Кабелеискатель своими руками – Как сделать трассоискатель своими руками и что для этого понадобится

Кабелеискатель своими руками схемы — Морской флот

Поисковый комплект автоэлектрика «Trekker»

Автор: Simurg, [email protected]
Опубликовано 02.10.2013.
Создано при помощи КотоРед.

Инструмент для автодиагностики.

Кратко опишу причину создания искателя. Причина, от необходимости в быстром поиске проводов и жгутов проводов в автомобиле, до банальной лени. Так как надоело разбирать по пол машины, чтобы проследить «куда же пошел нужный провод?». Поисковый комплект для того, чтобы не доводить до состояния автомобиль, как на картинке ниже, в поисках оборванного провода. Поможет и при поиске перебитых проводов, нужного провода в жгуте. И всё это без повреждения изоляции прокалыванием для проверки мультиметром.

Кабелеискатель своими руками схемы

Дело в том, что электропроводка автомобиля похожа на венозную систему человека. Она снабжает “блоки” автомобиля “питательными веществами”, необходимыми для функционирования, то есть током. Поломка или отказ, казалось бы, совсем не связанной с текущей проблемой, части автомобильной электропроводки может дать “отголоски” практически в любое место. Ремонт электропроводки автомобиля заключается в замене её неисправной части на новую. Ремонт проводки автомобиля – дело, требующие оборудования для нахождения этой самой проводки.

Так же очень часто просят помочь в разработке устройства по поиску прокладки автомобильной проводки и обрывов. Уже пару устройств приобретали на рынке, но результат был отрицательный. В описании устройства предполагался поиск повреждений проводки, а в реальности они определяли все кроме нужного кабеля.

Данное устройство будет состоять из четырех частей.

1. генератора амплитудно-модулированного сигнала частотой 62 кГц с модуляцией звуковой частотой 520 Гц.

2. приемного устройства оснащенного магнитной антенной.

3. два зарядных устройства для зарядки аккумуляторов. Одно автомобильное, второе сетевое.

4. наушники с встроенным регулятором громкости.

Кабелеискатель своими руками схемы

Приемник и генератор оснащены внутренними литиевыми аккумуляторами от мобильных телефонов.

Как пользоваться.

Бесконтактный приёмник присутствия сигнала ВЧ генератора на проводе в кабеле, не требует подключения массового провода. Что очень удобно!

Генератор ВЧ сигнала в большинстве случаев включается в разрыв плюсового провода. Удобно включить генератор вместо предохранителя, для этой цели вынимают предохранитель. Ниже показаны различные схемы возможных подключений ВЧ генератора.

Кабелеискатель своими руками схемы

Также можно подключать генератор без подключения черного провода (минусовой выход генератора), для нахождения конкретного провода в кабеле. Провода необходимо распушить, что бы они немного удалялись друг от друга. При всех поисках провода или кабеля, магнитная антенна искателя подносится к тестируемому проводу перпендикулярно, так достигается наилучшая чувствительность. Перемещая ферритовый стержень, проводим настройку – расстройку контура. Точная настройка нужна для существенно увеличения чувствительности приемника, при поиске кабеля, а расстройка для её снижения, при поиске конкретного провода в кабеле. После подключения к искомому проводу на одном конце, проводим настройку приемника с помощью перемещения ферритового стержня, до появления громкого и отчетливого звука сигнал — генератора. Для этого подносим приемник контурной катушкой перпендикулярно к подключенному проводу автомобиля. Теперь ищем провод, кабель, например под пластмассовой обшивкой в салоне. Все это будет показано в видеоролике. Мы найдем кабель, идущий от заднего фонаря указателя поворотов, без разборки и подъема обшивки салона автомобиля.

Можно находить на какое конкретно реле, в блоке реле, приходит провод, например, с лампы дальнего света без схем автомобиля. Можно искать конкретный провод в плотном кабеле. Иногда, при большой засветке проводов в кабеле, когда контур антенны настроен в резонанс, может показаться, что в кабеле все провода звучат. Для этого вносим в контур расстройку (выдвигаем феррит), тогда все засвеченные провода дают малый сигнал, а тот который подключен к генератору звучит громче других на порядок.

С помощью данного искателя можно точно определять проводку 220в под небольшой нагрузкой в железобетонных стенах и потолке дома. В данном случае катушкой магнитной антенны проводят по стене в предполагаемых местах прохождения проводов. Искать можно и с генератором, если отключить напряжение сети, и подключать генератор к искомым проводам.

Можно искать нужные жилы в многожильном кабеле, искать пути пролегания жгутов, и много разных применений на все случаи жизни. Поднеся приемник контурной антенной к работающему кварцу, будет слышен рокот в наушниках, проверять пульты ДУ, и многое другое.

Как сделать.

Схема комплекта простая, и для сборки и настройки не требуются ни каких сложных приборов. Собрать и настроить может начинающий радиолюбитель. Схема не содержит контроллеров, и каких либо сложных элементов.

Рассмотрим схему генератора ВЧ.

Кабелеискатель своими руками схемы

Кабелеискатель своими руками схемы

Схема состоит из мультивибратора на транзисторах VT1 и VT2, модулятора на транзисторе VT3. Есть две версии модулятора, на полевом транзисторе и биполярном. Работают одинаково. Двухтактного генератора ВЧ с резонансной частотой контура 62кГц. За основу взята схема генератора из магнитофона «Беларусь – М310С». В нем генератор работал на стирающую головку. Смотрим фрагмент схемы.

Кабелеискатель своими руками схемы

Так как напряжение на индуктивности при резонансе достигает значений 80 вольт, то необходимо использовать конденсаторы с максимальным напряжением не менее 100 вольт. На выходе имеем амплитудно- модулированное напряжение с размахом около 80 вольт. Выходной ток очень маленький в пределах нескольких микроампер, и к повреждению блоков автомобиля не приведет. Конденсаторы С5-С8 обязательно должны быть полипропиленовыми и напряжение не менее 100 вольт. Развязка контура с испытуемым проводником с помощью развязывающего конденсатора 0,01 мкф, также на 100 вольт. СМД конденсаторы С5-С8 применять нельзя. Работать генератор ВЧ будет непредсказуемо, по причине сильной зависимости емкости от приложенного напряжения. Смотрим иллюстрацию из даташита на СМД конденсаторы:

Кабелеискатель своими руками схемы

Генератор имеет индикатор включения на светодиоде HL1, белого свечения. Транзисторы можно заменить на любые с допустимым напряжением КЭ не менее 20 вольт. Подойдут КТ3107 и КТ3102. Плата после пайки должна быть вымыта на чисто. Стремиться к точной установке частоты не нужно, и она может быть в пределах от 50 кГц до 80 кГц. Правильно собранная схема работает сразу и в настройке не нуждается, если это не так — причиной тому могут быть ошибки монтажа либо неисправные компоненты.

Кабелеискатель своими руками схемы

Плата после сборки:

Кабелеискатель своими руками схемыКабелеискатель своими руками схемы

Передатчик собран в корпусе компьютерной мыши.

Кабелеискатель своими руками схемы

Приемник собран по простой схеме прямого усиления с амплитудным детектором на транзисторе VT2.

Кабелеискатель своими руками схемы

На полевом транзисторе VT1 собран усилитель высокой частоты. Применение полевого транзистора позволяет обойтись без дополнительной катушки связи с контуром. В качестве L1 используется готовая заводская катушка ДВ диапазона и сама магнитная антенна с приемника «Берестье 004». С неё сматывается ненужная катушка связи. Данные на неё можно найти в книге по ремонту бытовой аппаратуры. «Переносные кассетные магнитолы: Справочник/ И. Ф. Белов, А. Е. Денин, А. Ф. Ососков. Радио и связь, 1988.— 224— (Массовая радиобиблиоте­ка; Вып. 1124)». По данным на катушку, её можно легко намотать самому. Провод использовать литцендрат не обязательно, подойдет и ПЭЛ-0,15.

Кабелеискатель своими руками схемы

Кабелеискатель своими руками схемы

Усилитель звуковой частоты выполнен на распространенном маломощном усилителе LM386. Изменяя резистор R6 обратной связи, можно изменять усиление, подобрав по своему желанию максимальную громкость.

Кабелеискатель своими руками схемы

По желанию, можно применить любой другой низковольтный УЗЧ. Регулятор громкости в УЗЧ не используется в целях экономии места в приемнике. Его роль выполняет штатный регулятор в готовых покупных наушниках.

Фото разводки печатной платы:

Кабелеискатель своими руками схемы

Кабелеискатель своими руками схемы

Вид сверху собранной платы:

Кабелеискатель своими руками схемы

Вид приемника в корпусе:

Кабелеискатель своими руками схемы

На контурную катушку надевается защитный колпачок, взятый от флакона лекарственных средств, и приклеивается к основанию катушки клеем «Момент». Для обеспечения плавности хода ферритового стержня на крышку наклеивается кусочек плотного упаковочного поролона. На ферритовый стержень, что бы он не выпадал, и не потерялся, надет ограничитель, нарезанный из термоусадочной трубки. Аккумулятор от старого телефона «самсунг» имеет свой пластмассовый корпус и просто приклеивается на заднюю стенку крышки «Моментом».

Фото собранного приемника:

Кабелеискатель своими руками схемы

Зарядные устройства взяты готовые. В сетевом зарядном устройстве настроен ток с помощью резистора датчика тока с изначального 500мА на 300мА. В автомобильном зарядном, собранном на ИМС МС34063, так же с помощью токозадающего резистора, которое стоит между выводами 6 и 7, с изначального 600мА на 300мА. К ним припаяны провода со стандартным разъемом, для подключения питания. Так как аккумуляторы уже имеют встроенные контроллеры заряда, то дополнительно ничего дорабатывать не надо. По достижению 4,20 вольта контроллер отключит аккумулятор от зарядного устройства.

При всех строительно-монтажных работах необходимо точно знать расположение трасс различных трубопроводов и кабельных линий. Для выявления трасс подземных коммуникаций иногда приходится прибегать к разрытию грунта. Это вызывает удорожание работ, а иногда приводит к повреждению самих коммуникаций. Мной изготовлен прибор, позволяющий производить определение трасс различных металлических трубопроводов и кабелей при закладке их на глубину до 10 м. Длина исследуемого участка достигает 3 км. Погрешность определения трассы трубопровода при закладке на глубине 2 м, не превышает 10 см. Он может быть использован для определения трасс трубопроводов и кабелей, заложенных под водой. Принцип работы трассоискателя основан на обнаружении переменного электромагнитного поля, которое искусственно создается вокруг исследуемого кабеля или трубопровода. Для этого генератор звуковой частоты подключается к исследуемому трубопроводу или кабелю и заземляющему штырю. Обнаружение электромагнитного поля на всем протяжении трассы производится с помощью портативного приемника, снабженного ферритовой антенной, обладающей ярко выраженной направленностью. Катушка магнитной антенны с конденсатором образует резонансный контур, настроенный на частоту звукового генератора 1000 Гц. Напряжение звуковой частоты, наведенное в контуре полем трубопровода, поступает в усилитель, к выходу которого подключены головные телефоны. При желании можно использовать и визуальный индикатор — микроамперметр. Для питания генератора используется сетевой блок или аккумуляторная батарея 12 Вольт. Приемное устройство питается от двух элементов А4.

Описание схемы трассоискателя. На рис. 1 схема тонального генератора. RC-генератор собран на транзисторе Т1 и работает в диапазоне 959 – 1100 Гц. Плавная регулировка частоты осуществляется переменным резистором R 5. В коллекторную цепь транзистора Т 2, который служит для согласования генератора Т1 с фазоинвертором Т3 с помощью выключателя Вк1 могут подключаться контакты реле Р1 предназначенного для манипуляции колебаниями генератора Т1 с частотой 2-3 Гц. Такая манипуляция необходима для четкого выделения сигналов в приемном устройстве при наличии помех и наводок от подземных кабелей и воздушных цепей переменного тока. Частота манипуляции определяется ёмкостью конденсатора С7. Предоконечный и оконечный каскады выполнены по двухтактной схеме. Вторичная обмотка выходного трансформатора Тр3 имеет несколько выходов. Это позволяет подключать к выходу различную нагрузку, которая может встретится на практике. При работе с кабельными линиями требуется подключение более высокого напряжения 120-250 Вольт. На Рис.2 изображена схема сетевого блока питания со стабилизацией выходного напряжения 12В.

Кабелеискатель своими руками схемы

Принципиальная схема приемного устройства с магнитной антенной — Рис 3. Оно содержит колебательный контур L1 C1. Напряжение звуковой частоты, наведенное в контуре L1 C1 через конденсатор С2 поступает на базу транзистора Т1 и далее усиливается последующими каскадами на транзисторах Т2 и Т3. Транзистор Т3 нагружен на головные телефоны. Не смотря на простоту схемы, приемник обладает достаточно большой чувствительностью. Конструкция и детали трассоискателя. Генератор собран в корпусе и из деталей имеющегося усилителя низкой частоты, переделанного по схеме рис.1,2 . На переднюю панель выведены ручки регулятора частоты R5, и регулятора выходного напряжения R10. Выключатели Вк1 и Вк2 – обычные тумблеры. В качестве трансформатора Тр1 можно использовать межкаскадный трансформатор от старых транзисторных приемников «Атмосфера”, «Спидола” и пр. Он собран из пластин Ш12, толщина пакета 25мм, первичная обмотка 550 витков провода ПЭЛ 0.23, вторичная – 2 х100 витков провода ПЭЛ 0.74. Трансформатор Тр2 собран на таком же сердечнике. Его первичная обмотка содержит 2 х110 витков провода ПЭЛ 0.74, — вторичная 2 х 19 витков провода ПЭЛ 0.8. Трансформатор Тр3 собран на сердечнике Ш-32, толщина пакета 40 мм; первичная обмотка содержит 2 х 36 витков провода ПЭЛ 0.84; вторичная обмотка 0-30 содержит 80 витков; 30-120 — 240 витков; 120-250 – 245 витков провода 0.8. Иногда в качестве Т3 мной использовался силовой трансформатор 220 х 12+12 В. При этом вторичная обмотка 12+12 В включалась как первичная, а первичная как выходная 0 – 127 — 220. Транзисторы Т4-Т7 и Т8, должны быть установлены на радиаторы. Реле Р1 типа РСМ3.

Монтаж усилителя приемного устройства трассоискателя сделан на печатной плате которая вместе с элементами питания А4 и выключателем Вк1 закреплена в коробке из пластика. В качестве штанги приемного устройства мной приспособлена лыжная палка нижняя часть которой обрезана по росту для удобства пользования. В верхней части ниже ручки крепится коробка с усилителем. В нижней части перпендикулярно штанге крепится пластиковая трубка с ферритовой антенной. Ферритовая антенна состоит из ферритового сердечника Ф-600 размером 140х8 мм. Антенная катушка разбита на 9 секций по 200 витков в каждой провода ПЭШО 0.17 индуктивность ее 165 мГн
Налаживание генератора удобно производить с помощью осциллографа. Перед включением нагрузить выходную обмотку Тр3 на лампочку 220 В х 40 Вт. Проверить осциллографом или головными телефонами через конденсатор 0.5 прохождение звукового сигнала от первого до выходного каскада. Резистором Р5 установить по частотомеру частоту 1000 Гц. Вращая резистор Р10 проверить по свечению лампочки регулировку уровня выходного сигнала. Настройку приемника следует начинать с настройки контура L1C1 на заданную резонансную частоту. Проще всего это сделать с помощью звукового генератора и указателя уровня. Подстройку контура можно производить изменением емкости конденсатора С1 или перемещением секций обмоток Катушки L1.

Кабелеискатель своими руками схемы

Исходным пунктом для начала поиска трассы должно быть место, где возможно соединение генератора с трубопроводом или кабелем. Провод, соединяющий генератор с трубопроводом должен быть как можно короче и имел сечение не менее 1,5-2 мм. Заземляющий штырь вбивается в землю в непосредственной близости от генератора на глубину не менее 30-50 см. Место, где вбит штырь, должно быть в стороне от пролегающей трассы на 5-10 м. С помощью приемника, обнаружив зону наибольшей слышимости сигнала, уточняют зону направления трассы, поворачивая магнитную антенну в горизонтальной плоскости. При этом следует сохранять постоянную высоту антенны над уровнем почвы. Наибольшая громкость сигнала получается, когда ось антенны направлена перпендикулярно направлению трассы. Четкий максимум сигнала получается, если антенна направлена точно над линией трассы. Если трасса имеет обрыв, то в этом месте и далее сигнал будет отсутствовать. Подземные силовые кабели, находящиеся под напряжением, могут быть обнаружены с помощью одного только приемного устройства, так как вокруг них имеется значительное электромагнитное переменное поле. При поиске трасс обесточенных подземных кабелей, генератор трассоискателя подключается к одной из жил кабеля. В этом случае обмотка выходного трансформатора подключается полностью, чтобы получить максимальный уровень сигнала. Место заземления или обрыва кабеля обнаруживается по пропаданию сигнала в телефонах приемного устройства, когда оператор будет находиться над точкой повреждения кабеля. Мной было изготовлено 6 подобных устройств. Все они показали отличные результаты при эксплуатации, в некоторых случаях, даже не производилась настройка трассоискателя.

Обсудить статью ТРАССОИСКАТЕЛЬ

Кабелеискатель своими руками схемыСамодельный автомобильный VIP — сигнал крякалка.

Особо надо подчеркнуть, что устройства с электромагнитными датчиками предназначены для обнаружения электросетей, находящихся не только под напряжением, но и в состоянии их нагрузки, т.е. когда по ним протекает ток.

Кабелеискатель своими руками схемы
Индуктивный датчик прибора BF1 чувствителен к переменному электромагнитному полю. Обесточенные или ненагруженные электрические кабели, а также «бронированные» силовые кабели обнаружить данным прибором невозможно.

Кабелеискатель своими руками схемы

При доработке схемы рисунка необходимые изменения коснулись в первую очередь схемы входного усилителя устройства. Один из вариантов доработки показан на другом рисунке. Напомню, что в электрической схеме прототипа в качестве микросхемы DA1 была использована микросхема КР140УД8А.

Ее высокое входное сопротивление в данном устройстве не имеет принципиального значения, поэтому в схеме применена более распространенная и дешевая микросхема КР140УД708.

morflot.su

РадиоКот :: Поисковый комплект автоэлектрика «Trekker»

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Поисковый комплект автоэлектрика «Trekker»

  Инструмент для автодиагностики.

     Кратко опишу причину создания искателя. Причина, от необходимости в быстром поиске проводов и жгутов проводов в автомобиле, до банальной лени. Так как надоело разбирать по пол машины, чтобы проследить «куда же пошел нужный провод?». Поисковый комплект для того, чтобы не доводить до состояния автомобиль, как на картинке ниже, в поисках оборванного провода. Поможет и при поиске перебитых проводов, нужного провода в жгуте. И всё это без повреждения изоляции прокалыванием для проверки мультиметром.

   Дело в том, что электропроводка автомобиля похожа на венозную систему человека. Она снабжает “блоки” автомобиля “питательными веществами”, необходимыми для функционирования, то есть током. Поломка или отказ, казалось бы, совсем не связанной с текущей проблемой, части автомобильной электропроводки может дать “отголоски” практически в любое место. Ремонт электропроводки автомобиля заключается в замене её неисправной части на новую. Ремонт проводки автомобиля – дело, требующие оборудования для нахождения этой самой проводки.

   Так же очень часто просят помочь в разработке устройства по поиску прокладки автомобильной проводки и обрывов. Уже пару устройств приобретали на рынке, но результат был отрицательный. В описании устройства предполагался поиск повреждений проводки, а в реальности они определяли все кроме нужного кабеля.

   Данное устройство будет состоять из четырех частей.

1. генератора амплитудно-модулированного сигнала частотой 62 кГц с модуляцией звуковой частотой 520 Гц.

2. приемного устройства оснащенного магнитной антенной.

3. два зарядных устройства для зарядки аккумуляторов. Одно автомобильное, второе сетевое.

4. наушники с встроенным регулятором громкости.

 

   Приемник и генератор оснащены внутренними литиевыми аккумуляторами от мобильных телефонов.

  Как пользоваться.

  Бесконтактный приёмник присутствия сигнала ВЧ генератора на проводе в кабеле, не требует подключения массового провода. Что очень удобно!

  Генератор ВЧ сигнала в большинстве случаев включается в разрыв плюсового провода. Удобно включить генератор вместо предохранителя, для этой цели вынимают предохранитель. Ниже показаны различные схемы возможных подключений ВЧ генератора.

    Также можно подключать генератор без подключения черного провода (минусовой выход генератора), для нахождения конкретного провода в кабеле. Провода необходимо распушить, что бы они немного удалялись друг от друга. При всех поисках провода или кабеля, магнитная антенна искателя подносится к тестируемому проводу перпендикулярно, так достигается наилучшая чувствительность. Перемещая ферритовый стержень, проводим настройку – расстройку контура. Точная настройка нужна для существенно увеличения чувствительности приемника, при поиске кабеля, а расстройка для её снижения, при поиске конкретного провода в кабеле. После подключения к искомому проводу на одном конце, проводим настройку приемника с помощью перемещения ферритового стержня, до появления громкого и отчетливого звука сигнал — генератора. Для этого подносим приемник контурной катушкой перпендикулярно к подключенному проводу автомобиля. Теперь ищем провод, кабель, например под пластмассовой обшивкой в салоне. Все это будет показано в видеоролике. Мы найдем кабель, идущий от заднего фонаря указателя поворотов, без разборки и подъема обшивки салона автомобиля.

  Можно находить на какое конкретно реле, в блоке реле, приходит провод, например, с лампы дальнего света без схем автомобиля. Можно искать конкретный провод в плотном кабеле. Иногда, при большой засветке проводов в кабеле, когда контур антенны настроен в резонанс, может показаться, что в кабеле все провода звучат. Для этого вносим в контур расстройку (выдвигаем феррит), тогда все засвеченные провода дают малый сигнал, а тот который подключен к генератору звучит громче других на порядок.

  С помощью данного искателя можно точно определять проводку 220в под небольшой нагрузкой в железобетонных стенах и потолке дома. В данном случае катушкой магнитной антенны проводят по стене в предполагаемых местах прохождения проводов. Искать можно и с генератором, если отключить напряжение сети, и подключать генератор к искомым проводам.

  Можно искать нужные жилы в многожильном кабеле, искать пути пролегания жгутов, и много разных применений на все случаи жизни. Поднеся приемник контурной антенной к работающему кварцу, будет слышен рокот в наушниках, проверять пульты ДУ, и многое другое.

Как сделать.

    Схема комплекта простая, и для сборки и настройки не требуются ни каких сложных приборов. Собрать и настроить может начинающий радиолюбитель. Схема не содержит контроллеров, и каких либо сложных элементов.

Рассмотрим схему генератора ВЧ.

   Схема состоит из мультивибратора на транзисторах VT1 и VT2, модулятора на транзисторе VT3. Есть две версии модулятора, на полевом транзисторе и биполярном. Работают одинаково. Двухтактного генератора ВЧ с резонансной частотой контура 62кГц. За основу взята схема генератора из магнитофона «Беларусь – М310С». В нем генератор работал на стирающую головку. Смотрим фрагмент схемы.

  Так как напряжение на индуктивности при резонансе достигает значений 80 вольт, то необходимо использовать конденсаторы с максимальным напряжением не менее 100 вольт. На выходе имеем амплитудно- модулированное напряжение с размахом около 80 вольт. Выходной ток очень маленький в пределах нескольких микроампер, и к повреждению блоков автомобиля не приведет. Конденсаторы С5-С8 обязательно должны быть полипропиленовыми и напряжение не менее 100 вольт. Развязка контура с испытуемым проводником с помощью развязывающего конденсатора 0,01 мкф, также на 100 вольт. СМД конденсаторы С5-С8 применять нельзя. Работать генератор ВЧ будет непредсказуемо, по причине сильной зависимости емкости от приложенного напряжения. Смотрим иллюстрацию из даташита на СМД конденсаторы:

  Генератор имеет индикатор включения на светодиоде HL1, белого свечения. Транзисторы можно заменить на любые с допустимым напряжением КЭ не менее 20 вольт. Подойдут КТ3107 и КТ3102. Плата после пайки должна быть вымыта на чисто. Стремиться к точной установке частоты не нужно, и она может быть в пределах от 50 кГц до 80 кГц. Правильно собранная схема работает сразу и в настройке не нуждается, если это не так — причиной тому могут быть ошибки монтажа либо неисправные компоненты.

Плата после сборки:

 

Передатчик собран в корпусе компьютерной мыши.

Приемник собран по простой схеме прямого усиления с амплитудным детектором на транзисторе VT2.

 

На полевом транзисторе VT1 собран усилитель высокой частоты. Применение полевого транзистора позволяет обойтись без дополнительной катушки связи с контуром. В качестве L1 используется готовая заводская катушка ДВ диапазона и сама магнитная антенна с приемника «Берестье 004». С неё сматывается ненужная катушка связи. Данные на неё можно найти в книге по ремонту бытовой аппаратуры. «Переносные кассетные магнитолы: Справочник/ И. Ф. Белов, А. Е. Денин, А. Ф. Ососков. Радио и связь, 1988.— 224— (Массовая радиобиблиоте­ка; Вып. 1124)». По данным на катушку, её можно легко намотать самому. Провод использовать литцендрат не обязательно, подойдет и ПЭЛ-0,15.

 

   Усилитель звуковой частоты выполнен на распространенном маломощном усилителе LM386. Изменяя резистор R6 обратной связи, можно изменять усиление, подобрав по своему желанию максимальную громкость.

По желанию, можно применить любой другой низковольтный УЗЧ. Регулятор громкости в УЗЧ не используется в целях экономии места в приемнике. Его роль выполняет штатный регулятор в готовых покупных наушниках.

Фото разводки печатной платы:

Сборка приемника:

Вид сверху собранной платы:

 

Вид приемника в корпусе:

   На контурную катушку надевается защитный колпачок, взятый от флакона лекарственных средств, и приклеивается к основанию катушки клеем «Момент». Для обеспечения плавности хода ферритового стержня на крышку наклеивается кусочек плотного упаковочного поролона. На ферритовый стержень, что бы он не выпадал, и не потерялся, надет ограничитель, нарезанный из термоусадочной трубки. Аккумулятор от старого телефона «самсунг» имеет свой пластмассовый корпус и просто приклеивается на заднюю стенку крышки «Моментом».

Фото собранного приемника:

    Зарядные устройства взяты готовые. В сетевом зарядном устройстве настроен ток с помощью резистора датчика тока с изначального 500мА на 300мА. В автомобильном зарядном, собранном на ИМС МС34063, так же с помощью токозадающего резистора, которое стоит между выводами 6 и 7, с изначального 600мА на 300мА. К ним припаяны провода со стандартным разъемом, для подключения питания. Так как аккумуляторы уже имеют встроенные контроллеры заряда, то дополнительно ничего дорабатывать не надо. По достижению 4,20 вольта контроллер отключит аккумулятор от зарядного устройства.

Ссылка на видео https://youtu.be/4v7s3GQztZg

Файлы печатных плат.

Файлы:
Приемник 62кГцlay
гене_702

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Кабелеискатель своими руками — Легкое дело

При всех строительно-монтажных работах необходимо точно знать расположение трасс различных трубопроводов и кабельных линий. Для выявления трасс подземных коммуникаций иногда приходится прибегать к разрытию грунта. Это вызывает удорожание работ, а иногда приводит к повреждению самих коммуникаций. Мной изготовлен прибор, позволяющий производить определение трасс различных металлических трубопроводов и кабелей при закладке их на глубину до 10 м. Длина исследуемого участка достигает 3 км. Погрешность определения трассы трубопровода при закладке на глубине 2 м, не превышает 10 см. Он может быть использован для определения трасс трубопроводов и кабелей, заложенных под водой. Принцип работы трассоискателя основан на обнаружении переменного электромагнитного поля, которое искусственно создается вокруг исследуемого кабеля или трубопровода. Для этого генератор звуковой частоты подключается к исследуемому трубопроводу или кабелю и заземляющему штырю. Обнаружение электромагнитного поля на всем протяжении трассы производится с помощью портативного приемника, снабженного ферритовой антенной, обладающей ярко выраженной направленностью. Катушка магнитной антенны с конденсатором образует резонансный контур, настроенный на частоту звукового генератора 1000 Гц. Напряжение звуковой частоты, наведенное в контуре полем трубопровода, поступает в усилитель, к выходу которого подключены головные телефоны. При желании можно использовать и визуальный индикатор — микроамперметр. Для питания генератора используется сетевой блок или аккумуляторная батарея 12 Вольт. Приемное устройство питается от двух элементов А4.


Описание схемы трассоискателя. На рис. 1 схема тонального генератора. RC-генератор собран на транзисторе Т1 и работает в диапазоне 959 – 1100 Гц. Плавная регулировка частоты осуществляется переменным резистором R 5. В коллекторную цепь транзистора Т 2, который служит для согласования генератора Т1 с фазоинвертором Т3 с помощью выключателя Вк1 могут подключаться контакты реле Р1 предназначенного для манипуляции колебаниями генератора Т1 с частотой 2-3 Гц. Такая манипуляция необходима для четкого выделения сигналов в приемном устройстве при наличии помех и наводок от подземных кабелей и воздушных цепей переменного тока. Частота манипуляции определяется ёмкостью конденсатора С7. Предоконечный и оконечный каскады выполнены по двухтактной схеме. Вторичная обмотка выходного трансформатора Тр3 имеет несколько выходов. Это позволяет подключать к выходу различную нагрузку, которая может встретится на практике. При работе с кабельными линиями требуется подключение более высокого напряжения 120-250 Вольт. На Рис.2 изображена схема сетевого блока питания со стабилизацией выходного напряжения 12В.


Принципиальная схема приемного устройства с магнитной антенной — Рис 3. Оно содержит колебательный контур L1 C1. Напряжение звуковой частоты, наведенное в контуре L1 C1 через конденсатор С2 поступает на базу транзистора Т1 и далее усиливается последующими каскадами на транзисторах Т2 и Т3. Транзистор Т3 нагружен на головные телефоны. Не смотря на простоту схемы, приемник обладает достаточно большой чувствительностью. Конструкция и детали трассоискателя. Генератор собран в корпусе и из деталей имеющегося усилителя низкой частоты, переделанного по схеме рис.1,2. На переднюю панель выведены ручки регулятора частоты R5, и регулятора выходного напряжения R10. Выключатели Вк1 и Вк2 – обычные тумблеры. В качестве трансформатора Тр1 можно использовать межкаскадный трансформатор от старых транзисторных приемников «Атмосфера”, «Спидола” и пр. Он собран из пластин Ш12, толщина пакета 25мм, первичная обмотка 550 витков провода ПЭЛ 0.23, вторичная – 2 х100 витков провода ПЭЛ 0.74. Трансформатор Тр2 собран на таком же сердечнике. Его первичная обмотка содержит 2 х110 витков провода ПЭЛ 0.74, — вторичная 2 х 19 витков провода ПЭЛ 0.8. Трансформатор Тр3 собран на сердечнике Ш-32, толщина пакета 40 мм; первичная обмотка содержит 2 х 36 витков провода ПЭЛ 0.84; вторичная обмотка 0-30 содержит 80 витков; 30-120 — 240 витков; 120-250 – 245 витков провода 0.8. Иногда в качестве Т3 мной использовался силовой трансформатор 220 х 12+12 В. При этом вторичная обмотка 12+12 В включалась как первичная, а первичная как выходная 0 – 127 — 220. Транзисторы Т4-Т7 и Т8, должны быть установлены на радиаторы. Реле Р1 типа РСМ3.

Монтаж усилителя приемного устройства трассоискателя сделан на печатной плате которая вместе с элементами питания А4 и выключателем Вк1 закреплена в коробке из пластика. В качестве штанги приемного устройства мной приспособлена лыжная палка нижняя часть которой обрезана по росту для удобства пользования. В верхней части ниже ручки крепится коробка с усилителем. В нижней части перпендикулярно штанге крепится пластиковая трубка с ферритовой антенной. Ферритовая антенна состоит из ферритового сердечника Ф-600 размером 140х8 мм. Антенная катушка разбита на 9 секций по 200 витков в каждой провода ПЭШО 0.17 индуктивность ее 165 мГн
Налаживание генератора удобно производить с помощью осциллографа. Перед включением нагрузить выходную обмотку Тр3 на лампочку 220 В х 40 Вт. Проверить осциллографом или головными телефонами через конденсатор 0.5 прохождение звукового сигнала от первого до выходного каскада. Резистором Р5 установить по частотомеру частоту 1000 Гц. Вращая резистор Р10 проверить по свечению лампочки регулировку уровня выходного сигнала. Настройку приемника следует начинать с настройки контура L1C1 на заданную резонансную частоту. Проще всего это сделать с помощью звукового генератора и указателя уровня. Подстройку контура можно производить изменением емкости конденсатора С1 или перемещением секций обмоток Катушки L1.


Исходным пунктом для начала поиска трассы должно быть место, где возможно соединение генератора с трубопроводом или кабелем. Провод, соединяющий генератор с трубопроводом должен быть как можно короче и имел сечение не менее 1,5-2 мм. Заземляющий штырь вбивается в землю в непосредственной близости от генератора на глубину не менее 30-50 см. Место, где вбит штырь, должно быть в стороне от пролегающей трассы на 5-10 м. С помощью приемника, обнаружив зону наибольшей слышимости сигнала, уточняют зону направления трассы, поворачивая магнитную антенну в горизонтальной плоскости. При этом следует сохранять постоянную высоту антенны над уровнем почвы. Наибольшая громкость сигнала получается, когда ось антенны направлена перпендикулярно направлению трассы. Четкий максимум сигнала получается, если антенна направлена точно над линией трассы. Если трасса имеет обрыв, то в этом месте и далее сигнал будет отсутствовать. Подземные силовые кабели, находящиеся под напряжением, могут быть обнаружены с помощью одного только приемного устройства, так как вокруг них имеется значительное электромагнитное переменное поле. При поиске трасс обесточенных подземных кабелей, генератор трассоискателя подключается к одной из жил кабеля. В этом случае обмотка выходного трансформатора подключается полностью, чтобы получить максимальный уровень сигнала. Место заземления или обрыва кабеля обнаруживается по пропаданию сигнала в телефонах приемного устройства, когда оператор будет находиться над точкой повреждения кабеля. Мной было изготовлено 6 подобных устройств. Все они показали отличные результаты при эксплуатации, в некоторых случаях, даже не производилась настройка трассоискателя.

http://radioskot.ru

legkoe-delo.ru

Схема простого кабелеискателя — Электропортал

Особо надо подчеркнуть, что устройства с электромагнитными датчиками предназначены для обнаружения электросетей, находящихся не только под напряжением, но и в состоянии их нагрузки, т.е. когда по ним протекает ток.


Индуктивный датчик прибора BF1 чувствителен к переменному электромагнитному полю. Обесточенные или ненагруженные электрические кабели, а также «бронированные» силовые кабели обнаружить данным прибором невозможно.

Схема простого кабелеискателя

При доработке схемы рисунка необходимые изменения коснулись в первую очередь схемы входного усилителя устройства. Один из вариантов доработки показан на другом рисунке. Напомню, что в электрической схеме прототипа в качестве микросхемы DA1 была использована микросхема КР140УД8А.

Ее высокое входное сопротивление в данном устройстве не имеет принципиального значения, поэтому в схеме применена более распространенная и дешевая микросхема КР140УД708.

Схема простого кабелеискателя

Евгений Яковлев

kruso.su

Кабельный тестер-трассоискатель Mastech MS6812 и его доработка

Здравствуйте. В своём сегодняшнем обзоре я расскажу о кабельном тестере-трассоискателе Mastech MS6812. С его помощью можно отследить как проложен провод, искать повреждения в автопроводке, в сетевой проводке, телефонных и компьютерных сетях, а также проверить состояние, целостность и полярность телефонных линий. В конце обзора вас ждёт доработка трассоискателя, для получения на выходе передатчика двухтонального сигнала, что намного облегчает поиск. Если вам это интересно, то добро пожаловать под кат.

Заказ был сделан 6 декабря. 11 декабря магазин выслал товар почтой Швеции и 17 января я забрал из отделения связи — вот такой пакет:

Пакет

Mastech MS6812 поставляется в красочной картонной коробке:

На обратной стороне которой — нанесены технические характеристики тестера:

Сам тестер упакован в удобную сумочку из плотной ткани на застёжке-молнии:

В комплект, помимо тестера входит инструкция на английском языке:

Инструкция

Вот ссылка на инструкцию на русском языке.

И, прежде чем мы перейдём к рассмотрению устройства тестера – его краткие технические характеристики:

Характеристики
Бесконтактный трассоискатель состоит из передатчика и приемника сигнала
Прослеживание трассы прокладки кабеля
Нахождение провода
Тестирование отсутствия обрыва
Обнаружение места обрыва
Телефонная линия: определение полярности, целостности линии, состояния линии (свободно, занято, вызов)
Посылка простого однотонального сигнала по проводам
Генерируемая частота: 1,5 кГц
Диапазон частоты приемника: 100 Гц … 300 кГц
Питание: батарея — 2 шт. х 9 В тип 6F22
Комплект поставки: приемник, передатчик, комплект батарей, мягкий чехол, инструкция по эксплуатации
Размеры передатчика: 145 х 35 х 25 мм
Размеры приемника: 238 х 43 х 26 мм
Масса передатчика: 87 г
Масса приемника: 71 г
Масса комплекта с упаковкой: 410 г

Приёмник:

На верхнем конце приёмника расположена антенна, которой нужно вести вдоль провода, кабеля или жгута.

На боковой стороне приёмника расположен регулятор громкости:

И стандартный разъём 3,5 для подключения наушников, что особенно удобно в шумных помещениях:

С верхней стороны приёмника расположены динамик и кнопка включения:

Кнопка без фиксации. Приёмник работает пока удерживается кнопка.

С нижней стороны находится отсек для батарейки типа «Крона». Для доступа к батарейке следует открутить саморез фиксирующий крышку батарейного отсека:

Батарейка входит в комплект.

Вскроем приёмник.

Динамик:

Плата приёмника:

Приёмник собран на базе УНЧ LM386:

Плата с обратной стороны:

Перейдём к передатчику:

Сверху на передатчике находится два светодиода.

«CONT», с изменяемым цветом – служит для проверки полярности, целостности и состояния (занята/свободна/вызов) телефонной линии. Это подробно написано в инструкции на тестер.

«TONE» — мигающий светодиод, индицирующий включённый режим TONE, при котором в проверяемый провод или линию подаётся тональный сигнал генератора, который принимает приёмник.

С нижней стороны передатчика находится батарейный отсек:

Питается передатчик, также, как и приёмник — от батарейки типа «Крона». Только в передатчике пришла севшая батарейка, которая потребовала замены, что странно. При замере потребления передатчика в положении переключателя «OFF» — потребление полностью отсутствует.

На боковой стороне находится переключатель «СONT» — «OFF» — «TONE». Соответственно, он переключает режимы работы передатчика: проверка телефонной линии/выключено/генератор.

Выходами передатчика являются два «крокодила» подключаемые к исследуемой линии или разъём RJ-11, который позволяет подключать передатчик к телефонным розеткам, а при наличии переходников – к плинтам и прочему. Например, можно использовать переходники от телефонной трубки связиста, которую я здесь рассматривал.

Вскроем передатчик:

Передатчик устроен на базе HEF4069UBT, состоящем из шести элементов «НЕ», или инверторов:

И, как вы можете видеть – на плате, помимо переключателя режима работы, находится ещё один переключатель. Это дискретный переключатель громкости.

В интернете нашлась схема тестера:

Для доработки – нас интересует передатчик, названный на схеме генератором. Там указана другая микросхема, но это просто аналог. Русский аналог – это К561ЛН2. Поэтому разницы нет никакой.

Элементы DA 1.1 и DA 1.2 – это генератор длительности тона;

DA 1.3 и DA 1.4 – выходной каскад;

DA 1.5 и DA 1.6 – генератор тона.

Для доработки тестера в двухтональный, достаточно соединить катод светодиода «TONE» с DA 1.1:

Теперь при вот таком положении переключателя, который не выведен наружу:

Мы имеем двухтональный генератор, при переключении переключателя – однотональный. При желании можно, найдя подходящий ползунок, вывести переключатель наружу. Но я не стал этого делать, так как двухтональный сигнал намного легче идентифицируется и более удобен в работе.

Кратко о том, как пользоваться генератором. Подключаем крокодилы передатчика к проверяемой паре, если нужно проверить один провод – подключаем красный крокодил к проводу, а чёрный – к земле (в автомобиле – к массе) при этом провода должны быть обесточены.

Затем, в зависимости от того, что нам требуется найти концы или обрыв, идём к окончанию провода, включаем приёмник и проводя антенной над проводами, по сигналу генератора находим нужные. Для поиска обрыва – ведём антенной вдоль трассы прохождения провода и смотрим, когда пропадёт сигнал генератора.

Также можно искать скрытую проводку 220 вольт. Для этого даже не нужно обесточивать проводку и использовать передатчик. Достаточно приёмника. Проводка довольно точно определяется по фону переменного тока 50 Герц.

Ну и о наводках на соседние провода. Вот тут двухтональный генератор – показал себя просто отлично. Приведу пример. Недавно нужно было выдать номер на старую, давно неиспользуемую розетку в многоэтажном здании. Документации никакой не сохранилось. Пара на розетку уходит с плинтов вот в таком пуке кабелей:

И найти пару традиционным методом занимает довольно много времени, ещё и у телефонной розетки нужно найти и обычную розетку для подключения генератора.

Телефонные кабели идут по зданию, на этажи, в общей куче с электрическими кабелями, сигнализацией, и сетями передачи данных.

Подключаем передатчик к телефонной розетке, и проводим антенной приёмника над плинтами. Плинт был найден моментально. Медленно проводим антенной над парами плинта и находим искомую пару. Все поиски, вместе с беганьем по этажам, для подключения передатчика, заняли пять минут.

Спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Трассоискатель из доступных деталей. | remontkai.ru

Трассоискатель из доступных деталей.

Трассоискатель из доступных деталей сделать для личного пользования под силу любому знающему своё дело электрику.Все мы знаем, что ремонт это очень хлопотное занятие. А плохо вдвойне, если нет чем делать и как делать? История одного ремонта побудила меня написать, как можно выйти из сложной ситуации, если к делу подходить с головой. Для поиска неисправности надо сделать трассоискатель.

На работе случилась авария. Перестали работать 3 скважины подачи воды. В обрыве оказался кабель дистанционного включения насосов. Определили, какие жилы в обрыве, а в каком месте обрыв определить трудно.Нужен трассоискатель. Кабель под землёй видимых повреждений на участке нет, а расстояние  приличное. Пригласили связистов, они походили по трассе толку никакого говорят этим прибором определить невозможно у вас рядом высоковольтная линия электропередач, большие помехи. Я с момента аварии задался целью из доступных деталей сделать прибор отыскания обрыва в кабеле. Дома нашел заброшенный дочерью плеер. Он оказался полностью в сборе со всеми атрибутами даже наушники рабочие. Сделал доработку, отрезал всё лишнее. Добавил выключатель питания и сделал металлический корпус от наводок. Проверил, усилитель работает  нормально, Дело в поисковой катушке. Смотрю реле РКН, разбирается оно очень просто. Снимаю контактную группу. Остаётся катушка и пластина основание реле. Зажимаю пластину в тисках и легким ударом молотка по стержню катушки, выбиваю её. Стержень катушки вытаскивается легко. Катушка поиска готова. Соединяю последовательно обмотки и у меня при измерении получилось 5 килоом. Вставляю внутрь ферритовый стержень диаметром 8 мм. С обеих сторон фиксирую стержень резиновыми кольцами. Нашел кусок пластмассовой трубки с внутренним диаметром 28 мм. Чуть подточил края каркаса катушки, чтобы она входила внутрь трубки. Согнул трубку так  чтобы при своём росте трубка с катушкой, находилась горизонтально поверхности земли. К катушке подпаял экранированный провод и нашел подходящий разьём для соединения с усилителем. Всё по месту подогнал трассоискатель готов и начал испытание. Прошел по территории  действительно от линии 50 гц сильно слышно, короче сплошной гул в наушниках на самой маленькой громкости. Значит, нужен сигнал отличимый от 50 герц. Надо делать зуммер опять же из подручных деталей. Нашел реле на 24 вольта с мощными контактами. Сделал регулировку вибрирования контакта и катушку запитал через этот контакт. Запитал устройство через блок питания и подсоединил к оборванному проводу и второй провод к земле. И тут я в общем шуме отчетливо слышу свой зуммер, промерил с одной стороны до пропадания звука, затем с другого место обрыва определилось на изгибе трассы. Но как везде ведется, сказали подождать до приезда людей с серьёзным прибором. Приехали с электронным прибором, который на дисплее показывает расстояние. Измерили с одной стороны с другой, погрешность метров 5. Начали копать и разбивать трубу обрыва нет. От моей отметки копать начали в другую сторону. В обеденный перерыв я откопал  место, которое я определил, ошибка была в 20 сантиметрах. А получилось, при затягивании кабеля в трубу содрали изоляцию, зашла вода, а кабель алюминиевый превратился  в порошок. Это я к чему написал, а может, кому пригодиться. Здоровья и удачи во всем КАИ.

Катушка самодельного трассоискателя.

Спасибо за посещение странички. Вы просмотрели эту рубрику. А я предлагаю посмотреть моё предложение по заработку. Сейчас все в интернете ищут способы как заработать. Я друзья предлагаю самый простой и эффективный метод . смотрите ЗДЕСЬ.

 

 

 

 

Приглашаю в друзья для общения.

remontkai.ru

Искатель кабельных трасс на основе компьютерного блока питания

Чаще всего, компьютерным блокам питания «второй срок службы» уготован в качестве лабораторных блоков питания, блоков питания радиостанций и зарядных устройств стартерных аккумуляторов. Но кроме этого, им было найдено и еще одно применение.

В описанном в [1] приборе для поиска кабельных трасс, в процессе эксплуатации были выявлены некоторые недо­статки, которые были характерны и для его прототипа [2] и которые так и не были устранены до конца. Самый его зна­чительный недостаток заключался том, что из-за низкого на­пряжения выходного трансформатора был затруднен поиск кабеля, в котором все жилы находятся в обрыве.

Устранить этот недостаток было возможно только в случае увеличения выходного напряжения. Такое возможно только лишь при замене выходного трансформатора на трансформа­тор большей габаритной мощности. По целому ряду причин, од­ной из которых был довольно ограниченный внутренний объ­ем корпуса, сделать это было довольно проблематично.

К тому же автор давно «заболел» идеей постройки по­добного прибора вообще без крупногабаритных намоточных узлов. Любому мастеру электрику хорошо известно, что на­мотка низкочастотных трансформаторов и дросселей явля­ется, по ряду хорошо известных причин, самым большим пре­пятствием, и реализация скольких хороших схем была отло­жена «на потом» запнувшись за данную проблему — одно­му богу ведомо. Но с другой стороны, «достать» готовый трансформатор с необходимыми параметрами до сих пор счи­тается несомненной удачей и невероятным везением.

К сожалению, построить прибор без намоточных узлов в виде трансформатора пока еще не удалось, но надеемся, что только пока, а вот изготовить его с минимумом этих уз­лов получилось. Взор автора был обращен на компьютерные блоки питания, которые в последнее время все чаще, отслу­жив верой и правдой в системных блоках компьютеров, в ис­правном или неисправном виде попадают в руки электриков. Чаще всего «второй срок службы» им уготован в качестве лабораторных блоков питания, блоков питания радиостан­ций и зарядных устройств стартерных аккумуляторов.

Генератор искателя табельных трасс

Один из таких компьютерных БП попал в руки автора в неисправном виде. После проверки и замены всех неисправ­ных электролитических конденсаторов блок питания зарабо­тал. Судя по наклейке на его корпусе, он назывался «HIGH POWER HPC-200C1-REV-A2» с выходной мощностью 200 Ватт. Конечно же, для питания современного компьютера такой БП не подойдет, а вот для его переделки и использования в качестве генератора искателя кабельных трасс, пожалуй, луч­ше и не придумать.

Изначально ставилась цель не только построения гене­ратора искателя кабельных трасс (ГИКТ) на основе компью­терного БП, но и желательно при минимальном вмешатель­стве в его схему и минимальных переделках. Автор исходил из того, что такой блок питания обладает необходимой на­дежностью и имеет множество встроенных защит, и поэто­му любые изменения его схемы без необходимых знаний и опыта может привести к печальным последствиям. Помимо этого, минимальное вмешательства в схему БП значительно сокращает время, не говоря уже о средствах и нервах, на постройку генератора ГИКГ.

Еще перед началом ремонта в разрыв сетевого провода блока питания была включена лампа накаливания 230 В 75 Вт. В дальнейшем, все включения в сеть производились вместе с этой лампой, и окончательно она была изъята из конструкции уже после того, как ГИКГ был окончательно отрегулирован и опробован в полевых условиях и автор убедился, что он рабо­тает стабильно и никаких «сюрпризов» быть не должно.

Схема этого генератора приводится на рис.1. Описание работы компьютерного БП очень подробно и доходчиво при­водится в [3] и [4]. Но ввиду того, что эти блоки изготовля­ются разными производителями и их «внутренности» могут существенно различаться, то сама по себе их точная схема не важна. Главное — хорошо представлять себе назначение и принцип работы основных узлов БП.

Рис. 1

На рис.1 порядок нумерации элементов несколько отли­чается от порядка в реальной схеме. К тому же, вновь вво­димые элементы обозначены звездочкой в нумерации, а эле­менты, тип которых был изменен или номинал требует под­бора при регулировке, обозначены звездочкой в номинале или наименовании.

Для установки новых компонентов необходимо свободное пространство, которого так мало внутри корпуса БП и по­этому следующим этапом после восстановления его работо­способности являлась расчистка места под новые компо­ненты. Для того были удалены мощные диодные сборки VD17- VD18 и VD19- VD20 шин питания +5 В и +12 В вместе с ра­диаторами, а вместо них установлены обычные диоды 1N4007.

Замена может быть и не самая адекватная, но для нагру­зок, подключенных к этим шинам этого вполне достаточно.

Конденсаторы С19 и С23 имели достаточно большие га­бариты и были заменены менее габаритными с таким же но­миналом. Конденсаторы С21 и С25 были заменены конден­саторами с уменьшенной в 2 раза емкостью. Еще в блоке питания была довольно габаритная индуктивность, которая содержала 4 обмотки провода диаметром 0.8 мм, намотан­ных на кольце. Она была удалена, а вместо нее установле­ны отдельные катушки L2, L3, L4. Каждая из этих катушек была намотана эмалированным проводом, например, ПЭВ-2 диаметром 0.41 мм на ферритовом кольце, снятом с неис­правного усилителя «польской» антенны до заполнения все­го внутреннего пространства кольца. Это составляет пример­но 70…80 витков. Катушка L5 была сохранена, а остальные были заменены перемычками. Все эти мероприятия прово­дились для того, чтобы после освобождения пространства вну­три БП не нарушить работу системы автоматического регу­лирования выходного напряжения и блока защит, которые за­вязаны на контроле этих напряжений.

Рис. 2

Генератор звуковой частоты

Частота, на которой работает блок питания компьютера, находится выше границы звукового диапазона и поэтому про­сто подать напряжение с выходного трансформатора в ка­бель и потом пытаться отыскать его на слух является заня­тием малоперспекгивным. Необходимо «посадить» на рабо­чую частоту инвертора в БП любой сигнал звуковой часто­ты. Это является не такой уж и простой технической задачей, особенно если учесть желание автора свести вмеша­тельство в схему БП к минимуму, а лучше вообще вмеша­тельство исключить. И такое решение было найдено.

Идея заключалась в том, что микросхема TL494 имеет внутренний задающий генератор, управляющий мощными инверторными ключами VT5, VT6. Частотозадающая цепоч­ка этого генератора является обычным RC-звеном и подклю­чается к выводам 5 и 6 микросхемы. В нашем случае это цепочка R54 и С34. Если изменять номинал любого элемен­та этой цепочки, то частота преобразования также будет из­меняться. Если, к примеру, уменьшать сопротивление рези­стора R54, подключая параллельно ему другой резистор (R55) в такт с изменением информационного сигнала какого-ни­будь звукового генератора, то огибающая напряжения на вы­ходе трансформатора ТЗ также будет изменяться в та кг сиг­нала звукового генератора.

В качестве задающего используется трехчастотный звуко­вой генератор (ГЗЧ), собранный на одном транзисторе VT10 типа КТ315 и микросхеме DD1 типа К155ЛА3. По существу, ГЗЧ состоит из трех генераторов с различными временными характеристиками. Так, транзистор VT10, элемент D1.4, кон­денсатор С37, резисторы R44, R45, R47, R4B образуют гене­ратор с тактовой частотой около 1 Гц. Элемент D1.1, резис­тор R43, конденсатор С36 и элемент D1.2 составляют второй генератор с частотой генерации около 1000 Гц. И наконец, элемент D1.3 вместе с резистором R46, конденсатором С38 и элементом D1.2 образуют третий генератор, но уже с час­тотой около 200 Гц. Выход генератора управляет оптроном U1.

Желаемое звучание ГЗЧ можно подобрать, вращая ось резистора R47, который установлен на передней панели при­бора. Можно вообще обойтись без резисторов R47 и R48, по­добрав звучание генератора, изменяя номиналы R44, R45, но нужно учесть, что снижать сопротивление R44 ниже 4.7 кОм и R45 ниже 47 кОм нежелательно.

Светодиод HL1, который управляется транзистором VT11 от генератора 1 Гц, является индикатором POWER и уста­новлен на передней панели прибора. Еще один светодиод HL2 является индикатором перегрузки и также установлен на передней панели прибора.

Индикатор перегрузки питается от падения напряжения на резисторе R50.

Так как, в компьютерных БП не предусмотрено никаких защит по переменному току со стороны вторичных напряже­ний, то любые случайности, например короткое замыкание в нагрузке выходного трансформатора могут оказаться фа­тальными. Чтобы этого избежать, в схему был введен рези­стор R50 для ограничения тока на выходе трансформатора ТЗ. Для повышения надежности работы прибора, мощность короткого замыкания обмотки напряжением 300 В (выводы 3-9) при мощности БП 200 Ватт с учетом потерь должна быть ограничена на уровне примерно 150 Вт. Для напряжения 300 В это примерно равно току 0.5 А. При коэффициенте трансформации 12.5 ток в обмотке I трансформатора ТЗ бу­дет равен 6.25 А. Чтобы ограничить ток на таком уровне при напряжении 24 В, необходим резистор сопротивлением 3.84 Ома. Мощность такого резистора должна быть 150 Вт. Имея такие данные можно рассчитать сечение провода для выходного трансформатора.

Выходной трансформатор

Выходной трансформатор Т3 был намотан на Ш-образном сердечнике из феррита неизвестной марки с сечением 11×19 мм. Для расчета количества витков необходимо знать площадь сечения в миллиметрах:

Sсеч = 11×19 = 209 мм.

Далее, разделив эмпирический коэффициент 5760 на ча­стоту преобразования БП узнаем коэффициент К зависимо­сти от частоты, с помощью которого можно вычислить наи­более важный параметр любого трансформатора — отноше­ние «вольт на виток» обмотки. Частоту преобразования БП узнать довольно просто — необходимо определить номиналы резистора подключенного к выводу 6 и конденсатора подклю­ченного к выводу 5 микросхемы DA1. В нашем случае это элементы R54 и С34, которые определяют частоту задающе­го генератора микросхемы TL494. Далее, подставив их но­миналы в формулу, вычисляем частоту задающего генерато­ра этой микросхемы:

В формуле номинал R54 указан в Омах, а С34 — в Фа­радах.

Получаем на выходе частоту преобразования БП Fпр которая равна 25 кГц.

Далее: К = 5760/F (кГц) = 5760/25=230.4

Отношение «вольт на виток» считаем как отношение Sсеч/К = 209/230.4 = 0.91

Следовательно, соотношение «виток на вольт» равно 1/0.91= 1.1

Упрощенная формула для определения сечения круглого обмоточного провода:

где:

D — диаметр провода,

Sсеч (в миллиметрах) — площадь сечения провода.

Упрощенная усредненная формула для расчета необхо­димого сечения намоточного провода:

Sсеч = А / 3.85,

где:

А — номинальный ток нагрузки.

Полные характеристики трансформатора ТЗ приведены в таблице, из которой видно, что на выходе трансформатора ТЗ можно получить от 4-х обмоток: II, III, IV, V целых 10 раз­личных значений напряжений.

Нужно сразу оговориться, что значения напряжений указаны ориентировочно, т.к. мы имеем дело с ШИ-регулированием, и цепи обратной связи предназначены для поддержания стабильных значений напряжения по посто­янному току, а для переменных значений возможны неко­торые отклонения. Впрочем, для данного устройства это не очень важно.

№ п/п Номер обмотки Обозначение выводов Ток в обмотке, А. Количество витков Диаметр провода, мм. Точки подключения питания для обмотки I).

Точки подключения нагрузки (для обмоток II III IV V VI).

Напряжение на входе / выходе, В.
1 I 1-2 6.25 26.5 1.45 1-2 24
2 II 3-4 6.1 27 1.4 3-4 25
3 III 4-5 2.1 56 0.83 4-5 50
 

4

 

 

IV

 

 

5-6

 

 

0.89

 

 

110

 

 

0.53

 

3-5 75
3-6 175
4-6 150
5-6 100
5 V 6-7 0.52 138 0.41 3-7 300
4-7 275
5-7 225
6-7 125
6 VI 8-9 0.1 7 0.3 8-9 8

Трансформатор Т3 был установлен в освободившемся ме­сте компьютерного БП и прикреплен изнутри к передней па­нели металлическим хомутом через резиновые прокладки.

Остальные компоненты устройства

Резистор R50 изготовлен из константановой проволоки диаметром 0.6 мм, намотанной на фарфоровую оправку прямоугольного сечения. Оправка была установлена на пе­редней панели прибора и закрыта защитной решеткой.

Рис. 3

Мощность этого резистора сильно занижена, но так как он не предназначен для долговременных режимов работы при максимальном токе, то этим можно пренебречь. Кроме этого, при максимальных токах нагрузки значительно снизит­ся постоянное напряжение шин +5 В, +12 В. При этом сра­ботает защита, и выключит мощные транзисторы VT5 и VT6.

Вентиляторы в блоках питания системных модулей ПК ХТ или АТ, как правило, вытягивают воздух из корпуса БП. В модернизируемом блоке было так же. Для увеличения эф­фективности работы вентилятор был развернут на 180°, и ус­тановлен на прежнем месте.

Корпус БП, как основание, так и крышка, в целях повы­шения электробезопасности был изнутри покрыт изоляционным материалом. В местах перфорации, чтобы не нарушить вентиляцию, в материале были вырезаны «окна».

Оптрон 4N27 можно заменить любым подходящим, Его применение связано с тем, что в наличии у автора оказал­ся прибор только данной серии.

А вот с идеей питания схемы ГЗЧ от мощной шины +5 В пришлось проститься, т.к. при попытках такого подключения пампа в цепи сетевого провода вспыхивала ярким светом, сигнализируя о наличии короткого замыкания. Причина это­го явления автором так и не была понята до конца. Поэтому пришлось запитывать ГЗЧ от изолированного источника. По этой же причине пришлось отказаться от попыток изъя­тия из схемы согласующего устройства, а именно оптрона установленного на выходе ГЗЧ.

Изначально, когда еще БП работал в системном моду­ле, из него выходил жгут проводов, который заканчивал­ся кнопкой типа советской ПКн-41. Эта кнопка устанавли­валась на системном блоке компьютера, и ее нажатием он включался. При переделке БП в ГИКТ жгут был ликви­дирован, а кнопка установлена на задней панели прибо­ра. В блоках питания более поздних выпусков (типа АТХ) такой кнопки нет. Их включение производится командой с материнской платы ПК и связана она с сигналом POWER GOOD. Впрочем, включение в работу таких БП без нали­чия ПК большой проблемы не представляет, и ее реше­ние неоднократно освещалось в литературе и на форумах профильных сайтов.

Литература:

  1. Котов Г. Простой кабелеискатель. // Электрик. — 2013. — №5.
  2. Бражников А.В. Кабелеискатель. //Автоматика, связь, информатика. — 2000. — №5.
  3. Куличков B. Импульсные блоки питания для IBM PC. — М.:, ДМК Пресс — 2002.
  4. Головков B. Любицкий В.Б. Блоки питания для сис­темных модулей типа IBM PC — ХТ/АТ. «ЛАД-Н». Моск­ва — 1995.

Автор: Геннадий Котов, г. Антрацит
Источник: журнал Электрик №12. 2016

Возможно, вам это будет интересно:

meandr.org

Отправить ответ

avatar
  Подписаться  
Уведомление о