Измерение сопротивление заземления: Измерение сопротивления заземляющего устройства

Содержание

что это такое, чем и как его измерять

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления.

Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства.

В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме.

Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др.

соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

V. Осмотр и измерение сопротивления защитных заземлений [ИНСТРУКЦИЯ ПО БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРОУСТАНОВОК В ГОРНОРУДНОЙ ПРОМЫШЛЕННОСТИ] — последняя редакция

V. Осмотр и измерение
сопротивления защитных заземлений

35. В начале каждой смены обслуживающий персонал должен производить наружный осмотр всех заземляющих устройств. При этом проверяются целостность заземляющих цепей и проводников, состояние контактов и т. д.

Электроустановку разрешается включать только после проверки исправности ее заземляющего устройства. После каждого, даже мелкого, ремонта электрооборудования необходимо проверить исправность его заземления.

36. Не реже одного раза в 3 месяца должен производиться наружный осмотр всей заземляющей сети шахты. Одновременно с этим необходимо измерять общее сопротивление заземляющей сети у каждого заземлителя.

Результаты осмотра и измерений должны заноситься в «Журнал осмотра и измерения заземления» (см. прилагаемую форму 1).

37. При осмотре заземления особое внимание следует обращать на непрерывность заземляющей цепи и состояние контактов. При ослаблении и окислении контактов необходимо зачистить до блеска все контактные поверхности, подтянуть болтовые соединения и проверить механическую прочность контактов.

Механическая прочность контактов должна проверяться до измерения сопротивления заземлений.

38. Не реже одного раза в 6 месяцев главные заземлители, располагаемые в зумпфе и водосборнике, должны подвергаться осмотру и ремонту.

39. Для измерения сопротивления заземляющей сети необходимо установить два вспомогательных заземлителя на расстоянии не менее 15 м от проверяемого заземлителя. Расстояние между вспомогательными заземлителями должно быть также не менее 15 м.

В качестве вспомогательных заземлителей должны применяться стальные (желательно лужевые) стержни с заостренными концами, забиваемые во влажную почву на глубину до 0,8 м.

40. Сопротивление заземления допускается измерять приборами М416/1, М1103 и др. в соответствии с заводскими инструкциями.

41. В том случае, когда один местный заземлитель установлен на группу машин или аппаратов, необходимо измерять сопротивление заземления отдельно каждого аппарата, не отсоединяя его от местного заземлителя. Для этого проводник от прибора должен присоединяться к заземлителю, при этом будет измерено общее сопротивление заземления. Затем проводник от прибора необходимо поочередно присоединять к заземляющему зажиму каждого аппарата. В случае расхождения результатов измерений необходимо еще раз проверить надежность присоединения заземляющих проводников.

Форма 1

              Журнал осмотра и измерения заземления

    Шахта
__________________________________________________________________
    Организация                                      (предприятие)
__________________________________________________________________

    Начат ____________________ 20__ г.
    Окончен __________________ 20__ г.

Характеристика заземления

1. Название заземляемого объекта.

2. Место установки заземляемого объекта.

3. Место установки заземлителя.

4. Конструкция заземлителя.

5. Материал и сечение заземляющих проводников.

6. Характеристика почвы, в которую уложен заземлитель.

Пояснения к ведению журнала

1. При осмотре и проверке заземления электросети и электроустановок, а также устройства заземлителей следует руководствоваться «Инструкцией по устройству, осмотру и измерению сопротивлений шахтных заземлений».

2. Перед пуском вновь установленного электромеханического оборудования или переносного распределительного устройства должно быть произведено измерение сопротивления заземления.

3. Наружный осмотр и измерение сопротивления всей заземляющей системы производятся не реже одного раза в 3 месяца с обязательной регистрацией результатов осмотра и измерений в журнале.

4. Для каждого отдельного заземляемого объекта отводится отдельная страница журнала.

Измерение сопротивления заземления

Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.

Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.

 

Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.

 

Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.

 

 

Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу

 

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  •  Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному  методу

 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему «клещи».
  • К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному  методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему «клещи».
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземления с измерительными клещами и передающими клещами

 

 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить измерительными клещами и подключить  к разъему П1.
  • Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
  • Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
  • Начать измерение, нажав кнопку Rx.

 

Измерение удельного сопротивления грунта

 


Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.

 

Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом.  При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.

 

Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов,  удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.

Измерение сопротивления заземления токовыми клещами, мегаомметром

Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.

Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.

Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.

Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.

Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.

С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.

Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.

Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.

Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).

В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду.

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Сопротивление заземления — OMICRON

Регулярная проверка сопротивления заземления — необходимое условие для гарантии безопасной работы электроустановок. Подавая испытательный ток на противоположный конец линии электропередачи, можно проверить распределение напряжения за пределами испытываемой системы заземления. Особенно при таких повреждениях, как замыкание на линии или удар молнии, в непосредственной близости от электроустановок могут возникать значительные перепады напряжения. Испытание сопротивления заземления — одна из мер, позволяющей гарантировать, что условия заземления соответствуют национальным нормам.
 
Решения компании OMICRON основаны на частотно-селективном способе подачи тестового сигнала, благодаря чему для выполнения измерений не требуется тяжелое и дорогостоящее оборудование. С помощью мобильного вольтметра HGT1 и щупа инженер-испытатель может легко промерить весь участок от системы заземления до границы зоны воздействия напряжения. С помощью встроенного дисплея можно легко распознать, когда измеренный уровень напряжения стабилизируется, и тогда определить увеличение потенциала относительно земли. Для оценки результатов и протоколирования имеется функция автоматизированной оценки согласно IEC и IEEE, а также документирование местоположения с помощью GPS.

Эксперт рекомендует

CPC 100 + CP CU1 + HGT1

CPC 100 представляет собой легкую модульную установку для точных измерений сопротивления заземления в электроустановках среднего и высокого напряжения. Возможность подачи тока в линию электропередачи и работа с токовыми клещами обеспечивают адаптацию к условиям конкретного испытания. С CPC 100 пользователи могут работать либо непосредственно с устройством, или через ПО Primary Test Manager™ (PTM). На CPC 100 напряжение можно измерять прямо на устройстве, а при использовании PTM напряжение измеряется с помощью нашего мобильного портативного вольтметра HGT1.

Запросите инфо

Преимущества данного Решения

Измерение сопротивления заземления с помощью прибора М-416

Для защиты от поражения людей электрическим током корпуса электроприборов необходимо заземлять. Для проверки исправности заземления используются различные приборы. Один из таких приборов – измеритель заземления М416.

Прибор М416

Назначение прибора

Прибор М416 предназначен для проверки заземления оборудования, измерения сопротивления грунта и измерения резисторов от 0,1 Ом до 1 кОм. Измеритель сопротивления заземления сохраняет работоспособность при температурах от -25 до +60 градусов и относительной влажности воздуха до 95% при температуре 35 градусов.

Есть четыре предела измерения прибора, выраженные в омах:

  • 0,1-10;
  • 0,5-50;
  • 2-200;
  • 10-1000.

Электропитание аппарата осуществляется от батареек общим напряжением 4,5В, одного комплекта которых хватает на 1000 измерений. При этом напряжение на клеммах устройства составляет не меньше 13В.

Принцип работы

В основу устройства заложена мостовая схема измерения сопротивлений, в которой вместо одного плеча подключается проверяемый резистор, а вместо другого – комплект сопротивлений с переключателями. При равенстве параметров плечей моста напряжение в диагонали отсутствует, и для проверки сопротивления заземления подбирается эквивалентная величина из комплекта реостатов.

Интересно. Можно сделать электронный замок, работающий на этом принципе. В одно из плечей моста через разъём включается резистор, а сигнал с диагонали подаётся на усилитель или исполнительный механизм. При питании устройства переменным напряжением, кроме резистора, в ключ можно вставить конденсатор.

Устройство прибора

М416 – это переносной прибор, смонтированный в пластмассовом корпусе с откидной крышкой. Сверху на корпусе крепится ремень для переноски устройства, а снизу – закрывающийся крышкой отсек для батарей питания.

Электросхема состоит из трёх частей:

  • Источник питания. Это три батареи общим напряжением 4,5В;
  • Генератор переменного тока. Преобразует постоянное напряжение 4,5В в переменное, которое питает измеритель;
  • Измеритель. В его состав входят электронная схема, усиливающая сигнал и повышающая точность, а также индикатор, отображающий результат.

Структурная схема М-416

Электрическая схема и переключатели установлены на металлической пластине, которая крепится винтами к верхней панели. Там же находятся:

  • переключатель, при помощи которого можно изменить предел измерения;
  • ручка реостата (реохорда), которой производится измерение по мостовой схеме;
  • кнопка питания, подающее напряжение 4. 5В;
  • клеммы для проводов.

Передняя панель

Подготовка к работе

Перед началом работы, согласно инструкции, необходимо проверить исправность элементов питания. Для этого необходимо:

  1. поставить аппарат на ровную поверхность;
  2. установить переключатель для проверки в положение «Контроль 5 Ом»;
  3. нажать кнопку измерения и, вращая ручку «реохорд», добиться показания индикатора «0»; при этом шкала «реохорд» должна показывать 5 Ом;
  4. если на шкале показания не 5 Ом, а другие, то заменить батареи.

Важно! Неисправными батареями пользоваться нельзя – прибор выдаст неточные результаты измерений.

Проведение замеров

При помощи устройства можно проверить сопротивление контура заземления, замерять заземление отдельного аппарата, а также измерить величину активного заземления.

Проверка сопротивления заземления

Для проведения измерений аппарат устанавливается на минимальном расстоянии от места измерения. Это делается для того, чтобы свести к минимуму погрешности, вызываемые сопротивлением проводов. Если это по каким-либо причинам сделать невозможно, то необходимо следующее:

  1. дальние от прибора концы проводов замкнуть между собой;
  2. измерить их сопротивление;
  3. при измерениях от измеренных значений вычесть полученную величину.

Для проверки сопротивления заземления контура в грунт прямыми ударами забиваются вспомогательные электроды. Сухую почву можно увлажнить.

Замер удельного сопротивления грунта производится при помощи двух электродов известных размеров, которые забиваются в грунт.

Для проверки исправности заземления отдельного оборудования один провод подключается к корпусу или металлическим частям, а второй – к контуру заземления или к металлическим частям здания, связь которых с заземлителем проверяется дополнительно.

Подключение прибора по трехзажимной схеме

Измерение активных сопротивлений

Величина активного сопротивления измеряется по тем же правилам, как заземление. Для этого измеряемый объект подключают непосредственно к прибору. Если это сделать нельзя, то необходимо узнать величину сопротивления проводов и учесть её при проведении измерений.

Порядок проведения измерений

Вне зависимости от того, что является предметом измерений, последовательность действий не меняется:

  1. ручка В1 ставится на отметку «X1»;
  2. нажав кнопку, вращать регулятор измерения;
  3. вращая «реохорд», добиться показания стрелки индикатора «0»;
  4. в случае если показания превышают 10 Ом, переключить множитель в большее значение: «X5», «X20» или «X100»;
  5. повторить операции 1-4;
  6. умножить значение «реохорда» на множитель.

Хранение и транспортировка

Хранить устройство необходимо в коробке, предохраняющей аппарат от пыли. Температура в помещении допускается от +10 до +50 градусов. Влажность воздуха не должна превышать 80%. В помещении, в котором осуществляется хранение, должны отсутствовать пары кислоты или другие агрессивные газы.

Во время транспортировки аппарат необходимо упаковать в коробку, защищающую от дождя, снега и других неблагоприятных воздействий

Гарантийный срок работы устройства – 2 года с даты изготовления.

Видео

Оцените статью:

Методы измерения сопротивления заземления

30.04.2020Новости партнеровПросмотров: 821

Применяется заземление для реализования разнообразных планов электросистем. По схеме заземление – это подключение электроцепи к возможностям грунтовой поверхности. Заземление имеет контур, который состоит из электродов, проводников. Он внедрен как можно глубже в землю. Традиционно электротехники проводят измерение сопротивления заземления в функционирующих электросетях или тех, которые только запускаются в эксплуатацию.

Если требуется провести работы для достижения сопротивления равного нулю в цепи заземления, тогда следует произвести следующее:

  • Достичь устранения статических токов;
  • Добиваться лучшего опирающихся возможностей электрической аппаратуры;
  • Предотвратить возникновения различной доли напряжения, которое может возникнуть в электро-технологической машине, являющейся.

Но как показывает практика нулевого результата сложно достигнуть. Если вас заинтересовала данная тема, то узнать подробнее про измерение сопротивления заземления http://testvolt.ru/izmerenie-soprotivleniya-zazemleniya/. Даже если стараться пресечь появление сопротивления в электроде, который уже заземлен, оно в какой-либо мере все равно возникает.

Как определить конкретную величину сопротивления:

  • Состав грунта с разных пластов, которые предоставляют разнообразное сопротивление,
  • В области контакта земли с грунтовым электродом.
  • Сопротивляемость проводящей шины с электродом. Проверка осуществляется в месте контактирования.

Что позволяет пренебречь предыдущими факторами:

  • Если глубоко монтировать зачищенный край электрода в землю.
  • Электрод заземления произведен из металлического материала, который имеет хорошие показатели электрической проводимости.
  • Поверхность земли должна обладать резистивными особенностями.
  • Произведено заземление всего мощного электрического оборудования.

Для последнего пункта требуется протестировать сопротивление каждой в отдельности линий заземления. Полученные результаты анализируются. Если выявлено наличие сопротивления больше 0.1 Ома в деталях электрооборудования, которые могут подвергнуться напряжению и в заземляющих частях, тогда следует проверять причины его появления.

Какие эффективные методы измерения сопротивления заземления имеются:

  1. Трех точечная система для определения. Она основана на возможности уменьшения потенциала. Выполняется на электроде и трех зондах определение силы напряжения, тока. Этот метод может быть эффективен, если один из зондов достаточно углублен в грунт.
  2. Измерение сопротивления заземления методика «62 процента». Она возможна при однородности грунта. Название 62% получено из-за величины, допускаемой при отступе между электродами. Он подходит для заземления одним электродом. Что обеспечит точность показаний – это месторасположение зондов, расположенных на прямом участке.
  3. Простой вариант 2-ух точечной методики. Чтобы реализовать этот способ потребуется внедрить еще одно заземление, кроме того, что уже имеется. Этот метод подойдет для перенаселенных мест. Для него характерно показать результаты обоих электродов заземления. Их следует включать один за другим. Принимается во внимание вычисления показаний шины заземления.
  4. Измерительные работы по 4 точкам. При измерении сопротивления заземления пользуется популярностью дополнительная четвертая точка. Этими возможностями обладают не все приборы. Как проводятся расчеты: на ровной поверхности на одинаковом расстоянии по одной линии размещается 4 электрода. Они должны находиться в рабочем состоянии. К последним электродам требуется подключить генератор тока. Между ними начнет передаваться ток. Его значение заранее известно.

Установлены сроки проверки сопротивления заземления. Они устанавливаются в соответствии с нормативами. Три вида проверок:

  1. Осмотр визуально. Этот вид проверки должен производиться каждые 6 месяцев.
  2. Обследование надежности соединения элементов из металлического материала в местах их стыков. Проводиться один раз в год.
  3. Внеплановые проверки. Проверяется сопротивление заземления переходного типа. Это происходит после реставрирования контуров, в случае внесения в его устройство корректив, при первом запуске системы заземлений в работу.

Расчет удельного сопротивления заземления при плановых и внеплановых проверках производится согласно общих положений. По требованиям правил устройства электроустановок к проведению этих испытаний в определенные периоды, они обязаны замерять сопротивление заземления одним из выбранных способов в установленном порядке.

По данным правилам они обязаны проводиться в этих случаях:

  • пусковые испытания,
  • внеочередные обследования,
  • плановые проверки.

Какая определяется периодичность перечисленных проверок, определяет эксплуатирование систем. При обследовании защитного заземления согласуется через какой период стоит проводить измерения.

Измерительные работы должен проводить специалист в этой области, имеющий соответствующий опыт в проведении операций с электрооборудованием. Например, за работу силовых щитков, обслуживающих жилые дома должны нести ответственность жилищно-коммунальные службы. Любые измерительные работы должны проводиться работниками этих служб после соответствующего к ним обращения.

Электросети – это опасные для жизни человека системы. Напряжение в них около 1000 В. Но несмотря на эту небольшую цифру, для человека она смертельная. Следует соблюдать в обязательном порядке, в соответствии с правилом по безопасности меры предосторожности. Обычному обывателю они неизвестны.

По окончании всего можно сделать такое заключение:

  • требуется проводить периодические проверки, чтобы узнать функционирование системы.
  • Измерение сопротивления заземления следует производить специальными, разнообразными по функциям приборами. Они обеспечат наличие точных показаний.
  • При проведении данных мероприятий нужно придерживаться общепризнанных методов для определения данных измеряемых величин.
Цифровая система измерения сопротивления заземления

Заземление очень важно, поскольку большое количество замыканий на землю возникает из-за грозы или ударов молнии. Термины «заземление» имеют аналогичное значение и означают соединение между защищаемым оборудованием и общей массой земли. Основная цель заземления — свести к минимуму эффект переходного перенапряжения, возникающего из-за удара молнии, в соответствии со стандартами безопасности персонала и для содействия быстрому обнаружению и изоляции участков повреждения.Заземляющие соединения выполняются путем вбивания заземляющего электрода в несколько разных мест земли. Заземляющий электрод представляет собой металлическую пластину, металлическую трубу или металлические проводники, электрически соединенные с землей и заземляемым оборудованием. Материал, используемый для заземляющих электродов, состоит из меди, алюминия, мягкой стали и оцинкованного железа. Факторы, которые влияют на сопротивление заземления электрода или группы электродов, включают состав почвы в непосредственной близости, температуру почвы, влажность почвы и глубину установки электрода.Таким образом, состав грунта свидетельствует о хорошем удельном сопротивлении грунта. Измерение удельного сопротивления почвы обычно выполняется для определения фактического значения удельного сопротивления почвы в изменяющихся погодных условиях, в которых установлен электрод.

Мы знаем, что сопротивление заземляющего электрода зависит от удельного сопротивления почвы, в которую вставлен электрод, и, следовательно, измерение удельного сопротивления почвы является важным параметром при проектировании заземляющих устройств.В этой статье метод падения потенциала используется для измерения эффективного сопротивления клемм заземления.

Сопротивление — это свойство проводника, которое препятствует прохождению электрического тока при приложении разности потенциалов к двум концам этого проводника. Сопротивление — это отношение приложенного напряжения (В) к протеканию электрического тока (I), как определено законом Ома, то есть
В = I x R…. (1)
В — разность потенциалов в проводнике
(Вольт)
I — Ток, протекающий через проводник, в
(Амперы)
R — Сопротивление проводника в (Ом)

Удельное сопротивление почвы меняется широко во всем мире и меняется в течение года.Удельное сопротивление почвы определяется содержанием в ней электролита, который состоит из влаги, минералов и растворенной в нем соли. Это влияет на общее сопротивление подстанции и количество заземляющих электродов, необходимых для достижения желаемых значений сопротивления заземления. Чем ниже удельное сопротивление, тем более короткий электрод требуется для достижения желаемого значения сопротивления заземления. Полезно знать удельное сопротивление на этапе планирования, поскольку оно дает представление о том, сколько электродов требуется.При выборе метода испытания на удельное сопротивление почвы необходимо учитывать такие факторы, как глубина зонда, требуемая длина кабеля, эффективность метода измерения, стоимость и простота интерпретации данных.

На сопротивление заземления любого заземляющего электрода влияет удельное сопротивление окружающей почвы. Это во многом зависит от характера почвы с ее влажностью. Поскольку грунт проявляет сопротивление прохождению электрического тока и не является идеальным проводником.Между заземляющим электродом и «истинной землей» всегда есть сопротивление. Это сопротивление называется сопротивлением заземления электрода и зависит от удельного сопротивления почвы, типа и размера электрода, а также от глубины, на которую он погружен в землю. Наиболее часто используемый метод измерения сопротивления заземления заземляющего электрода — это метод падения потенциала. Это наиболее признанный метод измерения сопротивления земли системы заземления. Этот метод основан на стандартах IEEE.Он подходит для использования в таких условиях, как структура линии передачи.

Компоненты и методы

Метод падения потенциала используется для определения сопротивления заземления. Следующее перечисленное оборудование используется для измерения сопротивления заземляющего электрода.

В этом методе рассматриваются три точки заземляющих контактов, которые состоят из тестируемого заземляющего электрода, токового датчика, который вставляют на достаточном расстоянии от заземляющего электрода, который проходит испытание, и датчика напряжения, который вставляется на некотором расстоянии между тестируемый зонд и токовый зонд.С помощью этого метода цифровой тестер заземления используется для подачи тока в проверяемый заземляющий электрод основания башни. Затем ток течет через землю к удаленному датчику тока и возвращается к тестеру. Когда ток течет через землю, создается падение напряжения. Это падение напряжения пропорционально величине протекающего тока и сопротивлению заземляющего электрода относительно земли. Датчик напряжения использовался для измерения этого падения напряжения, а затем измеритель отображает как величину протекающего тока, так и результирующее падение напряжения.Сопротивление, измеренное в нескольких точках, перемещая зонд напряжения через равные промежутки времени, каждое из них равно 10% расстояния тестируемого зонда и токового зонда. Затем значение сопротивления отображается на дисплее цифрового тестера заземления.

Во время измерения положение токового датчика было перемещено достаточно далеко от тестируемого заземляющего электрода, чтобы датчик напряжения мог находиться за пределами эффективных площадей сопротивления как заземляющего электрода, так и другого испытательного электрода. Это связано с тем, что области сопротивления могут перекрываться, что может вызвать резкое изменение измеренного сопротивления.

Установка

Процедура тестирования

• Три стержня вставляются в землю согласно нормам IEEE.
• Один стержень является эталонным, а два других стержня предназначены для измерения тока и напряжения соответственно.
• Цепь соединяется со стержнями через зажимы.
• После этого включите прибор и снимите показания.
• После одного считывания переместите стержень напряжения и наблюдайте за изменением.
• Для обеспечения точности снимите не менее четырех показаний.
• Таким образом снимаются показания и прибор выключается.

Результаты

Заключение

Измерение сопротивления земли может быть выполнено в выбранных точках на его маршруте. Профиль сопротивления заземления варьируется от 10 Ом до 20 Ом. Идентификация почвы, а также запрограммированные интенсивные полевые измерения удельного сопротивления почвы и системы заземления на выбранных участках доказывают, что значения удельного сопротивления почвы зависят от типа почвы.В каменистых районах сопротивление может быть уменьшено за счет заглубленной сети хорошо спроектированного заземляющего мата или сети заглубленного противовесного заземляющего провода, чтобы уменьшить эффект удара молнии. Для лучшего заземления электрических систем необходимо повысить удельное сопротивление почвы для эффективного заземления системы.


Если вы хотите поделиться мыслями или отзывами, пожалуйста, оставьте комментарий ниже.

Измерение сопротивления изоляции и заземления — узнайте, как измерить сопротивление заземления

Безопасность превыше всего — с этим утверждением согласится любой слесарь, специалист по обслуживанию или любитель DIY.При проектировании электроустановки или оборудования сетевого напряжения следует иметь в виду два термина — сопротивление заземления и сопротивление изоляции . Если мы хотим, чтобы электрические установки или оборудование были безопасными для пользователей, мы должны соблюдать определенные правила, связанные с вышеупомянутыми проблемами.

Сопротивление заземления — правильное заземление повышает безопасность

Заземление в электрических сетях является одним из основных элементов безопасной передачи и использования электроэнергии.Кроме того, это также влияет на эффективность защиты от поражения электрическим током, перенапряжения и молнии. Без эффективной системы заземления мы можем подвергнуться риску поражения электрическим током, не говоря уже о возможном повреждении оборудования. Если ток короткого замыкания не имеет подходящего пути, по которому он может уйти, он найдет другой путь, ведущий через подключенные устройства или, в крайних случаях, через человека.

Измерения сопротивления заземления выполняются для проверки технического состояния установки.Требуются специализированные инструменты и приспособления.

Типы земли

Система заземления — это соединение между электрической установкой или устройством и землей, иначе известное как заземление . По своей задаче мы можем выделить три типа заземления: защитное заземление, рабочее заземление и заземление для защиты от молнии. Причем заземляющие электроды могут быть как искусственными, так и натуральными. К электродам естественного заземления относятся: водопроводные трубы, стальные арматурные элементы или другие строительные элементы. Электроды искусственного заземления включают металлические элементы: кабели, стержни, провода, которые будут помещены в землю. Следует помнить, что металлические элементы, контактирующие с основанием, следует покрыть специальным токопроводящим антикоррозийным покрытием. Заземляющие электроды можно размещать в земле двумя способами — вертикально или горизонтально, что также является одним из параметров, определяющих данный тип конструкции. Заземляющие электроды могут иметь форму одного металлического элемента, в этом случае мы называем это концентрированным заземлением, или нескольких элементов, расположенных в соответствующей конфигурации (заземляющее кольцо, решетчатый или радиальный тип).

Какие факторы влияют на установку заземления?

Сопротивление грунта зависит в основном от одного параметра — удельного сопротивления грунта. Очевидно, что на песчаных почвах (например, на лесных участках) потребуется гораздо больше работы, чем на влажных почвах. Поэтому при проектировании заземляющих электродов рекомендуется заранее проводить измерения удельного сопротивления грунта.

Правильное заземление должно характеризоваться:

  • наименьшее возможное сопротивление,
  • наименьшее возможное изменение сопротивления во времени,
  • Максимальная коррозионная стойкость заземляющих электродов.

На качество заземления влияет множество факторов, но наиболее важными из них являются:

Блуждающие токи (с частотой сети и ее гармониками)

Блуждающие токи являются основным фактором, вызывающим ошибки измерения. В случае возникновения паразитных токов рекомендуется использовать ток (и его гармоники) с частотой, максимально приближенной к параметрам сети, но не одинаковой. На практике выполнить это условие очень сложно, поэтому стоит снабдить себя счетчиком, который позволяет исключить ошибки, возникающие из-за паразитных токов.

Сопротивление вспомогательного электрода

Измерительные электроды, а также паразитные токи могут повлиять на результаты измерения. Чем выше их сопротивление, тем выше будет результат измерения. На практике лица, выполняющие измерения, должны знать значение сопротивления электрода и компенсировать его, погружая электроды глубже или увлажняя землю. Стоит отметить, что качественные счетчики автоматически учитывают сопротивление электродов.

Тип почвы и влажность

Как уже упоминалось выше, на результат измерения довольно сильно влияет тип почвы. Водно-болотные угодья будут характеризоваться гораздо меньшим сопротивлением, чем, например, лесные земли. Также нельзя проводить измерения после дождя, так как вода, поглощенная землей, приведет к ложным результатам измерения.

Проверить диапазон измерителей сопротивления заземления

Методы измерения сопротивления заземления

Существует несколько методов измерения сопротивления заземления , в том числе:

  • Технический метод,
  • Технический метод с использованием зажимов для измерения нескольких заземляющих электродов,
  • Метод двойных зажимов для измерений без вспомогательных электродов,
  • Метод удара.

Кроме того, существует несколько методов измерения:

  • 2-точечный метод (2P): измерение непрерывности защитных соединений и уравнивания потенциалов,
  • 3-точечный метод (3P) — сопротивление измеряется техническим методом,
  • 4-точечный метод — исключает влияние провода, соединяющего измеритель с заземляющим электродом на результат измерения,
  • Трехточечный метод с зажимами — позволяет многократно измерять сопротивление заземления без отключения тестового соединения,
  • Метод двойных зажимов — позволяет измерять сопротивление заземления без вспомогательных электродов.

Трехточечный метод, также известный как метод падения потенциала, является наиболее распространенным методом измерения сопротивления заземления . Он включает размещение токового датчика на определенном расстоянии от заземляющего электрода, а датчики напряжения — на полпути. Важно, чтобы заземляющий электрод и датчики располагались по прямой линии. Во время измерения измеряется падение напряжения на заземляющем электроде и ток, протекающий через него. Сопротивление рассчитывается по закону Ома.Для заземляющих стержней напряжение быстро уменьшается по мере увеличения расстояния между заземляющим электродом и зондами.

Сопротивление изоляции

Второй параметр, который необходимо учитывать для безопасного использования электрического оборудования и установок, — это сопротивление изоляции . Если изоляция кабеля, где бы он ни находилась, повреждена, это может привести к короткому замыканию и повреждению прибора, а в худшем случае, если пользователь прикоснется к оголенному кабелю, может произойти поражение электрическим током.

Периодические испытания и проверка состояния изоляции необходимы, если вы хотите безопасно использовать электрические установки и оборудование. Это важно как для бытовых, так и для промышленных установок, поскольку каждая из них подвержена механическим повреждениям и старению, что может привести к повреждению изоляции.

На что обращать внимание при измерении сопротивления изоляции?

При измерении сопротивления изоляции необходимо обратить внимание на несколько факторов, которые могут помешать измерению.

Влажность входит в число факторов, влияющих на измерения сопротивления изоляции. Утеплитель может поглощать влагу от влажности в разной степени, в зависимости от его типа. Рекомендуется проводить измерения при относительной влажности от 40% до 70%.

Температура — это второй фактор, влияющий на измерение сопротивления изоляции . Сопротивление изоляции уменьшается с повышением температуры, но изменения меняются в зависимости от типа изолятора.Измерения следует проводить при температуре от 10 ° C до 25 ° C.

Испытательное напряжение и время измерения — на измерение сопротивления изоляции также влияют напряжение и время измерения. Поскольку ток утечки не пропорционален напряжению во всем диапазоне, сопротивление изоляции сначала быстро уменьшается, а затем медленнее, пока не стабилизируется. Однако после превышения определенного предельного напряжения, характерного для конкретного изолятора, происходит пробой, и значение сопротивления изоляции очень быстро падает.Стоит знать, что измерения следует проводить при напряжении выше номинального, согласно требованиям PN HD 60364-6: 2016-07

.

Что такое измерение сопротивления изоляции?

К сожалению, простого омметра или мультиметра недостаточно для измерения сопротивления изоляции. Необходимо использовать специализированный счетчик. Проверка сопротивления изоляции может выполняться двумя способами — по точкам и в зависимости от времени.

Проверить диапазон измерителей сопротивления изоляции

Точечное измерение — включает в себя выполнение нескольких измерений в разных частях изоляции.После проведения измерений все результаты следует скорректировать в зависимости от температуры. Многие современные счетчики позволяют делать это автоматически.

Измерение как функция времени — Этот тип теста более точен, поскольку не зависит от температуры. Измерение занимает гораздо больше времени и проводится несколько раз, а сопротивление изоляции определяется по полученным результатам.

Технические измерения — измерения также можно проводить с помощью мегомметра, т.е.е., измеритель, который генерирует собственное испытательное напряжение, или с помощью миллиамперметра (используя сетевое напряжение). Такие измерения не рекомендуются, но если мы хотим их выполнить, помните, что используемое оборудование должно соответствовать европейскому стандарту PN-EN 61557-10: 2013-11.

В итоге, измерения сопротивления заземления и измерения сопротивления изоляции следует проводить периодически, если вы хотите использовать безопасное электрическое оборудование. Такие измерения требуют специального оборудования и должны выполняться людьми с соответствующими знаниями и квалификацией.

4 Важные методы проверки сопротивления заземления

Трехточечный метод является наиболее тщательным и надежным методом проверки; используется для измерения сопротивления заземления установленного заземляющего электрода.

Возможность правильного измерения сопротивления заземления имеет важное значение для предотвращения дорогостоящих простоев из-за перебоев в обслуживании, вызванных плохим заземлением.

Процедуры испытания сопротивления заземления указаны в стандарте IEEE Standard No.81. Ниже рассматриваются четыре наиболее распространенных метода проверки сопротивления заземления, используемых техниками-испытателями:

2-точечный метод (мертвое заземление)

В областях, где установка заземляющих стержней может оказаться непрактичной, можно использовать двухточечный метод.

С помощью этого метода сопротивление двух последовательно соединенных электродов измеряется путем соединения клемм P1 и C1 с тестируемым заземляющим электродом; P2 и C2 подключаются к отдельной цельнометаллической точке заземления (например, водопроводной трубе или строительной стали).

Метод мертвого заземления — это самый простой способ получить показания сопротивления заземления, но он не так точен, как трехточечный метод, и его следует использовать только в крайнем случае, он наиболее эффективен для быстрого тестирования соединений и проводов между точками соединения. .

Примечание: Тестируемый заземляющий электрод должен располагаться достаточно далеко от точки вторичного заземления, чтобы находиться вне его сферы влияния для получения точных показаний.

Двухточечный метод наиболее эффективен для быстрой проверки соединений и проводов между точками соединения.Фото: TestGuy.


Метод трех точек (падение потенциала)

Трехточечный метод — самый тщательный и надежный метод испытаний; используется для измерения сопротивления заземления установленного заземляющего электрода.

Стандарт, используемый в качестве эталона для испытаний на падение потенциала, — это стандарт IEEE 81: Руководство по измерению удельного сопротивления земли, импеданса земли и потенциалов поверхности земли в системе заземления.

В тестере с четырьмя выводами выводы P1 и C1 на приборе соединяются перемычками и подключаются к тестируемому заземляющему электроду, в то время как эталонный стержень C2 вводится в землю прямо как можно дальше от проверяемого электрода.Опорный потенциал P2 затем вбивается в землю в заданном количестве точек примерно по прямой линии между C1 и C2. Показания сопротивления регистрируются для каждой точки P2.

Метод испытания на падение потенциала. Фото: Megger

Измерения нанесены на кривую зависимости сопротивления от расстояния. Правильное сопротивление заземления определяется по кривой для расстояния, которое составляет примерно 62% от общего расстояния между C1 и C2. Существует три основных типа метода падения потенциала:

  • Полное падение потенциала: Ряд испытаний проводится с разными интервалами P, и строится полная кривая сопротивления.
  • Упрощенное падение потенциала: Три измерения выполняются на определенных расстояниях P, и для определения сопротивления используются математические вычисления.
  • 61,8 Правило: Одиночное измерение выполняется с P на расстоянии 61,8% (62%) расстояния между C1 и C2.

Примечание: Испытание на падение потенциала и его модификации — единственный метод наземных испытаний, соответствующий IEEE 81.


4-точечный метод

Этот метод чаще всего используется для измерения удельного сопротивления грунта , что важно для проектирования систем электрического заземления.В этом методе четыре электрода небольшого размера вбиваются в землю на одинаковой глубине и на одинаковом расстоянии друг от друга — по прямой линии — и проводится измерение.

Количество влаги и солесодержание почвы коренным образом влияет на ее удельное сопротивление. На измерения удельного сопротивления почвы также будут влиять существующие поблизости заземленные электроды. Закопанные в земле проводящие объекты, контактирующие с почвой, могут сделать показания недействительными, если они находятся достаточно близко, чтобы изменить схему протекания испытательного тока. Это особенно актуально для больших или длинных объектов.

Четырехштырьковый метод Веннера, как показано на рисунке выше, является наиболее часто используемым методом для измерения удельного сопротивления почвы. Фото: Викимедиа


Метод зажима

Метод зажима уникален тем, что дает возможность измерять сопротивление без отключения системы заземления. Это быстро и легко, а также включает в себя измерения сопротивления соединения с землей и общего сопротивления заземляющего соединения.

Метод зажима уникален тем, что дает возможность измерять сопротивление без отключения системы заземления.Фото: AEMC

Измерения производятся путем «зажатия» тестера вокруг проверяемого заземляющего электрода, аналогично тому, как вы измеряете ток с помощью мультиметровых токовых клещей.

Тестер подает известное напряжение без прямого электрического соединения через передающую катушку и измеряет ток через приемную катушку. Испытание проводится с высокой частотой, чтобы трансформаторы были как можно более компактными и практичными.

Чтобы метод фиксации был эффективным, должна быть установлена ​​полная цепь заземления.Тестер измеряет полный путь сопротивления (контур), по которому проходит сигнал. Все элементы петли измеряются последовательно. Оператору важно понимать ограничения метода тестирования, чтобы он / она не злоупотребляли прибором и не получали ошибочные или вводящие в заблуждение показания.

Некоторые ограничения метода фиксации включают:

  1. эффективен только в ситуациях с несколькими параллельными заземлениями.
  2. нельзя использовать на изолированном основании, не применимо для проверки установки или ввода в эксплуатацию новых объектов.
  3. нельзя использовать, если существует альтернативный возврат с более низким сопротивлением, не связанный с почвой, например, с вышками сотовой связи или подстанциями.
  4. результатов должны быть приняты по «вере».

Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы оставить комментарий.

Сопротивление заземления — почему это важно и как его измерить.

Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей.

Важность заземления или заземления

Зачем нужно заземление:

Плохое заземление не только способствует ненужному простою, но и отсутствие хорошего заземления также опасно и увеличивает риск отказа оборудования. Без эффективной системы заземления мы могли бы подвергнуться риску поражения электрическим током, не говоря уже о приборных ошибках, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных прерывистых дилемм.

Что такое электрическая земля или земля:

NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как: «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или с некоторым проводящим телом, которое служит вместо земли.”

Виды электрического заземления:
  • Заземление
  • Заземление оборудования.

Заземление — это намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю. Заземление оборудования обеспечивает заземление корпуса рабочего оборудования.
Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии.

Стандарты электрического заземления

NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше. Код NEC (1987, 250-83-3) требует минимальной длины заземляющего электрода 2,5 метра (8,0 футов) для контакта с почвой.

Методы измерения сопротивления заземления

Доступны четыре типа методов заземления:

  1. Удельное сопротивление грунта (с использованием столбов)
  2. Падение потенциала (с использованием столбов)
  3. Селективное (с использованием 1 зажима и столбов)
  4. Бесстоечный (только с использованием 2 зажимов)

Измерение падения потенциала сопротивления земли :

Метод испытания на падение потенциала используется для измерения способности системы заземления или отдельного электрода рассеивать энергию с объекта.

Как работает тест на падение потенциала?

Сначала необходимо отсоединить интересующий заземляющий электрод от его подключения к объекту. Во-вторых, тестер подключается к заземляющему электроду. Затем для трехполюсного испытания на падение потенциала два заземляющих стержня помещают в почву на прямой линии — вдали от заземляющего электрода. Обычно достаточно расстояния 20 метров (65 футов). Затем нажмите кнопку пуска на мегомметре.

Измерение сопротивления заземления методом падения потенциала

Дополнительная литература

Измерение сопротивления заземления — метод падения потенциала и тестер заземления

Заземление каждой части электрического оборудования очень важно как для бытового, так и для промышленного применения.Поэтому измерение сопротивления заземляющего соединения или заземляющей пластины или заземляющего электрода очень важно по следующим причинам:

  • С точки зрения безопасности, каждое электрическое оборудование должно быть должным образом заземлено в распределительной системе. При подключении к заземляющему электроду все части электрического оборудования находятся под потенциалом земли. Это обеспечивает путь с низким сопротивлением для токов утечки или короткого замыкания в корпусе оборудования. Таким образом, обеспечивается безопасность человека от поражения электрическим током в случае внезапного прикосновения к оборудованию.
  • Перенапряжения, индуцированные в цепи из-за разряда молнии или скачков напряжения, или из-за внезапного изменения используемого напряжения (скачки напряжения), могут вызвать служебное повреждение оборудования. Таким образом, очень важно защитить оборудование от чрезмерного перенапряжения, которое может быть достигнуто путем заземления.
  • В трехфазных цепях нейтраль заземляется для стабилизации потенциала других цепей. Энергосистема с заземлением нейтрали — это форма защиты как для оборудования, так и для персонала.

Следовательно, важно позаботиться о сопротивлении между заземляющим электродом и землей вокруг него. Для надежной защиты значение сопротивления должно быть очень низким. Однако сопротивление зависит от различных факторов, таких как форма и материал электрода, глубина электрода, вставленного в почву, и удельное сопротивление почвы, окружающей электрод, которые, в свою очередь, зависят от присутствующей в нем влаги.

Поэтому сопротивление заземляющих электродов необходимо периодически проверять для обеспечения эффективного заземления.Давайте посмотрим на метод, используемый для измерения сопротивления заземляющего электрода, предлагаемого для протекания тока в землю.

Падение потенциального метода:

В этом методе используются три электрода, один из которых испытывается, а два других являются вспомогательными. Ниже показана принципиальная схема метода падения потенциала.

На приведенном выше рисунке E — проверяемый заземляющий электрод, а C и B — вспомогательные электроды. Электрод C расположен от электрода E таким образом, чтобы две области сопротивления (область сопротивления электрода — это область вокруг него, до которой существует градиент напряжения в земле) не перекрывают друг друга, а B располагается между E и C.

Электропитание подается между заземляющим электродом E и вспомогательным электродом C. Теперь измеряется падение напряжения между электродами E и B. Выражение для измерения сопротивления заземления R E определяется как,

Перемещая электрод B в положения B 1 и B 2 , можно проверить области сопротивления электродов E и C, чтобы они не перекрывались. Измеряется сопротивление в этих положениях (т. Е. В положениях B, B 1 и B 2 ) и вычисляется среднее значение сопротивления заземления основного электрода E.Кроме того, значения сопротивлений, полученные в трех положениях, примерно одинаковы и находятся в хорошем соответствии. Ниже показана кривая для измерения сопротивления в различных положениях B от E.

Здесь измеренное сопротивление будет правильным, когда электрод B находится на таком расстоянии от E, что сопротивление R E лежит на горизонтальной части. Также при низких значениях сопротивления неправильное положение тестируемого электрода может привести к ошибкам.


Используя тестер заземления:

Тестер заземления — это устройство, используемое для измерения сопротивления почвы или сопротивления земли.Он похож на мегомметр (используемый для измерения высокого сопротивления) с дополнительными функциями. Прибор напрямую показывает сопротивление заземляющего электрода протеканию тока. Тестер заземления снабжен тремя клеммами для подключения трех электродов (один электрод заземления и два вспомогательных электрода), как и при методе падения потенциала.

Когда генератор тестера заземления работает на номинальной скорости. Катушки потенциала и тока тестера заземления несут напряжение и ток, соответственно, в зависимости от сопротивления заземления.Таким образом, стрелка отклоняется и показывает сопротивление заземления, которое определяется отношением потенциального напряжения катушки к току катушки тока.


Принцип работы тестера заземления

— ваше руководство по электрике

Привет друзья,

В этой статье я опишу принцип работы тестера заземления и способ измерения с его помощью сопротивления заземления. Надеюсь, вы найдете его информативным и полезным.

Сопротивление земли можно измерить с помощью мегомметра заземления или мегомметра .

Мегомметр заземления — это, по сути, омметр с прямым отсчетом показаний и генератор с ручным приводом, который подает испытательный ток. Омметр состоит из двух катушек (токовая катушка и катушка давления), установленных под фиксированным углом друг к другу на общей оси.

Имеет четыре клеммы P 1 , C 1 , P 2 и C 2 . Его выводы P 1 и C 1 замкнуты накоротко. Этот перекресток составляет общую точку.Следовательно, он имеет три клеммы E (общая точка), P (P 1 ) и C (C 1 ) снаружи.

Для измерения сопротивления заземления мегомметром для проверки заземления тестируемый заземляющий электрод подключается к его клемме E, а клеммы P и C подключаются к вспомогательным электродам через соединительный провод с незначительным сопротивлением.



Когда ручка измерителя заземления мегомметр вращается с постоянной скоростью, она напрямую показывает сопротивление заземления на шкале или калиброванной шкале.Набор показаний получают, закапывая электрод P в различных положениях.

Во-первых, его можно закопать между заземляющим электродом и токовым электродом C . Во-вторых, его следует отодвинуть на 15 метров от заземляющего электрода с противоположной стороны от токового электрода C . Затем его следует закопать на расстоянии 15 метров от токового электрода C . Среднее значение трех показаний дает сопротивление между заземляющим электродом и почвой.

Сопротивление между заземляющим электродом (т.е.е. плита или труба и т. д.), и почва не остается постоянной из-за переменных условий влажности. Чтобы обеспечить хорошее и эффективное заземление, систему заземления следует время от времени проверять, а содержание влаги в близлежащей почве следует увеличивать путем добавления воды.

Для электростанций сопротивление заземления должно быть менее 1 Ом. А для подстанций должно быть меньше 5 Ом. Следует отметить, что сопротивление заземления должно быть как можно меньше по двум причинам
:

  • В случае неисправности, когда металлический каркас соприкасается с токоведущим проводом или фазным проводом, через заземляющее соединение будет протекать ток, который вызывает разность потенциалов между металлическим каркасом и землей.Эта разность потенциалов должна быть очень низкой, потому что она воздействует на человека, который коснется металлического каркаса в таком неисправном состоянии.
  • Низкое сопротивление заземления вызовет протекание высокого тока при возникновении короткого замыкания. Сильный ток приведет к расплавлению предохранителя за очень короткое время, что приведет к отключению неисправного устройства от линий, что обеспечит безопасность.

Заземление электроустановки очень важно по следующим причинам:

  • Все части электрооборудования, такие как кожух машин, кожух выключателей, баки трансформаторов, должны быть соединены с заземляющим электродом.Это делается для защиты различных частей установки, а также людей, работающих, от повреждений в случае выхода из строя изоляции системы в любой точке.
  • При подключении этих частей к заземленному электроду создается непрерывный путь с низким сопротивлением для протекания токов утечки на землю. Этот ток приводит в действие защитные устройства, и, таким образом, неисправная цепь изолируется в случае возникновения неисправности.
  • Заземляющий электрод гарантирует, что в случае перенапряжения в системе из-за разряда молнии или других неисправностей системы, части оборудования, которые обычно не работают, не достигают опасно высоких потенциалов.
  • В трехфазной цепи нейтраль системы заземлена для стабилизации потенциала цепи относительно земли.

Заземляющий электрод будет работать только до тех пор, пока он имеет низкое сопротивление относительно земли и выдерживает большие токи без ухудшения характеристик.

Поскольку величину тока, которую будет проводить заземляющий электрод, трудно измерить, значение сопротивления заземления считается достаточно надежным показателем его эффективности.Сопротивление заземляющего электрода должно обеспечивать хорошую защиту, и его необходимо измерить.

Основными факторами, от которых зависит сопротивление любой системы заземления, являются:

  • Форма и материал заземляющего электрода используемых электродов.
  • Глубина в грунте, на которую зарыты электроды.
  • Удельное сопротивление почвы и в окрестности электродов.

Удельное сопротивление почвы непостоянно, но варьируется от одного типа почвы к другому.Количество влаги, присутствующей в почве, влияет на ее удельное сопротивление заземляющего электрода, которое не является постоянным фактором, но подвержено сезонным колебаниям. Это требует периодических проверок, чтобы система заземления оставалась достаточно эффективной.

Спасибо за то, что прочитали о принципах работы и конструкции тестера заземления . Вы можете задать вопросы, если таковые имеются, в разделе комментариев.

Электроизмерительные инструменты | Все сообщения

© http: // www.yourelectricalguide.com/ принцип работы и конструкция тестера заземления.

Как измерить сопротивление заземления?

I Введение

Методы измерения сопротивления заземления обычно следующие: двухлинейный метод, трехлинейный метод, четырехлинейный метод, метод одиночного зажима и метод двойного зажима. У каждого свои особенности. В реальном тесте мы должны выбрать правильный метод тестирования, чтобы результаты теста были точными.

В этой статье в основном будут представлены несколько методов тестирования сопротивления заземления , в том числе принцип тестирования, использование тестера сопротивления заземления и т. Д.

Это видео познакомит с функцией сопротивления заземления и объяснит важность заземления, факторов окружающей среды и тестирования.

Каталог

II Что такое сопротивление заземления

Сопротивление заземления — это сопротивление, возникающее, когда ток течет от заземляющего устройства к земле, а затем течет через землю к другому заземляющему телу или распространяется на расстояние. Сопротивление заземления Значение отражает хорошую степень контакта между электрическим устройством и землей » и масштаб сети заземления.

Сопротивление заземления — важный параметр, используемый для измерения хорошего состояния заземления. Это сопротивление, при котором ток течет от заземляющего устройства к земле, а затем течет к другому телу земли или к дальнему концу. И он включает в себя сопротивление заземляющего провода и самого заземляющего тела, контактное сопротивление между заземляющим телом и сопротивлением земли, а также сопротивление земли между двумя заземляющими телами или сопротивление заземления заземляющего тела на бесконечное расстояние. .Величина сопротивления заземления напрямую отражает хорошую степень контакта электрического устройства с «землей», а также отражает масштаб сети заземления.

Концепция сопротивления заземления подходит только для небольшой сети заземления. Однако с увеличением площади земли сети заземления и уменьшением удельного сопротивления почвы влияние индуктивной составляющей в импедансе земли становится все больше и больше, и крупномасштабная сеть заземления должна быть спроектирована с учетом сопротивление заземления.

Рисунок 1. Проверка сопротивления заземления

III Метод вольтметра-амперметра

(1) Область применения: подходит для измерения заземляющих устройств с сопротивлением менее 0,5 Ом.

(2) При использовании одного заземляющего электрода измеряемый одиночный заземляющий электрод, токовый заземляющий электрод и заземляющий электрод по напряжению должны быть расположены по прямой линии 20–40 м.

(3) Если заземляющим устройством является сеть заземления, измеренная сеть заземления G, токовый заземляющий электрод C и заземляющий электрод P по напряжению также должны быть расположены по прямой линии.Расстояние между токовым заземляющим электродом C и краем измеряемой заземляющей сетки G должно быть D GC = (4-5) D, а расстояние между измеряемой заземляющей сеткой G и заземляющим электродом P должно быть D GP = 90,5-0,618)

(4) D — максимальная длина диагонали заземляющей сетки G, которая должна быть измерена. Заземляющий электрод напряжения P размещается в областях с фактическим нулевым потенциалом токового поля в земле. Чтобы найти фактические области нулевого потенциала токового поля в земле, заземляющий электрод P можно переместить три раза в направлении подключения ГХ.Расстояние каждого хода составляет около 5% от DGC. Измерьте напряжение между PG.

(5) Если погрешность между тремя показаниями вольтметра не превышает 5%. Среднее положение можно использовать как положение электрода напряжения для измерения.

(6) Отношение показанного значения вольтметра к показанному значению амперметра составляет сопротивление заземления цепи заземления G, которое необходимо измерить.

Рисунок 2.Измерение низкого сопротивления

IV Использование тестера сопротивления заземления

4.1 Введение в тестер сопротивления заземления

Тестер сопротивления заземления также обычно выдает источник питания переменного тока с напряжением холостого хода 6 В и источник переменного тока при добавлении постоянного тока 10А или 25А между двумя измеряемыми точками. Тестер может проверить падение напряжения между двумя точками и, согласно закону Ома, напрямую показывает сопротивление между двумя измеряемыми точками.

4.2 Как использовать тестер сопротивления заземления

(1) Подготовка к использованию тестера сопротивления заземления

1) Прочитать инструкции к измерителю сопротивления заземления и понять структуру, характеристики и метод применения прибора.

2) Инструмент и все принадлежности тестера, необходимые для подготовки и измерения, должны быть очищены, а тестер и заземляющий зонд должны быть вытерты, особенно заземляющий зонд, а грязь и пятна ржавчины на поверхности тестера должны быть очищены. .

3) Чтобы отсоединить заземляющую магистраль от точки подключения заземляющего корпуса или точки подключения заземляющей магистрали, чтобы заземляющий корпус был отделен от любого соединения и стал независимым корпусом.

(2) Этапы измерения при использовании тестера сопротивления заземления

1) Два заземляющих зонда вставляются в землю на расстоянии 20 м и 40 м соответственно по направлению излучения заземляющего корпуса, а глубина вставки составляет 400 мм, как показано на следующем рисунке.

  • Измеритель сопротивления заземления помещается рядом с заземляющим корпусом и выполняется электромонтаж. Метод подключения следующий:

Рисунок 3. а) Фактическая работа проверки сопротивления заземления

б) Эквивалентный принцип испытания сопротивления заземления

① Самый короткий специальный провод используется для подключения заземляющего корпуса к клемме заземлителя «Е1» (измеритель трехконтактной кнопки) или к короткозамкнутой общей клемме «С2» (четырехконтактной ручку счетчика).

② Для подключения измерительного щупа (токового щупа) от заземляющего корпуса 40 м к измерительной ручке «C1» измерительного прибора с помощью самого длинного выделенного провода.

③ Для подключения измерительного щупа (потенциального щупа) от заземляющего корпуса 20 м к клемме «P1» измерительного прибора с помощью специального провода, центрированного на оставшейся длине

Рисунок 4. Метод подключения

3) После того, как измерительный прибор расположен горизонтально, убедитесь, что стрелка гальванометра указывает на осевую линию, в противном случае отрегулируйте «регулятор нулевого положения» так, чтобы стрелка прибора была направлена ​​на осевую линию.

4) Установить «шкалу увеличения» (или ручку грубой настройки) на максимум и медленно повернуть шток генератора (указатель начинает смещаться), одновременно поворачивая «шкалу измерения» (или ручку точной настройки) до точки. указатель гальванометра на осевую линию.

5) Когда стрелка гальванометра находится близко к весам (стрелка находится близко к средней линии), кривошипы поворачиваются, чтобы скорость достигала 120 об / мин или более, а «шкала измерения» настраивается так, чтобы указывать на указатель на осевую линию.

6) Если показание шкалы измерения слишком мало (меньше 1), его трудно прочитать точно, что указывает на то, что кратное значение шкалы множителя слишком велико. В это время «шкала увеличения» должна быть установлена ​​на небольшое кратное, а «шкала измерения» должна быть заново отрегулирована так, чтобы указатель указывал на центральную линию и считывал точное значение.

7) Результаты измерения рассчитываются, т. Е. R = шкала увеличения x количество показаний шкалы.

4.3 Меры предосторожности при использовании тестера сопротивления заземления

(1) При измерении сопротивления заземления с помощью тестера сопротивления заземления в руководстве по продукту требуется использовать метод измерения полюсов 20-40 метров. Тестеры сопротивления заземления оснащены выделенными проводами 20M и 40M.

(2) Чтобы исключить влияние взаимного сопротивления, расстояние между заземляющим электродом P по напряжению и токовым заземляющим электродом C должно быть не менее 20M.Если токовый заземляющий электрод C расположен вдали от заземляющего электрода P по напряжению, токовый заземляющий электрод C не может быть размещен.

(3) Токовый заземляющий электрод C и заземляющий электрод по напряжению P могут быть расположены перпендикулярно тестируемой заземляющей сети G, или токовый заземляющий электрод C и заземляющий электрод P по напряжению, а также заземляющая сеть G, подлежащая проверке, размещаются. образован треугольником, каждая сторона которого составляет 20 метров в длину.

(4) Когда окружающая сетка грунта G покрыта асфальтом или бетонным покрытием, две плоские стальные пластины (250 мм × 250 мм) могут быть размещены на мостовой и поливаться водой между ними.Тестовый зажим зажимается на стальной пластине. Ткань, которая может удерживать воду, также может быть размещена на поверхности дороги, а ткань с водой окружает вспомогательный заземляющий электрод.

(5) Также возможно насыпать песок и сбрасывать воду на поверхность дороги, а вспомогательный заземляющий электрод помещается в песчаную лужу.

Рисунок 5. Тестер сопротивления заземления

В Двухпроводной метод

(1) Условия

Должно быть хорошо заземленное заземление, например, PEN.Результат измерения представляет собой сумму сопротивлений измеренного и известного заземления. Если известно, что заземление намного меньше, чем сопротивление измеренного заземления, результат измерения может использоваться как результат измеренного заземления.

(2) Заявление

Зоны с плотной застройкой или бетонными полами нельзя использовать для грунтовых свай.

(3) Электропроводка

E + ES подключен к измеряемой земле, H + S подключен к известной земле.

VI Трехстрочный метод

(1) Условия

Должно быть два заземляющих стержня: вспомогательное заземление и электрод обнаружения. Расстояние между каждым заземляющим электродом не менее 20 метров.

(2) Принцип

Ток добавляется между вспомогательной землей и измеряемой землей для измерения падения напряжения между измеренной землей и электродом обнаружения. Результаты измерения включают сопротивление самого кабеля.

(3) Заявление

Заземление, заземление на стройплощадках и заземление молниеотвода QPZ.

(4) Электропроводка

S подключен к детектирующему электроду, H подключен к вспомогательному заземлению, а E и ES подключены к измеряемому заземлению.

VII Четырехпроводной метод

Четырехпроводной метод в основном такой же, как и трехпроводной. Он заменяет трехлинейный метод измерения низкого сопротивления заземления и устраняет влияние сопротивления измерительного кабеля на результат измерения.E и ES должны быть подключены непосредственно к земле для раздельного измерения. Этот метод является наиболее точным из всех методов измерения сопротивления заземления .

Рисунок 6. Испытание сопротивления заземления

VIII Измерение одним зажимом

(1) Условия

Измерьте сопротивление заземления каждой точки заземления в многоточечной системе заземления. Не отключайте заземление во избежание опасности.

(2) Заявление

Многоточечное заземление.Не отключайтесь. Измерьте сопротивление каждой точки заземления.

(3) Электропроводка

Используйте токовые клещи для контроля тока в измеренной точке заземления.

Рисунок7. Испытание зажимом сопротивления заземления на опорах башни

IX Метод двойного зажима

(1) Условия

Многоточечное заземление без измерения дополнительных стоек заземления, измерение одиночного заземления.

(2) Электропроводка

Используйте токовые клещи, указанные производителем, для подключения к соответствующей розетке и зажмите двумя зажимами на заземляющем проводе.Расстояние между двумя зажимами должно быть больше 0,25 метра.

X Один вопрос по заземлению

10.1 Вопрос

В какой из следующих систем идентификация неисправности утомительна:

  1. Сопротивление заземления
  2. Твердое заземление
  3. Реактивное заземление
  4. Нешлифованные

10.2 Ответ

D

XI FAQ

1.Что такое сопротивление заземления?

Сопротивление, оказываемое заземляющим электродом току в землю, называется сопротивлением заземления или сопротивлением земли. … Сопротивление между пластиной заземления и землей измеряется методом падения потенциала.

2. Какое сопротивление Земли?

Профиль сопротивления заземления варьируется от 10 Ом до 20 Ом. Идентификация почвы, а также запрограммированные интенсивные полевые измерения удельного сопротивления почвы и системы заземления на выбранных участках доказывают, что значения удельного сопротивления почвы зависят от типа почвы.

3. Какое сопротивление заземляющего стержня?

25 Ом

Почти все электрики и электротехники знакомы с требованиями Национального электротехнического кодекса в гл. 250-54, что требует, чтобы сопротивление заземления одноразового электрода (например, заземляющего стержня) составляло 25 Ом или меньше.

4. Как использовать клещи для проверки сопротивления заземления?

Зажмите тестер заземления вокруг провода, идущего к заземляющему электроду, подключенному к ЗЕЛЁНОМУ проводу.Запишите чтение. Снимите тестер заземления с провода и снова зажмите калибровочную петлю. Еще раз проверьте показания 5.0, чтобы подтвердить показания заземляющего стержня.

5. Что такое проверка сопротивления заземления?

Чтобы смоделировать однофазное короткое замыкание, в одну из ваших линий электропередач подается испытательный ток с использованием источника тока переменной частоты и заземления удаленного конца линии.

6. Как проверить сопротивление заземления мультиметром?

В простом, но несколько ненадежном методе используется длинный провод и цифровой мультиметр.Подключите один конец провода к заведомо надежному заземляющему контакту (возможно, рядом с местом, где установлен блок предохранителей). Измерьте сопротивление от другого конца провода к заземляющему разъему проверяемой розетки / устройства.

7. Сколько Ом у хорошего заземления?

5,0 Ом

В идеале заземление должно иметь нулевое сопротивление. Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5.0 Ом или меньше.

8. Можно ли проверить заземляющий стержень с помощью мультиметра?

С помощью мультиметра можно измерить сопротивление почвы между заземляющим электродом и некоторой контрольной точкой, например, системой водопровода, но ток короткого замыкания может встретить более высокое сопротивление.

9. Какой метод измерения сопротивления заземления самый простой?

Метод мертвого заземления — это самый простой способ получить показания сопротивления заземления, но он не так точен, как трехточечный метод, и его следует использовать только в крайнем случае, он наиболее эффективен для быстрой проверки соединений и проводов между точками соединения. .

10. В чем разница между соединением и заземлением?

Присоединяя обычно нетоковедущие объекты, которые являются частью электроустановки (например, металлические кабелепроводы и корпуса), к системе заземления, это гарантирует, что они не будут находиться под напряжением.


Вам также может понравиться:

Основная информация о варисторе

Как измерить сопротивление и как определить сопротивление?

Что такое микросхема постоянного резистора?

Что такое токоограничивающий резистор и его функция?

Альтернативные модели

Часть Сравнить Производителей Категория Описание
Производитель.Номер детали: 1775146-1 Сравнить: У.ФЛ-Р-СМТ (10) ВС 1775146-1 Производитель: TE Connectivity Категория: РЧ / Коаксиальные соединители Описание: CONN UMC RCPT STR 50 Ом SMD
Производитель.Номер детали: U.FL-R-SMT-1 (10) Сравнить: Текущая часть Производитель: Hirose Electric Категория: РЧ / Коаксиальные соединители Описание: Conn U.FL RCP от 0 Гц до 6 ГГц 50 Ом Пайка ST SMD Gold Reel
Производитель Номер детали: U.FL-R-SMT (10) Сравнить: U.FL-R-SMT-1 (10) VS U.FL-R-SMT (10) Производитель: Hirose Electric Категория: РЧ / Коаксиальные соединители Описание: Conn Coaxial RCP от 0 Гц до 6 ГГц 50 Ом Пайка ST SMD Gold T / R
Производитель.Номер детали: U.FL-R-SMT (01) Сравнить: U.FL-R-SMT-1 (10) VS U.FL-R-SMT (01) Производитель: Hirose Electric Категория: РЧ / Коаксиальные соединители Описание: Conn Coaxial RCP от 0 Гц до 6 ГГц 50 Ом Пайка ST SMD Gold
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *