Как идет ток через диод – . . . . .

Содержание

общие сведения и принцип работы, способы подключения к электрической цепи, возможные неисправности

Схема диодаДиод — это электронный элемент, который обладает различной проводимостью. Он изготовлен на полупроводниковой основе и предназначен для выполнения разнообразных действий с поступающими электрическими сигналами. Применяется это приспособление не только в промышленности, электронике, но и в повседневной жизни. Большинство современного оборудования имеет в своём составе несколько таких элементов.

Общие сведения

Прежде чем рассматривать, как работает диод, необходимо подробно изучить его устройство, разновидности и узнать, зачем он применяется. Это поможет лучше понять принцип действия и выбрать максимально эффективное приспособление для определённого оборудования.

Устройство диода

Диод (от англ. diode) выглядит просто и имеет конструкцию, состоящую из небольшого количества элементов. Это позволяет мастерам не приобретать дорогостоящие изделия, а изготавливать их своими руками. Самодельные приспособления хоть и стоят намного дешевле, но выполняют те же функции, что и покупные.

Так как диоды часто изображаются на электросхемах, то определение их параметров считается довольно важным мероприятием. Обозначением для этих элементов служит комбинация символов VD1, VD2 и так далее.

Схема диода предусматривает наличие следующих элементов:

  1. Где используются диодыКорпус. Он представляет собой стеклянный, керамический или металлический вакуумный баллон.
  2. Два электрода (катод и анод). Они располагаются внутри баллона и используются для обеспечения эмиссии электронов. Чаще всего применяются электроды косвенного накала, которые имеют цилиндрическую форму, и обладают специальным слоем, испускающим электроны. В некоторых старых конструкциях можно встретить эти элементы в виде тонкой нити, накаливающейся в процессе работы приспособления.
  3. Подогреватель. Он находится внутри катода и устроен в виде проволоки, которая накаливается из-за прохождения электрического тока.
  4. Диодный кристалл. Для изготовления этого элемента применяется германий или кремний. Одна его часть проводит электричество и имеет недостаточное количество электронов, а вторая — избыток.
  5. P-n переход — область между первой и второй частью диодного кристалла.

Принцип действия

Принцип работы диода довольно простой и разобраться в нём сможет не только профессионал, но и новичок. Для этого не нужно иметь специальное образование или навыки работы с таким приспособлением, а достаточно обладать общим представлением об устройстве.

Принцип действия диода:

  1. Принцип работы дидов
    Электрический ток проходит через устройство и воздействует на катод диода.
  2. Из-за этого подогреватель постепенно накаляется, а электрод начинает испускать электроны.
  3. Следствием этого становится образование электрического поля между двумя электродами, которое является катализатором процесса притяжения электронов к аноду, обладающему положительным зарядом. Благодаря этому образуется эмиссионный ток.
  4. Пространственный отрицательный заряд, который появляется между двумя электродами, препятствует движению электронов к аноду. Из-за этого часть их меняет своё направление, и начинает двигаться к катоду.
  5. Попавшие на анод электроны образуют анодный ток, параметры которого соответствуют катодному.
  6. Если электрическое поле, возникшее между электродами, препятствует возвращению частиц на катод, то электродиод остаётся в запертом состоянии. Всё это приводит к размыканию цепи.

Разновидности приспособлений

Производители электронных элементов делают несколько типов диодов. Все они немного отличаются друг от друга, имеют различные свойства, а также используются для достижения определённых целей.

Диоды бывают:

  1. Как применяются диодыВыпрямительные. Это наиболее распространённый тип приспособлений, который используется в устройствах, способствующих преобразованию переменного тока промышленной частоты в постоянный.
  2. Высокочастотные. Большинство моделей современного оборудования функционируют при рабочей частоте в несколько гигагерц. В таких конструкциях применяются специальные диоды, рассчитанные на высокую частоту.
  3. Переключающие. Эти приспособления используются в тех схемах, где диод должен работать в различных режимах. В одном из них он оказывается смещённым в прямом направлении, а в другом — в обратном.
  4. Стабилитроны. Такие элементы применяются только в конструкциях, помогающих стабилизировать напряжение, поступающее к оборудованию.
  5. Варикапы. Они используются в параметрических усилителях и прочих подобных устройствах. С их помощью происходит коррекция частотной модуляции и автоматическая подстройка частоты.
  6. Диоды Шоттки. Назначение этого приспособления — малое падение напряжения при прямом включении. Область их применения ограничивается низковольтными электрическими цепями.
  7. Тиристоры (управляемые диоды). Они часто применяются в схемах, которые предназначены для плавного пуска двигателя, регулировки мощности или включения лампочки.
  8. Симисторы. Эта разновидность диодов используется для обеспечения работы систем, питающихся от переменного напряжения, так как способна пропускать электричество в обоих направлениях. Они представляют собой 2 тиристора, соединённые между собой.

Область применения

Диоды широко применяются по всему миру и входят в состав различных приспособлений. В большинстве случаев несколько таких элементов объединяются в общую конструкцию. Их количество выбирается исходя из типа и особенностей каждой схемы.

Использование диодов в электротехнике:

  1. Виды диодовДиодные мосты. В их составе может находиться от 4 до 12 диодов, которые последовательно соединены друг с другом. Они применяются для однофазных и трёхфазных схем, где выполняют функцию выпрямителей. В большинстве случаев такие диодные мосты устанавливаются на генераторах автомобилей. Благодаря им не только увеличивается надёжность устройства, но и уменьшаются его размеры.
  2. Диодные детекторы. Они представляют собой конструкцию, которая сочетает в себе не только несколько диодов, но и конденсаторы. Благодаря этому достигается способность выделять модуляцию с низкими частотами из соответствующих сигналов. Такие детекторы часто используются при изготовлении радиоприёмников и телевизоров.
  3. Диодная искрозащита. Для её создания применяются специальные диодные барьеры, которые ограничивают напряжение в имеющейся электрической цепи. Вместе с ними используются специальные токоограничительные резисторы, необходимые для контроля за величиной параметров проходящего электрического тока.
  4. Переключатели на основе диодов. Эти устройства дополняются конденсаторами и коммутируют высокочастотные сигналы. При этом контроль за работой осуществляется с помощью подачи управляющего сигнала, разделения высоких частот и применения постоянного тока.

Способы подключения

Существует несколько стандартных вариантов подключения диода в электрическую цепь. Все они используются в определённых схемах и позволяют достичь требуемого результата.

Прямой вариант

Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.

Описание работы диода при прямом подключении:

  1. Какие бывают диоды
    На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
  2. Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
  3. Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
  4. Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
  5. Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
  6. Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
  7. В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.

Обратный метод

Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.

Особенности функционирования диода при обратном включении:

  1. Сфера применения диодовПосле включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
  2. Из-за этого будет происходить расширение запирающего слоя.
  3. Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
  4. Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.

Возможные неисправности

Во время работы устройств с диодами могут возникать различные поломки. Это происходит из-за старения элементов или их амортизации.

Специалисты по ремонту различают 4 вида неисправностей.

Среди них такие:

  1. Тип диодаЭлектрический пробой. Это одна из наиболее распространённых поломок, которые встречаются у диодов. Она является обратимой, так как не приводит к разрушению диодного кристалла. Исправить её можно путём постепенного снижения подаваемого напряжения.
  2. Тепловой пробой. Такая неисправность более губительна для диода. Она возникает из-за плохого теплоотвода или перегрева в области p-n перехода. Последний образуется только в том случае, если устройство питается от тока с чрезмерно высокими показателями. Без проведения ремонтных мероприятий проблема только усугубится. При этом произойдёт рост колебания атомов диодного кристалла, что приведёт к его деформации и разрушению.
  3. Обрыв. При возникновении этой неисправности устройство прекращает пропуск электрического тока в обоих направлениях. Таким образом, он становится изолятором, блокирующим всю систему. Для устранения поломки нужно точно определить её местонахождение. Для этого следует применять специальные высокочувствительные тестеры, которые повысят шанс обнаружить обрыв.
  4. Утечка. Под этой поломкой понимают нарушение целостности корпуса, вызванного физическим или иным воздействием на прибор.

Диод — важный элемент конструкции, который обеспечивает исправную и бесперебойную работу устройства. При правильном выборе этого элемента и обеспечении оптимальных условий работы можно избежать каких-либо неисправностей.

rusenergetics.ru

Диоды. For dummies / Habr

Введение


Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел


Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход


Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в набольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.


Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то



Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Области применения диодов


  1. Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
  2. В качестве переменной емкости. Эти диоды называются варикапами.

    Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа.
  3. Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа — стабилитрон.

    В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона.
  4. В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
  5. В качестве детекторов излучения (фотодиоды).

    Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток.
  6. Для создания оптического излучения (светодиоды).

    При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.

Немного экзотики


Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.

Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.

В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение


Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Источники:
ru.wikipedia.org
mda21.ru
elementy.ru
femto.com.ua

habr.com

Диоды. Устройство и работа. Характеристики и особенности

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:
  • Корпус. Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод. Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель. Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод. Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл. Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

Похожие темы:

electrosam.ru

Выпрямительный диод | Volt-info

Рисунок 1. Вольтамперная характеристика выпрямительного диода.

Вольтамперная характеристика выпрямительного диода

   На рисунке в первом квадранте расположена прямая, в третьем – обратная ветвь характеристики диода. Прямая ветвь характеристики снимается при действии прямого напряжения, обратная соответственно – обратного напряжения на диод. Прямым напряжением на диоде называется такое напряжение, при котором на катоде образуется более высокий электрический потенциал по отношению к аноду, а если говорить языком знаков —  на катоде минус (-), на аноде плюс (+), как показано на рисунке 2.

Рисунок 2. Схема для изучения ВАХ диода при прямом включении.

 

   На рисунке 1 приведены следующие условные обозначения:

– рабочий ток диода;

– падение напряжения на диоде;

– обратное напряжение диода;

Uпр – напряжение пробоя;

– ток утечки, или обратный ток диода.

Понятия и обозначения характеристик

   Рабочий ток диода (Iр), это прямой электрический ток, длительное время проходящий через диод, при котором прибор не подвергается необратимому температурному разрушению, и его характеристики не претерпевают значительных качественных изменений. В справочниках может указываться как прямой максимальный ток.    Падение напряжения на диоде (Uд) – напряжение на выводах диода, возникающее при прохождении через него прямого рабочего тока. В справочниках может быть обозначено как прямое напряжение на диоде.

   Прямой ток течёт при прямом включении диода.

   Обратное напряжение диода (Uо) – допустимое обратное напряжение на диоде, приложенное к нему длительное время, при котором не происходит необратимое разрушение его p-n перехода. В справочной литературе может называться максимальным обратным напряжением.

   Напряжение пробоя (Uпр) – обратное напряжение на диоде, при котором происходит необратимый электрический пробой p-n перехода, и, как следствие, выход прибора из строя.

   Обратный ток диода, или ток утечки (Iу) – обратный ток, длительное время не вызывающий необратимого разрушения (пробоя) p-n перехода диода.

   При выборе выпрямительных диодов обычно руководствуются указанными выше его характеристиками.

Работа диода

   Тонкости работы p-n перехода, тема отдельной статьи. Упростим задачу, и рассмотрим работу диода с позиции односторонней проводимости. И так, диод работает как проводник при прямом, и как диэлектрик (изолятор) при обратном включении. Рассмотрим две схемы на рисунке 3.

Рисунок 3. Обратное (а) и прямое (б) включение диода.

 

   На рисунке изображены два варианта одной схемы. На рисунке 3 (а) положение переключателей S1 и S2 обеспечивают электрический контакт анода диода с минусом источника питания, а катода через лампочку HL1 с плюсом. Как мы уже определились, это обратное включение диода. В этом режиме диод будет вести себя как электрически изолирующий элемент, электрическая цепь будет практически разомкнута, лампа гореть не будет.

   При изменении положения контактов S1 и S2, рисунок 3 (б), обеспечивается электрический контакт анода диода VD1 с плюсом источника питания, а катода через лампочку – с минусом. При этом выполняется условие прямого включения диода, он «открывается» и через него, как через проводник, течёт ток нагрузки (лампы).

   Если Вы только начали изучать электронику, Вас может немного смутить сложность с переключателями на рисунке 3. Проведите аналогию по приведённому описанию, опираясь на упрощённые схемы рисунка 4. Это упражнение позволит Вам немного понять и сориентироваться относительно принципа построения и чтения электрических схем.

Рисунок 4. Схема обратного и прямого включения диода (упрощённая).

 

   На рисунке 4 изменение полярности на выводах диода обеспечивается изменением положения диода (переворачиванием).

Однонаправленная проводимость диода

Рисунок 5. Диаграммы напряжений до и после выпрямительного диода.

 

   Примем условно, что электрический потенциал переключателя S2 всегда равен 0. Тогда на анод диода будет подаваться разность напряжений –US1-S2 и +US1-S2 в зависимости от положения переключателей S1 и S2. Диаграмма такого переменного напряжения прямоугольной формы изображена на рисунке 5 (верхняя диаграмма). При отрицательной разности напряжений на аноде диода он заперт (работает как изолирующий элемент), при этом через лампу HL1 ток не течёт и она не горит, а напряжение на лампе практически равно нулю. При положительной разности напряжений диод отпирается (действует как электрический проводник) и по последовательной цепочке диод-лампа течёт ток. Напряжение на лампе возрастает до UHL1. Это напряжение немного меньше напряжения источника питания, поскольку часть напряжения падает на диоде. По этой причине, разность напряжений в электронике и электротехнике иногда называют «падением напряжения». Т.е. в данном случае, если лампу рассматривать как нагрузку, то на ней будет напряжение нагрузки, а на диоде — падение напряжения.

   Таким образом, периоды отрицательной разности напряжения как бы игнорируются диодом, обрезаются, и через нагрузку течёт ток только в периоды положительной разности напряжений. Такое преобразование переменного напряжения в однополярное (пульсирующее или постоянное) назвали выпрямлением.

volt-info.ru

1.Полупроводниковые диоды, принцип действия, характеристики:

ПОЛУПРОВОДНИКОВЫЙ ДИОД — полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл — полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов.  Принцип действия полупроводникового диода:  В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

ВАХ:

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диодаиобратное включение диода.

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

studfile.net

Диод Шоттки | Характеристики, особенности и применение

Виды диодов

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.

Диод Шоттки

Простой диод выглядит на схемах вот так:

диодобозначение диода на схеме

Стабилитрон уже обозначается, как диод с “кепочкой”

стабилитронобозначение стабилитрона на схеме

Диод Шоттки имеет две “кепочки”

шотткиобозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Диод Шоттки

Обратное напряжение диода

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

работа диода

Это значение можно найти в даташите

обратное напряжение диодаобратное напряжение диода

Для каждой марки диода оно разное

таблица обратных напряжений

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

падение напряжения на диодепрямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

рассеиваемая мощность

где

P – мощность, Вт

Vf – прямое падение напряжение на диоде, В

I – сила тока через диод, А

диод рассеивает мощность

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжения на диодепадение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Диод Шоттки

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

шоттки падение напряженияпадение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Диод Шоттки

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

Диод Шотткиграфик зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

генератор частоты Agilent

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

Диод ШотткиДиод Шоттки

и будем снимать с них показания

однополупериодный выпрямитель

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Диод Шоттки

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Диод Шоттки

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

обратный ток утечки

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Диод Шоттки

Замеряем ток утечки

ток утечкиобратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

Диод Шоттки

Диод Шотткиобратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

пик детекторсхема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

характеристики Шотткизависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

Диод Шоттки

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Диод Шоттки

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

сгоревший диод Шоттки

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панеляхШоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

сдвоенный диод Шоттки

При написании данной статьи использовался материал с этого видео

www.ruselectronic.com

Устройство и работа выпрямительного диода. Диодный мост

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Внешний вид выпрямительных диодов

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Устройство выпрямительных диодов

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Выпрямитель с фильтрующим конденсатором

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Внешний вид сборок диодных мостов

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Диодный мост из диодов

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Условное обозначение диодного моста

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Прохождение тока через диодный мост

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

sesaga.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о