Как из 220 сделать 12 вольт: Как своими руками получить из 220 — 12 вольт без трансформатора | Андрей Швадронов

Содержание

Как своими руками получить из 220 — 12 вольт без трансформатора | Андрей Швадронов

Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.

1.Основные способы понижения

Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.

На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».

Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.

Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.

Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:

1. С помощью балластного конденсатора понижение напряжения.

2. При помощи балластного резистора гасится избыточное напряжение.

3. Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.

1.1 Балластный конденсатор

Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.

Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:

В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии. Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.

Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.

1.2 При помощи резистора

Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение. Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.

1.3 Автотрансформатор или дроссель с подобной логикой намотки

В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц. Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).


Схема автотрансформатора с фиксированным напряжением U2.

Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.

Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.

2. Технические требования к конденсатору

Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

3. Бестрансформаторное электропитание: возможные схематические решения

1. Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц. Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:

2. Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети. В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.

4. Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

· аккумуляторные электродрели, шуруповерты и электропилы;

· стационарные насосы для полива огородов;

· аудио-видеотехника и радиоэлектронная аппаратура;

· системы видеонаблюдения и сигнализации;

· батареечные радиоприемники и плееры;

· ноутбуки (нетбуки) и планшеты;

· галогенные и LED-лампы, светодиодные ленты;

· портативные ультрафиолетовые облучатели и портативное медицинское оборудование;

· паяльные станции и электропаяльники;

· зарядные устройства мобильных телефонов и повербанков;

· слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;

· детские игрушки, елочные гирлянды, помпы аквариумов;

· различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

Простой преобразователь с 12 на 220 В своими руками

Сделать своими руками преобразователь 12-220 В для питания приборов мощностью до 1000 Вт и выше можно разными методами. Наиболее доступный вариант – поместить приобретенный блок инвертора в корпус с теплоотводом.

Немного сложнее собрать такой блок из печатной платы и дополнительных компонентов. Для этого нужно уметь паять и пользоваться мультиметром, знать разводки выводов активных элементов или уметь их находить. Также необходимо уметь рассчитывать подходящее сечение провода с учетом силы тока и знать правила добавления в схему электролитических конденсаторов, диодов и других полярных компонентов.

Еще один способ создания инвертора 12-220 В – использовать для этих целей UPS от компьютера. К нему подключается автоаккумулятор. Заряжается он отдельно. И последний, самый сложный метод – выбрать вариант преобразования и схему в соответствии с имеющимися потребностями и деталями, выполнить расчет и собрать ее самостоятельно. Для решения этой задачи элементарных электронных навыков недостаточно. Необходимо еще уметь пользоваться разнообразными приборами для измерений и выполнять расчеты.

Как сделать преобразователь с 12 на 220 В из готового модуля

Корпуса инверторов дополнительно выполняют функции теплоотводов для находящихся в них транзисторных ключей высокой мощности. При самостоятельной сборке преобразователя необходимо найти подходящий радиатор или сделать его самостоятельно. Он должен иметь толщину от 4 мм в области размещения ключей и достаточную площадь, чтобы на 1 кВт отдаваемой мощности каждого из ключей обеспечивалось минимум 50 см2 радиатора.

Если требуется обдув от кулера на 12 В 110-130 мА, то дополнительно нужно от 30 см2 на 1 кВт каждого ключа. Кроме радиатора понадобятся теплопроводящие прокладки для изоляции, чашечки и шайбы под винты, провода, для модуля с тепловой защитой – термопаста для его крепления.

Как сделать простой преобразователь с 12 на 220 В из UPS

Чтобы сделать из UPS от компьютера инвертор 12-220 В для подключения всевозможных устройств в рамках допустимой мощности, следует заменить имеющиеся провода, идущие к «родной» батарее, длинными проводами с зажимами под клеммы автоаккумулятора. Их сечение подбирается с учетом допустимых значений плотности тока 20–25 А/мм2.

UPS обычно содержат свинцово-кислотные батареи. Их разряд контролируется по напряжению, и контроллер ИБП не допустит чрезмерного разряда используемой батареи. Но в штатных батареях UPS находится гелевый электролит, а в авто АКБ – жидкий. Принципы восполнения заряда у них отличаются, поэтому в дополнение к инвертору на UPS необходимо соответствующее зарядное устройство.

Алгоритм создания инвертора 12-220 В

Для создания преобразователя с выходными параметрами 220 В, 50 Гц необходим частотомер. Подойдет простейшая модель – электромеханический резонансный прибор или стрелочный вариант произвольного типа. Он обеспечит контроль частоты, колебания которой в электросети допускаются в диапазоне 48–53 Гц. К отклонениям от нормы частоты напряжения питания наиболее чувствительны электродвигатели переменного тока. В таких ситуациях они нагреваются и отклоняются от номинальных оборотов, что особенно рискованно для кондиционеров и холодильников (риск разгерметизации).

Как правило, питание 220 В, 50 Гц необходимо потребителям небольшой мощности – в пределах 350 Вт. В подобных случаях можно создать преобразователь на базе ИБП от компьютера. Отдаваемая в нагрузку мощность примерно будет составлять 0,7 от номинала мощности ИБП.

Читайте в нашей предыдущей статье о видах АКБ для систем видеоконтроля.

Преобразователь напряжения 12-220 сделать самому своими руками: простая схема

Изготовить своими руками преобразователь напряжения 12/220 вольт можно буквально из подручных материалов. За основу можно взять даже блоки от простого источника бесперебойного питания – он, по сути, является двойным преобразователем – сначала происходит снижение напряжения до 12 В, чтобы обеспечить зарядку аккумулятора.

А после производится повышение напряжения до 220 В, преобразование тока из постоянного в переменный. Использоваться подобные устройства могут для питания бытовой аппаратуры вне дома – дрели, болгарки, телевизоры и т. д. Изготовить самостоятельно такое устройство несложно, да и выйдет себестоимость его меньше, чем у аналогичных приборов, которые продаются в магазинах.

Принцип работы инвертора

Второе название преобразователя – инвертор. По сути, это генератор сигнала с модуляцией широтно-импульсного типа. Питание производится от источника постоянного напряжения 12 вольт (в данном случае – от аккумулятора). На выходе устройства появляются импульсы, у которых изменяется скважность. Зависит от соотношения времени, в течение которого имеется или отсутствует напряжение. При скважности, равной единице, на выходе максимальное значение тока. При уменьшении скважности ток снижается.

Напряжение в любой момент времени на выходе составляет 220 В. Даже самый простой преобразователь 12В в 220В может работать в широком диапазоне частот – 50 кГц…5 МГц. Все зависит от конкретной схемы и применяемых в ней элементов. Частота напряжения очень высокая, для питания бытовой аппаратуры она окажется губительной. Чтобы снизить ее до стандартных 50 Гц, необходимо использовать специальной конструкции трансформаторы. ШИМ-модулятор позволяет создать из постоянного напряжения переменное с необходимой частотой.

Система обратной связи

При отсутствии нагрузки у ШИМ-модулятора скважность импульсов на минимальном уровне, значение напряжения 220 В. Как только к устройству будет подключена нагрузка, то резко увеличится ток и напряжение упадет, оно окажется меньше 220 В. Если вы решили сделать преобразователь напряжения с 12 на 220 вольт своими руками, то обязательно учитывайте наличие обратной связи. Она позволяет сравнивать напряжение на выходе с эталонным значением.

Если есть разница в напряжениях, то на генератор подается сигнал, который позволяет увеличить скважность импульсов. С помощью этой системы получается добиться максимальной мощности на выходе и более стабильного напряжения. Как только нагрузка будет отключена, напряжение снова подпрыгивает выше 220 В – система обратной связи это фиксирует и уменьшает значение скважности импульсов. И так до того момента, пока не выровняется напряжение.

Работа с севшим АКБ

При изменении скважности и значения выходного тока происходит увеличение нагрузки на источник питания. Это приводит к его разряду и снижению напряжения. И если применяется система обратной связи, она как можно сильнее увеличивает скважность сигналов, порой до максимума – единицы. Изготовленные своими руками преобразователи напряжения 12/220 вольт без обратной связи очень сильно реагируют на севшие аккумуляторы. При работе обязательно снижается значение выходного напряжения.

Если планируется подключать такую технику, как болгарки, электролампы, кипятильники или чайники, то на их работу снижение напряжения не повлияет. Но в том случае, если преобразователь нужен для подключения телевизионной техники, ноутбуков, компьютеров, серверов, усилителей, обратная связь просто необходима. Она позволяет компенсировать все скачки напряжения, что обеспечит стабильную работу устройств.

Выбор схемы

Чтобы изготовить своими руками преобразователь напряжения 12/220 В, нужно выбрать конкретную схему. Причем обязательно учитывайте мощность приборов, которые планируете подключать к нему. Прикиньте примерно, какая нагрузка будет питаться от инвертора. Обязательно прибавьте к полученной мощности еще 25% про запас, лишней не будет. Исходя из полученных данных, можно выбирать конкретную схему. И, конечно, один из важных моментов – это элементная база.

Оцените свои финансовые возможности, если планируете приобретать все компоненты. А вам потребуется немало дорогостоящих элементов. К счастью, они почти все встречаются в современной технике – в источниках бесперебойного питания, БП компьютеров и ноутбуков. Кстати, стандартный ИБП вполне можно использовать в качестве преобразователя напряжения, даже переделок не нужно. Подключаете более мощный аккумулятор к нему и все. Но придется АКБ заряжать от дополнительного источника питания – стандартный не сможет выработать нужное значение тока.

Элементы схемы преобразователя

Стандартная конструкция инвертора для преобразования постоянного тока напряжением 12 В в переменный 220 состоит из таких элементов, которые можно найти в любой современной технике:

  1. ШИМ-модулятор – специальной конструкции микроконтроллер.
  2. Ферритовые кольца для изготовления ВЧ-транформаторов.
  3. Силовые полевые транзисторы IGBT.
  4. Электролитические конденсаторы.
  5. Постоянные сопротивления различной мощности.
  6. Дроссели для фильтрации тока.

В том случае, если вы не уверены в собственных силах, можно самостоятельно собрать преобразователь по схеме мультивибратора. Трансформатор для такого устройства подойдет от ИБП или блока питания транзисторных телевизоров. У такого устройства один недостаток – внушительные габариты. Но настроить его оказывается намного проще, нежели сложные конструкции, работающие с высокочастотным током.

Эксплуатация инверторов

Если вы изготовить решили своими руками преобразователь напряжения 12/220 по простой схеме, то мощность у него может быть невысокой. Но ее вполне хватит для питания бытовой аппаратуры. Но если мощность выше 120 Вт, то ток потребления возрастает до 10 ампер как минимум. Следовательно, при использовании в автомобиле его включать в гнездо прикуривателя нельзя – все провода расплавятся и выйдут из строя предохранители.

Поэтому автомобильные инверторы, мощность которых свыше 120 Вт, обязательно нужно подключать к аккумуляторной батарее при помощи дополнительного предохранителя и реле. Обязательно проложите провод от АКБ к месту установки автомобильного инвертора. Для включения преобразователя можно использовать клавишный выключатель или кнопку в паре с электромагнитным реле – оно позволяет убрать высокий ток от органов управления.

Гармоники паразитного типа

При изготовлении своими руками преобразователей напряжения 12/220 В главное – максимально подавить все паразитные гармоники. В любой конструкции, даже самой дорогой, вырабатывается не только напряжение с частотой 50 Гц, но и гармоники. Они появляются при работе ШИМ-модулятора, частоты у них кратны.

Чтобы немного снизить действие паразитных гармоник, корпус закрывается экраном из жести и подключается он к минусовой клемме. Можно еще добиться уменьшения уровня гармоник при помощи увеличения частоты непосредственно ШИМ-модулятора и установкой фильтрующих дросселей на выходе.

Как запитать низковольтное реле постоянного тока (на 12, 24 В) от переменного напряжения 220 В, схема

В данной статье предлагаю вам простую схему, с помощью которой можно подключить обычное низковольтное реле к сети 220 вольт. То есть, бывают случаи, когда вам для своего устройства или какой либо схемы нужно использовать промежуточное реле, что питается от сетевого переменного напряжения 220 В. Под рукой такого реле нет. Хотя есть реле, рассчитанные на более низкое напряжение и постоянные ток. Либо же есть ненужное устройство, с которого такое низковольтное реле можно снять. И с помощью предлагаемой простой схемы бестрансформаторного блока питания можно из низковольтного реле сделать реле на 220 вольт.

Перед тем, как собирать эту простую схему сначала нужно измерить постоянный ток, который потребляет катушка вашего низковольтного реле.

Для этого просто нужно взять свой мультиметр, перевести его в режим измерения постоянного тока на пределе до 200 мА. Как правило, в среднем, маломощные низковольтные реле потребляют ток около 50 мА. Точность величины потребляемого тока катушкой реле позволит подобрать емкость конденсатора, что обеспечить наиболее благополучный режим работы реле. То есть, если емкость гасящего конденсатора C1 будет больше, чем нужно, то на катушке вашего реле будет оседать большее напряжение, и через нее будет протекать больший ток. Такой режим работы будет нагревать реле, что не совсем хорошо.

Итак, вы измерили ток, который потребляет ваше низковольтное реле и он допустим равен 70 мА. Далее внизу рисунка схемы имеются две формулы для расчета емкости гасящего конденсатора C1. Первая формула является упрощенным вариантом, которой можно пользоваться в случае, когда постоянное напряжение на выходе бестрансформаторного блока питания не будет больше 20 вольт. То есть, если вы используете реле, катушка которого рассчитана на напряжение 12 вольт, то можно использовать первую, упрощенную формулу. Если катушка вашего реле рассчитана на напряжение 24 или даже 36 вольт, то желательно уже пользоваться формулой №2.

Поскольку 12 вольтовые реле встречаются чаще, то я буду использовать упрощенную формулу №1. Итак, я уже знаю, что катушка моего реле потребляет 70 мА. В первую формулу я ток подставляю не в миллиамперах, а в амперах (основных единицах измерения по системе СИ). То есть мой ток равен 0,07 ампер. В формуле используется напряжение сети, то есть 220 вольт. И после простого вычисления я получаю, что емкость моего гасящего конденсатора должна быть 1 мкф (микрофарад). Конечно, если по формуле получилось допустим 1,13 мкф, то вполне допустимо округление и в место такой нестандартной емкости можно просто поставить 1 мкф. На схему такое небольшое округление никак не повлияет.

Причем стоит обязательно учесть, что гасящий конденсатор должен быть пленочный, то есть не электролит (который имеющий полярность). Дело все в том, что поскольку через гасящий конденсатор протекает переменный ток и электролитический конденсатор просто у вас выйдет из строя (обратная полярность его начнет сильно разогревать изнутри, что приведет к последующему вздутию и разрыву верхней его части). Рабочее напряжение у конденсатора должно быть не менее 400 вольт. В крайнем случае можно поставить на 250 вольт, но все же лучше на 400 В.

Итак, мы рассчитали и уже знаем емкость гасящего конденсатора. Теперь об остальных компонентах схемы. Параллельно гасящему конденсатору C1 стоит постоянный резистор. Он нужен для того, чтобы разряжать конденсатор после того, как реле будет отключено от сетевого напряжения. Это нужно, чтобы исключить возможность случайного удара током человека от заряженного конденсатора (хоть величина заряда и не опасна для здоровья человека, но будет весьма неприятно). В схеме резистор R1 стоит на 1 мОм. Хотя его можно ставить в пределах где-то от 100к и до 2 мОм.

Далее в схеме мы видим обычный диодный выпрямительный мост. Поскольку рабочий ток схемы весьма мал (до 100 мА), то диоды подойдут практически любые (выпрямительные), которые способны выдерживать прямой ток до 100 миллиампер и обратное напряжение более 350 вольт. А поскольку современные диоды при своих малых размерах имеют достаточно хорошие характеристики, то можно использовать практически любые из них. К примеру наиболее распространенные типа 1n4007 (выдерживают прямой ток до 1 ампера и обратное напряжение до 1000 вольт).

На схеме после диодного моста пунктиром обозначен еще один конденсатора, который ставить не обязательно. Поскольку на выходе диодного моста мы имеем скачкообразное напряжение с частотой 100 герц, то с таким видом тока катушка реле вполне нормально справляется и работает вполне нормально (без дребезгов, с четким и уверенным срабатыванием). Но, чтобы было совсем правильно, то конденсатора C2 можно и поставить, чтобы уменьшить выходные пульсации на выходе диодного моста. Но слишком большая емкость этого конденсатора также будет вредна (появится небольшая задержка и инерционность срабатывания и отпускания реле).

Данный сглаживающий конденсатора должен иметь емкость где-то от 1 до 3 микрофарад. Напряжение этого электролитического конденсатора должно быть процентов на 25 больше, чем используемое выходное напряжение. То есть, если я планирую использовать реле с напряжением 12 вольт, то выходной конденсатор у меня должен быть рассчитан на напряжение не менее 16 вольт. В идеальном случае его напряжение должно быть не менее 400 вольт, поскольку в случае случайного отсоединения катушки реле от самой схемы произойдет увеличение выходного напряжения до 310 вольт (хотя и с ограниченным выходным током). И это увеличенное напряжение легко может вывести выходной конденсатор из строя (если он был рассчитан на более низкое напряжение).

В подобные схемы иногда еще на выход диодного моста ставят обычный стабилитрон, рассчитанный на напряжение, которое имеет сама катушка реле. Поставить его конечно можно, но это не принципиально важно. Дело в том, что катушка имеет свое определенное активное сопротивление. Когда мы ограничиваем силу тока гасящим конденсатором, то величина этого активного сопротивления делает естественное падение напряжения на катушке. И в итоге величина напряжение на выходе бестрансформаторного блока питания будет равна рабочему напряжению используемого реле. Ведь не просто так мы делали расчет емкости гасящего конденсатора!

Ну и не забываем о электрической безопасности. Чтобы обезопасить схему от случайного КЗ (короткого замыкания) желательно в нее добавить обычный плавкий предохранитель с током около 0,5 ампер. В этом случае даже при случайном возникновении КЗ ничего страшного не произойдет.

Видео по этой теме:

P.S. Данная схема проверена и полностью работоспособна. Если сравнивать этот вариант реле, сделанный из низковольтного реле с обычный, катушка которого изначально рассчитана на 220 вольт, то особой разницы как бы и нет. Хотя бытует мнение, что реле с низковольтным реле будет по быстродействию чуть хуже обычного реле на 220 вольт. Но для использования такой схемы для простых схем, не требующие большого быстродействия вполне подойдет.

где взять и что для этого нужно

Сегодня мы с вами попробуем разобраться, что из себя представляет напряжение 12 вольт. Кто это за монстр такой? Насколько сильно кусается? И вообще, на что он способен? Поверьте, то, что он слабее чем обычный монстр с напряжением в 220 вольт — это сказки. Интересно, тогда поехали.

Начнём с истории возникновения. А история проста, вся суть в безопасности. Ведь все, что изобретается, делается по двум причинам. Первая — лень, она, как известно, двигатель прогресса. Вторая — желание себя обезопасить, ведь мы с вами частенько чего-нибудь боимся. Тут и возникает потребность в инновациях. Ведь нас постоянно пугают тем, что нельзя совать пальцы в розетку — убьёт. Хотя, если мы с вами засунем пальцы в розетку, вряд ли с нами случится что-то более страшное, чем легкий шок. Но ведь у многих из нас с вами дома есть дети и домашние животные. Дети — люди любознательные. Им все всегда интересно, и ребёнок не ребёнок, если прополз мимо розетки. Он обязательно должен засунуть туда пальцы. А вот если его ударит током, то ничего хорошего точно не будет. Понятно, что все зависит от конкретного случая, но лучше не экспериментировать. А если животное залезет в розетку? И хорошо, если ваш кот спалит себе только усы и пару минут посидит в шоке под кроватью. Но все может быть страшнее.

Так, хватит жути нагонять. 12 вольт — это безопасное напряжение, которое способно решить сразу массу проблем. Но к сожалению это напряжение не распространено именно в розетках, так как под него просто не делают электроприборов.

Давайте обратимся к истокам. Существует масса опасных для электричества помещений или имеющих повышенный уровень опасности. К таким помещениям в вашей квартире можно отнести — кухню, ванную комнату и другие подобные пространства. Представьте какое короткое замыкание способен устроить электрический монстр на 220 вольт? Последствия могут выходить далеко за грань нашего представления. И поверьте, они могут не ограничиться сработавшими системами безопасности. 12 же вольт, точно не устроят катастрофу планетарного или даже квартирного масштаба. В худшем случае сработают системы безопасности или перегорит трансформатор.

Теперь про то, откуда появилось напряжение на 12 вольт. Такое напряжение в большинстве случаев используется для освещения и оттуда оно и берет начало. Несколько десятков лет назад были изобретены галогенные лампы для бытового применения. Что такое галогенная лампа? Эта та же самая лампа накаливания, но имеет больший срок службы и гораздо меньший размер. Благодаря чему это возможно? Благодаря тому, что колба такой лампы заполнена газом, содержащим галоген, например йод. Нить накаливания в такой среде изнашивается гораздо медленнее. Вот и получается, что такая лампа работает в два раза дольше, при размере в одну четвертую обычной. Но причём тут напряжение 12 вольт? А при том. Кто-то провёл опыты и понял, что при таком напряжении нить накала подвержена гораздо меньшему разрушительному воздействию электрического тока. А это значит, что её можно нагреть до большей температуры и, следовательно, получить больше света. Добавьте к этому практически абсолютную безопасность для влажных помещений. Получается очень крутой способ проводки и освещения.


Но не стоит торопиться, как и с любым бесплатным сыром, здесь тоже есть мышеловки. Заключаются они в трансформаторе. А так как во всей остальной квартире напряжение 220 вольт, он нам обязательно понадобиться, без него никак не обойтись. А лишний элемент в сети электропитания, как известно, снижает её надежность. Но единственное, чем может быть опасен трансформатор, так это тем, что он попросту перегорит. Давайте теперь перейдём к описанию самой сети, к тому как она строиться и что для этого нужно.

Сама по себе сеть с напряжением 12 вольт начинается именно с трансформатора. Именно он преобразует обычные 220 вольт в 12. Но трансформатор нужно подбирать с умом. Не будем вдаваться в частности устройства самого трансформатора. Скажу одно, трансформатор должен быть подходящей мощности. Это значит, что для начала стоит понять сколько будет ламп, какова их суммарная мощность. К полученному значению стоит прибавить процентов 40 запаса, и вы получите нужную мощность трансформатора. В противном случае трансформатор может очень быстро выйти из строя, а это не есть хорошо.

После того, как вы выбрали трансформатор, стоит задуматься о светильниках и лампах. В светильниках нет ничего необычного, многие светильники универсальны, но перед покупкой на всякий случай стоит уточнить. А вот с лампами дела обстоят несколько сложнее. Они разделяются на лампы, которые работают от 220 вольт, и те, что работают от 12. И если 220-ваттные лампы от 12 вольт просто не заработают, то в обратной последовательности начнутся вспышки. Из-за перенапряжения лампа может взорваться. Поэтому просто проверяйте маркировку, и все, как говориться, будет пучком. Лампы, рассчитанные на 12 вольт, как правило стоят дороже. Просто потому, что безопаснее, никакой другой конструктивной и кардинальной разницы в конструкции нет.

Если говорит про связующее звено ламп и трансформатора — провод, то он может быть любым. Но огромным плюсом является то, что можно использовать провода маленького сечения. Так как при таком напряжении сети перегревы практически невозможны. Есть специальные провода, они продаются в магазинах, но подойдет любой провод маленького сечения. Теперь вы знаете все.

Вывод: Низковольтное освещение это огромный плюс для бытового использования, да и для некоторых промышленных объектах. Сами понимаете, безопасность превыше всего. Так же огромным и несомненным плюсом является то, что вы можете сами сделать такую проводку у себя в ванной или на кухне. Согласитесь в статье не описано не одного сложного процесса. С многими из этих процессов справиться даже ребенок, но им этого лучше не поручать.

До новых встреч.

Источник питания переменного тока от 220 В до 12 В постоянного тока Шаг за шагом Проект

Блок питания от 220 В до 12 В постоянного тока является наиболее часто используемой и распространенной схемой. Существует так много применений проекта преобразователя переменного тока в постоянный. Источник питания постоянного тока от 220 В до 12 В предназначен для преобразования входного переменного тока в выходное напряжение 12 В постоянного тока. Проект преобразователя переменного тока в постоянный полезен для фиксированных приложений постоянного тока, таких как двигатели постоянного тока, насосы, зарядные устройства и многие другие приложения. Здесь мы собираемся обсудить, что такое источник питания постоянного тока и схема для питания на выходе 12 вольт.

Сильноточный источник питания постоянного тока довольно просто протестировать и собрать. Этот преобразователь переменного тока в постоянный ток проекта источника питания представляет собой схему уровня новичка для основных проектов электроники. Мы собираемся определить, как сделать блок питания на 12 В. Схема может использоваться во многих полезных приложениях, поскольку она потребляет ток 2 А. Проект преобразователя переменного тока в постоянный — лучший способ сделать этот легкий и простой проект источника питания. Это схема адаптера на 12 В постоянного тока.

Источник питания от 220 В до 12 В постоянного тока

  1. Источник питания от 220 В до 12 В постоянного тока Цель
  2. Необходимые компоненты для проекта электроснабжения
  3. Принципиальная схема блока питания постоянного тока
  4. Проектная рабочая
  5. Результаты вывода

01.Цель:


Что такое источник питания постоянного тока и как мы можем определить нашу цель — как сделать источник питания на 12 В. Для преобразования входного 220 В переменного тока в выход 12 В постоянного тока. 12-вольтный фиксированный выход постоянного тока полезен для многих приложений с управлением постоянным током, таких как двигатели постоянного тока, цепи постоянного тока, насосы, зарядные устройства и многие другие полезные приложения.


02. Необходимые компоненты:


С. №

Список компонентов

Кол-во

1

2-амперный трансформатор (12v-0-12v) CT

1

2

Diod (1N5402) — 3 усилителя

2

3

Конденсатор (2200 мкФ)

1

4

Резистор (1.2 кОм) -0,5 Вт

1

5

светодиод (КРАСНЫЙ)

1

6

Переключатель (SPST)

1

7

Предохранитель (1 ампер)

1


03. Цепь для питания:


Блок питания от 220 В переменного тока до 12 В постоянного тока прост и довольно прост.Входное напряжение — 220 вольт переменного тока. Это также проект преобразователя переменного тока в постоянный. Подключите вилку провода переменного тока к входу, а затем выключатель и предохранитель. Схема построена на трансформаторе. Трансформатор снижает напряжение переменного тока с 220 до 12 вольт. Как мы знаем, всякий раз, когда мы преобразуем переменный ток в постоянный, нам нужна выпрямительная схема. Диоды используются для выпрямления выхода. Выходной сигнал — 12 В постоянного тока.


04. Принцип работы преобразователя переменного тока в постоянный. Проект:

.
  • Основная цель проекта источника питания переменного тока от 220 В до 12 В постоянного тока состоит в создании выходного напряжения 12 В постоянного тока для работы приложений постоянного тока.
  • Предохранитель используется для защиты цепи.
  • Подключите вход цепи к сети 220 В переменного тока 50/60 Гц.
  • Трансформатор переменного тока с 220 вольт на 12 вольт постоянного тока используется для преобразования переменного напряжения в постоянный. Номинальный ток трансформатора составляет 2 ампера.
  • Диодный выпрямитель используется для преобразования входного переменного тока в 12 В постоянного тока. Диод 1N5402 используется для создания схемы выпрямителя.
  • Конденсатор здесь используется для фильтрации выходного сигнала.
  • Светодиод показывает выпрямленное отфильтрованное выходное напряжение 12 В постоянного тока.
  • Теперь вы можете подключить любую схему с постоянным током к выходу 12 В постоянного тока.

05. Итого:


Генерируется отфильтрованный выходной сигнал 12 В постоянного тока. Выходной сигнал схемы источника питания на основе простого трансформатора составляет 12 В постоянного тока. Выход не переменный. Это фиксированное напряжение постоянного тока 12 вольт. Эти напряжения постоянного тока можно использовать в любом проекте преобразователя 12 В постоянного тока в постоянный. Как двигатель на 12 В, любая схема, которая требует 12 В постоянного тока, вентилятор постоянного тока, зарядное устройство и т. Д. Это можно использовать как адаптер постоянного тока. Проект электроснабжения от 220В переменного тока до 12В постоянного тока.Их так много


06. Применение источников питания постоянного тока.


Вы также можете получить этот проект в формате PDF. Это самый простой и легкий источник питания постоянного тока от 220В до 12В. Краткое учебное пособие о том, что такое источник питания постоянного тока. Это может быть лучше семестровый проект в качестве проекта преобразователя переменного тока в постоянный ток базовой электроники. Проект блока питания — лучшая демонстрация основных компонентов электроники.

Мы обсудим проект схемы переменного постоянного тока в следующих постах.Подпишитесь на наш канал YouTube, чтобы получить больше уроков и идей. Сохраняйте мотивацию и всегда верьте в себя….

Объяснение батарей 220 А · ч

Что нужно знать об аккумуляторах глубокого разряда и ампер-часах

Добавление аккумуляторов к солнечной установке — отличный способ в полной мере воспользоваться преимуществами возобновляемых источников энергии для повышения качества жизни. Однако когда дело доходит до навигации по миру ампер, вольт и ампер-часов, это определенно может сбивать с толку.Какая самая большая батарея в ампер-часах? Сколько панелей мне нужно для зарядки аккумулятора на 220 ампер-час? Достаточно ли заряда 100 ампер-часов для питания бытовой техники в моем доме?

Что такое батареи глубокого разряда?

Аккумуляторы глубокого разряда могут выглядеть похожими на аккумуляторы, используемые в вашем автомобиле, но на самом деле они сильно отличаются. Батареи глубокого разряда предназначены для обеспечения стабильной энергии в течение более длительного периода времени. Их можно разряжать до 80%, но большинство производителей рекомендуют не разряжать ниже 45%.Регулярное превышение этого значения сокращает срок службы батареи.

Как заряжать аккумуляторы с помощью солнечных батарей?

Солнечные батареи накапливают энергию, получаемую от ваших солнечных панелей. Чтобы использовать батареи как часть вашей солнечной установки, вам понадобятся солнечные панели, контроллер заряда и инвертор.

При добавлении батарейного блока в вашу систему ваши солнечные панели сначала необходимо подключить к контроллеру заряда, который поможет отслеживать, сколько энергии хранится в батареях, чтобы предотвратить перезарядку.Контроллеры заряда также отключат систему, если батареи станут слишком разряженными. Перед включением ваших приборов ваши батареи необходимо подключить к инвертору, чтобы преобразовать энергию постоянного тока, собираемую солнечными панелями, в энергию переменного тока.

Что такое вольт и ампер-часы?

Аккумуляторы глубокого разряда имеют определенное напряжение и номинальное значение в ампер-часах. Ампер-часы относятся к величине тока, который подается от батареи в течение определенного периода времени. Если у вас есть аккумулятор на 200 Ач, он может обеспечить непрерывную подачу 20 ампер в течение 10 часов или 10 ампер в течение более 20 часов.

Термин «напряжение в батарее» относится к разнице электрических потенциалов между положительной и отрицательной клеммами батареи. Чем больше разница потенциалов, тем больше напряжение. Когда дело доходит до проектирования солнечных систем, вы должны убедиться, что напряжение на разных компонентах одинаковое. Поэтому, если у вас 12-вольтная батарея, у вас также должен быть инвертор на 12 вольт и панели на 12 вольт в вашей системе.

Какая у аккумулятора самая высокая ампер-час?

Батареи глубокого разряда емкостью от 50 до 200 ампер-часов от Renogy .Вы можете найти на рынке другие батареи глубокого разряда емкостью более 400 ампер.

Лучше ли батарея с большей емкостью в ампер-часах?

Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки. Эта функция важна, если питание часто отключается или отключается на длительное время. Вы также должны иметь в виду, что время зарядки для более высокой батареи Ач будет больше, чем для более низкой батареи.

На сколько хватит заряда батареи на 100 ампер-час?

На базовом уровне батарея емкостью 100 Ач должна дать вам 10 ампер в течение 10 часов.Батареи глубокого цикла будут иметь меньшую емкость по мере старения, поэтому емкость батареи 100 Ач будет уменьшена на 20–50% в зависимости от того, как она использовалась и перезаряжалась через два или три года.

По мере того, как батарея разряжается, пусковой ток вызывает падение напряжения ниже минимального уровня, требуемого инвертором. Если ваш инвертор потребляет 2 ампера, а ваша батарея новая, вы можете рассчитывать на работу около 40 часов. Если ваш инвертор более старый и вы постоянно потребляете 20 ампер, ваш инвертор, скорее всего, отключится через 2 или 3 часа.

Сколько панелей мне нужно для зарядки аккумулятора 220 Ач?

Если у вас аккумулятор на 220 Ач, из-за ограничений по разрядке можно использовать только 80% его, так что на самом деле у вас есть только 176 ампер-часов для потребления. Если вы узнаете, что обычно вы можете прожить два дня с энергией от этой батареи, это означает, что вы потребляете 88 ампер-часов в день.

Панель на 100 Вт будет производить в среднем около 30 ампер-часов в день (исходя из среднего солнечного дня). Это означает, что вам понадобятся три 100-ваттные солнечные панели или одна 300-ваттная панель для полной зарядки аккумулятора в среднем за день.

Сколько времени батарея на 220 ампер-час проработает мой телевизор?

Если эта батарея 220 Ач представляет собой свинцово-кислотную батарею на 12 В, то вы должны разрядить ее только до 50%, что дает вам 1320 Втч. Если ваш телевизор 100 Вт, вы можете питать его в течение 13,2 часа от этой батареи. Если ваш телевизор мощностью 200 Вт, а другие устройства в вашем доме потребляют еще 200 Вт, то заряда батареи хватит на 3,3 часа.

Могу ли я заменить батарею с меньшим количеством ампер-часов на батарею с более высоким значением ампер-часов?

Если заменяемая батарея имеет такое же напряжение, вы можете использовать батарею большей емкости, чем исходная.Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки.

Сколько ампер-часов у 6-вольтовой батареи глубокого разряда?

Как и 12-вольтовые батареи, 6-вольтовые батареи могут иметь разную силу тока. Большим преимуществом использования батарей на 6 В является возможность их параллельного подключения и увеличения номинального тока. Параллельное подключение батарей увеличит ваш номинальный ток, но напряжение останется прежним.

В чем разница между батареями на 6 и 12 вольт?

Помимо очевидной разницы в напряжении между 6- и 12-вольтовыми батареями, есть еще несколько вещей, которые их отличают.Когда вес и стоимость не являются важными факторами и требуется более высокая мощность, вам следует использовать батареи на 12 вольт вместо варианта на 6 вольт.

Батареи глубокого разряда на 6 В могут использоваться в различных приложениях и могут быть подключены последовательно для питания систем на 12, 24 и 48 В. Основное преимущество использования 6-вольтовых батарей глубокого разряда вместо 12-вольтных батарей заключается в увеличении ампер-часов для питания вашего дома на колесах, фургона или кемпинга. Использование аккумулятора с более высоким номиналом в ампер-часах увеличит время работы устройства без подзарядки.

Как хранить батарейки?

При хранении батарей важно, чтобы их корпус и клеммы были чистыми от грязи и коррозии. Если вы собираетесь хранить аккумулятор в автофургоне в зимние месяцы, убедитесь, что он полностью заряжен. Если аккумулятор хранится в гараже или где у вас есть доступ к источнику питания, вам следует подключить аккумулятор к зарядному устройству. Таким образом, хранящийся аккумулятор должен быть полностью заряжен перед хранением, а затем заряд должен поддерживаться в течение периода хранения с помощью этого постоянного зарядного устройства.Рекомендуемая температура хранения для большинства батарей составляет 15 ° C (59 ° F), в то время как диапазон допустимых температур часто составляет от –40 ° C до 50 ° C (от –40 ° C до 122 ° F). Хранение аккумуляторов в надлежащих условиях гарантирует, что у вас будет эффективный аккумулятор на долгие годы.

Как определить размер аккумуляторной батареи и почему это важно?

Очень важно правильно выбрать размер аккумуляторной батареи глубокого разряда. Необходимый объем аккумуляторной батареи зависит от вашего энергопотребления. Чтобы выбрать размер системы, который наилучшим образом соответствует вашим потребностям, мы рекомендуем составить список всех устройств, которые вы планируете использовать.Получите информацию о мощности или токах и вольтах продукта и укажите среднее время работы для каждого устройства. Калькулятор солнечных батарей Renogy — отличный инструмент, который позволяет быстро и легко определить ваши конкретные потребности.

Заключение

Опять же, использование батареи глубокого разряда с более высоким номинальным током улучшит время работы устройства от одной зарядки, что важно, если вы долгое время не собираете энергию солнца.Однако, если вы живете в районе, где много солнечного света, батарея с большей силой тока не обязательна. Также важно учитывать правильный размер вашей системы, выбор правильных батарей, а также правильное обслуживание и хранение ваших батарей. Благодаря этому у вас будет эффективный аккумулятор на долгие годы.

12 В, 24 В или 48 В

Вопрос: Должен ли я выбрать автономную систему питания 12 В, 24 или 48 В?

Ответ: Короче говоря, потребление энергии должно определять напряжение вашей энергосистемы.У вас не должно быть постоянного тока более 100 А.

Ознакомьтесь с нашими примерами автономных систем и узнайте, как потребление связано с напряжением. В примерах перечислены типичные приборы, которые можно найти в обычных домах; получите бесплатное ценовое предложение, пока вы там.

Основы

  • Мощность (энергия) (P) = Ватты
  • Ток (расход) (I) = Амперы
  • Напряжение (давление) (В) = Вольт
  • Ячейка = Отдельный компонент батареи
  • Аккумулятор ( Аккумуляторная батарея) = Набор элементов, соединенных последовательно или параллельно

Мощность — Ток — Напряжение

  • 1000 Вт = 83 А при 12 В
  • 2000 Вт = 83 А при 24 В
  • 4000 Вт = 83 А при 48 вольт
  • 20 000 Вт = 83 ампера при 230 вольт

Чем выше ток (измеренный в амперах или амперах), тем больше должны быть компоненты проводки и защиты цепи.Для больших токов требуются кабели большего диаметра и предохранители / прерыватели, оба из которых являются дорогостоящими. Удвоив напряжение (I = P / V), вы получите удвоенную мощность (Ватт) при том же токе.

Работа с токами более 100 А является дорогостоящей (и, следовательно, неэффективной) и потенциально опасной. Перспектива: стандартный бытовой удлинитель, рассчитанный на максимальный ток 10 А (обычное значение). 100А расплавит его и может вызвать пожар!

Промышленный стандарт

Раньше 12 вольт были стандартом для энергосистем сверхнизкого напряжения.Сегодня большинство систем рассчитаны на 24 или 48 В и включают в себя инвертор на 230 В переменного тока. Это означает, что электропроводка в доме не должна отличаться от проводки в любом другом доме, подключенном к сети, а стоимость прокладки кабеля значительно снижается.

Для электропроводки 230 В (низкое напряжение) вы должны попросить квалифицированного электрика подключить к вашему дому электропроводку 230 В переменного тока. Таким образом, вы можете использовать стандартные приборы переменного тока и освещение, большинство из которых намного более доступны по цене, а многие становятся все более эффективными.

Размер системы

В прошлом мы пытались снизить стоимость автономной системы, ограничив ее размер.Это было достигнуто за счет использования приборов на 12 В или 24 В и освещения, для которых не требуется инвертор. В последние годы инверторы и солнечные панели стали более эффективными и более доступными. Вдобавок большинство клиентов, похоже, хотят с годами больше мощности. Систему 12 В постоянного тока с крошечным инвертором сложно, если вообще возможно, модернизировать / увеличить. Не говоря уже о том, что лишь очень немногие компании продают сверхнизковольтные приборы или освещение и обслуживают в основном рынок жилых автофургонов. Кроме того, движение к более широкому использованию химии батарей на основе лития ограничивает экономичность до 24 и 48 В из-за экономии на масштабе производства.

Подведем итог: большинство систем, которые мы проектируем, рассчитаны на 24 или 48 В с инвертором 230 В. Критерии, которые мы используем, — это энергопотребление и масштабируемость. Мы предлагаем систему питания 12 В постоянного тока (например, Rainbow Power Pouch) только в том случае, если вам нужно несколько фонарей в сарае или караване и вы хотите подключить их самостоятельно.

Размер батарейного блока

Ограничения

При использовании солнечных панелей в качестве первичного источника энергии традиционно рекомендовалось иметь как минимум 5-дневное хранение батарей, при этом батарея батарей сохраняла минимум 50% заряда после окончания срока службы. те 5 дней.Один доступный аккумуляторный блок обеспечит X ампер-часов за 100-часовой период, который будет разряжен на 50% в конце этого периода. Не рекомендуется увеличивать емкость накопителя путем подключения двух или более батарейных блоков рядом (параллельно). Однако при удвоении количества ячеек в батарее напряжение батареи удваивается, следовательно, ток (в амперах) от нагрузок уменьшается вдвое, поэтому удвоение напряжения имеет тот же эффект, что и удвоение емкости аккумуляторной батареи в ампер-часах без необходимости аккумуляторная батарея подключена параллельно.

Напряжение аккумуляторной батареи, обычно используемое для автономных систем питания, составляет 12 В, 24 В, 48 В, 120 В постоянного тока.

Решение

Для увеличения напряжения системы и повышения эффективности можно последовательно разместить больше ячеек. Если требуется более низкое напряжение питания, можно использовать преобразователь постоянного тока в постоянный.

Размер инвертора

Ограничения

Для любого конкретного напряжения батареи существует ограничение на размер доступного инвертора.С более высоким напряжением батареи доступны более крупные инверторы. Поэтому, если вы ожидаете большие нагрузки 230 В переменного тока, выберите более высокое напряжение для вашей автономной системы

Мощность инвертора — напряжение батареи

  • 1-1500 Вт = система 12 В
  • 1500-3000 Вт = система 24 В
  • 3000-10000 Вт = 48 В, система

Решения

Если ваши потребности со временем увеличиваются и более высокое напряжение для вашей системы не является возможным вариантом, вы можете преодолеть недостаток инвертора, используя несколько инверторов или инверторы. которые могут работать в тандеме.

Длина и размер кабеля

Ограничения

Чем ниже напряжение батареи, тем выше ток, потребляемый батареей для питания данной нагрузки (измеряется в ваттах). Существует приемлемый предел падения напряжения в кабеле, прежде чем падение напряжения станет чрезмерным, а результирующее выходное напряжение станет слишком низким. Более серьезным ограничением кабеля является его «допустимая токовая нагрузка» (ccc). При превышении ccc кабель плавится и / или загорается.

Решения

Удвоение напряжения эффективно снижает вдвое нагрузки постоянного тока и снижает вдвое падение напряжения. Поскольку напряжение батареи удваивается, процент падения напряжения по отношению к напряжению батареи составляет только четверть процента падения с более низким напряжением батареи. Следовательно, для 24-вольтовой системы длина кабеля должна составлять только четверть диаметра, как в случае с 12-вольтовой системой. Если кабели не являются исключительно длинными или потребляемая мощность (в амперах) нагрузок не является исключительно высокой, это соображение не будет проблемой.

Вместо того, чтобы выбирать более высокое напряжение, проблему могло бы решить увеличение сечения кабеля. И напряжение аккумулятора, и емкость аккумулятора в ампер-часах должны соответствовать вашим потребностям. Избегайте параллельной установки большого количества маленьких батарей. Ячейки батареи, подключенные последовательно, в порядке.

См. Нашу схему подключения / подключения.

Количество требуемых солнечных панелей

Ограничения

Солнечные регуляторы обычно ограничены максимумом 100 ампер.Для большой 12-вольтовой системы вам может потребоваться в два раза больше кабелей и вдвое больше регуляторов, чем для эквивалентной 24-вольтовой системы.

Решения

Это ограничение можно преодолеть, если подключить несколько солнечных батарей по отдельности через отдельные регуляторы. Следует помнить, что максимальная скорость зарядки большинства свинцово-кислотных аккумуляторных батарей составляет 10% от их емкости в ампер-часах; подробнее о литиевых батареях (см. «Максимальная скорость заряда»).

Максимальная скорость зарядки

Выдержка из

Ограничения

Традиционно максимальная скорость зарядки аккумуляторной батареи обычно составляет 10% от ее емкости в ампер-часах для свинцово-кислотных аккумуляторов, измеренной при 10-часовой скорости (C10) .Поэтому аккумулятор на 600 Ач не следует заряжать при силе тока более 60 ампер. Емкость обычно обозначается как ампер-часы (Ач), но также может быть описана в киловатт-часах (кВтч).

Литиевые батареи обычно имеют более высокую емкость заряда, часто 1 час (C1), хотя она значительно варьируется в зависимости от различных конфигураций химического состава лития. Емкость обычно выражается в ватт-часах (Втч) или киловатт-часах (кВтч).

Решения

Для увеличения скорости зарядки необходимо увеличить общую емкость аккумулятора в ампер-часах / киловатт-часах.


Напряжение источника заряда

Ограничения

Если в систему встроена большая ветряная турбина с выходом постоянного тока или большой генератор постоянного тока, напряжение системы будет определяться доступностью и напряжением этих источников зарядки.

Решения

Соедините элементы последовательно с отдельными источниками заряда, регуляторами и нагрузками.

Преобразовать 12 вольт в 220

В наше время у каждого в доме или вообще есть свободный доступ, иногда от компьютера бывает несколько блоков питания, которые не нужны, они просто лежат, пылятся и занимают ценное место.А может они вообще сгорели, но это не важно, ведь оттуда нужно взять какие-то элементы. Собрал как-то плату такого конвертера (). И я решил сделать еще один, так как были радиодетали, а печатная плата уже когда-то была сделана лишней. В микросхеме использована новая — из магазина, но иногда именно они или аналогичные аналоги устанавливаются в сами блоки питания ATX.

Трансформатор небольшой — блоком 250 Вт.Транзисторы решили брать с запасом — поле 44Н, тоже совершенно новые.



Нашел алюминиевый радиатор, прикрутил транзисторы через заглушки и подложки, всю термопасту как следует промазал.



Схема преобразователя напряжения 12-220 запустилась сразу, питание подавалось от аккумулятора 12 вольт 7 а / ч ёмкостью, на выводах которого при свежей зарядке было около 13 вольт. В качестве нагрузки (речь шла о такой мощности) — лампочка на 60 ватт на 220 вольт, не горит на полную силу, но все же хорошо.



Радиатор взял очень с запасом — толщина алюминия 2 мм, тепло отводит хорошо. После получаса работы под нагрузкой полевые транзисторы прогреваются только до 40 градусов! Потребляемый ток около 2,7 ампер от АКБ, работа стабильная без сбоев и перегрева, но трансформатор маловат и горячий (правда, выдерживает и ничего не горит) температура трансформатора при работе около 5-60 градусов на той же нагрузке, думаю, больше 80 Вт такой преобразователь не вытащит или придется устанавливать активное охлаждение в виде вентилятора, потому что транзисторы выдержат гораздо большие нагрузки и более чем уверены, что с такой радиатор все на 200 Вт протянется.



Схема преобразователя 12-220 легко повторяется; при сборке точно по номиналу обе платы сразу заработали.

Видео проверки преобразователя


На видео, показывающем работу схемы, четко виден ток, протекающий в цепи, и работа лампы мощностью 60 Вт. Кстати, провода у мультиметра D832 при таком токе за полчаса изрядно прогрелись. Из доработок, если поставить трансформатор побольше, то печатку разложить, иначе трансформатор побольше по размеру не влезет, да и с маленьким все получается.



Для любителей миниатюризации это конечно хорошо, но на практике расстояние от трансформатора до транзисторов оказывается меньше 1 см, а нагревают теплый трансформатор с небольшим нагревом, было бы Хорошо взять ключи на пару сантиметров и проделать в плате пару отверстий для вентиляции снизу вверх. Автор материала — Redmoon.

Предлагаю преобразователь напряжения (инвертор) 12 / 220В (мощность до 500 Вт), питающийся от аккумулятора 12В, который может пригодиться в автомобиле и быту для освещения, для питания телевизора, небольшого холодильника и т. Д.Схема собрана на двух микросхемах серии 155 и шести транзисторах. В выходном каскаде используются полевые транзисторы, которые имеют очень низкое сопротивление в открытом состоянии, что увеличивает КПД преобразователя и избавляет от необходимости устанавливать их на радиаторы слишком большой площади.

Разберемся с работой схемы: (см. Схему и схему). На микросхеме D1 собран генератор прямоугольных импульсов, частота которого около 200 Гц — схема «А».С вывода 8 микросхемы импульсы поступают на делители частоты, собранные на элементах D2.1 — D2.2 микросхемы D2. В результате на выводе 6 микросхемы D2 частота следования импульсов становится вдвое меньше — 100 Гц — диаграмма «В», а на выводе 8 импульсы становятся равными 50 Гц — диаграмма «С». Неинвертированные импульсы частотой 50 Гц — диаграмма «D» снимаются с вывода 9. На диодах VD1-VD2 собрана логическая схема «ИЛИ». В результате импульсы, снятые с выводов D1, 8, D2, 6 импульсов, формируют импульс на катодах диодов, соответствующих диаграмме «Е».Каскадные транзисторы V1 и V2 используются для увеличения амплитуды импульсов, необходимых для полного открытия полевых транзисторов. Транзисторы V3 и V4, подключенные к выходам 8 и 9 микросхемы D2, по очереди открываются, запирая тем самым один полевой транзистор V5, затем другой V6. В результате управляющие импульсы формируются так, что между ними возникает пауза, что исключает возможность протекания сквозного тока через выходные транзисторы и значительно увеличивает КПД.На диаграммах «F» и «G» показаны генерируемые управляющие импульсы транзисторов V5 и V6.

Правильно собранный преобразователь начинает работать сразу после подачи питания. При настройке следует подключить к выходу прибора частотомер и выставить частоту 50-60 Гц подбором резистора R1 и, при необходимости, конденсатора С1.


О деталях
Транзисторы КТ315 с любым буквенным индексом, КТ209 можно заменить на КТ361 с любым буквенным индексом.Стабилизатор напряжения КА7805 заменяет отечественный КР142ЕН5А. Резисторы любой мощности 0,125 … 0,25 Вт. Диоды практически любые низкочастотные например КД105, ИН4002. Конденсатор С1 типа К73-11, К10-17В с малой емкостью ухода при нагреве. Трансформатор взят от старого лампового черно-белого телевизора например: «Весна», «Рекорд». Обмотка на напряжение 220 вольт остается, а остальные обмотки снимаются. Поверх этой обмотки намотаны две обмотки проводом ПЭЛ — 2,1 мм. Для лучшей симметрии их следует наматывать одновременно двумя проводами.При подключении обмоток следует учитывать фазировку. Полевые транзисторы крепятся через слюдяные прокладки к обычному алюминиевому радиатору площадью не менее 600 кв. См.


Перечень радиоэлементов
Обозначение Тип Номинал сумма Примечание Оценка Моя записная книжка
Линейный регулятор

UA7805

1 KR142EN5A Искать в elBase В записной книжке
D1 Клапан K155LA3 1 Искать elBase В записной книжке
D2 D-триггер K155TM2 1 Искать elBase В записной книжке
V1, V3, V4 Транзистор биполярный

КТ315Б

3 Искать elBase В записной книжке
В2 Транзистор биполярный

KT209A

1 KT361 Искать в elBase В записной книжке
V5, V6 МОП-транзистор

IRLR2905

2 Подушечки из слюды Искать elBase В записной книжке
VD1, VD2 Диод

KD522A

2 КД105, 1Н4002 и др.

Представляем двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494. Это позволяет сделать схему достаточно простой и доступной для повторения многим радиолюбителям. На выходе находится высокоэффективный выпрямительный диод, удваивающий напряжение. Также можно использовать преобразователь напряжения и без диодов — получая напряжение переменного тока. Например для ЭПРА (при питании ЛДС) постоянное давление и полярность включения не актуальны, так как в цепи ПРА на входе стоит диодный мост.Принципиальная схема изображена на картинке — нажмите, чтобы увеличить.

В преобразователе 12-220 В используется готовый высокочастотный понижающий трансформатор от блока питания компьютера AT или ATX, а в нашем преобразователе все будет наоборот. Обычно эти трансформаторы отличаются только размерами, а распиновка идентична. Нерабочий блок питания от ПК можно найти в любой компьютерной мастерской.


Схема работы. Резистор R1 задает ширину импульса на выходе, R2 (вместе с C1) задает рабочую частоту.Уменьшить сопротивление R1 — увеличить частоту. Увеличить емкость С1 — уменьшить частоту. На транзисторах в преобразователе напряжения установлены мощные МОП-поля, которые отличаются меньшим временем отклика и более простым управлением схемами. Здесь одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N.


Радиатор не нужен, так как длительная работа не вызывает заметного нагрева транзисторов. И если все-таки есть желание поставить их на радиатор — фланцы корпусов транзисторов не закорачиваются через радиатор! Используйте изолирующие прокладки и втулочные шайбы от блока питания компьютера.Однако при первом запуске радиатор не повредит; по крайней мере, транзисторы не сразу сгорают при ошибках монтажа или коротком замыкании на выходе.


Правильно собранная схема преобразователя не требует регулировки. Желательно использовать неметаллический корпус, чтобы исключить поломку. высокое напряжение на корпусе. Будьте осторожны при работе с цепью, так как напряжение 220 В опасно!

Обсудить статью КОНВЕРТЕР 12-220

Такой инвертор предназначен для получения переменного тока 220 В 50 Гц от автомобильного аккумулятора или любого аккумулятора на 12 В.Мощность инвертора около 150 Вт с возможностью увеличения до 300.

Схема предельно проста:


Схема работает как двухтактный преобразователь. Сердцем инвертора является микросхема CD4047, которая действует как задающий генератор и одновременно управляет полевыми транзисторами. Последние работают в режиме ключей. Открытым может быть только один из транзисторов. Если оба транзистора открываются одновременно, произойдет короткое замыкание, и транзисторы мгновенно сгорят.Это может произойти из-за неправильного управления.


Микросхема CD4047, конечно, не заточена для высокоточного управления «полевыми работниками», но с этой задачей справляется неплохо.

Трансформатор снят с неработающего ИБП. Он мощностью 250-300 Вт и имеет первичную обмотку со средней точкой, куда подключается плюс от источника питания.


Вторичных обмоток много, поэтому необходимо найти сетевую обмотку 220 В.С помощью мультиметра измеряются сопротивления всех отводов, которые находятся на вторичной цепи. Требуемые отводы должны иметь наибольшее сопротивление (в примере около 17 Ом). Все остальные провода можно откусить.


Перед пайкой рекомендуется проверить все компоненты. Лучше выбирать транзисторы из одной партии со схожими характеристиками. Конденсатор в цепи передачи частоты должен иметь небольшую утечку и небольшой допуск. Эти параметры можно проверить транзисторным тестером.


Несколько слов о возможных заменах в схеме. К сожалению, у микросхемы CD4047 нет советских аналогов, поэтому ее придется покупать. «Полевые» можно заменить любыми n-канальными транзисторами, которые имеют напряжение 60 В и ток 35 А. Подходит от линейки IRFZ.

Схема также отлично работает с биполярными транзисторами на выходе, однако мощность будет намного ниже, чем при использовании полевых транзисторов.


Ограничивающие резисторы затвора могут иметь сопротивление от 10 до 100 Ом.Лучше поставить от 22 до 47 Ом мощностью 250 мВт.


Цепочка частот для сбора только тех элементов, которые перечислены на диаграмме. Он будет точно настроен на 50 Гц.


Правильно собранное устройство должно сразу заработать. Но первый запуск нужно делать со страховкой. То есть на место предохранителя по схеме установить резистор на 5-10 Ом, либо лампу на 12 В (5 Вт), чтобы при возникновении проблем не взорвать транзисторы.


Если преобразователь работает нормально, трансформатор издает звук, а клавиши вообще не должны нагреваться. В этом случае резистор можно снять и запитать напрямую через предохранитель.

Среднее потребление тока инвертором на холостом ходу может составлять от 150 до 300 мА, но это будет зависеть от источника питания и используемого трансформатора.

Дальнейшее измерение выходного напряжения. В примере значения от 210 до 260 В. Это в пределах нормы, поскольку инвертор не стабилизирован.Теперь можно включить нагрузку, например, лампу на 60 ватт. Погонять инвертор надо секунд 10, клавиши должны немного нагреться, так как они еще без радиаторов. Нагрев обеих клавиш должен быть равномерным. Если это не так, то ищите косяки.

Инвертор имеет функцию дистанционного управления.




Главный силовой плюс подключается к средней точке трансформатора. Но для работы инвертора нужно подать на плату слаботочный плюс.Это запустит генератор импульсов.


Несколько слов об установке. Как всегда, в корпусе блока питания компьютера все укладывается. Транзисторы смонтированы на отдельных радиаторах.


В случае использования обычного радиатора необходимо изолировать корпуса транзисторов от радиатора. Кулер подключался напрямую к шине 12 В.


Самым большим недостатком этого инвертора является отсутствие защиты от короткого замыкания.В этом случае транзисторы сгорят. Чтобы этого не случилось, нужен на выходе предохранитель на 1 А.


Кнопка low-power обеспечивает плюс от источника питания к плате, то есть запускает инвертор в целом.

Силовые шины от трансформатора присоединены непосредственно к радиаторам транзисторов.


Подключив к выходу преобразователя устройство, называемое счетчиком энергии, можно убедиться, что напряжение и частота находятся в нормальном диапазоне.Если частота отличается от 50 Гц, то ее необходимо регулировать с помощью многооборотного переменного резистора, который присутствует на плате.



Во время работы, когда к выходу не подключена нагрузка, трансформатор довольно шумит. При подключении нагрузки шум незначителен. Это все нормально, так как на трансформатор подаются прямоугольные импульсы.

Полученный инвертор нестабилизирован, но почти все приборы адаптированы для работы в диапазоне напряжений от 90 до 280 В.


Если выходное напряжение выше 300 В, то рекомендуется дополнительно к основной нагрузке подключить к выходу лампу накаливания номиналом 25 В. Это снизит выходное напряжение в небольшом пределе.


Коллекторные двигатели можно запитать от преобразователя, в принципе можно, но они нагреваются в 2 раза больше, чем при питании от чистой синусоиды.

Простая схема источника питания 12 В 2 А

Сегодня мой сын построил простую схему источника питания 12 В для солнечного насоса на 12 В.Это нерегулируемый источник питания 2А. Потому что нагрузка — это только двигатель постоянного тока.

Почему вы должны этому научиться?
Это пример принципа работы нерегулируемого источника питания . Которые являются основными для каждого источника питания.

Как это работает

Учу сына понимать принцип работы этих проектов.

Основной принцип, мы используем этот проект для снижения напряжения от сети переменного тока 220 В до 12 В постоянного тока. ( Источник питания с фильтром 12 вольт, )

На рисунке 1 переменный ток 220 В 50 Гц подключен к цепи через S1- ON -OFF и предохранитель F1 для защиты этой цепи.

Затем они протекают через трансформатор 2А для понижения напряжения до 12 В переменного тока.

Затем через оба диода к выпрямительному преобразователю переменного тока в постоянный.

Затем на конденсаторе в качестве фильтра постоянного напряжения.

Светодиод LED1 отображает питание при включении, а R1 ограничивает ток для использования светодиодов.


Рисунок 1 простая принципиальная схема источника питания 12 В 2 А

Детали, которые вам понадобятся

T1: Трансформатор 12 ТТ 12 В, 2 А
D1, D2: 1N5402, 3A Диод
C1: 2200 мкФ Электролитический конденсатор 25 В
R1 : 1.Резисторы 2 кОм 0,5 Вт
LED1: светодиоды, как вам нравится
S1: выключатели
F1: предохранитель 1A
Медные провода и гвоздь 0,5 дюйма, питание от сети переменного тока

Сделайте источник питания 12 В постоянного тока

Этот проект, мой сын построил 12 вольт фильтровал блок питания сам с собой много ступенек.

В первую очередь кладем бумагу на лист фанеры и забиваем гвоздь в стык деталей. ( Рисунок 2 )

Паял все детали на шляпку гвоздя вместо печатной платы. ( Рисунок 3 ).

Все части линии переменного тока под высоким напряжением Я подключаю их вместо моего сына.


Рисунок 2 Забить гвоздь в стык деталей


Рисунок 3 припаять все части на гвоздь

По завершении Он измеряет напряжение на выходе 17 В Без нагрузки ( Рисунок 4 )

Рисунок 4

Затем он пытается применить насос постоянного тока в качестве нагрузки. Как на видео ниже.


Тогда он измеряет ток нагрузки около 0.9A как Рисунок 5

Этот проект применяется на открытом воздухе, поэтому он поместил его в пластиковые коробки для защиты воды, как Рисунок 6

Схема источника питания 12 В 3 А

Если вам нужен выход 3 А. Перечень нескольких частей легко изменить:
1. Переключите трансформатор на ток 3А.
2. Добавьте еще конденсаторный фильтр до 4700 мкФ. Добавив параллельно еще один 2200 мкФ.

Это просто?

Это первый проект по обучению мальчиков на дому. Мы рады, что он отлично работает.

Подробнее: Разработка линейного источника питания 12 В, 5 А

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

простая цепь инвертора 12В до 220В с использованием МОП-транзистора ИРФЗ44

Что такое схема инвертора?

Схема инвертора может преобразовывать сигнал постоянного тока с номинальным напряжением (9 В, 12 В) в значительно более высокий сигнал переменного тока с желаемым уровнем напряжения (220 В). В случае сбоя питания инвертор очень полезен в качестве резервного источника питания, и, если он оптимально заряжен, он также позволит вам использовать ваш компьютер, телевизор, освещение, электроинструменты, бытовые приборы и другие электрические удобства помимо питания всего устройства. дом.Итак, в сегодняшнем руководстве мы рассмотрим пошаговый процесс создания простой схемы инвертора с 12 В на 220 В с использованием двух полевых МОП-транзисторов IRFZ44.

Эта схема инвертора работает по принципу преобразования чистого сигнала постоянного тока в свободно бегущую прямоугольную волну с помощью схемы мультивибратора, работающей в нестабильном режиме. Избыточное среднеквадратичное значение выходного прямоугольного сигнала затем прерывается в желаемый синусоидальный сигнал переменного тока с помощью прерывателя AMV, такого как IRFZ44.IRFZ44 — это N-канальный полевой МОП-транзистор с быстрой коммутацией с высоким током стока 49 А и низким сопротивлением сопротивления 17,5 МОм.

JLCPCB — ведущая компания по производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо испытывали (качество, цена, обслуживание и время). Мы настоятельно рекомендуем заказывать печатные платы в JLCPCB. Все, что вам нужно сделать, это просто загрузить файл Gerber и загрузить его на веб-сайт JLCPCB после создания учетной записи, как указано в видео выше, посетите их веб-сайт, чтобы узнать больше! .

Компоненты оборудования

Для сборки этого проекта вам потребуются следующие детали:

Чтобы заказать специальные печатные платы по невероятно высокой цене, посетите: www.jlcpcb.com

IRFZ44 Распиновка

Полезные шаги

1) Спроектируйте компоновку печатной платы для инвертора, используя любой инструмент CAD для печатных плат. Чтобы узнать больше о последних бесплатных инструментах САПР для печатных плат 2020 года, пожалуйста, обратитесь к нашей предыдущей статье, нажав здесь.

2) Припаяйте все компоненты к печатной плате.

3) Припаяйте два провода с выходом полевых МОП-транзисторов IRFZ44 и еще один с выходом схемы делителя напряжения 220 Ом.

4) Припаиваем зажим аккумулятора (провода).

5) Припаяйте выход схемы инвертора повышающим трансформатором ТТ.

6) Включите питание и проверьте цепь с помощью светодиодной лампы 220 В.

Схема подключения преобразователя частоты

от 12В к 220В

Рабочее объяснение

В этой схеме используется мультивибратор, работающий в нестабильном режиме, для генерации свободно бегущей прямоугольной волны.При включении схемы с использованием аккумулятора 12 В, схема мультивибратора генерирует прямоугольный сигнал, но для того, чтобы устройство переменного тока работало без каких-либо проблем, нам требуется чистый синусоидальный сигнал переменного тока.

Это достигается за счет подачи прямоугольного сигнала с выхода схемы мультивибратора на два полевых МОП-транзистора IRFZ44, что прерывает избыточное среднеквадратичное значение выходного прямоугольного сигнала в несколько зашумленный синусоидальный сигнал. Затем выходной синусоидальный сигнал подается на повышающий трансформатор с 12 В на 220 В, который повышает напряжение до желаемого уровня переменного тока 220 В.Вы можете подключить конфигурацию LC параллельно к выходу трансформатора, чтобы еще больше уменьшить шум и улучшить форму выходного сигнала переменного тока.

Приложения

  • Используются в таких устройствах, как центробежные вентиляторы, насосы, смесители, экструдеры, испытательные стенды. конвейеры, насосы-дозаторы. и оборудование для обработки паутины

Gerber Files

Вы можете загрузить файлы gerber для схемы по приведенной ниже ссылке:

См. Также: Цепь автоматического аварийного освещения с использованием реле 5В | Советы и методы устранения неполадок печатных плат — полное руководство | Как сделать бесконтактный дозатор дезинфицирующего средства для рук

120В vs.12 Вольт — В чем разница?

At Light It Right, нам все время звонят по поводу ремонта систем на 120 В, и мы должны сообщить этим абонентам, что мы работаем только с системами 12 В — тогда возникают вопросы, что это такое и в чем разница.

Между ними есть несколько существенных различий: для одного требуется 120 В и лицензия на электричество, а для 12 В в Техасе — нет. Кроме того, 120 В — это мощность, которая проходит через ваш дом, где 12 В снижается с 120 В с помощью трансформатора, и работать с этими 120 В намного безопаснее, особенно во дворе.

Стоимость

120 В (также известное как высокое напряжение) — это питание от сети, и при использовании для наружного освещения это довольно дорого. Первоначальная стоимость установки может быть в 2-3 раза выше стоимости 12 В (также известного как низкое напряжение). Стоимость приспособлений и других материалов, необходимых для правильной установки высоковольтной системы, намного выше, чем у тех, которые используются для низковольтных систем. Кроме того, глядя на остаточную стоимость в счете за электроэнергию, высокое напряжение будет стоить вам на счетчике с учетом того, сколько энергии требуется для работы, тогда как при низком напряжении вы можете даже не заметить изменения в счете.

Светильники

Низковольтные светильники выглядят намного привлекательнее, они, как правило, имеют более эстетичный вид. Светильники, которые часто используются для высоковольтного освещения, очень большие, громоздкие, выглядят однозначно и могут вызвать раздражение глаз. В отличие от высоковольтных осветительных приборов, низковольтные светильники могут быть установлены заподлицо в земле, скрыты в ландшафте, установлены на / вокруг костровых ям, помещены в воду и во многих других местах. Благодаря разнообразию, которое обеспечивают низковольтные светильники, возможности проектирования безграничны, а высокое напряжение имеет ограничения.

Высоковольтный прибор рядом с демонстрационным низковольтным прибором

Световой поток

До недавнего времени он имелся в наличии для осветительных приборов высокого напряжения. Что ж, когда светодиоды улучшаются (и становятся лучше), у низкого напряжения теперь есть это. Светодиоды низкого напряжения теперь доступны с более высокой мощностью, чем раньше, поэтому Light It Right имеет гораздо больше возможностей для работы, мы даже можем создать тот же эффект, что и пары ртути высокого напряжения.Многие старые объекты недвижимости имеют высокое напряжение, которое использовалось десятилетиями и нуждается в замене, но никто не желает этого делать из-за нехватки средств. У этих домовладельцев теперь есть возможность удалить эти светильники и заменить их на низковольтные, при этом, при желании, добиться того же светового эффекта, и никто не станет мудрее, если бы свет был заменен.

Источник питания

Можно подумать, что высокое и низкое напряжение питаются одинаково, но это не так! Освещение высокого напряжения забирает все 120 В прямо от линии электропередачи в собственный источник питания либо в нижней части каждого светильника, либо в нижней части каждого дерева, в котором установлены светильники.Это самый простой способ узнать, если вы не знаете, какой у вас тип освещения. Низковольтное освещение питается от домашних линий, которые возвращаются к одному трансформатору, расположенному в собственности, который понижает напряжение 120 В от дома до 12 В. Во всей системе нет необходимости в других источниках питания, используется только одна розетка.

Источник питания высокого напряжения Источник питания низкого напряжения

Есть много причин, по которым домовладельцы и дизайнеры освещения перешли от высокого напряжения к низкому напряжению.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *