, поскольку часть будет уходить на ненужный нагрев. 
Давайте вернемся к плате.  
Должен заметить, что она довольно дорогая, стоит 70 с лишним долларов, брал у хорошего продавца, с которым пообщался и попросил сделать скидку, тот любезно снизил цену на 7 долларов, немного, но все же  деньги, особенно для меня. 
Плата самая мощная, которую можно встретить на просторах алиэкспресс, она на 3000 ватт.  Удобна тем, что с ее помощью можно дешевый инвертор с мод. синусоидой превратить в хороший инвертор с чистой синусоидой. 
Качество на высоте, китайцы не поленились почистить ее от флюса, силовые дорожки дополнительно усилены, никаких торчащих контактов, все ровно отрезано. Со стороны компонентов тоже самое — все ровно, аккуратно и красиво.

 

Плата двухсторонняя, имеет черную паяльную маску, металлизация отверстий — материал стеклотекстолит. 

 

Бросается в глаза большой радиатор 

 

Единственное, в чем поленился производитель — установка термодатчика, он зажат  ребрами радиатора, хотя имеет отверстие для болтика и можно было просто прикрутить его, но сверлить отверстие между  ребрами видимо поленились, ну и ладно — это не минус. 

 

К радиатору укреплены мощные IGBT транзисторы 47N60 количеством 8 штук. Каждый ключ изолирован от радиатора, имеется также термопаста — жирный плюс. 
Радиатор прикручен к плате двумя шурупами, они имеют дополнительную прокладку. 

 

На входе стоят два конденсатора подключенных параллельно, каждый из них имеет емкость в 150мкФ и рассчитан на напряжение в 450 вольт, производитель — рубикон, это довольно неплохой производитель, хотя не самый лучший. 

Емкость конденсаторов небольшая, но основная емкость будет находиться на плате DC-DC повышающего преобразователя, так, что тут тоже все норм. 
Имеем три аккуратно впаянных шунта. 

Плата формирователя чистой синусоиды почти стандартная, стоит традиционный чип EG8010 и два драйвера IR2110, которые и управляют силовыми транзисторами. 

 

Имеется подстроечный резистор для регулировки выходной частоты, она может быть от 50 до 60 герц. 


 


Низковольтное Питание для схемы управление поступает по маломощному диодному мосту, туда в принципе можно подать и переменку и постоянку, напряжение можно от 12 до 20 Вольт, все ровно оно будет стабилизировано до нужного уровня. 

 

По идее на мост подается переменка которая берется с дополнительной обмотки повышающего трансформатора трансформатора преобразователя, который будет стоять на плате DC-DC

Предусмотрен также разъем для кулера.

Дальше уже выходная цепь, которая состоит из LC цепочки, конденсаторов две штуки, подключены параллельно, каждый рассчитан на напряжение в 630 вольт, емкость 2,2мкФ

 

Силовой дроссель порадовал, даже очень, намотан чистым медным проводам, в более бюджетных формирователях такого типа он мотается алюминиевым проводом, диаметр провода около 1,8-2мм. 

 

Дроссель закреплен парой пластиковых хамутов, под ним небольшой слой изоляции в виде скотча, все надежно и безопасно. 

 

На выходе стоит дополнительная цепочка для фильтрации, тут дроссель с двумя обмотками и небольшой конденсатор после него.

 

Сегодня тестировать плату на полную катушку не сможем, к сожалению, но некоторые тесты  все же сделаем
Узел управления потребляет всего 60 мА, загорается красный индикатор на плате формирователя чистого синуса, следовательно, должно все работать. 

 

Теперь я подам на вход низковольтное  постоянное напряжение от обычной кроны. 

Видим нашу синусоиду, как и положено. 
Замеры частоты на выходе — 50 Герц, заполнение 50%, все идеально.

 


 
Тоже самое будет  если подключить на вход 380 Вольт постоянки, но выходное напряжение естественно будет побольше 
Мы убедились, что плата отличного качества, и главное — работает, в дальнейшем сделаем тесты под нагрузкой, мне для полной раскачки этой платы будут нужны мощные аккумуляторы и естественно DC-DC повышающий преобразователь с мощностью не менее 3000 ватт. 

 

Всю эту систему я буду использовать в своей солнечной электростанции, по малой покупаю модули, чтоб собрать панели, так дешевле, чем покупать готовые. Тоже самое с инвертором, хороший 3-х киловаттный стоит кучу денег, поэтому будем делать сами. 

www.kit-shop.org

Схема инвертора с чистой синусоидой

Разработкой схем инвертора с чистой синусоидой заняты не только многие народные умельцы, но и научно-технические центры. Инверторы, или блоки бесперебойного питания, приобрели популярность с развитием компьютерных технологий. Сбои в программном обеспечении, потеря информации при внезапном отключении питания вынудили принять необходимые меры безопасности. Первые устройства выдавали импульсное напряжение прямоугольной формы – меандр. Они обеспечивали небольшой промежуток времени, в течении которого можно было сохранить информацию и выполнить штатное выключение компьютера. Дальнейшие разработки позволили создать усовершенствованные модели преобразователей.

Конструкция инвертора

Конструкция инвертора.

Увеличение емкости аккумуляторов, номинальной мощности инверторов позволило не только увеличить время работы компьютеров, но и применить ИБП для работы других устройств и приборов при перебоях в электроснабжении.

Первый опыт эксплуатации показал, что длительная работа оборудования на импульсном напряжении приводит к ускоренному износу и отказу техники. Определенные категории оборудования оказались не способными работать на напряжении, отличающемся от синусоиды. Мощность источников питания не позволяла подключать несколько устройств одновременно.

Возникла необходимость в инверторах с синусоидальной формой напряжения, способных выдержать нагрузку в несколько киловатт. Частичное решение проблемы было найдено. Производители предложили преобразователи с квази – синусом. Такая форма представляет собой синусоиду, состоящую из множества небольших ступенек.

Естественная и искусственная синусоида

Схема питания преобразователя

Рисунок 1. Схема питания преобразователя.

Синусоидальная форма напряжения, вырабатываемая промышленными генераторами, создается вращением полюсов магнитного поля. Работа электродвигателей основана на создании электроэнергией вращающегося магнитного поля для воздействия на ротор. При форме напряжения, отличающейся от синусоиды, вращение ротора будет происходить неравномерно, с ускорением или замедлением, что отразится на техническом состоянии двигателя и рабочей части.

Использование напряжения искаженной формы пока не прошло достаточных испытаний на практике, поэтому использовать его для питания дорогостоящего оборудования без гарантий производителя нежелательно. Большинство ИБП предназначено для поддержания основных жизненно необходимых функций.

Сетевое напряжение не всегда имеет идеальную форму. Повышающие и понижающие трансформаторные станции, различные виды потребляющего оборудования создают определенные изменения в форму сетевого напряжения. Преобладающее использование индуктивных нагрузок без компенсационных конденсаторных установок создает в сети определенный сдвиг фаз, влияющий на форму синусоиды. Массовое подключение импульсных блоков питания также вносит свою долю искажений, несмотря на наличие фильтров.

Установка на выходе фильтра

Рисунок 2. Установка на выходе фильтра.

Получить чистый синус при использовании радиоэлектронных компонентов довольно сложно. Решение вроде бы лежит на поверхности. Прямоугольный импульс в упрощенном представлении состоит из гармонического ряда синусоид, первая из которых соответствует частоте импульсов. Требуется всего лишь установить на выходе соответствующий фильтр.

Эффективность эксплуатации такого устройства довольно низкая. Значительная часть энергии задержится на элементах фильтра и преобразуется в тепло. Вес и габаритные размеры преобразователя значительно возрастут. Выделить и использовать отфильтрованную энергию для зарядки также довольно сложно. Схема значительно усложнится, возрастет ее стоимость, снизится надежность.

Большинство экспериментаторов сходится во мнении, что модифицированная синусоида вполне приемлема для большинства бытовых и промышленных устройств, приборов.

Вернуться к оглавлению

Схема инвертора с чистым синусом

Питание преобразователя (рис.1) может быть от источника со сложной формой напряжения или постоянного тока. При использовании аккумулятора фильтр Ф и диодный мост М можно не устанавливать. Для работы низковольтной части схемы используется мост М1, собранный на маломощных диодах. Изготовить такую схему своими руками довольно сложно. У исполнителя должен быть определенный опыт выполнения подобных работ.

Подгонка катушек под напряжением 220 В

Рисунок 3. Подгонка катушек под напряжением 220 В.

Схема работает следующим образом. Задающий генератор на микросхеме D5 создает синусоидальный сигнал с частотой 50 Гц. Его схема представляет собой модифицированный вариант генератора Вина. Изменения внесены для увеличения надежности схемы и уменьшения потребления энергии. Контроллеры D1, D2 модулируют синусоидальный сигнал. Для модуляции на микросхемах используются различные входы: прямой и инвертирующий. Поэтому одна сторона запускается при положительной волне, вторая – при отрицательной. С контроллеров выходной сигнал поступает на микросхемы D3, D4, формирующие сигнал для управления транзисторами.

Силовая часть собрана по принципу мостовой схемы. Нагрузка подключается в одну диагональ моста, питающее напряжение – в другую. При прохождении одного из полупериодов ток проходит от минусовой клеммы через VT4, обмотку L1, нагрузку, VT1, плюсовую клемму источника питания. При другом полупериоде работают транзисторы VT2, VT3.

Защита по превышению максимально допустимого тока собрана на резисторах R17-19, R22 и диодах VD11,12. При превышении падения напряжения на резисторах в силовой цепи разница поступает на соответствующие контакты D1, D2, и схема прекращает работу.

Вернуться к оглавлению

Дополнительный фильтр

Схема чистой синусоиды

Схема чистой синусоиды.

Имеющийся в наличии преобразователь с прямоугольным импульсным напряжением можно модернизировать, установив на выходе фильтр (рис.2), отсеивающий высшие гармоники. Точный расчет и тщательное изготовление деталей помогут снизить потери на фильтре до минимума.

При изготовлении следует учитывать, что устройство используется для силовых цепей. Все элементы и комплектующие должны выдерживать максимально допустимый ток.

В состав входят два LC контура с резонансной частотой 50 Гц. В одном из них емкость с индуктивностью подключены последовательно, во втором – параллельно. Дроссели для контуров рассчитываются и изготавливаются идентично, конденсаторы также должны иметь одинаковые параметры. Оптимальная емкость для конденсаторов 100 мкФ, допустимое напряжение не меньше 300 В. Электролитические полярные конденсаторы использовать нельзя.

Сердечники для катушек индуктивности должны быть из трансформаторного железа. Для точной подгонки дросселя в железе нужно вырезать зазор. Необходимое количество витков можно рассчитать, используя соотношения для расчета резонансной частоты контура. Для намотки желательно использовать гибкий медный провод. Минимальное сечение должно быть не менее 2,5 мм2.

Общую площадь намотки необходимо сравнить с размерами окна в сердечнике. После сборки необходимо выполнить подгонку катушек, подключив сетевое напряжение 220 В (рис.3). Сопротивление нагрузки представляет собой лампу накаливания, измерительный прибор можно использовать любого типа с необходимым диапазоном. Правильная настройка определяется по максимальному напряжению. В зазор нужно уложить прокладки несколько больше расчетной величины. Затем следует убавлять толщину прокладок, контролируя напряжение по вольтметру. Значение должно увеличиваться при изменении толщины зазора, затем снижаться. Зазор при максимальном напряжении является самым оптимальным вариантом. При наладке необходимо стягивать железо сердечника до плотного контакта с прокладочным материалом. После подгонки следует собрать и подключить фильтр.

При наличии осциллографа можно проверить форму напряжения до и после фильтра. При наличии всех необходимых деталей и определенного опыта устройство вполне доступно для изготовления своими руками.

expertsvarki.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о