Как определить фазу тестером: Как определить фазу и ноль мультиметром – RozetkaOnline.COM

Содержание

Как определить фазу и ноль мультиметром – RozetkaOnline.COM

Продолжаем изучать возможности цифрового мультиметра и способы его применения в быту. В данной статье я расскажу, как с его помощью можно определить фазу и ноль.

Довольно часто, в процессе монтажа электрооборудования, например, при подключении светильников, установке розеток и выключателей или при диагностике неисправностей электросети, нужно найти какой из проводов заземление, фаза и ноль. Как это можно сделать самому, без специального оборудования, я писал ЗДЕСЬ, сейчас же мы сделаем это мультиметром.

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа – ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  

Как найти фазу мультиметром

Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения – уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».

В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока.

Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.

Как проверить мультиметром напряжение в розетке 220в

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом – не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром

Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита – УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как определить фазу | Практическая электроника

Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.

С помощью индикаторной отвертки


На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.

Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка. Значит, мы попали на фазу.

Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.

Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.

 

С помощью мультиметра

А что, если у нас нет индикаторной отвертки? Как быть в этом случае?  Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.

Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра  высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.

Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом,  главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.

Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.

Как определить фазу и ноль мультиметром

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы.

Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

Как мультиметром найти фазу без ошибок

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Содержание статьи

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Более подробно об этом можно прочитать в статье про электрическое напряжение.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Для их подключения разработаны определенные правила монтажа.

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Далее все делаем за 2 шага.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

3 заключительных совета из личного опыта

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Удлинитель для мультиметра

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Как определить фазу и ноль мультиметром?

Часто бывает так, что во время монтажа различного электрического оборудования в доме, будь то светильники, розетки или выключатели, либо проверка неисправностей электросети, требуется осуществить поиск какого-то провода. Речь идёт о ноле, фазе, а также заземлении. Попытаемся разобраться, что это за провода, как их различить при помощи такого прибора, как мультиметр, и какие меры предосторожности следует соблюдать, дабы человека не ударило электрическим током.

Определение терминов

Итак, для начала следует разобраться в данных терминах и понять, зачем искать тот или иной провод. Необходимо вспомнить, что все электрические сети делятся на 2 категории:

  • с переменным током;
  • с постоянным током.

Ток представляет собой движение электронов по определённому сценарию. В первом варианте электроны осуществляют перманентное передвижение в некоем определённом направлении. А в случае с переменным, особенностью будет постоянная смена направления движения.

Теперь немного скажем о фазе, нуле и заземлении. Электроэнергия поступает в электросеть от трансформаторной подстанции, главным назначением которой является преобразование большого напряжения в 380 В. А к дому электроэнергия подводится либо по воздуху, либо под землёй через вводной щит распределения. Потом напряжение идёт на щитки, расположенные в каждом подъезде. И уже в квартиры идёт по одной фазе с нулём, то есть 220 вольт и проводник защиты.

Проводник, что обеспечивает подачу электрического тока потребителю, будет иметь название фазного. Внутри трансформаторной обмотки они соединяются между собой в так называемую звезду, что имеет общую нейтраль, которая заземлена на самой подстанции. Она обычно идёт к нагрузке по отдельному кабелю. Ноль, являющийся общим проводником, предназначается для реверсивного движения тока на источник электричества. Он даёт возможность выровнять фазное напряжение – разницу между нулём и фазой.

А заземление, которое в простонародье прозвали землёй, напряжения не имеет. Главной его задачей является защита пользователя от воздействия электротока при появлении неполадок с техникой, то есть при возникновении пробоя.

Это может случиться, если повреждается проводниковая изоляция, и деформированный участок касается приборного корпуса. Но так как потребители заземляются, то при возникновении большого напряжения на корпусе заземление тянет на себя опасный потенциал.

Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Бывает, что ноль и заземление связаны в электрозащите и установить их действительно крайне сложно.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Меры безопасности

Следует немного сказать и о некоторых правилах безопасности, которые обязательно следует прочитать, прежде чем начинать определение фазы и нуля при помощи мультиметра:

  • ни в коем случае нельзя использовать мультиметр в помещении с высокой влажностью;
  • нельзя использовать неисправные щупы для измерений;
  • при осуществлении замеров нельзя изменять пределы измерений и переставлять режим переключателя;
  • нельзя менять параметры, значение которых будет выше, чем приборная грань измерений.

Кроме того, поворотный переключатель с самого начала следует установить в максимальное положение, дабы избежать поломки прибора.

О том, как определить фазу и ноль мультиметром, смотрите в следующем видео.

Как определить фазу и ноль правильно: советы и рекомендации

Категория: Электромонтажные работы

Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.

Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и как определить фазу и ноль при помощи различных приборов.

Что такое фаза?

Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».

Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.

Что такое ноль и заземление?

Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.

Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.

Как отличить друг от друга фазу и ноль?

Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.

Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.

Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.

При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).

Дополнительные рекомендации

Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.

Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.

Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.

Как определить фазу и ноль

При любых работах с электропроводкой, будь то установка выключателя или что-то еще, всегда возникает необходимость в определении нулевых и фазовых проводов.

Честно говоря, это достаточно легкая процедура, но лишь при условии, что вы обладаете необходимыми навыками в работе с электричеством. В статье речь пойдет о том, как решить подобные вопросы.

Вводная часть о принципах работы электроприборов

Все мы знаем, что практически для всех домашних электроприборов необходима относительно небольшое напряжение — всего 220 вольт. И для того, чтобы подвести электрику к штепселю, нужно два провода (в некоторых случаях — три). Итак, вот они:

  1. Фазный.
  2. Нулевой.
  3. Заземление (если произойдет нарушение изоляции, то оно предотвратит удар током). И для чего же, спросите вы, простому обывателю знать о том, где фаза, а где ноль?

Прежде всего, это пригодится при собственноручной замене выключателя, если его следует установить конкретно на фазный провод. Кто не знает, это позволит отремонтировать осветительный прибор, не отключая электричества во всем доме.

Но не только их, а еще и бытовые приборы, работающие с проточной водой или имеющие железные корпуса. И чтобы подключить их, нужно задействовать не только ноль и фазу, но еще и заземление.

Существует три способа того,  как определить фазу и ноль. Рассмотрим детально все их преимущества и недостатки.

Определяем фазу и ноль фазоиндикатором

В данном случае вам понадобится специальный пробник, или как его еще называют, индикатор. В целом это обычная плоская отвертка, имеющая пластиковую ручку, где и помещен визуальный датчик — неоновая или же полупроводниковая лампа.

Процедура определения фазы таким образом проста. Необходимо лишь прикоснуться концом инструмента к нужному проводу или же засунуть его в розетку. Если напряжение там будет присутствовать, то отвертка загорится слабым светом.

Стоит отметить, что это возможно при правильном применении отвертки: палец ладони, в которой находится инструмент, следует прижать к металлической части отвертки. Это замкнет цикл между землей и проводкой, но бояться при этом не стоит, поскольку металлическая часть прибора существенно снижает напряжение.

Преимущества: простота и доступность способа, отвертку можно купить в любом магазине.

Недостатки: риск поражения электрическим током, пусть преимущественно и на психологическом уровне.

Видео по определению фазы и ноля индикаторной отверткой

Определяем фазу и ноль тестером

Здесь используется более современное устройство — фазовый тестер. Он позволит владельцу качественно измерять силу переменного или же постоянного напряжения. Для настройки прибора используется специальный вращающийся переключатель.

Также есть два щупа, первый из который необходимо засунуть в розетку, а второй крепко зажать в ладони. Если мы попадем на нулевую проводку, то на дисплее отобразится незначительное напряжение или же несколько нулей. А если на фазовый — то напряжение будет существенно выше.

Преимущества: современное устройство, широкодоступное на отечественном рынке; более высокая точность измерений.

Недостатки: существенных нет.

Видео по определению фазы мультиметром

Определяем фазу и ноль по маркировке

Это, пожалуй, наиболее ненадежный способ. Суть его в следующем: на сегодняшний день все проводка современных домов обладает специальной цветовой маркировкой, смотря какое назначение определенного провода.

К примеру, к фазе подключается зачастую коричневый или черный провод, а тот, что к нулю, должен иметь голубые тона. Касательно заземляющего провода, то он выполняется в двух цветах — зеленом и желтом.

Жаль, конечно, но в нашей стране нередко халатность электриков приводит к тому, что правила игнорируются и влекут за собой самые непредсказуемые последствия. Поэтому ни в коем случае не полагайтесь на добросовестность и профессионализм рабочих, устанавливающих в вашем доме электропроводку.

Рекомендуется лучше применить один из описанных способов. Более того, еще три года назад провода маркировались совсем по-другому. К примеру, провод для заземления был тогда черного цвета.

Когда фазный провод определен, мы его отгибаем и начинаем определять нулевой. К щитку внутри квартиры они прикреплены таким образом, что исключается система заземления как таковая. И если у вас есть доступ к щитку, то следует осведомиться о цвете провода, который проходит мимо автоматов, и выявить его.

А если по причине того, что вы желаете подстраховаться, или непосредственный доступ к щитку невозможен, то в любой момент можно использовать старое доброе средство — патрон с лампочкой, к которой подключены провода. Если один из них присоединить или же просто прикоснуться им к фазному проводу, а второй провод замыкать на двух оставшихся поочередно, то вы можете также определить нужные вам категории. Если будет контакт с нулем, то лампочка загорится, а если с проводом заземления — то ничего не произойдет.

И, как бы противопоставляя этот метод более продвинутому, можно применить уже описанный нами прибор — фазометр.

В таком случае следует по очереди измерять различие напряжения (другими словами, потенциалов) между всеми проводами и уже определенными фазами. При этом категория фаза-ноль обязана существенно превышать все другие категории (земля-фаза).

Преимущества: относительная простота.

Недостатки: небезопасность.

Итак, мы вместе разобрались, как определить фазу и ноль.

[Всего:    Средний:  /5]

Как понять и определить чередование фаз в энергосистеме • Услуги по обучению электротехнике Valence

Понимание чередования фаз жизненно важно при соединении двух систем вместе, потому что результаты могут быть катастрофическими, если кто-то не понимает, как интерпретировать рисунки чередования фаз. Можно подумать, что такая важная вещь, как чередование фаз, будет иметь согласованные условия во всей отрасли. К сожалению, вы ошиблись.

Давайте начнем с повторения по теории генераторов.

На видео ниже показан генератор с «вращением по часовой стрелке», потому что ротор генератора вращается по часовой стрелке внутри статора. Я думаю, что это ужасное определение, потому что ротор, казалось бы, вращается против часовой стрелки, если вы обойдете его и посмотрите на противоположную сторону генератора. Все зависит от вашей точки зрения. Некоторые люди называют напряжения, создаваемые этим генератором, «по часовой стрелке», потому что если вы начнете с A:

  • Напряжение A-фазы сначала достигает пика,
  • , за которым следует напряжение фазы B, а затем
  • , за которым следует напряжение C-фазы.

Генератор, работающий против часовой стрелки, можно определить как ротор, который вращается против часовой стрелки внутри статора, как показано в следующем видео. Некоторые люди будут называть напряжения, создаваемые этим генератором, «против часовой стрелки», потому что если вы начнете с A:

  • Напряжение A-фазы сначала достигает пика,
  • , за которым следует напряжение C-фазы, а затем
  • , за которым следует напряжение B-фазы.

Оба этих определения — ужасный способ сообщить чередование фаз.

Например, какая последовательность фаз является выходным напряжением генератора в следующем видео?

Генератор вращается по часовой стрелке, но напряжения против часовой стрелки, потому что сначала напряжение фазы А достигает пика, затем следует напряжение фазы С, а затем напряжение фазы В.

Какой правильный термин для этой системы… по часовой стрелке или против часовой стрелки? Оба применимы, не так ли? Вот почему такое определение чередования фаз сбивает с толку.

Нас не волнует, в каком направлении вращается генератор в энергосистеме. Мы хотим знать порядок или последовательность напряжений, создаваемых генератором, и убедиться, что система имеет одинаковую последовательность фаз, прежде чем подключать их. Следовательно, вы должны исключить из своей терминологии правую и против часовой стрелки, если вы хотите эффективно передавать информацию о последовательности фаз с кем-то еще.

Как определить поворот фазы по чертежам осциллограмм

Правильная терминология должна ссылаться на обозначения напряжения и всегда начинаться с одного и того же обозначения.

Система A-B-C-A-B-C на следующем изображении является системой A-B-C, если я выберу A в качестве эталона.

На изображении ниже показана система C-A-B-C-A-B, которая также является системой A-B-C, если я использую A в качестве ссылки. Ее также можно было бы назвать системой C-A-B или системой B-C-A, в зависимости от ссылки.

На изображении ниже показана система A-C-B, система C-B-A или система B-A-C, в зависимости от ссылки.

Как лучше всего сообщить последовательность фаз?

Есть два правила, которые вы должны использовать при передаче информации о последовательности или чередовании фаз:

  1. Всегда используйте обозначения напряжения.
  2. Всегда начинайте с одного и того же обозначения.

Если вы всегда следуете этим двум правилам, ошибок связи быть не должно.

Если вам нужна дополнительная информация о том, что мы обсуждали, вам следует ознакомиться с нашим онлайн-курсом 1-1: Трехфазная электрическая система (4 CTD NETA).

Определение чередования фаз с помощью фазорных диаграмм

По-прежнему существует проблема, с которой я сталкиваюсь в большинстве моих классов… вращение вектора НЕ изображается на рисунках сигналов; они изображены на векторных диаграммах.Многие из моих учеников не могут определить правильное вращение с помощью типичных обозначений фазового вращения на чертеже, например:

Давайте проверим ваши знания. Какое чередование фаз показано на следующем рисунке?

Чередование фаз — A-B-C.

Вы не можете определить чередование фаз с помощью векторной диаграммы, если не знаете одно универсальное правило в мире тестирования реле.ВСЕ ФАЗОРЫ ВРАЩАЮТСЯ ПРОТИВ ЧАСОВОЙ СТРЕЛКИ.

На видео ниже показано, как взаимосвязаны формы сигналов и векторы.

Обратите внимание, что векторы вращаются против часовой стрелки и что соответствующие формы сигналов соответствуют вращению A-B-C из рисунков сигналов ранее?

Всегда должна быть стрелка, указывающая направление вращения векторов, и она всегда должна быть направлена ​​против часовой стрелки.

Какое вращение показано на векторной диаграмме ниже?

Это все еще ротация A-B-C.Вы всегда можете определить вращение, представив, что фазоры вращаются, как это показано на видео ниже.

Если вы хотите быть уверенным, что правильно понимаете поворот фаз, поместите палец в любое место на векторной диаграмме и представьте, что векторы вращаются против часовой стрелки. Начните обращать внимание, когда эталонный вектор пересекает ваш палец. Какой фазор пересечет ваш палец следующим? Какой вектор последний пересечет ваш палец? Это поможет вам определить чередование фаз, как показано в следующем видео:

Давай попробуем еще один тест!

Какое чередование фаз показано на следующем рисунке?

Это снова A-B-C, как показано в следующем видео:

Теперь, когда вы знаете, что искать и как определить чередование фаз,

Можно ли определить последовательность фаз с помощью фазорных диаграмм?

Что такое чередование фаз при использовании 1 в качестве ссылки на рисунке ниже?

Чередование фаз 1-3-2, как показано в следующем видео:

Вы должны уметь надежно определять чередование фаз в системе и эффективно передавать эту информацию кому-то еще.Если вы не можете этого сделать, результаты могут быть катастрофическими, поэтому это жизненно важный навык, который должны знать все тестеры реле.

Вы можете получить больше информации о векторных диаграммах в нашем онлайн-курсе 1-2: Фазорные чертежи для тестеров реле (4 CTD NETA).

Дополнительную информацию о том, как чередование фаз применяется к тестированию реле, можно найти в будущих публикациях или на нашем онлайн-семинаре «Как тестировать реле защиты» (16 CTD NETA).

Вы можете получить больше информации обо всех наших курсах здесь.

Надеюсь, этот пост был вам полезен. Если вы это сделали, нажмите одну из кнопок ниже или оставьте комментарий. Я читаю каждый ваш комментарий.

Как измерить фазовый угол с помощью измерителя фазового угла • Услуги по обучению электротехнике Valence

Я заметил, что многие студенты, похоже, не имеют опыта работы с измерителями фазового угла, и они не могут догадаться, что измеритель фазового угла может измерить в простой схеме. Эти знания КРИТИЧНЫ, если вы хотите правильно выполнить тест счетчика защитного реле.Любой желающий может подать напряжение и ток в реле и записать результаты в тестовый лист. Хороший тестер реле может интерпретировать эти результаты и с помощью простого теста найти ГЛАВНЫЕ проблемы с настройкой и установкой реле.

Давайте посмотрим на простую цепь постоянного тока для запуска:

Что бы вы измерили, если бы вы подключили красную (+) клемму измерителя к A, а клемму Volts (Volts) измерителя к C, как показано на следующем рисунке?

Что, если вы подключите (+) к B и (Volts) к D, как показано на следующем рисунке?

Это будет +100 В, потому что вы все еще подключены к A и C, за вычетом небольшого падения напряжения, которое мы можем проигнорировать в нашем примере.

Что бы вы измерили, если бы подключили (+) к D и (Вольт) к B, как показано на следующем рисунке?

Измеритель измеряет падение напряжения на двух клеммах, которое будет отрицательным, поскольку положительный вывод измерителя подключен к отрицательному выводу аккумуляторной батареи. Показание счетчика будет -100В.

Что, если вы удалите провод между A и B и подключите (+) к A, а (Amps) к B?

Измеренный ток составит +10 А по закону Ома (100 В / 10 Ом).

Что, если вы замените CD на (+) и (Amps)?

Текущая величина такая же, но текущее направление будет противоположным. Измеритель будет измерять -10А.

Вы должны увидеть в нашей цепи постоянного тока, что:

  1. напряжение задает потенциальную энергию, а также направление тока,
  2. нагрузка (резистор) определяет, сколько тока будет протекать при заданном напряжении, а
  3. измеренная полярность зависит от соединений проводов, а не от схемы.

Давайте попробуем более сложную схему:

Что бы вы измерили через B (+) и K (Вольт)?


А как насчет H (+) до F (Вольт)?

Вы бы измерили -100 В, потому что:

  1. D-K имеет два параллельно включенных резистора 20 Ом, что обеспечивает эквивалентное сопротивление 10 Ом.
  2. B-C составляет 10 Ом и включен последовательно с D-K, создавая равный делитель напряжения. На D-K будет ½ напряжения.
  3. D и F — одна и та же точка, а K и H — также одна и та же точка; так что будет 100V через H-F.
  4. Выводы счетчика находятся напротив батареи; поэтому измеренное значение будет -100 В.

Можете ли вы заполнить эту таблицу?

(+) Подключение (Вольт) Подключение Измерение
А I
А К
А D
Д К
G D
С B
К А

Хотите подсказку?

Помогает, если вы нанесете маркировку полярности на каждый резистор.

Теперь, если вывод (+) находится на той же стороне положительного полюса цепи, а вывод (Вольт) подключен к отрицательному, результат будет положительным.

Вот ответы

(+) Подключение (Вольт) Подключение Измерение
А I + 200В
А К + 200В
А D + 100В
Д К + 100В
G D -100В
С B -100В
К А -200В

Теперь посмотрим на постоянный ток

Что бы вы измерили, если бы измеритель заменил провод между C (+) и D (Ампер)?

Измеритель будет измерять +10 А, потому что клеммы (+) и (Ампер) имеют ту же полярность, что и резисторы выше и ниже точек измерения.


Что бы вы измерили, если бы измеритель заменил провод между D (+) и F (Ампер)?

Вы бы измерили + 5A, потому что +10 ампер течет в D, который разделится пополам, потому что оба пути имеют одинаковое сопротивление. Следовательно, + 5A течет в E, а + 5A течет в F.

Можете ли вы заполнить эту таблицу?

(+) Подключение (А) Подключение Измерение
А B
С D
Д E
ф D
К H
G Дж
I Дж

Вот ответы

(+) Подключение (Вольт) Подключение Измерение
А B + 10A
С D + 10A
Д E + 5A
ф D -5A
К H -5A
G Дж + 5A
I Дж -10A

Теперь давайте посмотрим на простую цепь переменного тока с измерителем фазового угла.

Измерители фазового угла измеряют величины и углы на основе опорного угла.

Можете ли вы угадать, что измерит фазовый угол на следующем рисунке?

Измеритель фазового угла будет измерять 100 В, но угол будет случайным числом, которое может постоянно меняться, потому что измеритель фазового угла не имеет эталона.


Вы можете подойти к любой части цепи постоянного тока и измерить падение напряжения на устройстве (или ток, протекающий через него), поскольку в системе постоянного тока существует только одно направление, используя определения измерения от положительного к отрицательному.(Я знаю, что физика определяет его от отрицательного к положительному, но наши счетчики работают не так.)

Вы можете измерить величину тока и напряжения в системе переменного тока так же, как и в цепи постоянного тока, но форма сигнала переменного тока постоянно переключается с положительного на отрицательный с каждым циклом. Это значительно затрудняет определение «полярности» схемы.

Наша цепь переменного тока имеет начальную точку, но наш измеритель фазового угла не может ее записать без ссылки. Мы можем измерить фазовый угол, добавив опорное соединение, как показано ниже.

Что бы измерил измеритель фазового угла?

Измеритель фазового угла будет измерять 100 В при 0 ° при условии, что эталон откалиброван на ноль градусов.

Что измерил бы измеритель фазового угла, используя следующий рисунок?

Он все равно будет измерять 100 В при 0 °, потому что измерительные входы и опорные входы подключены в одном направлении.

Что бы измерил фазовый угловой измеритель сейчас?

Он будет измерять 100 В при 180 °, потому что измерительные входы и опорные входы подключены в противоположном направлении.


Важно отметить, что ЦЕПЬ не изменилась. Причина, по которой последние два измерения угла различаются, заключается в наших ПОДКЛЮЧЕНИЯХ, точно так же, как переключение выводов на измерителе постоянного тока.

Последний легкий. Что бы теперь показывал измеритель фазового угла?

Он будет измерять 100 В при 180 °, потому что измерительные входы и опорные входы подключены в противоположном направлении.

Теперь мы можем включить в цепь трансформатор тока, чтобы измерить ток, протекающий через резистор.

Что измерит измеритель фазового угла в следующей цепи?

Измеритель фазового угла будет измерять 10 А при 0 °, потому что полярность опорного сигнала такая же, как и у измерительной цепи.

Мы можем перерисовать схему с отметками полярности, чтобы лучше видеть, как ток, идущий на отметку первичной полярности ТТ, выходит из отметки вторичной полярности, чтобы соответствовать полярности опорного сигнала.

Что измерит измеритель фазового угла в следующей цепи?

Измеритель фазового угла по-прежнему будет измерять 10 А при 0 °, потому что полярность опорного сигнала такая же, как и у измерительной цепи.

Маленький грязный секрет ТТ заключается в том, что маркировка полярности не имеет значения, если установка ТТ соответствует чертежам. Направление протекания тока является основным ориентиром в измерителях фазового угла. В этом случае провода измерителя фазового угла не изменились.

Если мы используем маркировку полярности из предыдущего рисунка, мы предполагаем, что ток течет от A к B, потому что наши контрольные выводы подключены с полярностью к A и неполярностью к C. КТ; Таким образом, ток будет течь через отметку неполярности ТТ на плюсовую клемму, в результате чего измерение фазового угла будет равно 0 °.

Что измерит измеритель фазового угла в следующей цепи?

Измерение фазового угла будет измерять 10 А при 180 °, потому что эталон сообщает нам, что ток 0 градусов будет течь от A к C, а наш измерительный провод + подключен к C, напротив эталона.

100% резистивные цепи всегда будут находиться под углом 0 ° или 180 °.

Можете ли вы заполнить эту таблицу измерениями напряжения с помощью измерителя фазового угла?

(+) Подключение (Вольт) Подключение Измерение
А I
А К
А D
Д К
G D
С B
К А

Вот ответы

(+) Подключение (Вольт) Подключение Измерение
А I 100 В при 0 °
А К 100 В при 0 °
А D 50 В при 0 °
Д К 50 В при 0 °
G D 50 В при 180 °
С B 50 В при 180 °
К А 100 В при 180 °

Можете ли вы заполнить эту таблицу измерениями тока с помощью измерителя фазового угла?

Представьте, что полярность ТТ подключена к клемме [+], как показано в примере AB ниже, а обозначения [+] и [Ампер] в таблице определяют направление ТТ.

(+) Подключение (А) Подключение Измерение
А B
С D
Д E
ф D
К H
G Дж
I Дж

Вот ответы

(+) Подключение (Вольт) Подключение Измерение
А B 5A при 0 °
С D 5A при 0 °
Д E 2.5A при 0 °
ф D 2,5 А при 180 °
К H 2,5 А при 180 °
G Дж 2,5 А при 0 °
I Дж 5A при 180 °

Что произойдет, если мы подключим наш измеритель угла фазы к нерезистивным цепям?

Какое напряжение вы бы измерили при 100% -ной емкостной цепи, как показано на следующем рисунке?

Вы все равно будете измерять 100 В при 0 °, потому что напряжение определяет источник, а не нагрузка.

Какой ток вы бы измерили в 100% -ной емкостной цепи, как показано на следующем рисунке?

Вы бы измерили провод 10 А при 90 °, потому что емкостной ток опережает напряжение на 90 °.

Обратите внимание, что я не указал + 90 ° или -90 °? Это потому, что разные устройства могут иметь разные обозначения фазового угла для одного и того же положения. Лучший способ точно передать информацию о векторе — использовать обозначения «опережение» и «отставание» вместо абсолютных ссылок.

Мы освещаем эту тему в нашем онлайн-курсе «Чертежи фазоров для тестеров реле».

Что измерит фазомер в следующей цепи со 100% чистой индуктивностью?

Измеритель фазового угла может измерять 100 В при 180 °, потому что опорные соединения находятся напротив измерительных соединений.

Какой ток вы бы измерили со 100% индуктивной цепью, как показано на следующем рисунке?

Вы бы измерили 10 А при запаздывании на 90 °, потому что индуктивный ток будет отставать от напряжения на 90 °, а опорный и измерительный провода синфазны.

К настоящему моменту вы должны увидеть, насколько важна РЕФЕРЕНЦИЯ вашего измерителя фазового угла. Помните, что каждое устройство, измеряющее фазовые углы, ДОЛЖНО иметь эталон, и этот эталон может быть не тем, что вы думаете. Некоторые измерители фазового угла используют то, к чему они подключены, в качестве эталона. Некоторые используют все, что связано с V1, Van или Vab. Некоторые используют все, что подключено к I1 или Ia. Если вы не знаете эталон, вы не сможете проверить правильность своих измерений.

Также помните, что система определяет величину и угол напряжения, а нагрузка определяет ток и угол тока. Не существует чисто резистивных, емкостных или индуктивных нагрузок. Это означает, что вы никогда не должны подавать ток при 0 °, 90 ° или опережении 90 °, потому что ваше реле или измеритель никогда не увидит эти значения в реальном мире. По возможности всегда старайтесь имитировать реалистичные условия.

Теперь у вас есть фундамент, необходимый для понимания того, что происходит во время проверки счетчика.Попытайтесь выяснить, что вы должны измерить, прежде чем проводить следующий тест счетчика. Вы можете получить некоторую помощь в нашей публикации «Поиск направления в направленных реле максимального тока», прежде чем мы рассмотрим тестирование счетчиков в следующей публикации.

Для специалистов по обслуживанию систем отопления, вентиляции и кондиционирования воздуха: принципы измерения трехфазного напряжения

Измерение статического давления в коммерческих системах отопления, вентиляции и кондиционирования воздуха может значительно отличаться от одного типа оборудования к другому. Промышленные испытания под давлением также требуют, чтобы балансировщик интерпретировал внутренние падения давления в оборудовании и сообщал о них.Чтобы оставаться в курсе последних коммерческих испытаний под давлением, давайте взглянем на это последнее обновление для коммерческих испытаний под давлением.

Комплектное оборудование

Крышное коммерческое оборудование сегодня часто используется в коммерческих целях в большинстве регионов страны. Упакованное оборудование 7,5 т и более создает ряд уникальных проблем, о которых следует знать, чтобы избежать неточной интерпретации показаний давления.

Общее внешнее статическое давление

Обычно при измерении общего внешнего статического давления измеряют давление в точке, где поток воздуха входит в оборудование и где поток воздуха выходит из оборудования.Давление на входе в оборудование является всасывающим или отрицательным давлением. Давление на выходе из оборудования — это давление нагнетания или положительное давление. Сложите эти два давления вместе, чтобы найти общее внешнее статическое давление, измеренное оборудованием.

Не забудьте просверлить контрольные отверстия над бордюром, поскольку бордюр считается внешним по отношению к оборудованию.

Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.

Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.

  • Давление на входе оборудования — 0,46 дюйма. Туалет.
  • Оборудование выходное давление + 0,51 дюйма. Туалет.
  • Общее внешнее статическое давление 0,97 дюйма Туалет.

Сравните измеренное статическое давление с номинальным максимальным общим внешним статическим давлением оборудования, чтобы убедиться, что система работает при меньшем, чем максимальное номинальное общее внешнее статическое давление, указанное производителем. Не обращайте внимания на знаки + и -, поскольку они представляют тип измеряемого давления, а не числовые значения.

Вы также можете использовать измеренное общее внешнее статическое давление и измеренное число оборотов вентилятора, чтобы нанести воздушный поток вентилятора на таблицу характеристик вентилятора производителя или кривую вентилятора.

Построение графика воздушного потока вентилятора и падений внутреннего давления в оборудовании

Измеренное общее внешнее статическое давление используется для построения графика воздушного потока вентилятора … но здесь все становится сложнее. Приготовьтесь, вот и технические штучки.

Помните, что перепады давления на фильтре и змеевике не «видны» для показаний общего внешнего статического давления, так что, если фильтр и змеевик загрязнены и нагружены при нормальном использовании оборудования к моменту балансировки системы?

При первом запуске оборудование новое, фильтр и змеевик чистые.В идеале падение давления на фильтре и змеевике следует снимать и записывать на оборудовании для использования в будущем. К этим базовым испытаниям можно обращаться всякий раз, когда измеряется давление в системе.

Если давление в фильтре и змеевике изменяется со временем, увеличенное давление этих компонентов следует прибавить к измеренному общему внешнему статическому давлению перед построением графика воздушного потока вентилятора.

Это наиболее точный способ интерпретации статического давления при построении графика воздушного потока вентилятора для упакованного блока.

«В состоянии поставки» — это термин, который в последнее время широко используется в промышленности, что придает ясность измерениям статического давления. При рассмотрении того, как измерить общее внешнее статическое давление и определении того, должен ли компонент системы быть включен или исключен из показаний общего внешнего статического давления, определите, был ли компонент включен в оборудование «в том виде, в каком он был поставлен» или когда он был испытан в лаборатория.

Что делать, если при запуске не было никакого давления?

Если при запуске не были сняты показания статического давления фильтра и змеевика, в идеале вы можете найти данные производителя, чтобы определить, на какие характеристики были рассчитаны эти компоненты при лабораторных испытаниях оборудования.Плохая новость заключается в том, что многие производители не публикуют эти данные.

Если данные производителя по перепадам давления в фильтре и змеевике отсутствуют, лучше всего использовать бюджеты давления NCI по умолчанию. Исследования выявили типичные падения давления для фильтров и змеевиков в хорошо работающем коммерческом оборудовании.

Падение давления на фильтре — Чтобы оценить падение давления на чистом фильтре, умножьте номинальное статическое давление вентилятора на 20%. Если падение давления на фильтре превышает 20% от номинального общего внешнего статического давления, добавьте избыточное падение давления на фильтре к измеренному общему внешнему статическому давлению системы, прежде чем строить график расхода воздуха вентилятора.

Падение давления в змеевике — Чтобы оценить падение давления в чистом охлаждающем змеевике, умножьте номинальное статическое давление вентилятора на 30%. Если падение давления в змеевике превышает 30% от номинального общего внешнего статического давления, также добавьте избыточное падение давления в змеевике к измеренному общему внешнему статическому давлению системы, прежде чем строить график расхода воздуха вентилятора.

Падение внутреннего давления

Пример использования примера на иллюстрации выше, предположим, что эта упакованная единица имеет рейтинг 1.00-дюйм. ТЕСП. Согласно бюджетам NCI, падение давления на фильтре не должно превышать 0,20 дюйма, а падение давления в змеевике не должно превышать 0,30 дюйма.

Скажем, падение давления на фильтре, измеренное на 0,35 дюйма, превышающее бюджет на 0,15 дюйма. Измеренное падение давления в змеевике на 0,50 дюйма, превышает бюджет падения давления в змеевике на 0,20 дюйма. Сложите избыточное падение давления на фильтре и змеевик, который превысил бюджет (0,15 дюйма и 0,20 дюйма), чтобы обнаружить, что падение внутреннего давления превысило бюджет на 0,35 дюйма.Добавьте 0,35 дюйма к измеренному общему внешнему статическому давлению в 0,97 дюйма (35 дюймов + 0,97 дюйма = 1,32 дюйма). Затем постройте график воздушного потока вентилятора, используя общее внешнее статическое давление 1,32 дюйма с измеренными оборотами вентилятора, чтобы определить воздушный поток вентилятора.

Ваша способность измерять и интерпретировать статическое давление имеет важное значение для повышения производительности систем отопления, вентиляции и кондиционирования воздуха, которые вы продаете, устанавливаете и обслуживаете.

Как вы можете видеть из сложного характера этой статьи, надеюсь, вы никогда не перестанете изучать лучшие способы измерения и интерпретации статического давления.

Роб «Док» Фалке служит в отрасли в качестве президента National Comfort Institute, обучающей компании и членской организации, работающей в сфере HVAC. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в бесплатной процедуре коммерческого испытания статическим давлением, свяжитесь с Доком по адресу [email protected] или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.

Тестер двигателя и чередования фаз —

  • Полное испытание чередования фаз и вращения двигателя в одном приборе
  • Обеспечивает правильное подключение фаз за один простой тест
  • Прочный портативный тестер
  • Выполняет дополнительные проверки полярности и целостности.

Тестер двигателя и чередования фаз позволяет электрическому подрядчику или электрику по техническому обслуживанию на производстве постоянно подключать и обматывать клеммы устанавливаемого двигателя без необходимости предварительного включения двигателя с помощью временного подключения от источника питания, если таковой имеется, для определения вращение двигателя.Таким образом, испытательный комплект устраняет необходимость во временных соединениях, которые могут быть трудоемкими, дорогостоящими и весьма опасными, особенно когда задействовано много больших высоковольтных двигателей.

Кроме того, некоторые типы приводов никогда не следует вращать в неправильном направлении. В таких случаях временное соединение или пробный метод, имеющий пятьдесят на пятьдесят шансов ошибиться, могут нанести серьезный вред.

Три провода двигателя на левой стороне испытательного комплекта предназначены для присоединения к клеммам проверяемого двигателя для определения вращения.

Предохранители вставляются в измерительные провода двигателя A и C в качестве защиты в случае, если пользователь случайно коснется этих выводов, что приведет к возникновению цепи под напряжением. Эти стандартные предохранители легко снимаются и заменяются из держателей, установленных на панели.

Три линии, ведущие справа от испытательного комплекта, предназначены для непосредственного подключения к системам переменного тока под напряжением до 600 В для определения последовательности фаз системы. Четырехпозиционный переключатель выбирает проводимый тест — последовательность фаз системы, вращение двигателя и полярность трансформатора.Селекторный переключатель подключает сухой элемент размера D к цепи, когда проверяется вращение двигателя или полярность трансформатора. В положении ВЫКЛ и счетчик, и аккумулятор отключены от всех цепей.

Кнопочный выключатель подключен последовательно к батарее и размыкает цепь во время проверки полярности трансформатора.

Сухой элемент легко снимается и заменяется из держателя на панели крышкой для доступа к гнезду для монет. Амперметр с нулевым центром постоянного тока указывает правильное или неправильное вращение или полярность, отклоняя указатель вправо или влево.Для амперметра предусмотрен регулятор нуля или нуля.

2 простых способа проверить одно- или трехфазное питание

Однофазное или трехфазное питание, вот в чем вопрос.

Ну, по крайней мере, если вы просматриваете нашу линейку мониторов энергии.

Это связано с тем, что большинство мониторов энергии используют «зажимы датчика CT» для измерения энергопотребления. А чтобы охватить все, что вы используете, им нужны либо один зажим для однофазного , либо три зажима для трехфазного .

К счастью, передатчики Efergy, которые мы продаем, одинаковы для обоих типов источников питания. Каждый передатчик может принимать один, два или три зажима. Так что, если вы допустили ошибку, это не имеет значения, вы всегда можете добавить дополнительный зажим ТТ (или два) позже.

Вот два простых способа проверить, подключены ли в вашем доме или офисе одна или три фазы.

1) Однофазный или трехфазный

— Сервисные предохранители

Однофазные блоки имеют один «служебный предохранитель», а трехфазные — три.

Сервисный предохранитель — это большой предохранитель прямоугольной формы черного цвета. Как правило, их довольно легко обнаружить на главном распределительном щите или плате счетчика.

Дом с трехфазным источником питания и трехфазным интеллектуальным счетчиком. Обратите внимание на 3 служебных предохранителя в верхнем левом углу платы. Однофазные площадки имеют только один из них.

2) Однофазный или трехфазный

— Главный выключатель

Еще один способ отличить три фазы от одной фазы — это ширина главного выключателя.Однофазные переключатели имеют ширину «один полюс», тогда как трехфазные переключатели имеют ширину «три полюса». Смотрите картинку ниже, чтобы понять, что я имею в виду.

Однофазный / однополюсный главный выключатель (слева) и трехфазный / трехполюсный главный выключатель (справа).

Эти «главные переключатели» обычно находятся на вашей измерительной доске. В более крупных помещениях или блочных блоках вы также можете найти главные выключатели на каждой дополнительной плате или распределительном щите.

А как насчет одно- или трехфазной солнечной энергии?

Наш монитор солнечной энергии также требует от вас выбора, будет ли ваша фотоэлектрическая система однофазной или трехфазной.Как и выше, вы можете решить это, наблюдая за «главным выключателем солнечной энергии», как показано в приведенных ниже примерах.

Однофазный солнечный свет (слева) и трехфазный солнечный (справа).

А как насчет двухфазного питания?

Двухфазные источники питания также довольно распространены в Австралии. Двухфазное питание лучше всего определять с помощью описанного выше метода «Сервисный предохранитель». Для двух фаз будет два предохранителя, а не один или три.

ECE 449 — Лаборатория 3: Измерение последовательности фаз

Цели

Чтобы понять последовательность фаз трехфазного источника питания и изучить методы измерения последовательности фаз данного источника питания.

Prelab

Прочтите эксперимент. Проанализируйте схему на рисунке 6 для емкости 50 мкФ и нескольких значений R (R = | X c |, R = | X c | / 2 и R = 2 | X c |), чтобы определите, что дает вам наибольшую разницу в величине Vbn на рисунке для двух различных фазовых последовательностей, abc и acb. Вы будете использовать значения R (R = | X c |, R = | X c | / 2 и R = 2 | X c |) и C = 50 мкФ на рис.6 метода 3.

Оборудование

  1. Блок определения последовательности фаз (в лаборатории)
  2. 3-фазный Variac (в лаборатории)
  3. Блок конденсаторов
  4. Тележка с резистивной нагрузкой или переменный резистор / реостат
  5. Коаксиальный кабель (от BNC к BNC — выписка на складе (SR))
  6. Силовой лабораторный бокс с кабелями и измерителем Fluke (SR)

Фон:

При наличии трехфазного источника напряжения на трех проводах a , b и c .Если сигнал напряжения провода a имеет номер 1, как показано на рис. 1, какая форма сигнала представляет напряжение провода b ? Если эта форма волны имеет номер 2 на рис. 1, то последовательность напряжений будет abc . Это вращение по часовой стрелке или положительная последовательность с формой волны 1, нашим «эталонным» источником напряжения для фазового угла (0o), тогда форма волны 2 будет иметь фазовый угол -120o (запаздывание 120o или опережение 240o), а форма волны 3 — угол — 240o (или 120o вперед).Если, с другой стороны, у нас есть представление на рис. 2, то последовательность будет acb с вращением против часовой стрелки или обратной последовательностью. Теперь форма сигнала 2 будет впереди на 120o впереди 1 вместо запаздывания, а 3 будет еще на 120o впереди 2. Вы изучите несколько способов определения последовательности фаз.


Рис.1 Трехфазные осциллограммы с последовательностью 123, источник (1).

Рис.2 Трехфазные осциллограммы с последовательностью 321, источник (2).

Направление вращения многофазных асинхронных и синхронных двигателей зависит от чередования фаз приложенных напряжений. Кроме того, два ваттметра в методе двух ваттметров для измерения трехфазной мощности меняют свои показания при изменении чередования фаз, даже если система сбалансирована. На величину различных токов и компонентных напряжений в сбалансированных системах не влияет изменение чередования фаз.

Если в системе несбалансированной последовательность фаз приложенных напряжений меняется на противоположную, определенные токи ответвления изменяются по величине, а также по фазе, хотя общие генерируемые ватты и переменные остаются неизменными.

На практике желательно, а иногда и необходимо знать последовательность фаз в трехфазной энергосистеме. Например, при параллельном подключении 2 трехфазных трансформаторов, если предполагается неправильная последовательность, результат может быть катастрофическим.Последовательность фаз также определяет направление вращения асинхронных двигателей.

Есть много возможных способов определения последовательности. Для определения последовательности фаз можно использовать ваттметр. Можно подключить трехфазную индуктивную нагрузку и использовать ваттметр так, чтобы I a проходил через токовую катушку ваттметра, тогда показания ваттметра будут пропорциональны либо cos (30 + phi), либо cos ( 30 — фи) в зависимости от того, подано ли на катушку напряжения V12 или V13.Другие методы, обсуждаемые ниже, зависят от явлений несбалансированной многофазной цепи.

Метод 1

Один из методов определения последовательности фаз основан на направлении вращения асинхронных двигателей. Это называется Вращающийся тип. Трехфазный источник питания подключен к тому же количеству катушек, создающих вращающееся магнитное поле, и это вращающееся магнитное поле создает вихревую ЭДС во вращающемся алюминиевом диске.

Эта вихревая ЭДС создает вихревой ток на алюминиевом диске, из-за взаимодействия вихревых токов с вращающимся магнитным полем создается крутящий момент, который заставляет алюминиевый диск вращаться. Вращение диска по часовой стрелке указывает последовательность как a b c , а вращение диска против часовой стрелки указывает на изменение последовательности фаз ( a c b ).

В другом методе используется осциллограф, как в схеме на рис. 3.

Блок определения последовательности фаз
Рис. 3. Использование осциллографа для определения последовательности фаз n-фазного источника.

Метод 2

Как правило, любой несбалансированный набор импедансов нагрузки может использоваться в качестве устройства проверки последовательности фаз напряжения. Эффекты, вызываемые изменением последовательности фаз, могут быть определены теоретически, и когда отмечается эффект, свойственный одной последовательности, этот эффект можно использовать для обозначения последовательности фаз системы.

Распространенным типом схемы для проверки последовательности фаз в трехфазных системах является несимметричная схема схемы, показанная ниже


Рис. 4. Схема определения чередования фаз с использованием 2 ламп и индуктора.

Если лампа a ярче, чем лампа b, последовательность фаз линейного напряжения составляет ab, bc, ca. Если лампа b ярче, чем лампа a, чередование фаз ab, ca, bc.

Схема на рис.5 (взято из Интернета, но источник больше не существует) использует конденсатор вместо катушки индуктивности, показанной на рис. 4.

Рис. 5. Схема и векторная диаграмма для определения чередования фаз на проводах источника, помеченных 123.

Если лампа S ярче, чем лампа T , последовательность фаз фазных напряжений будет RST . Если лампа T ярче, чем лампа S , последовательность фаз будет RTS .

Метод 3

Еще одно устройство проверки последовательности напряжения может быть выполнено с использованием схем, показанных на рис. 5. Ток, измеряемый вольтметром, должен быть незначительным по сравнению с током через X и R.


Цепь RL


Цепь RC


Рис. 6. Цепи RL и RC для определения фаза
последовательность.

Процедура

Вы должны выполнить измерения по каждому из трех методов, описанных выше, чтобы определить последовательность фаз и позволить проверить результат расчетами. Обычно вам нужно знать все напряжения и токи в каждой из ветвей схемы для методов 2 и 3.

Метод 1

Проверьте последовательность фаз на своем стенде, используя схему на рис. 3.

  1. Подключите три фазы и нейтраль от Variac к детектору последовательности фаз.
  2. Подключите выход детектора последовательности фаз (BNC) к осциллографу.
  3. Установите осциллограф на срабатывание по линии переменного тока.
  4. Отрегулируйте Variac на 20 В LN .
  5. Вы должны увидеть на осциллографе форму сигнала, подобную рис. 3, установив потенциометры на разные уровни.
  6. Сохраните форму сигнала для этой последовательности фаз и для других возможностей, поменяв местами любые два провода за раз.Обязательно выключайте питание каждый раз, когда меняете местами провода.

Метод 2

  1. Настройте схему, подобную показанной на рис. 5, для определения полного сопротивления каждой части схемы. (Обратите внимание, что сопротивление лампы, измеренное омметром, значительно отличается от сопротивления во время работы. Это связано с изменением удельного сопротивления в зависимости от температуры.) Помните, что вам придется измерять и записывать напряжения и токи через три элемента нагрузки (лампы и реактивный элемент) на следующих этапах для использования в расчетах.
  2. Подайте 208 В LL от 3-фазного вариатора к вашей цепи без конденсатора. Какая лампа самая яркая?
  3. Подайте на схему 5 различных значений емкости. Запишите и измерьте напряжения и токи на элементах на каждом этапе. Отключите питание цепи.
  4. Поменяйте местами любые два провода питания вашей цепи. Подайте питание и повторите шаг (3).

Метод 3

  1. Организуйте установку схем, показанных на Рисунке 6, с конденсатором.
  2. Подключите цепь, используя R = | Xc |.
  3. Подайте 208 ВЛН от 3-фазного вариатора к вашей цепи.
  4. Запишите и измерьте V и , V bn , V cn , I ac , а также мощности (S, Q и P), протекающие в вашей цепи между клеммами A-n и C-n .
  5. Отключить питание и поменять местами фазы A и C . Измерьте V и , V bn , V cn , I ac и мощности (S, Q и P) для этой последовательности фаз на клеммах A-n и C-n .
  6. Повторите шаги с 3 по 5 с новыми значениями R = | Xc | / 2 и R = 2 | Xc | в схеме на Рисунке 6.

Анализ

  1. Предположим, что обе лампы имеют сопротивление, равное среднему значению их рабочего сопротивления в цепи. Выполните следующее для схемы на рис. 4 или на рис. 5. Вызовите ток, поступающий на клеммы ABC (по направлению к C (или L) и лампам) IA, IB, IC. Напишите KVL, чтобы получить три уравнения для напряжений: VAB, VBC и VCA в терминах трех токов.Поскольку эти напряжения известны и считаются сбалансированными, у вас есть три уравнения с тремя неизвестными. Используя KCL в узле, помеченном n, можно легко уменьшить количество неизвестных до двух и использовать только два уравнения KVL. Некоторым этот подход может показаться более простым. Третий подход заключается в использовании принципа суперпозиции для определения напряжения в центральном узле и от него напряжений на каждом элементе и отдельных токов. Очевидно, что третий подход — моделировать схему в мульти-симуляторе.Вы можете выбрать любой метод расчета ожидаемых токов, напряжений и мощности в каждой лампочке для предполагаемой последовательности фаз, чтобы подтвердить, как работает эта схема (см. Раздел отчета). Если вам нужна дополнительная помощь, спросите своего инструктора. Вы можете найти полезные подсказки в следующем операторе, подобном Matlab:
  2. V_rs = (-j / Xc) Ir — Rs * Is

    V_tr = (j / Xc) Ir + Rt * It

    V_st = -Rt * It + Rs * Is

    В_ст = 1; V_tr = a ^ 2; V_rs = a; V = [а; а ^ 2; 1];

    Z = [-j / Xc -Rs 0; j / Xc 0 Rt; 0 Rs –Rt];

    Функция [Ir, Is, It] = последовательность (a, Xc, Rs, Rt)

  3. Цепи, показанные на рисунке 6, решить значительно проще.После определения последовательности фаз вы можете записать VA, VB и VC. Затем рассчитайте VAC и IAC. Исходя из этого, вы можете рассчитать напряжение в узле с меткой n и, следовательно, Vbn для каждой из двух возможных последовательностей фаз.

Отчет

Ваш отчет должен включать:

  1. Объяснение того, как работает метод 1.
  2. Показать и указать последовательность фаз сохраненных сигналов
  3. Объясните, как работает схема на рисунке 3 и как она позволяет определять последовательность фаз.
  4. Фазорные диаграммы для двух схем, которые вы использовали (метод 2 и 3), по крайней мере, для одной последовательности.
  5. Почему нельзя определить последовательность фаз в методе 2 без конденсатора?
  6. Рассчитанные вами значения мощности, рассеиваемой каждой лампочкой в ​​цепи, используемой для метода 2 для одной из последовательностей фаз.
  7. Ожидаемое В млрд для вашей схемы на рисунке 6 для каждой из последовательностей фаз, а также потребляемой мощности и VARS.
  8. Как соотносятся поток мощности и VARS для двух последовательностей фаз для схемы на рисунке 6? Объясните свое наблюдение о потоке мощности и VARS.
  9. В дополнение к этому анализу вы должны включить обычные элементы, аннотацию, процедуру, данные, анализ и выводы.

Библиография

1- http://www.ibiblio.org/kuphaldt/electricCircuits/AC/AC_10.html под лицензией Design Science License.

Трехэтапная процедура тестирования — Global Electronic Services

Электродвигатели, как известно, сложно диагностировать.Когда двигатель не запускается, перегревается, постоянно отключается или издает шум, существует множество возможных причин. Некоторые компании могут решить проблему, просто заменив двигатель полностью. Однако это не рентабельное решение — большинство проблем с электродвигателями можно полностью устранить с помощью решений, которые стоят значительно меньше, чем новый двигатель. Но как определить, как рентабельно отремонтировать двигатель?

Хотя электродвигатели могут быть сложными, их не нужно диагностировать. Понимание основ электродвигателей может помочь вам понять, в чем может быть проблема, а надлежащие диагностические инструменты могут помочь вам выявить и прояснить проблему.В этой статье мы специально обсудим трехфазные системы и способы их диагностики при возникновении проблем.

Содержание

О 3-фазных системах
Типы испытаний для 3-фазных двигателей
Что делать дальше
Обратитесь в отдел ремонта Global Electronic Services для 3-фазных испытаний

О трехфазных системах

Фазные системы — это блоки питания переменного тока, которые определяются количеством фаз в блоке питания. Однофазное питание обеспечивает одну фазу на 120 вольт, а двухфазное или двухфазное питание состоит из двух переменных токов, подаваемых по двум проводам.Трехфазное питание — это тип силовой цепи, который характеризуется тремя источниками однофазного переменного тока. Система разделяет обратный путь, разделяя каждую фазу на 120 градусов, что приводит к постоянной мощности в течение каждого цикла и большей мощности в целом. По сравнению с однофазным питанием, трехфазные схемы питания обеспечивают в 1,732 раза больше мощности при том же токе, что приводит к более экономичной системе в целом.

Трехфазные системы разработаны по-разному, чтобы соответствовать различным потребностям. Например, звездообразная конфигурация может использоваться в случаях, когда источник питания должен питать как однофазные, так и трехфазные нагрузки, такие как лампы и нагреватели, соответственно.Количество мощности также может отличаться. В большинстве коммерческих зданий используются схемы 208 Y / 120 В для повышения гибкости питания как мощных, так и маломощных нагрузок, в то время как промышленные предприятия используют схему 480 Y / 277 В для максимального увеличения мощности, доступной для мощного оборудования.

Типы испытаний трехфазных двигателей

Если трехфазный двигатель показывает проблемы, такие как отказ от запуска, перегрев или нестабильное питание, в вашем распоряжении есть несколько диагностических инструментов и методов.Эти инструменты и методы обсуждаются ниже. Однако перед тестированием обязательно примите соответствующие меры безопасности. К ним относятся:

  • Использование защитного снаряжения: Это защитное снаряжение может включать в себя заземляющие ремни, перчатки и любое другое подходящее защитное снаряжение для окружающей среды.
  • Наличие всех инструментов под рукой: Некоторые распространенные диагностические инструменты включают в себя универсальные мультиметры, клещи, амперметры, датчики температуры и осциллографы. Эти инструменты помогут вам не оставлять двигатель без присмотра.
  • Отключение двигателя от источника питания: Когда вы будете готовы, переведите выключатель двигателя трансформатора, чтобы отключить его от питания. Будьте осторожны, чтобы убедиться, что питание действительно отключено — на некоторых двигателях размыкающий выключатель такой же, как и выключатель, поэтому переключение размыкающего выключателя в положение включения приводит в действие двигатель. Кроме того, обязательно отключите все оборудование и проводку, которые не будут включены в процесс тестирования.
  • Разряд до и после тестирования: Перед началом тестирования и после каждого электрического теста обязательно разрядите двигатель, так как он обладает определенной емкостью.Это можно сделать, зашунтировав проводники на землю и друг на друга перед повторным подключением.
  • Проверьте паспортную табличку: Паспортная табличка или технические характеристики двигателя содержат ценную информацию о двигателе, такую ​​как предполагаемая сила тока двигателя. Эта информация может использоваться для оценки исправности двигателя по сравнению с его предполагаемой конструкцией.

На этом этапе подготовьте мультиметр к тестированию. Это включает в себя настройку мультиметра на определение напряжения переменного тока и установку диапазона напряжения на разумный уровень, основанный на технических характеристиках коробки.В следующих нескольких тестах в основном используется этот инструмент, поэтому мы объясним, как проверить трехфазный двигатель с помощью мультиметра.

1. Общие проверки

Самый простой осмотр — это визуальный осмотр. Как только двигатель будет отключен и вы будете готовы начать осмотр, снимите крышку двигателя. Как только он будет удален, вы можете начать проверять двигатель на наличие визуальных признаков повреждения. Вот некоторые вещи, на которые следует обратить внимание во время этого процесса:

  • Общие повреждения: Общие повреждения обычно легко обнаружить.Это может появиться в виде следов ожогов или вмятин. По всему двигателю проверьте, нет ли признаков перегрева или повреждения окружающей среды.
  • Состояние вала: Вручную проверните вал двигателя, чтобы оценить его состояние. Это должно быть легко, если только двигатель не очень большой. Вал должен вращаться плавно, без заеданий и незакрепленных деталей. Более новые двигатели могут испытывать трудности с вращением из-за жестких допусков, неиспользования или влажности окружающей среды, которые необходимо будет устранить путем смазки и дальнейшего осмотра.Однако старые двигатели могут иметь более серьезные препятствия, которые требуют ремонта или замены.
  • Качество соединения: Осмотрите все соединения внутри двигателя на предмет признаков износа или повреждения и оцените любые провода вне двигателя на предмет возможных обрывов. С любыми оборванными проводами следует обращаться с осторожностью и заменять их.

После того, как двигатель прошел общий осмотр, перепроверьте свои инструменты для осмотра и приступайте к поиску и устранению неисправностей электрических свойств двигателя.

2. Проверка целостности цепи

Проверка целостности цепи — проверка сопротивления между двумя точками. Если сопротивление низкое, две точки электрически соединены. Если сопротивление выше, цепь разомкнута. Проверка целостности заземления определяет, подключен ли двигатель к земле.

Чтобы завершить проверку целостности заземления, установите мультиметр в режим непрерывности. Как только это будет сделано, поместите одну точку на раму двигателя, а другую точку на известное соединение с землей, предпочтительно в области, близкой к установке двигателя.Хороший двигатель должен давать показания менее 0,5 Ом. Однако, если значение превышает 0,5 Ом, это указывает на то, что изоляция двигателя нарушена и может вызвать поражение электрическим током. Для определения причин этого отказа может потребоваться дальнейшее тестирование.

3. Тест источника питания

Следующим тестом, который необходимо завершить, является тест источника питания. Это проверяет, соответствует ли входящий источник питания ожидаемому и соответствует проектным характеристикам двигателя.Тест источника питания можно выполнить, проверив напряжение, подаваемое на двигатель, с помощью мультиметра. Сравните это со спецификациями, указанными на паспортной табличке. Если подаваемое напряжение значительно ниже или выше указанного, это может быть одним из источников ваших проблем.

В дополнение к этому тесту проверьте, что клемма источника питания находится в хорошем состоянии. Повреждение и плохое соединение также могут быть причиной каких-либо отклонений или проблем с производительностью.

Услуги по ремонту источников питания

4.Проверка целостности обмотки двигателя переменного тока

Затем осмотрите двигатель изнутри и провода, участвующие в трехфазном токе. Настройте и откалибруйте мультиметр по напряжению и найдите шесть проводов трехфазного двигателя.

Если вы посмотрите на коробку, вы увидите шесть проводов, по три с каждой стороны. На каждой стороне коробки должны быть клеммы, к которым подключаются эти провода. На одной стороне будут клеммы с маркировкой L1, L2 и L3 или линия 1, линия 2 и линия 3. На другой стороне будут клеммы с маркировкой T1, T2 и T3 или нагрузка 1, нагрузка 2 и нагрузка 3.Клеммы L обозначают линейные провода с входящим током, а клеммы T обозначают отходящие провода. Исключением являются европейские двигатели, которые будут иметь обозначения U, V и W. Эти провода следует проверить, чтобы определить исправность источника питания двигателя. Это можно проверить следующими методами:

  • Тест без питания: Чтобы проверить входящее напряжение, поместите щупы мультиметра в разные положения клемм L, когда питание блока выключено. Снимите показания для соединения L1-L2, соединения L1-L3 и соединения L2-L3.Эти показания должны быть такими же, если мотор работает нормально. Для системы 230/400 В ожидаемое напряжение должно быть 400 В между каждой из трехфазных линий питания.
  • Проверка линии на нейтраль: Если имеется доступная клемма нейтрали, поместите один щуп мультиметра на нее, а другой — на каждую клемму линии. Значение напряжения должно составлять половину от значения напряжения, полученного во время предыдущего теста.
  • Тест без питания на выходе: Этот тест аналогичен тесту, описанному выше, но проверяет выходное напряжение.Пока коробка выключена, снимите показания между выводами T1 и T2, выводами T1 и T3 и выводами T2 и T3. В этом случае показание напряжения должно быть нулевым для каждого теста.
  • Проверка исходящего питания: Осторожно включите блок и повторите те же тесты, что и выше, проверяя каждую перестановку Т-выводов. Между каждой комбинацией отведений не должно быть никаких различий.

Если показания отличаются от ожидаемых результатов и проверка блока питания не выявила проблем, это может указывать на проблемы с исправностью трехфазного двигателя переменного тока.Чаще всего это говорит о том, что мотор перегорел.

Ремонтные услуги AC / DC

5. Испытание сопротивления изоляции

Проверка сопротивления изоляции — это следующий тест, который необходимо провести для определения общего состояния двигателя. Это делается путем сравнения сопротивления между каждой парой фаз двигателя и между каждой фазой двигателя и корпусом. Это можно сделать с помощью тестера изоляции или мегомметра. Тесты должны быть заполнены следующим образом:

  • Фазовое сопротивление: Возьмите тестер изоляции и установите его на 500 В.Возьмите каждый конец и поместите его в разные перестановки L1, L2 и L3 и запишите каждое показание.
  • Сопротивление между фазой и землей: Возьмите тестер изоляции, используя ту же настройку, и проверьте каждый провод от фазы к корпусу двигателя. Минимальное значение сопротивления изоляции должно составлять 1 МОм. Если значение меньше 0,2 МОм, замените двигатель.

Любые ошибки во время этого цикла тестирования могут указывать на проблемы с изоляцией, что является проблемой, когда речь идет о безопасности и функциональности двигателя.

6. Тест рабочего тока

Этот последний тест определяет, сколько энергии потребляется для привода двигателя. Более мощные двигатели потребляют больше тока, измеряемого в амперах. Перед тестированием важно проверить силу тока, необходимую вашему двигателю — обычно это указано на паспортной табличке.

Когда вы будете готовы, выполните следующие действия, которые помогут вам измерить трехфазный ток:

  • Подготовка к тесту: Настройте мультиметр на измерение ампер и установите его на правильный диапазон ампер для вашего двигателя в соответствии со спецификациями, указанными на паспортной табличке.Во время теста обязательно надевайте резиновые перчатки, чтобы защитить себя от поражения электрическим током.
  • Включите двигатель: Включите двигатель и найдите клеммы. Положительный вывод будет помечен знаком плюс, и к нему будет подключен красный провод. Отрицательная клемма будет помечена знаком минус, и к ней будет подключен черный провод.
  • Размещение датчиков: Поместите отрицательный датчик мультиметра на отрицательную клемму двигателя, затем поместите положительный датчик на положительную клемму.Во избежание травм всегда держите руки подальше от движущихся частей.

Когда датчики подключены, снимите показания в амперах и выключите двигатель. Показание в амперах должно быть в пределах допустимого диапазона, если он работает правильно. Показание в амперах не должно превышать спецификацию производителя, но должно быть на уровне или немного ниже указанного значения силы тока. Если показание в амперах значительно ниже спецификации или вне допустимого диапазона, это может указывать на проблемы с двигателем.

Что делать дальше

Если вы завершите тесты и обнаружите одну или несколько проблем с двигателем, вы можете сделать несколько вещей в зависимости от решаемой проблемы.Некоторые проблемы, такие как неисправная проводка или поврежденный вал, могут потребовать замены проблемных деталей. Однако более серьезные проблемы, такие как проблемы с изоляцией, могут потребовать полностью нового двигателя. Однако, если вы не совсем уверены, что делать или откуда возникла проблема, возможно, стоит позвонить в службу ремонта электроники, чтобы оценить двигатель. Global Electronic Services может помочь.

Компания Global Electronic Services специализируется на ремонте промышленной электроники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *