Из чего делается магнит: Как делают магниты — фото, видео, описание

Содержание

Из чего делают магниты — блог Мира Магнитов

Магниты делятся на несколько видов: постоянные, электро- и временные. Они отличаются между собой характеристиками, долговечностью и особенностью эксплуатации.

Постоянные магниты
Наибольшую популярность получили постоянные магниты — именно их мы подразумеваем, говоря о магнитах вообще. Главная их особенность в том, что они сохраняют свой магнитный заряд на протяжении долгого времени. Как долго и с какой силой прослужит этот элемент, зависит от того, из чего сделан магнит.

Неодимовые магниты очень долговечны, не боятся коррозии и привлекательно выглядят за счет никелевого покрытия

Самые мощные магниты — неодимовые


Их изготавливают из разных сплавов металлов:
  • Неодима, бора и железа. Такие элементы называют супермагнитами, поскольку они долго сохраняют эксплуатационные характеристики и размагничиваются со скоростью 1-2% за 100 лет. Размагнитить неодим почти невозможно.
  • Самария и кобальта — за счет устойчивости к агрессивной среде и воздействию высоких температур, активно используется в военной промышленности. По своим эксплуатационным особенностям похож на неодимовые аналоги.
  • Альнико — сплав алюминия, кобальта и никеля. Легкий и термоустойчивый материал, но быстро размагничивающийся под действием другого магнитного поля.
  • Магнитопласты — состоят из полимеров, магнитного порошка и всевозможных добавок. В отличие от всех остальных видов, эти магниты легко поддаются обработке, пластичны и эластичны. Благодаря этому из них создают изделия сложной формы и экспериментируют с расположением полюсов. Мощность таких элементов зависит от количества магнитного порошка в составе магнитной смеси, которая может достигать 94% от массы готового изделия.
  • Ферриты — сплав железа с другими металлами. Наиболее распространенный вид, так как недорог в производстве и имеет широкую сферу эксплуатации, однако при воздействии высоких температур довольно быстро теряет свои свойства.

Особую популярность в последнее время приобретают неодимовые магниты, поскольку они в разы превосходят стандартные ферритовые по своим возможностям. Многие интересуются, из чего делают неодимовые магниты, чтобы воспроизвести их в домашних условиях. Но без специального оборудования и знаний это невозможно.
намагничиватель-размагничиватель 675х344.jpg
Временные магниты
Еще один интересный вопрос — из чего делают временный магнит. Для этого используют любой металлический предмет. Например, скрепку, ножницы, отвертку и др. Если ненадолго поднести его к источнику мощного магнитного поля или другому сильному магниту, то эта металлическая деталь временно переймет его магнитные свойства. Но выходя из-под действия этого поля, свойства мгновенно теряются. Такие элементы активно используются в электромеханике и автомобилестроении.
Электромагниты
В отличие от постоянных, имеют магнитное поле только при прохождении через них электричества. Такие магниты изготавливают из металлической заготовки. Подойдет любой образец железа или его сплавы, которые хорошо магнитятся — он выступает в роли сердечника. Проверить железный кусок на возможность выступить в роли источника электромагнитного поля просто — используйте стандартный магнитик с холодильника. Если он притягивается к железяке, то она подходит на роль сердечника. Этот брусок обматывают медной проволокой, изолировав предварительно один металл от другого, а потом подключается источник тока. Электромагниты легко сделать самостоятельно, следуя простой инструкции.
Как сделать магнит своими руками 675х344 1.jpg

Самый простой электромагнит делается за 5 минут из гвоздя, проволоки и батарейки


В отличие от всех остальных видов, электромагниты меняют характеристики под воздействием электрического тока — регулируется мощность устройства, направление полюсов. Его используют в электроустройствах, в моторах и генераторах, в промышленности при транспортировке металлических грузов. А народные умельцы создают множество вариантов самодельных конструкций.

Из чего состоят магниты — блог Мира Магнитов

В советские годы все магниты имели почти одинаковый состав. Их изготавливали из ферромагнитных сплавов, где менялось процентное соотношение материалов. Но уже тогда велись научные изыскания по изобретению новых магнитов. Сегодня магнитное производство предлагает самые разные материалы, способные сохранять магнитное поле.

Из чего состоят разные виды магнитов
Сила и свойства магнитов зависят от их состава. Распространение получили следующие виды сплавов.

1. Ферриты
Это соединения оксида железа Fe2O3 с оксидами других металлов, обладающие ферромагнитными свойствами. Нашли применение в электронике, радиотехнике и прочих отраслях, где сила магнитного поля особой роли не играет. Это дешевые магниты, поэтому они используются в создании разнообразных устройств. Ферриты отличаются коррозийной стойкостью и средней температурной устойчивостью.
Ферритовые магниты активно применялись в радиотехнике и вычислительной технике

Ферритовые магниты устойчивы к ржавчине и высокой температуре


2. Сплавы Альнико
Представляют собой соединение железа со сплавом алюминия, никеля, меди и кобальта (AlNiCo). Магниты Альнико на основе этого сплава отличаются высокой магнитной силой и температурной устойчивостью, поэтому используются в условиях нагрева до 550 градусов по Цельсию. Однако не применяются повсеместно, поскольку отличаются высокой стоимостью. Такие сплавы незаменимы при создании других постоянных магнитов.
виды магнитов - альнико1 675х344.jpg

 В школьных экспериментах обычно используют магнитные бруски и подковы из сплава Альнико


3. Неодимы
Это сплав редкоземельных металлов — неодима, бора и железа (NdFeB). Не имеют конкурентов по мощности и долговечности, так как могут удерживать предметы, тысячекратно превосходящие их по массе. Неодимовые магниты появляются в результате сложного производственного процесса, при котором используется вакуумное плавление, прессование, спекание и другие манипуляции. Единственный недостаток — плохая устойчивость к тепловому воздействию — при нагреве быстро теряют свои свойства. Если исключить тепловой удар, то служат такие магнитные элементы почти вечно — теряют не более 1% мощности за 100 лет.
Иногда попадаются поисковый магнит вылавливает очень неожиданные предметы Велосипед «выужен» поисковым магнитом. Поисковые магниты делают из неодима, у него максимальная грузоподъемность при минимальных размерах 4. Самарий-кобальт
Сплав двух редкоземельных металлов — кобальта и самария SmCo5 или Sm2Co17. Легируются и другими металлами — медью, цирконием, гадолинием и т.п. По мощности такие сплавы уступают неодимовым, но превосходят все остальные аналоги. Отличаются стойкостью к коррозии и температурному воздействию. Незаменимы при работе в сложных условиях, когда требуется надежность и безотказность работы. Находятся в той же ценовой категории, что и неодимовые сплавы.
магниты самарий-кобальт 675х344.jpg

Магниты SmCo5 слабее неодимовых, но мощнее остальных


5. Полимерные постоянные магниты
Производятся из композиционных материалов с включением магнитного (обычно феррит-бариевого) порошка. За основу берутся разнообразные полимерные компоненты. Магнитопласты имеют низкую магнитную силу, зато отличаются непревзойденной коррозионной стойкостью в той степени, в которой ею обладает и другие полимеры. Конечные свойства каждого полимерного магнита зависят от процентного содержания магнитной смеси. Если используется порошок редкоземельных магнитов (неодим-железо-бор, самарий-кобальт), то магнитопласт получается мощнее. Главное преимущество — невероятная пластичность, позволяющая выпускать магниты любой формы и размеров.
магнитопласт 675х344.jpg

Магнитные параметры магнитопластов ниже, чем у спеченных магнитов


6. Магнитный винил
Являет собой смесь резины и магнитного порошка (ферритового). Процентного содержание последнего составляет 70-75% от массы. Чем больше этого порошка, тем выше магнитная сила изделия. Из преимуществ материала отличают износоустойчивость и огромный диапазон рабочих температур (от −300°C до +800°C). Магнитный винил устойчив к воздействию влаги и пластичен. За счет гибкости подходит для изготовления изделий любых конфигураций.
Холодильник - не просто место для хранения еды, это целая история семейных событий и путешествий

Сувенирные и рекламные магнитики на холодильник делают из магнитного винила

Из чего изготавливают постоянные магниты — блог Мира Магнитов

Любые постоянные магниты изготавливают из ферромагнитных веществ. К группе этих материалов относятся железо, кобальт, гадолиний, а также множество химических соединений и сплавов. Все эти вещества даже после выключения намагничивающего поля сохраняют намагниченность. В зависимости от типа материала, используемого для изготовления магнитов, выделяют такие группы изделий:

Ферритовые магниты

Феррит – это материал, магнитная проницаемость которого значительно превосходит соответствующие показатели черных металлов. Разработанные на его основе в 50-х гг. XX века магниты стали более доступной и практичной альтернативой дорогостоящим магнитам из металлических сплавов. В качестве основы материала используется оксид железа Fe2O3 в соединении с ферритом бария или ферритом стронция. Специфика такого состава обуславливает хрупкость и твердость готовых изделий, которые могут разрушиться при ударе или сгибе. Учитывая, из чего изготавливают постоянные магниты на основе ферритов, для материала характерны невысокие показатели остаточной индукции, определяющие сравнительно недолгий срок службы магнита. Тем не менее ферритовые магниты обладают рядом бесспорных достоинств:           ·     Невысокая цена.           ·         Устойчивость к размагничиванию.            ·    Стойкость к коррозийным поражениям.

Литые магниты

Изобретенные в 30-х гг. XX века литые магниты (монокристаллические) широко используются в ряде научных и промышленных отраслей благодаря целому ряду уникальных достоинств. Изделия получили название Альнико по названию элементов, входящих в состав его сплава: алюминий, никель и кобальт. Материал с высокой остаточной намагниченностью характеризуется низкой коэрцитивной силой. Из-за этого его можно легко размагнитить и намагнитить обратно. Магниты Альнико остаются востребованными и незаменимыми в целом ряде промышленных отраслей благодаря следующим преимуществам:           ·     Устойчивость к нагреву. Максимальный показатель рабочей температуры для магнитов Alnico составляет                    +450..+550⁰C.           ·    Стойкость к коррозии. Материал сохраняет свои эксплуатационные качества в условиях высокой влажности                и при непосредственном контакте с водой.

Редкоземельные магниты

В настоящий момент вопрос, из чего делают постоянные магниты с лучшими эксплуатационными свойствами, имеет только один ответ – из элементов лантаноидной группы. Благодаря непревзойденным показателям магнитной силы редкоземельные супермагниты открывают широкие возможности для создания более компактных и простых магнитных конструкций практически в любых сферах деятельности. Магниты на основе лантаноидов сочетают большую коэрцитивную силу и высокую сопротивляемость внешним магнитным полям. Наиболее распространены две группы редкоземельных сплавов:
  •           ·    Неодим, железо и бор (неодимовые магниты). Если вам нужен действительно сильный магнит, то лучшего решения просто не найти. Этот материал используется для производства поисковых магнитов, которые при собственной массе в 2-3 кг способны удерживать объекты весом 300 кг и больше. Учитывая, как делают постоянные магниты на основе неодимового сплава, следует обеспечить качественную защиту порошкового материала. При нарушении целостности оцинкованного покрытия он поражается ржавчиной даже при обычной влажности воздуха.
  •           ·    Самарий и кобальт (самариевые магниты). При своей сравнительно высокой цене этот материал обладает такими существенными преимуществами, как устойчивость к коррозии и отсутствие ограничений в механической обработке. Также самариевые магниты характеризуются стойкостью к высоким температурам они сохраняют свои магнитные свойства даже при +350⁰C.

Выгодно заказывайте любые магниты и изделия на их основе

Интернет-магазин «Мир магнитов» предлагает вам богатый ассортимент магнитов и изделий на их основе по самым привлекательным оптовым и розничным ценам.  У нас можно купить неодимовый магнит 50х30 дешево. Выбирайте подходящие изделия с учетом эксплуатационных условий и заказывайте их с выгодными условиями доставки. Чтобы уточнить у специалиста любые технические вопросы относительно выбора подходящего магнита, свяжитесь с нами по телефону 8 (495) 662 49 15 или по email [email protected].

основные виды, способы производства, применение

В мире существует множество интересных веществ, которые удивляют людей своими уникальными свойствами и необычностью. И с давних времен лучшие умы планеты не могли понять, как отдельные камни и металлы могут притягиваться или отталкиваться друг от друга. Сейчас же наука шагнула далеко вперед, а свободный доступ к любой информации позволяет понять, как делают магниты за пару минут.

Как делают магниты?Как делают магниты?

Немного истории

Обыденные для современного человека вещи могут отличаться очень сложной историей. И магнит — не исключение. Особое поле, которое создается разными материалами, вызывало у мудрецов прошлых эпох не только восторг, но и удивление. При этом с таким явлением люди столкнулись очень давно. Но активное развитие науки о магнитном поле началось относительно недавно, а в хозяйственных целях его применили буквально пару десятков лет назад.

Виды магнитовВиды магнитов

Существует масса исторических фактов, подчеркивающих многовековую историю специфического поля с уникальными притягивающими или отталкивающими свойствами. Первое достоверное упоминание уходит своими корнями в Древнюю Грецию, где когда-то существовала область Магнисия. Именно на территории этого географического региона удалось найти залежи вещества, формирующего такое поле. Вскоре породу наименовали «камнем из Магнисии».

Кроме реальной физической возможности притягивать железные предметы, такие камни наделяли и мистическим значением. Их считали подарком богов, способным отпугивать злых духов, исцелять от смертельных заболеваний и приносить в дом удачу. Тем не менее, вскоре люди сумели изобрести первый прототип компаса, придав предмету форму иглы, которая всегда указывает на север.

Большое количество упоминаний о чудо-поле присутствует в китайских летописях. Там камням приписывали чудодейственные свойства, а также посвящали легенды. К примеру, есть легенда о мистических воротах, через которые не могли пройти люди с мечами. Ведущие ученые современности придерживаются мнения, что эти ворота были созданы из породы, притягивающей металлические предметы.

Естественное и искусственное происхождение

Магнитный железнякМагнитный железняк

В средневековые времена и до конца XVIII века исследователи активно изучали характеристики горной породы с магнитным полем. По сути, тогда люди не знали о существовании других веществ, генерирующих это поле. Но в начале 18 века знаменитый ученый Араго, а вскоре Ампер и Сетрджен сумели изобрести предмет с магнитным полем искусственного происхождения. Оно образовалось в результате подачи электрического тока, что стало настоящим технологическим прорывом. Вскоре технологию стали всячески усовершенствовать, превращая металлические изделия в мощнейшие переменные магниты.

На сегодняшний день магниты классифицируются такими типами:

  1. Естественные или природные.
  2. Искусственные.

Представители первой группы являются залежами особой горной породы. Самый крупный из когда-либо найденных естественных магнитов весит 13 килограммов и гарантирует силу сцепления до 40 кг.

Что касается искусственных магнитов, то они представляют собой железные изделия, создающие поле при подаче на обметку с сердечником электрического тока. Тем не менее, сегодня существует и особая разновидность магнитов, которая создается человеком с применением передовых технологий.

Основные виды

Кроме этого, перечисленные типы магнитов могут отличаться и принципом своей работы. Итак, сегодня выделяют следующие виды:

Основные виды магнитовОсновные виды магнитов

  1. Постоянный.
  2. Временный.
  3. Электромагнит.

Первые две разновидности характеризуются разной степенью намагниченности и временем удержания поля внутри себя. Его интенсивность и устойчивость к внешним воздействиям определяется составом материала. Последний тип не относится к группе настоящих магнитов, т. к. он работает благодаря эффекту электричества, создаваемого магнитным полем вокруг сердечника.

Постоянные и временные магниты создаются из разного исходного сырья. В его качестве используются такие металлы:

Металл Кобальт.Металл Кобальт.

  1. Неодим.
  2. Бор.
  3. Кобальт.
  4. Альнико.
  5. Железо.
  6. Ферриты.

Материалы тщательно измельчаются, а затем поддаются плавлению и выдерживанию в печи под высоким температурным воздействием, пока они не обретут нужные свойства. В зависимости от вида и нужных характеристик на этапе производства задается подходящий состав и пропорции компонентов.

Посредством такой технологии можно получить следующие виды магнитов:

  1. Прессованные.
  2. Литые.
  3. Спеченные.

Процесс производства

Для создания электромагнита, нужно расположить вокруг металлического сердечника проволочную обмотку. Изменяя размеры сердечника и длину проволоки, можно изменить интенсивность поля, количество расходуемой энергии, а также габариты изделия.

Создание электромагнита,Создание электромагнита,

Постоянные и временные магниты могут обладать разной силой полей и демонстрировать разную устойчивость к окружающим воздействиям. Перед тем как начать процесс изготовления, заказчику нужно определить состав и форму будущего изделия, учитывая сферы применения и стоимость услуг. С максимальной точностью происходит подбор нужных составляющих, после чего начинается первый производственный этап — выплавка.

Во время выплавки специалист погружает в электрическую вакуумную печь все составляющие будущего предмета. Проверив приборы на работоспособность, а состав материала на соответствие пропорциям, резервуар можно герметично закрыть. Затем с помощью мощного насосного оборудования откачивается воздух из камеры, что необходимо для предотвращения окислительных процессов и возможной потери мощности полей. Затем расплавленную смесь выливают в форму, а оператор ждет, пока она окончательно остынет. Таким образом создается специальный брикет, имеющий определенные магнитные свойства.

На следующем этапе происходит измельчение полученной однородной массы с помощью специальных дробилок. Вторичное дробление приводит к образованию порошкообразной консистенции с размерами в несколько микронов. Такое требование необходимо для правильной установки магнитных полей.

Дальше порошкообразная масса помещается в специальный прибор, где на нее воздействует механическое давление и магнитное поле. Таким образом ее прессуют в брикеты с нужными размерами и формой. При подаче магнитного поля намагниченные частицы получают одностороннее направление, что позволяет выровнять полярность будущего магнита. Готовое изделие пакуется в герметичный пакет, после чего из него выкачивают воздух. Такие меры необходимы для предотвращения окислительных процессов и лишения магнитных свойств.

Дальше брикет оказывается в специальной печи, которая тоже предварительно очищается от воздуха, и начинают спекать в единый магнит с помощью высокотемпературного воздействия. В конечном итоге изделие становится очень прочным, а интенсивность магнитного поля возрастает.

Разновидности магнитов на холодильник

Существуют разные сферы применения магнитов, но наиболее популярной является изготовление магнитиков на холодильник. Такой аксессуар пользуется особым спросом, т. к. он позволяет повысить узнаваемость компании или служит в качестве сувенира с другого города, страны, интересного места.

Разновидности магнитов на холодильникРазновидности магнитов на холодильник

Доступные на рынке магниты могут отличаться большим разнообразием форм и материалов производства. Их создают на основе винила с магнитными свойствами, керамических материалов, стекла, полимерных заготовок, пластика, гипса и т. д.

Если выделить наиболее известные разновидности, которые пользуются спросом среди широкой аудитории покупателей, то к ним следует отнести.

Закатные магнитыЗакатные магниты

  1. Плоские модели. Создаются на основе магнитного винила, поверх которого находится картинка с ламинированным покрытием или без него. Они славятся особой мягкостью, гибкостью и устойчивостью к любым воздействиям. Такой тип идеально подходит для создания рекламной продукции.
  2. Закатные. Отличаются красивым дизайном и похожи на значок. Они могут обладать либо прямоугольной, либо закругленной формой.
  3. Смоляные. Создаются на основе эфирных смол и отличаются особой привлекательностью. На рынке продаются мягкие и твердые магниты, которые становятся отличным дополнением к успешному бизнесу.

Тонкости изготовления своими руками

Разобравшись с принципом действия магнитного поля и основными технологическими процессами по производству магнитов, у многих энтузиастов может возникнуть желание создать такое изделие в домашних условиях. Естественно, создать сверхпрочный магнит из подручных средств не получится, но изготовить интересную самоделку, сохраняющую свойства притягивания и отталкивая отдельных предметов, вполне реально. И в качестве такой самоделки является магнит на холодильник.

Наиболее простым и примитивным способом изготовления таких аксессуаров считается использование магнитного винила. Его можно купить в соответствующем магазине, обратив внимание на модель с толщиной 0,4 мм, а также глянцевым или матовым покрытием для струйного принтера. Дальше нужно нанести на исходный материал подходящую картинку, распечатав ее на принтере. Несмотря на свою простоту, метод отличается многими недостатками:

Покупка магнитного винилаПокупка магнитного винила

  1. Покупка магнитного винила — удовольствие не из дешевых. При этом небольшая толщина изделия заметно снижает показатели силы притяжения. Поэтому такие магнитики подходят только для частного использования, ведь вряд ли кто-то захочет купить их.
  2. Качество конечной продукции находится на низком уровне, а само изделие не может похвастаться большим сроком службы. И причиной таких недостатков может стать не сам виниловый магнит, а наличие цветного отпечатка от принтера.

Второй вариант производства подразумевает печать фотографий или графических изображений на качественной фотобумаге с последующим приклеиванием винилового магнита на клеевой основе. Картинка дополнительно ламинируется, а затем фиксируется к магнитной поверхности.

Оба способа достаточно просты для реализации в домашних условиях и не требуют специфических навыков. Все, что может понадобиться для предстоящей работы, это:

Принтер струйного формата,Принтер струйного формата,

  1. Персональный компьютер или ноутбук с предустановленным графическим редактором. Желательно использовать фотошоп.
  2. Принтер струйного формата, поддерживающий функции цветной печати. Желательно отдавать предпочтение дорогим моделям, т. к. работают они гораздо быстрее и качественнее.
  3. Прибор для резки. Являясь мягким резиноподобным материалом, винил легко режется с помощью обычных ножниц, но чтобы обеспечить ровные края и правильную обрезку, лучше приобрести профессиональные резаки.

Интересные факты

Несмотря на свои физические свойства, предметы, создающие магнитное поле, всегда считались чем-то таинственным, как будто из другой планеты. Неудивительно, почему вокруг них родилось так много легенд и интересных фактов. К наиболее популярным следует отнести такие исторические упоминания:

Царица Клеопатра,Царица Клеопатра,

  1. История утверждает, что царица Клеопатра, которая считается самой красивой женщиной всех времен, владела магнитными украшениями, считая, что они позволяют отсрочить старение.
  2. Большинство магнитов выполнены на основе железа и стали, но самые мощные модели создаются из никелевых сплавов, меди, алюминия и кобальта.
  3. Во время нагревания предмет теряет свои магнитные свойства.
  4. Бытовые мониторы и телевизоры с электронно-лучевой трубкой оснащены электромагнитом для управления электронами и подачи картинки на экран.
  5. Сложно представить себе современную медицину без применения разных типов магнита. С их помощью врачи эффективно борются с самыми сложными заболеваниями.
  6. Планета Земля является самым крупным магнитом, который заставляет стрелки компасов двигаться в нужном направлении.

В общем, особенности магнитного поля и предметов, которые создают его — действительно увлекательная тема. И несмотря на развитие науки и техники, многие свойства и факты о таких веществах по-прежнему мало изучены.

3 разных типа магнитов и их применение

Магниты — это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.

Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.

Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.

1. Постоянные магниты

После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:

I) Ферритовые магниты
Стек ферритовых магнитов | Изображение предоставлено: Викимедиа

Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.

Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.

Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.

Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.

Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.

II) магниты Алнико
Магнит-подкова из алнико 5 | Эта U-образная форма образует мощное магнитное поле между полюсами, позволяя магниту захватывать тяжелые ферромагнитные материалы.

Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.

Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.

Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах — до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.

Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.

Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров — это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.

III) Редкоземельные магниты

Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.

Два типа редкоземельных магнитов — самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.

Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.

Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.

Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.

Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.

IV) одномолекулярные магниты
Универсальный внутриклеточный белок, называемый ферритином, считается магнитом с одной молекулой. Он хранит железо и выпускает его контролируемым образом.

К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.

Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.

Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.

Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.

2. Временные магниты

Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.

Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.

Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.

Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии — от высокоскоростных поездов до высокотехнологичного пространства.

3. Электромагнит

Электромагнит притягивающий железные опилки

Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.

Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.

Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.

Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.

Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.

Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.

Как устроен магнит? — блог Мира Магнитов

Сложно найти такую сферу, в которой бы не нашлось применения магнитам. Развивающие игрушки, полезные аксессуары и сложное промышленное оборудование – это лишь малая доля от поистине огромного количества вариантов их использования. При этом мало кто знает, как устроены магниты и в чем секрет их силы притяжения. Чтобы ответить на эти вопросы, нужно погрузиться в основы физики, но не переживайте – погружение будет недолгим и неглубоким. Зато после знакомства с теорией вы узнаете, из чего состоит магнит, и природа его магнитной силы станет для вас намного понятнее.

Электрон – самый маленький и самый простой магнит

Любое вещество состоит из атомов, а атомы в свою очередь состоят из ядра, вокруг которого вращаются положительно и отрицательно заряженные частицы – протоны и электроны. Предмет нашего интереса представляют собой именно электроны. Их движение и создает электрический ток в проводниках. Кроме того, каждый электрон является миниатюрным источником магнитного поля и, по сути, простейшим магнитом. Вот только в составе большинства материалов направление движения этих частиц является хаотичным. Как результат – их заряды уравновешивают друг друга. А когда направление вращения большого количества электронов на своих орбитах совпадает, то возникает постоянная магнитная сила.

Устройство магнита

Итак, с электронами разобрались. И теперь мы вплотную приближаемся к ответу на вопрос, как устроены магниты. Чтобы материал мог притягивать железный кусок породы, направление электронов в его структуре должно совпадать. В этом случае атомы формируют собой упорядоченные области, которые называются домены. У каждого домена есть пара полюсов: северный и южный. Через них проходит постоянная линия движения магнитных сил. Они входят в южный полюс и выходят из северного. Такое устройство означает, что северный полюс всегда будет притягивать южный полюс другого магнита, тогда как одноименные полюса будут отталкиваться.

Как магнит притягивает металлы

Магнитная сила действует не на все вещества. Только некоторые материалы можно притягивать: железо, никель, кобальт и редкоземельные металлы. Железный кусок породы не является природным магнитом, но при воздействии магнитного поля его структура перестраивается в домены с северными и южными полюсами. Таким образом, сталь может намагничиваться и сохранять свою измененную структуру на протяжении длительного времени.  

Как делают магниты 

Мы уже разобрались, из чего состоит магнит. Он представляет собой материал, в котором направленность доменов совпадает. Для придания породе таких свойств может использоваться сильное магнитное поле или электрический ток. В настоящий момент люди научились изготавливать очень мощные магниты, сила притяжения которых в десятки раз превышает собственный вес и сохраняется на протяжении сотен лет. Речь идет о редкоземельных супермагнитах на основе неодимового сплава. Такие изделия весом в 2-3 кг могут удерживать объекты весом в 300 кг и более. Из чего состоит неодимовый магнит и чем же обусловлены такие удивительные свойства? Простая сталь не подойдет для того, чтобы успешно изготавливать изделия с мощнейшей силой притяжения. Для этого нужен особый состав, который позволит максимально эффективно упорядочить домены и сохранить стойкость новой структуры. Чтобы понять, из чего состоит неодимовый магнит, представьте себе металлический порошок неодима, железа и бора, который с помощью промышленных установок будет намагничиваться сильным полем и спекаться в жесткую структуру. Чтобы защитить этот материал, его покрывают прочной оцинкованной оболочкой. Такая технология производства позволяет получить изделия различных размеров и форм. В ассортименте интернет-магазина «Мир магнитов» вы найдете огромное разнообразие магнитных товаров для работы, развлечений и быта.

Как сделать магнит своими руками — блог Мира Магнитов


Есть несколько способов сделать магнит в домашних условиях. Первый и второй способ подойдут для простых домашних экспериментов и для показа детям. Третий и четвертый способы несколько сложнее и требуют внимательности и осторожности.

Варианты изготовления простейших магнитов своими руками

Способ 1

Для создания магнита потребуются самые простые материалы, имеющиеся под рукой:

  • Медная проволока.
  • Источник постоянного тока.
  • Металлическая заготовка — это и есть будущий магнит.
В качестве заготовки используются элементы из сплавов различных металлов. Проще и дешевле достать ферриты — они представляют собой смесь порошкового железа с различными добавками. Используют и закаленную сталь, поскольку в отличие от ферритов она дольше сохраняет магнитный заряд. Форма заготовок не имеет значения — круглая, прямоугольная или любая другая, так как это не повлияет на ее конечные магнитные свойства.

Как сделать магнит своими руками 675х344 1.jpg
Самый простой электромагнит из проволоки, батарейки и гвоздя

Берем металлическую заготовку и обматываем ее медной проволокой. В общей сложности должно получиться 300 витков. Концы проволоки присоединяем к батарейке или аккумулятору. В результате металлическая заготовка намагнитится. Насколько сильным будет ее поле, зависит от мощности тока, поступающего из источника электропитания.

Способ 2

Сначала нужно сделать индукторную катушку. Внутрь нее и помещается будущий магнит, поэтому используется заготовка компактных размеров. Порядок действий точно такой же, за исключением того факта, что количество витков проволоки должны быть не 300, а 600. Этот метод хорош, если нужно сделать магнит повышенной мощности.

Как сделать магнит своими руками 675х344 3.jpg
Медная проволока на ферритовом магните

Способ 3

Подразумевает использование сетевого электричества. Метод довольно сложен и опасен, поэтому манипуляции должны быть выверенными и осторожными. К стандартному набору приспособлений добавляется плавкий предохранитель, без которого создать магнит не получится. Он-то и подключается к индукторной катушке, внутри которой расположена металлическая заготовка. Предохранитель подключается в сеть. В результате он сгорает, но при этом успевает зарядить находящийся внутри катушки предмет до высоких показательный.

Будьте осторожны! Подобные эксперименты представляют опасность для жизни и нередко приводят к короткому замыканию в электросети! Выбирая подобный способ изготовления магнитных элементов, выполняйте необходимые меры предосторожности и подготовьте огнетушитель, который позволит оперативно погасить возможное возгорание.

Как сделать магнит своими руками 675х344 5.jpg

Оценить результат работы поможет специальный магнитометр — он покажет, насколько сильно полученное изделие.

Как самому сделать самый мощный магнит

Самые мощные магниты в мире делают из редкоземельного металла неодима. Железо, неодим и бор приводят в порошкообразное состояние, смешивают, формуют и спекают в СВЧ-печах. Затем заготовки намагничивают и наносят защитное покрытие из цинка или никеля. Повторить этот процесс дома очень сложно. Но есть и другой способ.

Способ 4


Первый шаг на пути к реализации цели заключается в поиске сломанных жестких дисков от компьютера. При отсутствии в хозяйстве сломанного винчестера можно попробовать отыскать неработающие устройства на авито, дарударе или на других площадках объявлений.

как разобрать жесткий диск 1 675х344.jpg
Магнитная головка в открытом жестком диске

В дисках есть магнитная головка, используемая для управления записью и чтением данных. Второй шаг — полностью разобрать жесткий диск и получить доступ к этой головке. На ней и находятся пластины изогнутой формы из сплава неодима-железа-бора. Их могут приклеить к стальным элементам, но часто они закреплены благодаря собственной магнитной силе. Самые крупные неодимовые магниты попадаются в самых старых винчестерах.

как разобрать жесткий диск 2 675х344.jpg

Конечно, проще всего купить неодимовый магнит нужной формы и силы. С другой стороны, если у вас в наличии есть несколько неработающих винчестеров, то было бы крайне неосмотрительно их просто выбросить.

Интернет-магазин «Мир Магнитов» предлагает вам купить неодимовые магниты по самым привлекательным ценам. Выбирайте в представленном каталоге подходящие изделия и оформляйте заказ. Покупка готовых изделий с необходимыми параметрами – это всегда проще, быстрее и выгоднее, чем попытки сделать неодимовые магниты самостоятельно.

Как работают магниты | HowStuffWorks

Для работы многих современных электронных устройств необходимы магниты. Эта зависимость от магнитов появилась сравнительно недавно, в первую очередь потому, что большинству современных устройств требуются более сильные магниты, чем те, которые встречаются в природе. Lodestone , разновидность магнетита , является самым сильным магнитом в природе. Он может притягивать мелкие предметы, например скрепки и скобы.

К XII веку люди обнаружили, что могут использовать магнитный камень для намагничивания кусков железа, создав компас .Многократное протирание магнитом железной иглы в одном направлении намагничивало иглу. Затем он выровнялся бы в направлении север-юг, когда был приостановлен. В конце концов, ученый Уильям Гилберт объяснил, что это выравнивание намагниченных игл север-юг произошло из-за того, что Земля вела себя как огромный магнит с северным и южным полюсами.

Объявление

Стрелка компаса не так сильна, как многие из постоянных магнитов, используемых сегодня.Но физический процесс намагничивания стрелок компаса и кусков неодимового сплава по сути тот же. Он основан на микроскопических областях, известных как магнитных доменов , которые являются частью физической структуры ферромагнитных материалов , таких как железо, кобальт и никель. Каждый домен представляет собой крошечный автономный магнит с северным и южным полюсами. В немагнитном ферромагнетике каждый из северных полюсов указывает в случайном направлении. Магнитные домены, ориентированные в противоположных направлениях, нейтрализуют друг друга, поэтому материал не создает результирующего магнитного поля.

В магнитах, с другой стороны, большинство или все магнитные домены направлены в одном направлении. Вместо того чтобы компенсировать друг друга, микроскопические магнитные поля объединяются, чтобы создать одно большое магнитное поле. Чем больше доменов указывает в одном направлении, тем сильнее общее поле. Магнитное поле каждого домена простирается от его северного полюса до южного полюса домена перед ним.

Это объясняет, почему разрушение магнита пополам создает два меньших магнита с северным и южным полюсами.Это также объясняет, почему притягиваются противоположные полюса — силовые линии покидают северный полюс одного магнита и естественным образом входят в южный полюс другого, по сути создавая один более крупный магнит. Подобные полюса отталкивают друг друга, потому что их силовые линии движутся в противоположных направлениях, сталкиваясь друг с другом, а не перемещаясь вместе.

.

Обзор магнитов и магнетизма

Обзор магнитов и магнетизма

Магнитные основы


Что такое магнетизм?

Что такое магнит?

Магнит представляет собой предмет, сделанный из определенных материалов, которые создают магнитные поле. У каждого магнита есть как минимум один северный полюс и один южный. столб.Условно мы говорим, что силовые линии магнитного поля уходят с севера. конец магнита и введите южный конец магнита. Это пример магнитный диполь («ди» означает два, то есть два полюса). Если вы возьмете стержневой магнит и разбейте его на две части, каждая часть снова будет иметь север полюс и южный полюс. Если взять одну из этих частей и разбить ее на два, каждая из меньших частей будет иметь Северный полюс и Южный полюс. Независимо от того, насколько маленькими становятся кусочки магнита, каждый кусок будет иметь Северный полюс и Южный полюс.Не было показано, что можно закончить с одним северным полюсом или одним южным полюсом, который является монополем («моно» означает один или один, то есть один полюс).

История

Древние греки и китайцы открыли что некоторые редкие камни, называемые магнитными камнями, были естественно намагничены. Эти камни могли волшебным образом притягивать маленькие кусочки железа, и их нашли всегда указывать в одном направлении, когда разрешено свободно качаться, подвешенное на кусок веревки.Название происходит от Магнезии, района в Фессалии, Греция.
Несколько ученых с 1600-х годов до наших дней значительно увеличили наш понимание магнитов и их свойств. Обязательно проверьте:
http://www.worldwideschool.org/library/books/hst/biography/FaradayasaDiscoverer/toc.html
http://www.ee.umd.edu/~taylor/frame1.htm
http://www-istp.gsfc.nasa.gov/Education/whmfield.html

Ферромагнетизм

Когда ферромагнитный материал находится рядом с магнит, он будет притягиваться к области большей магнитной поле.Это то, с чем мы наиболее знакомы, когда наш магнит улавливает связка скрепок. Железо, кобальт, никель, гадолиний, диспрозий и сплавы, содержащие эти элементы, проявляют ферромагнетизм из-за способа электронные спины внутри одного атома взаимодействуют со спинами соседних атомов. Они выравниваются, создавая магнитные домены, образующие временный магнит. Если кусок железа находится в сильном магнитном поле, домены в соответствии с полем будут увеличиваться в размере по мере того, как домены перпендикулярно полю уменьшится в размерах.

Диамагнетизм expt.gif (888 bytes)

Когда диамагнитный материал находится рядом с магнит, он будет отталкиваться от области большего магнитного поля, просто напротив ферромагнитного материала. Это выставлено всеми обычными материалы, но очень слабый. Люди и лягушки диамагнитны. Интересный эксперимент, показывающий, что это где лягушка левитирует на вершине очень сильного электромагнита. Металлы, такие как висмут, медь, золото, серебро и свинец, а также многие неметаллы. такие как графит, вода и большинство органических соединений являются диамагнитными.

expt.gif (888 bytes) expt.gif (888 bytes) expt.gif (888 bytes)

Например, вот несколько фотографий очень сильный неодим-железо-борный магнит, сидящий в тарелке с небольшим количеством вода покрывает магнит. Глядя на отражение света выше раковина от поверхности воды, вы можете увидеть, как отражение искажены, потому что вода вогнута прямо над магнитом и плоская где-либо еще. (Нечеткий объект на двух фотографиях справа — это магнит; камера фокусируется на отраженном свете.) Это потому, что магнит оттолкнул воду, так как вода отталкивается сильным магнитным поля.
Также проверьте http://www.exploratorium.edu/snacks/diamagnetism_www/index.html
Вот приспособление с диамагнитными дисками, которое вы можно купить и поэкспериментировать.

Парамагнетизм

Когда парамагнитный материал находится рядом с магнит, он будет притягиваться к области большего магнитного поля, как ферромагнитный материал.Разница в том, что притяжение слабый. Экспонируют материалы, содержащие переходные элементы, редкие элементы земли и элементы актинидов. Жидкий кислород и алюминий примеры парамагнитных материалов.

Для чего используются магниты?

Я позволю вам ответить на этот вопрос. Существуют сотни и сотни вариантов использования, которые вы найдете здесь, на «Человек-Магнит» и в ссылках. Да, некоторые используются для удержания семейное расписание и фотографии на дверце холодильника, но это только один использовать для магнитов.Магниты впервые начали использовать для навигации, так как они всегда будет указывать в направлении север / юг, независимо от погоды был. Дэниел Бун однажды сказал: « Я не могу сказать, что когда-либо потерялся, но я был сбит с толку однажды на три дня . «Возможно, если бы у него был компас, его недоумение продлилось бы всего несколько часов!

По большей части, магниты используются для удержания, разделять, контролировать, перемещать и поднимать продукты, а также преобразовывать электрическую энергию в механическую энергию или преобразовать механическую энергию в электрическую.

Еще несколько необычных применений магнетиков:
охлаждение (см. также Патент # 4107935)
изгиб пучка электронов или протонов в синхротроне

expt.gif (888 bytes) Магниты используется для хранения фотографий. expt.gif (888 bytes) Магазин в центре Диснея, полный магнитов!

Вот список вещей, которые я нашел в дома и в машине, в которой для работы используются магниты или электромагниты:

Вокруг дома:
Наушники
Стереоколонки
Компьютерные колонки
Телефонные аппараты
Звонки для телефона
Трубки СВЧ
Соленоид дверного звонка
Магниты на холодильник для хранения вещей
Уплотнение дверцы холодильника
Съемные аккумуляторные батареи
Головка для записи и чтения гибких дисков
Головка для записи и воспроизведения аудиокассеты
Головка для записи и воспроизведения видеокассет
Магнитная полоса кредитной карты
Катушка отклоняющая ТВ
Катушка размагничивания ТВ
Катушка отклонения монитора компьютера
Головка для записи и чтения с жесткого диска компьютера
Электромагнитный клапан водяного клапана посудомоечной машины
Вес занавески для душа / прикрепить к ванне
Трансформаторы питания

Двигатели для использования в:
Компакт-диск и позиционер головки
DVD-проигрыватель и позиционер головки
Аудиокассета транспортная
VHS кассетный транспорт
Ленточный загрузчик VHS
Вентиляторы для микроволновых печей
Вытяжные вентиляторы кухонные
Двигатель для вывоза мусора
Посудомоечная машина
Насос
Таймер
Холодильник
Компрессор
Самосвал льдогенератора
Отстойник
Печь
Воздуходувка
Выхлоп
Устройство открывания гаражных ворот
Стиральная машина
Насос и мешалка
Таймер
Сушилка для белья
Таймер
Барабан токарный
Вытяжной вентилятор для ванной
Электрическая зубная щетка
Потолочный вентилятор
Вибратор для пейджера или сотового телефона
Часы (не заводные и не жидкокристаллические)
Компьютер
Вентиляторы охлаждения
Вертушка для гибких дисков
CD-вертушка
DVD-проигрыватель
Вращатель жесткого диска
Консервный нож
Мотор
Магнит держателя крышки

Вещи в машине:
Стартер
Сцепление кондиционера
Электродвигатель вентилятора салона
Электрические дверные замки
Электродвигатель стеклоочистителя
Электродвигатель стеклоподъемника
Электродвигатель регулятора бокового зеркала
Двигатель проигрывателя компакт-дисков
Двигатель магнитофона
Магнитофон и воспроизводящие головки
Датчики оборотов двигателя
Генератор
Реле стартера
Электродвигатель насоса омывателя лобового стекла

Вы можете найти больше?

Как узнать больше

Узнать больше о магнитах и магнетизм, вам следует потратить некоторое время на чтение статей о магнитах в энциклопедиях дома или в Интернете, другие связанные веб-сайты и другие книги. При поиске статей вот несколько предложений по ключевым словам, которые можно использовать в поиск (ссылки на Википедию):

Три статьи с хорошим обзором магнитов:
magn_story01.pdf
magn_story02.pdf
magn_story03.pdf

Введите одно из слов из списка в поле Google выше. Это будет перенесет вас на еще несколько сайтов.
Вы также можете проверить энциклопедию Britannica (возможно, вам потребуется стать участником, чтобы получить доступ к полному статьи).


.

Магнетизм для детей — Простое введение

Криса Вудфорда. Последнее изменение: 25 октября 2019 г.

Наука — это наше понимание того, как мир работает — и в целом мир работает хорошо понимаем мы это или нет. Возьмем магнетизм , для пример. Люди знали о магнитах тысячи лет и они почти столько же используют их практически как компасы.Древние греки и римляне знали не хуже нас этот магнит ( богатый железом минерал) может притягивать другие куски железа, в то время как древние китайцы делали магнитные компасы с замысловатой деревянные инкрустации для практики фен-шуй (искусство тщательно обставляя комнату) за тысячи лет до интерьера к нам присоединились дизайнеры. Наука иногда может медленно догнать: мы только действительно узнали, как работает магнетизм, в прошлом веке, с тех пор, как мир внутри атомов был впервые открыт и исследован.

Фото: Типичный подковообразный магнит. Видите след коричневой ржавчины на верхней части верхней «ножки» магнита? Это происходит потому, что магнит сделан из железа, которое ржавеет во влажном воздухе.

Что такое магнетизм?

Фото: Магнитное поле между противоположными полюса двух стержневых магнитов, которые сильно притягиваются друг к другу. Мы не можем обычно видны магнитные поля, но если посыпать железные опилки (крошечные кусочки, струженные напильником с железного прутка) на лист бумаги и удерживайте над магнитами вы можете видеть поле внизу.фото любезно предоставлено Wikimedia Commons (где вы найдете увеличенную версию этого изображения).

Игра с магнитами — одно из первых направлений науки. дети обнаружить. Это потому, что магниты просты в использовании, безопасны и весело. Они также довольно удивительны. Помните, когда вы впервые обнаружили, что два магнита могут соединяться и склеиваться, как клей? Помните силу, когда вы держали два магнита близко и чувствовал, что они либо притягивают (притягивают к одному другой) или репел (отталкивать)? Одна из самых удивительных вещей в магниты — это способ, которым они могут притягивать другие магниты (или другие магнитные материалов) «на расстоянии», невидимо, через то, что мы называем Магнитное поле .

Древним людям магнетизм, должно быть, казался магией. Тысячи лет спустя мы понимаем, что происходит внутри магнитного материалы, как их атомная структура вызывает их магнитные свойства, и как электричество и магнетизм действительно всего два Стороны одной монеты: электромагнетизм . Когда-то ученые сказал, что магнетизм — это странная невидимая сила притяжения между определенные материалы; сегодня мы с большей вероятностью определим это как силу создается электрическими токами (сами вызваны движущимися электронами).

Что такое магнитное поле?

Фото: красочный способ визуализировать невидимое магнитные поля с помощью программы компьютерной графики, разработанной в Лос Национальная лаборатория Аламоса. На этой трехмерной диаграмме высота а цвет пиков показывает напряженность магнитного поля в каждой точке. Фото любезно предоставлено США Министерство энергетики.

Предположим, вы поместили стержневой магнит (в форме прямоугольник, иногда с северный и южный полюса окрашены в разные цвета) или подкова магнит (согнутый в П-образную форму) на стол и поместите рядом железный гвоздь.Если вы нажмете магнит медленно к гвоздю, наступит момент, когда гвоздь перепрыгивает и прилипает к магниту. Вот что мы подразумеваем под магниты, имеющие невидимое магнитное поле, которое распространяется на все вокруг них. Другой способ описать это — сказать, что магнит может «действовать на расстоянии»: он может вызывать толкающую или тянущую силу на другие объекты это на самом деле не трогает).

Магнитные поля могут проникать сквозь любые материалы, но не просто воздух. У вас, вероятно, есть маленькие записки, приклеенные к дверце холодильника с яркими магнитами, чтобы вы могли видеть, что магнитные поля режут через бумагу.Возможно, вы проделали фокус, используя магнит взять длинную цепочку скрепок, каждая из которых намагничивает следующий. Этот небольшой эксперимент говорит нам, что магнитное поле может проникать сквозь магнитные материалы, такие как железо.

Как мы можем измерить магнетизм?

Сила поля вокруг магнита зависит от того, насколько близко вы получить: он самый сильный в непосредственной близости от магнита и быстро падает, когда вы уходите. (Вот почему небольшой магнит на вашем столе должен быть достаточно близко к вещи, чтобы привлечь их.) Измеряем напряженность магнитного поля в единицах гаусс и тесла (современная единица СИ, названная в честь пионера электричества Николы Тесла, 1856–1943). Интересно отметить, что сила Магнитное поле Земли очень слабое — примерно в 100–1000 раз слабее типичного бара или магнита на холодильник. На Земле гравитация, а не магнетизм сила, которая прижимает вас к полу. Мы бы заметили магнетизм Земли гораздо больше, если бы его гравитация не была такой сильной.

Диаграмма: Сравнение силы некоторых «повседневных» источников магнетизма. Обратите внимание, что вертикальная шкала логарифмическая : каждый шаг вверх по шкале означает силу магнитного поля увеличилось в десять раз. Здесь главное отметить, насколько слабая Земля магнетизм (зеленый блок в крайнем левом углу) по сравнению со всем остальным, с чем мы обычно сталкиваемся (не говоря уже о гигантских магнитах, используемых в больницах и лабораториях). Рекордное лабораторное магнитное поле, показанное справа, Созданная в Японии в апреле 2018 года, она примерно в 24 миллиона раз сильнее магнитного поля Земли.Мои данные для этой диаграммы получены из следующих источников: Земля (goo.gl/TkxfO3), Солнце (goo.gl/8uigAU), бытовая техника (goo.gl/P3l487), холодильник (goo.gl/OhrDKt), небольшой неодимовый ( goo.gl/avODib), свалка (goo.gl/owWZer), МРТ (goo.gl/jQ8cTD), громкоговоритель (goo.gl/oIwNlS), самый большой МРТ (goo.gl/8zkACY), самая большая лаборатория (bit.ly / 2zvH7On). Почти все производит магнетизм — даже наше собственное тело, которое составляет примерно 0,000000001 тесла.

Что такое электромагнит?

Магнит Гомера Симпсона или Микки Мауса, который держит вещи на вашем холодильник это постоянный магнит : он держит магнетизм все время.Не все магниты работают так. Вы можете сделать временным магнит пропускает электричество через моток проволоки, намотанной вокруг железного гвоздя (устройства, которое иногда называют соленоид ). Включите ток и гвоздь становится магнитом; выключите его снова, и магнетизм исчезнет. (Это основная идея дверного звонка с электрическим перезвоном: вы создаете электромагнит, когда нажимаете кнопку, которая натягивает молоток на планку звонка — динь-дон!) Такие временные магниты называются электромагнитами — магнитами. работал электричество — и они намекают на более глубокую связь между электричеством и магнетизм, к которому мы вернемся через мгновение.

Как и постоянные магниты, временные электромагниты бывают разных размеры и сильные стороны. Вы можете сделать электромагнит достаточно мощным, чтобы скрепки с помощью одной 1,5-вольтовой батареи. Используйте гораздо больший напряжение, чтобы увеличить электрический ток, и вы можете построить электромагнит достаточно мощный, чтобы поднять машину. Вот как свалка электромагниты работают. Сила электромагнита зависит от двух главное: величина используемого вами электрического тока и количество раз вы наматываете провод.Увеличьте одно или оба из них, и вы обзавестись более мощным электромагнитом.

Для чего мы используем магниты?

Может быть, вам нравятся магниты; может ты думаешь они скучно! какой вы можете спросить, кроме как в детских фокусах и свалки?

Вы можете быть удивлены, сколько всего вокруг вас работают с помощью магнетизма или электромагнетизма. Каждый электроприбор с электродвигатель в нем (все с электрической зубной щетки на ваша газонокосилка) использует магниты для превращения электричества в движение.Двигатели используют электричество для создания временного магнетизма в катушках проводов. Создаваемое таким образом магнитное поле толкает фиксированное поле постоянного магнита, вращая внутреннюю часть двигателя вокруг на большой скорости. Вы можете использовать это вращательное движение для управления всеми видами машин.

В вашем холодильнике есть магниты удерживая дверь закрытой. Магниты читают и записывают данные (цифровую информацию) на вашем жесткий диск компьютера и на кассете кассеты в старомодных личных стереосистемах.Больше магнитов в вашем Hi-Fi громкоговорители или наушники помогают вернуть сохраненную музыку в звуки, которые вы можете слышать. Если вы больны серьезным внутренним заболеванием, вы можете есть тип сканирования тела, называемый ЯМР (ядерный магнитный резонанс), который рисует мир под вашей кожей, используя образцы магнитных полей. Магниты используются для переработки ваш металлический мусор (стальная еда банки сильно магнитные, но алюминиевые банки для напитков нет, поэтому магнит — это простой способ разделить два разных металлы).

Фото: ЯМР-сканирование, подобное этому, дает детальное изображение тела пациента (или, в данном случае, их голова) на компьютере экрана, используя магнитную активность атомов в их ткани тела.Вы можете увидеть, как пациент входит в сканер вверху. и изображение их головы на экране ниже. Фото любезно предоставлено Клинический центр Уоррена Гранта Магнусона (CC) и США Национальные институты здоровья (NIH).

Какие материалы являются магнитными?

Железо — король магнитных материалов — металл, о котором мы все думаем. когда мы думаем о магнитах. Большинство других распространенных металлов (таких как медь, золото, серебро и алюминий), на первый взгляд, немагнитные и большинство неметаллов (включая бумагу, дерево, пластик, бетон, стекло, и текстиль такой как хлопок и шерсть) тоже немагнитны.Но железо не единственное магнитный металл. Никель, кобальт и элементы, входящие в состав Периодическая таблица (упорядоченный химики используют для описания всех известных химических элементов) известный как редкоземельных металлов (особенно самарий и неодим) тоже делают добро магниты. Некоторые из лучшие магниты — это сплавы (смеси) эти элементы с одним другой и с другими элементами. Ферриты (соединения из железа, кислород и другие элементы) также делают превосходные магниты. Магнитный камень (который также называют магнетитом) является примером феррита, который обычно встречается внутри Земли (имеет химическую формулу FeO · Fe2O3).

Такие материалы, как железо, превращаются в хорошие временные магниты, когда вы кладете магнит рядом их, но, как правило, теряют часть или весь свой магнетизм, когда вы принимаете магнит снова прочь. Мы говорим, что эти материалы магнитомягкие. Напротив, сплавы железа и редкоземельных металлов сохраняют большую часть их магнетизм, даже если вы удалите их из магнитного поля, поэтому из них получаются хорошие постоянные магниты. Мы называем эти материалы магнитно жесткий .

Верно ли, что все материалы либо магнитные, либо немагнитный? Раньше люди так думали, но теперь ученые знают, что материалы, которые мы считаем немагнитными, также подвержены магнетизму, хотя крайне слабо.Степень намагничивания материала равна назвал свою восприимчивость .

Как разные материалы реагируют на магнетизм

Ученые используют несколько разных слов, чтобы описать, как материалы ведут себя когда вы подносите их к магниту (это еще один способ сказать, когда вы помещаете их в магнитное поле). Вообще говоря, мы можем разделить все материалы на два вида, называемые парамагнитными и диамагнитны, в то время как некоторые парамагнитные материалы также ферромагнитный.Важно понимать, что на самом деле означают эти сбивающие с толку слова …

Парамагнитный

Сделайте образец магнитного материала и подвесьте его на нитке так, чтобы он болтается в магнитном поле, и он намагнитится и выстроится в линию, так что его магнетизм параллелен полю. Как люди знали тысячи лет, это как именно стрелка компаса ведет себя в магнитном поле Земли. Материалы, которые такое поведение называется парамагнитным. Металлы, такие как алюминий и большинство неметаллов (которые, как вы могли подумать, вовсе не магнитные) являются на самом деле парамагнитен, но так слабо, что мы не замечаем.Парамагнетизм зависит от температуры: чем горячее материал, тем меньше вероятность его воздействия рядом магниты.

Фото: Мы думаем об алюминии (используется в напитках). такие банки) как немагнитные. Это помогает нам разделять на переработку наши алюминиевые банки (которые не прилипают к магнитам) от наших стальных (которые прилипают). По факту, оба материала магнитные. Разница в том, что алюминий очень слабо парамагнитные, а сталь сильно ферромагнитная. Фото любезно предоставлено ВВС США.

Ферромагнетик

Некоторые парамагнитные материалы, особенно железо и редкоземельные элементы. металлов, сильно намагничиваются в поле и обычно остаются намагниченный даже когда поле удалено. Мы говорим, что такие материалы ферромагнитные, что на самом деле просто означает, что они «как магнитные железо ». Однако ферромагнитный материал все равно потеряет магнетизм, если вы нагреете его выше определенной точки, известной как температура Кюри. Железо имеет температуру Кюри 770 ° С (1300 ° F), а для никеля температура Кюри составляет ~ 355 ° C (~ 670 ° F).Если если нагреть железный магнит до 800 ° C (~ 1500 ° F), он перестает быть магнит. Вы также можете разрушить или ослабить ферромагнетизм, если попадете в магнит неоднократно.

Диамагнитный

Мы можем думать о парамагнитных и ферромагнитных материалах как о «любители» магнетизма: в некотором смысле они «любят» магнетизм и отзываются положительно к нему, позволяя себе быть намагниченными. Не все материалы отзываются так восторженно. Если ты повесишь материалы в магнитных полях, они довольно сильно обрабатываются внутри и сопротивляться: они превращаются в временные магниты для сопротивления намагничиванию и слабого отталкивания магнитных поля вне себя.Мы называем эти материалы диамагнитными. вода и много органических (углеродные) вещества, такие как бензол, ведут себя подобным образом. Завяжите диамагнитный материал к нити и подвесить в магнитном поле и он повернется так, что составит угол 180 ° к полю.

Что вызывает магнетизм?

В начале 20 века, прежде чем ученые правильно поняли структура атомов и как они работают, они придумали простую для понимания идею под названием доменная теория для объяснения магнетизма.Немного годы спустя, когда они лучше поняли атомы, они обнаружили, что теория домена все еще работало, но могло быть объяснено на более глубоком уровне теория атомов. Все наблюдаемые нами различные аспекты магнетизма могут можно объяснить, в конечном счете, говоря о доменах, электронах в атомах или и то, и другое. Давайте посмотрим на две теории по очереди.

Объяснение магнетизма с помощью теории доменов

Представьте себе фабрику, которая производит маленькие стержневые магниты и кораблики. их отправляли в школы на уроки естествознания.Представьте парня по имени Дэйв, у которого есть водить свой грузовик, перевозя много картонных коробок, каждая с магнитом внутри, в другую школу. Дэйв не успел подумать, в какую сторону сложены ящики, поэтому он складывает их внутри его грузовик какой-то старый как. Магнит внутри одной коробки может быть указывая на север в то время как тот, что рядом с ним, указывает на юг, восток или запад. В общем и целом, все магниты перемешаны, поэтому, несмотря на то, что магнитные поля утекают из каждого ящика они все нейтрализуют друг друга.

На той же фабрике работает еще один водитель грузовика по имени Билл, который не могло быть иначе.Ему нравится все аккуратно, поэтому он загружает свой грузовик по-другому, аккуратно сложите все коробки так, чтобы они выстроились в одну линию. Жестяная банка вы видите, что будет? Магнитное поле из одного ящика выровняется с поле из всех других ящиков … эффективно разворачивая грузовик в один гигантский магнит. Кабина будет похожа на гигантский северный полюс и в кузове грузовика огромный южный полюс!

То, что происходит внутри этих двух грузовиков, происходит в крошечном масштабе. внутри магнитных материалов. Согласно теории предметной области, что-то как железный пруток содержит множество крошечных карманов, называемых доменами.Каждый домен немного похож на коробку с магнит внутри. Видите, куда мы идем? Железный пруток такой же, как грузовая машина. Обычно все его бортовые «боксы» располагаются случайным образом. и нет общего магнетизма: железо не намагничено. Но расставьте все коробки по порядку, сделайте так, чтобы все они смотрели одинаково, и вы получаете общее магнитное поле: эй, престо, стержень намагничен. Когда вы подносите магнит к немагниченному железному пруту и ​​поглаживаете его систематически и многократно вверх и вниз, то, что вы делаете, переставив все магнитные «ящики» (домены) внутри так, чтобы они указать точно так же.


Теория доменов объясняет, что происходит внутри материалы, когда они намагничены. В немагнитном материале (слева), домены расположены случайным образом, поэтому нет общего магнитного поле. Когда вы намагничиваете материал (справа), поглаживая стержневой магнит над ним несколько раз в одном и том же направлении, домены перестраиваются так их магнитные поля выравниваются, создавая комбинированное магнитное поле в то же направление.

Эта теория объясняет, как может возникнуть магнетизм, но может ли он объяснить? несколько из что мы знаем о магнитах? Если магнит разрезать пополам, мы знайте, что у вас есть два магнита, каждый с северным и южным полюсами.Который имеет смысл согласно теории предметной области. Если разрезать магнит пополам вы получите меньший магнит, который все еще забит доменами, и их можно расположить с севера на юг, как в оригинале. магнит. Как насчет того, как магнетизм исчезает при ударе магнита или нагреть это? Это тоже можно объяснить. Представьте себе фургон, полный упорядоченного коробки снова. Управляйте им хаотично, на очень высокой скорости, и это немного хотелось встряхнуть или постучать. Все коробки будут перемешаны так они сталкиваются по-разному, и общий магнетизм исчезнет.Нагрев а магнит возбуждает его изнутри и перемешивает коробки в так же.

Объяснение магнетизма с помощью атомной теории

Теорию предметной области достаточно легко понять, но это не полный объяснение. Мы знаем, что железные прутья не полны коробок с маленькие магниты — и, если задуматься, попытка объяснить магнит говоря, что он полон более мелких магнитов, на самом деле не является объяснением все, потому что сразу возникает вопрос: какие меньшие магниты из? К счастью, есть еще одна теория, которую мы можем обратиться к.

Еще в 19 веке ученые обнаружили, что могут использовать электричество создает магнетизм, а магнетизм — электричество. Джеймс Клерк Максвелл сказал, что эти два явления действительно были разными аспектами. из то же самое — электромагнетизм — как две стороны такая же бумажка. Электромагнетизм был блестящей идеей, но он было скорее описанием, чем объяснением: он показал, как были вместо того, чтобы объяснять, почему они были туда. Это не было до 20 века, когда позже ученые пришли к пониманию мир внутри атомов, что объяснение электромагнетизм наконец появился.

Мы знаем, что все состоит из атомов, а атомы состоят из центральный кусок материи, называемый ядром. Мельчайшие частицы называют электроны вращаться вокруг ядра по орбите, немного как спутники в небе над нами, но они одновременно вращаются вокруг своей оси (просто как волчки). Мы знаем, что электроны переносят электрические токи (потоки электричества), когда они проходят материалы, такие как металлы. Электроны — это в некотором смысле крошечные частицы электричества. Теперь снова в 19 века ученые знали, что движение электричества заставляет магнетизм.В 20 веке стало ясно, что магнетизм вызванный движением электронов внутри атомов и созданием магнитных полей все вокруг них. Домены — это фактически группы атомов, в которых вращается электроны создают общее магнитное поле, указывающее в одну сторону или другой.

Работа: Магнетизм вызывается вращением и вращением электронов внутри атомов. Обратите внимание, что это изображение , а не , нарисованное в масштабе: большая часть атома — это пустое пространство, а электроны на самом деле намного дальше из ядра, чем я здесь нарисовал.

Подобно теории предметной области, атомная теория может объяснить многие вещи. мы знаем о магнитах, в том числе о парамагнетизме (способ магнитного материалы совпадают с магнитными полями). Большинство электронов в атоме существует парами, вращающимися в противоположных направлениях, поэтому магнитный эффект один электрон в паре нейтрализует влияние своего партнера. Но если в атоме есть неспаренные электроны (у атомов железа их четыре), эти создают чистые магнитные поля, которые выстраиваются друг с другом и поворачивают весь атом в мини-магнит.Когда ставишь парамагнитный материала, такого как железо, в магнитном поле, электроны меняют свое движение для создания магнитного поля, которое выравнивается с полем вне.

А как насчет диамагнетизма? В диамагнитных материалах нет неспаренных электронов, так что этого не происходит. Атомы обладают небольшим или нулевым общим магнетизмом и меньше подвержены воздействию внешних магнитных полей. Однако электроны, вращающиеся внутри они являются электрически заряженными частицами и, когда они движутся в магнитном поле, они ведут себя как любые другие электрически заряженные частицы в магнитном поле и испытать силу.Это очень незначительно меняет их орбиты, создавая некоторый чистый магнетизм, противодействующий то, что его вызывает (согласно классической теории электромагнитного поля, известной как закон Ленца, что связано с законом сохранения энергии). В результате создаваемое ими слабое магнитное поле противостоит вызывающему его магнитному полю, которое это именно то, что мы видим, когда диамагнитные материалы пытаются «бороться» с магнитным полем, в которое они помещены.

Краткая история магнетизма

  • Древний мир: магнетизм известен древним грекам, римлянам, и китайский.Китайцы пользуются геомантическими компасами (с деревянными надписи в кольцах вокруг центральной магнитной стрелки) в Фэн Шуй. Магниты получили свое название от города Маниса в Турции. когда-то названный Магнезией, где магнитный магнит был найден в земле.
  • 13 век: магнитные компасы впервые используются для навигации в западных странах. Француз Петрус Перигринус (также называемый Питером Марикура) проводит первые надлежащие исследования магнетизма.
  • 17 век: английский врач и ученый Уильям Гилберт (1544–1603) издает «На магнитах» свою монументальное научное исследование магнетизм и предполагает, что Земля — ​​это гигантский магнит.
  • 18 век: англичанин Джон Мичелл (1724–93) и Француз Шарль Огюстен де Кулон (1736–1806) изучает силы магниты могут воздействовать. Кулон также проводит важные исследования электричества, но не может соединить электричество и магнетизм как части одного и того же основное явление.
  • 19 век: датчанин Ганс Кристиан Эрстед (1777–1851), французы Андре – Мари Ампер (1775–1836) и Доминик Араго (1786–1853) и англичанин Майкл Фарадей (1791–1867) исследуют тесная связь между электричеством и магнетизмом. Джеймс Клерк Максвелл (1831–1879) публикует относительно полную объяснение электричества и магнетизма (теория электромагнетизм) и предполагает, что электромагнитная энергия распространяется в волны (открывающие путь к изобретению радио). Пьер Кюри (1859–1906) демонстрирует что материалы теряют свой магнетизм выше определенной температуры (теперь известной как Кюри температура). Вильгельм Вебер (1804–1891) разрабатывает практические методы обнаружения и измерения напряженности магнитного поля.
  • 20 век: Поль Ланжевен (1872–1946) подробно описывает Работа Кюри с теорией, объясняющей, как на магнетизм влияет тепло. французский язык физик Пьер Вайс (1865–1940) предлагает есть частицы, называемые магнетронами, эквивалентные электронам, которые вызывают магнитное свойства материалов и излагает теорию магнитных доменов. Два американских ученых, Самуэль Абрахам Гоудсмит (1902–78) и Джордж Юджин Уленбек (1900–88), показывают, как магнитные свойства материалы возникают в результате вращательного движения электронов внутри них.
.

Simple English Wikipedia, бесплатная энциклопедия

Магнит — особый металл. Когда магнит приближается к особому виду металла или других магнитов, а соприкасающиеся полюса (стороны) противоположны, он будет тянуть или притягивать другой металл или магнит ближе. Кроме того, если два полюса совпадают, два магнита будут отталкиваться, или отталкивать друг от друга. Это называется магнетизм . Магниты могут превращать некоторые другие металлы в магниты, когда они трятся друг о друга.

Мягкие магниты (или непостоянные магниты) часто используются в электромагнитах. Они увеличивают (часто в сотни или тысячи раз) магнитное поле провода, по которому проходит электрический ток и который намотан на магнит. Поле «мягкого» магнита увеличивается с током.

Постоянные магниты обладают ферромагнетизмом. Они встречаются в естественных условиях в некоторых породах, особенно в магнитах, но в настоящее время их обычно производят. Магнетизм магнита уменьшается при нагревании и увеличивается при охлаждении.Он должен быть нагрет примерно до 1000 градусов Цельсия (1830 ° F). Одинаковые полюса (S-полюс и S-полюс / N-полюс и N-полюс) будут отталкивать друг друга, в то время как разные полюса (N-полюс и S-полюс) будут притягиваться друг к другу.

Магниты притягиваются только к особым металлам. Железо, кобальт и никель обладают магнитными свойствами. Металлы, содержащие железо, хорошо притягивают магниты. Сталь одна. Такие металлы, как латунь, медь, цинк и алюминий, не притягиваются к магнитам. Немагнитные материалы, такие как дерево и стекло, не притягиваются к магнитам, поскольку в них нет магнитных материалов.

Неодимовые железо-борные магниты и магниты Alnico — это два вида постоянных магнитов.

Натуральные / постоянные магниты не являются искусственными. Это своего рода камень, называемый магнитом или магнетитом.

Компас использует магнитное поле Земли и указывает на северный магнитный полюс. Северная сторона магнита притягивается к южной стороне другого магнита. Однако северная сторона компаса указывает на северный полюс, это может означать только то, что «северный полюс» на самом деле является магнитным югом, а «южный магнитный полюс» на самом деле является магнитным севером.

Первыми, кто открыл природные магнитные породы, были китайцы. Сначала китайцы использовали камни для гадания и фокусов. Позже из этих «магнитов» изобрели компас. [1]

Викискладе есть медиафайлы по теме Magnets .
  1. Коул, Джоанн; Брюс Деген (2001). Волшебный школьный автобус, удивительный магнетизм .Соединенные Штаты Америки: Scholastic Inc., стр. 11. ISBN 0-439-31432-1 .
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *