Как движется ток – Направление тока в проводнике, как, откуда и куда течет электрический ток.

Содержание

Направление тока в проводнике, как, откуда и куда течет электрический ток.

 

 

 

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

 

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

 

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

 

 

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

 

 

 

 

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

 

 

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

 

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

 

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

 

electrohobby.ru

Постоянный электрический ток. Направление тока, формула


 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

 

Направление электрического тока

 

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

 

Действия электрического тока

 

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

 

Сила и плотность тока

 

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

(2)

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

 

Скорость направленного движения зарядов

 

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

м

Положим мм . Из формулы (5) получим:

м/с.

Это порядка одной десятой миллиметра в секунду.

 

Стационарное электрическое поле

 

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Звоните нам:
8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Что такое электрический ток? Основные понятия, характеристики и действия.

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10-31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1.  Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.


Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Видео по теме: что такое электрический ток

meanders.ru

от минуса к плюсу или наоборот?

Все мы хорошо знаем, что электричество представляет собой направленный поток заряженных частиц в результате воздействия электрического поля. Это вам скажет любой школьник. А вот вопрос о том, каково направление тока и куда деваются эти самые частицы, многих может поставить в тупик.

Суть вопроса

Как известно, в проводнике электричество переносят электроны, в электролитах – катионы и анионы (или попросту ионы), в полупроводниках электроны работают с так называемыми «дырками», в газах – ионы с электронами. От наличия свободных элементарных частиц в том или ином материале и зависит его электропроводность. При отсутствии электрического поля в металлическом проводнике ток идти не будет. Но как только на двух его участках возникнет разность потенциалов, т.е. появится напряжение, в движении электронов прекратится хаос и наступит порядок: они начнут отталкиваться от минуса и направятся в сторону плюса. Казалось бы, вот и ответ на вопрос «Каково направление тока?». Но не тут-то было. Достаточно заглянуть в энциклопедический словарь или просто в любой учебник по физике, как сразу станет заметно некое противоречие. Там говорится, что условно словосочетание «направление тока» обозначает направленное движение положительных зарядов, другими словами: от плюса к минусу. Как быть с этим утверждением? Ведь здесь невооруженным глазом заметно противоречие!

Сила привычки

Когда люди научились составлять цепь постоянного тока, они еще не знали о существовании электрона. Тем более, в то время не подозревали что он движется от минуса к плюсу. Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.

«Золотая середина»

В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места.

fb.ru

Протекание тока — Основы электроники

Электрический ток это есть медленное движение потока электронов в область положительного заряда из области отрицательного заряда. В качестве единицы измерения силы тока используют ампер (А). Названа эта единица в честь французского ученого Андре Мари Ампера. Один ампер это сила тока, возникающая в проводнике при перемещении заряда через заданную точку величиной в один кулон за одну секунду.
Следующая формула показывает соотношение между силой тока и зарядом за секунду:

I=Q/t

где I — сила тока в амперах, Q — величина электрическо¬го заряда в кулонах, t — время в секундах.

Пример. Чему будет равна сила тока в цепи, если через заданную точку в цепи прошло 12 кулон заряда за 4 секунды.
Решение.
Q=12 Кл;
T=4 с;
I=Q/t=12/4=3 (А).

Рассмотрим протекание тока по проводнику. Обычно носителями заряда в цепи являются отрицательно заряженные электроны. Тогда ток это есть поток отрицательно заряженных электронов. Так исторически сложилось, что направление протекания тока не совпадает с направлением потока электронов, то есть противоположно. Однако в свое время было открыто, что когда электроны перемещаются от одного атома к другому, то возникают положительные заряды, названные дырками. (рис 2.2).

Можно сказать, что дырка это место на оболочке, откуда ушел электрон. Дырки перемещаются в направлении противоположном потоку электронов (рис 2.3).

В том случае, если электроны берутся с одного конца проводника и добавляются на другой конец проводника, то по проводнику будет течь ток. В результате медленного движения свободных электронов по проводнику, они сталкиваются с атомами, при этом освобождая другие электроны. Эти освободившиеся электроны движутся к положительному заряженному концу проводника, так же сталкиваясь с другими атомами. Это перемещение (или его еще называют дрейф) происходит как следствие отталкивания зарядов. К тому же положительно заряженный конец проводника, где присутствует дефицит электронов, притягивает отрицательно заряженные электроны.
Так вследствие «работы» законов взаимодействия электрических зарядов происходит медленный дрейф электронов. Хотя отдельные электроны сталкиваются с атомами и освобождают другие электроны, скорость которых достигает скорости света.
Для наглядности возьмем полую трубу и заполним ее шариками (рис. 2.4.).

Если добавить шарик в один конец трубы, то из второго конца шарик выталкивается. Отдельные шары тратят для перемещения некоторое время, но частота их столкновений иногда будет достаточно высокой.

Устройство, которое забирает электроны с положительно заряженного конца проводника и отдает их в отрицательно заряженный конец проводника, называют источником напряжения. В сравнении с системой водопровода источник напряжения может рассматриваться как своего рода насос (рис. 2.5).

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

www.sxemotehnika.ru

Проектируем электрику вместе: Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).                                              
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

                                                        Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.

Рис. 2
                                                 
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
 
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин  предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее  электричество, заряжается отрицательно. При их соединении избыточный положительный заряд  перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и  др.).

Статьи по теме: 1. Что такое электрический ток?
                            2. Взаимодействие электрических зарядов. Закон Кулона
                            3. Постоянный и переменный ток
                            4. Проводники и изоляторы. Полупроводники
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников

Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.                                                                             

vgs-design-el.blogspot.com

Направление электрического тока

Всем известно, что суть электрического тока заключается в упорядоченном движении заряженных частиц в каких-либо проводниках. Чаще всего для этих целей используются различные металлы, где в качестве тока выступают отрицательно заряженные частицы – электроны. В кислотных, щелочных и солевых растворах электрический ток возникает в результате движения положительных и отрицательных ионов.

С самого начала, когда это явление было открыто, у многих ученых возникал вопрос: какие движущиеся заряженные частицы образуют направление тока? Чтобы до конца разобраться в данной проблеме, следует остановиться на источниках тока, поскольку именно они инициируют движение заряженных частиц в проводниках.

Откуда берется электрический ток

Движение заряженных частиц появляется в результате действия, производимого аккумуляторами, батареями, генераторами и другими устройствами, преобразующими различные виды энергии в электрическую. Закон сохранения энергии наглядно действует в процессе таких преобразований.

Сами частицы начинают двигаться, когда цепь становится замкнутой, а в проводнике возникает электрическое поле, оказывающее определенное воздействие на свободные электроны. В связи с этим было установлено, что все источники тока обладают установленной электродвижущей силой или ЭДС.

Электроны не появляются из источников тока, они присутствуют в самих проводниках и, являясь свободными, начинают двигаться под действием созданного поля. В качестве наиболее яркого сравнительного примера выступает насос перекачивающий жидкость в трубах, замкнутых между собой. В зависимости от диаметра труб и количества разветвлений, жидкость может двигаться по ним с большей или меньшей скоростью. Эти свойства в полной мере характеризуют течение тока, которое изменяется в соответствии с сечением проводника.

На практике это выглядит следующим образом. Провод, сечением 1,5 мм2, рассчитан на максимальную силу тока в 16 А. К нему может быть подключена нагрузка не более 3-3,5 кВт. При подключении более мощного оборудования проводник не выдержит и выйдет из строя.

Разобравшись с источниками тока, необходимо определить его направление, которое приняли ученые после проведенных исследований в этой области. Условно было принято направление движения положительных зарядов, поскольку ток от положительного полюса движется к отрицательному полюсу источника тока.

Движение частиц и направление тока

Прежде всего, следует отметить, что не все движущиеся заряженные частицы вызывают образование тока. Например, под действием тепла заряды будут двигаться, но это движение – хаотическое и ненаправленное. Если же к тепловому движению добавляется действие электрическое поле, то под его влиянием хаотические перемещения частиц примут определенную направленность.

Заряженные частицы, образующие ток, движутся в направлении, в зависимости от знака их заряда. То есть, движение положительно заряженных частиц происходит от «+» к «-», а отрицательно заряженных, наоборот, от «-» к «+». Встречное движение характерно для газовой и электролитической среды, поэтому часто возникает вопрос, каким будет настоящее направление тока?

По общему соглашению было принято решение считать направление движения частиц с положительными зарядами, за направление электрического тока. В этом случае возникает некоторое противоречие, затрагивающее металлические проводники, в которых перенос зарядов осуществляется свободными электронами. Хорошо известно, что они двигаются от минуса к плюсу. Тем не менее, приходится считать направление тока в этом случае, противоположным движению свободных электронов. Однако, несмотря на некоторые неудобства, данное правило четко определяет, в каком направлении движется электрический ток.

electric-220.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о