Как определить параметры конденсатора: ИЗМЕРЕНИЕ ПАРАМЕТРОВ КОНДЕНСАТОРОВ

Содержание

Как проверить исправность конденсатора, его емкость и сопротивление



Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.

Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Проверка конденсаторов

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.


Проверка конденсатора мультиметром

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0. 25 микрофарад.

Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.

И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.

Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.
Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.


Проверка конденсаторов стрелочным тестером

Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места.

Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?

Проверка переменным напряжением

Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.
Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора

Проверяем емкость конденсатора


Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.

Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».

Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно

замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

«Зарядка напряжением».
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.


У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор мультиметром — инструкция 2021

В статье мы расскажем, как проверить работоспособность конденсатора, измерить его емкость и сопротивление между двумя выводами. Ответим на самые частые вопросы и предостережем от проблем с неправильным эксплуатированием конденсаторов.

Что сделать перед проверкой:

  1. С самого начала, тестирующий элемент нужно выпаять из платы, в том случае, если он там находится.
  2. После этого, конденсатор разряжают – нужно его выходящие контакты замкнуть токопроводящим материалом (подойдёт простой металлический пинцет) или подключить к его выводам сопротивление 5-10 кОм для плавной разрядки, если он имеет большую ёмкость (высоковольтный).
  3. Не рекомендуется при этом прикасаться руками к выходным контактам элемента в целях личной безопасности. Всё это делается для того, чтобы не вышел из строя сам измерительный прибор, потому как на обкладках измеряемой детали может быть достаточно высокое напряжение.

Порядок проверки

Касание контактов щупами

Мультиметр может выявить такие причины неисправности, как пробой, влекущее за собой разрушение диэлектрика, разделяющего пластины, и ток идёт напрямую, при этом, сам конденсатор, по сути, становится простым проводником. Либо делает это частично, теряя свою ёмкость, становясь дополнительно активным сопротивлением в электрической цепи.

Сам конденсатор в силу своего принципа работы пропускает только переменный ток, а постоянный ни в коем случае, поэтому его сопротивление, замеряемое между выводами, достаточно большое и ограничивается очень малым током утечки через диэлектрик, разделяющий его рабочие пластины, накапливающие в себе заряд.

В неполярных конденсаторах, роль диэлектрика которых играет слюда, керамика, бумага, стекло, воздух ток утечки бесконечно мал, а сопротивление очень большое и при его измерении между выводами цифровым мультиметром прибор покажет бесконечность в виде 1 на цифровом табло. Поэтому, в случае пробоя, его сопротивление, замеряемое на выводах, составляет довольно малую величину — до нескольких десятков Ом.

Проверка на пробой

  1. Цифровой мультиметр переводим в режим измерения сопротивления, устанавливая его в самый высокий из возможных пределов.
  2. После, подключаем измерительные щупы прибора к оголённым выводам тестируемого элемента.
  3. Если он рабочий, то на дисплее мультиметра будет только знак бесконечности – 1. Это показатель того, что внутреннее сопротивление (сопротивление утечки) свыше 2 Мом. Поэтому пробоя нет и, возможно, проверяемый элемент исправен. В противном случае пробой очевиден. Вследствие чего требуется замена его аналогичным или с более большей ёмкостью, с номинальным напряжением не ниже оригинала.
  4. При проверке нельзя прикасаться руками за оголенные выводы конденсатора или измерительных щупов прибора, потому как будет измерено сопротивление вашего тела, а не измеряемого элемента. Оно будет гораздо меньше, следовательно, результат будет ошибочным.

Измерение сопротивления конденсатора мултьтиметром

Полярные электролитические конденсаторы имеют некоторые особенности при замере их внутреннего сопротивления:

  1. Оно обычно не менее 100 кОм. При качественном изготовлении, сопротивление утечки у них может быть не менее 1 мОм. Как и упоминалось выше, перед проверкой измеряемый элемент должен быть полностью разряжен. Как это делается, описано выше.
  2. При замере сопротивления предел измерения на мультиметре устанавливается более 100 кОм. После, соблюдая полярность подключения щупов, производим замер. В силу своей сравнительно большой ёмкости, при проверке будет происходить зарядка конденсатора в течение малого количества времени. Процесс зарядки будет протекать с одновременным возрастанием сопротивления, выведенным на дисплей прибора, после окончания, которого замеряемая величина прекратит свой рост и будет иметь фиксированное и окончательное значение.
  3. Если показатель не более 100 кОм, то с большей долей вероятности это показатель того, что конденсатор рабочий.

При проверке стрелочным мультиметром всё делается аналогичным способом:

  1. Подготавливается конденсатор (фиксируется и разряжается).
  2. Выставляется измеряемый параметр (сопротивление не менее максимального предела).
  3. Делается замер, в некоторых случаях соблюдая полярность.
  4. Фиксируется результат и сравнивается с рабочими значениями.

Особенность измерения этим способом сопротивления в том, что когда он заряжается сам параметр также пропорционально растёт и соответственно стрелочный прибор, указывающий само значение сопротивления, двигается от нулевой отметки до окончательной фиксированной.

Можно было визуально по времени перемещения стрелки оценивать ёмкость измеряемого элемента. Тем самым, чем дольше стрелка шла до конечного значения, тем больше ёмкость конденсатора и наоборот.

Значение внутреннего сопротивления конденсатора является не основным показателем его работоспособности, поэтому серьёзным аргументом может служить только замеренная мультиметром ёмкость.

Проверка на ёмкость

Изменение ёмкости конденсаторов легко обнаружить при её замере мультиметром, имеющий такой режим измерения.

Замер происходит следующим образом:

  1. Измерительные щупы подключаются к разъёмам для измерения ёмкости (условное обозначение Cx) с соблюдением их (щупов) полярности. Обязательна полная разрядка конденсатора перед измерением этого параметра.
  2. Затем, рабочие поверхности щупов присоединяются к выводам измеряемого элемента, также соблюдая полярность в случае снятия показаний с полярного типа измеряемого элемента.
  3. При показании мультиметра равным 0 или значительно отличающимся по значению от указанных на конденсаторе, последний считать не рабочим и требующим замены.

Возможные причины выхода из строя

Несоблюдение основных параметров эксплуатации, таких как:

  1. Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
  2. Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
  3. Полярность в некоторых случаях. Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.

Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.

Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.

Каждый компонент — это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.

Подробнее про мультиметр

Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.

Существуют 2 типа:

Аналоговый

Состоит из следующих элементов:

  1. Стрелочного магнитоэлектрического индикатора.
  2. Добавочных резисторов для снятия показаний напряжения,
  3. Шунтов для измерения тока.

Цифровой

Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.

Некоторые из замеряемых мультиметром характеристик:

  1. Напряжение (переменного и постоянного тока).
  2. Сила тока (переменного и постоянного).
  3. Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
  4. Ёмкость.
  5. Проверка полупроводников на целостность и полярность.
  6. Температура.

Статья была полезна?

5,00 (оценок: 4)

единица измерения, как измерить мультиметром

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
  2. 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
  7. Кодировки — цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Как измерить ёмкость конденсатора мультиметром?

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом «Сх» такой:

  1. Включить режим «Сх» и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
  2. Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Прочие способы измерения

Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.

Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.

Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.

В цифровых измерителях ёмкости источник питания — высокостабильный. «Плавающие» параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.

На логических элементах создаются источники переменного импульсного тока для замеров ESR.

Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.

Как проверить конденсатор мультиметром на работоспособность, измерение емкости

Конденсатор — электронный элемент, относящийся к категории пассивных.

Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.

Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.

Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.

Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.

Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд.

Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Как проверить конденсатор мультиметром, как определить его неисправность

Наши электросети не отличаются стабильностью параметров, что часто приводит к выходу из строя техники. Чаще всего выходят из строя диоды выпрямительного моста и конденсаторы. В этой статье поговорим о том, как проверить конденсатор мультиметром, как понять что он вышел из строя.

Содержание статьи

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В —  проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Как проверить конденсатор мультиметром без функции определения емкости

Для определения поврежденного конденсатора даже не всегда нужны приборы. Часто достаточно внешнего осмотра. Признаком того, что емкость вышла из строя, является вздутие корпуса, потеки любого цвета. Если внешние изменения есть, можно даже не измерять, а сразу менять. Это очень часто возвращает работоспособность вышедшей из строя бытовой технике и другой электрической и электронной аппаратуры.

Визуально бывает проще всего определиться с неисправностью электролитических конденсаторов импортного производства. Если конденсатор вздулся или дополнительно разгерметизировался в месте насечки, его необходимо заменить в обязательном порядке

Если внешних изменений нет, приступаем к проверке. Чаще всего у домашних радиолюбителей имеется цифровой мультиметр. Марка его не важна, но необходимо чтобы он мог мерить сопротивление и/или имел функцию проверки диодов. Можно использовать и стрелочные. Они даже удобнее — движущаяся или замершая на месте стрелка более информативна. Только помните, что это не измерения, а лишь проверки. То есть, с их помощью мы не можем измелить ёмкость конденсатора, а лишь убеждаемся в его работоспособности.

Перед тем как проверить конденсатор мультиметром, обязательно разрядите емкость. Если этого не сделать, в некоторых случаях измерительный прибор может выйти из строя.

Разрядить конденсатор можно двумя способами:

  • прикоснувшись к выводам высокоомным сопротивлением — 0,5-1 мОм;
  • при помощи лампы накаливания — центральный контакт лампы на одну ножку, корпусом прикоснуться к другой.

Безопасный и надежный способ разрядить конденсатор — замыкаем выводы при помощи обычной лампы накаливания на 220 В

Разряжать емкость при помощи обычного проводника не стоит — можно добиться выходя из строя элемента. Это может сработать без особого вреда только на емкостях, рассчитанных на невысокий вольтаж и имеющих небольшую емкость. Исправные лампы накаливания есть у всех, так что лучше используйте их.

В режиме омметра

Перед тем как проверить конденсатор мультиметром в режиме измерения сопротивлений, надо вспомнить, как изменяется его сопротивление в процессе работы. Без заряда сопротивление близко к нулю, но не ноль. По мере накопления заряда оно растет.

Еще раз: сопротивление разряженной емкости очень невелико — почти ноль. Но короткого быть не должно. То есть, если поставить мультиметр на прозвонку и прикоснуться к выводам разряженного конденсатора, звенеть не будет. Если звенит — можно дальше не тестировать, элемент не исправен.

Проверить работоспособность можно так: переводим переключатель мультиметра в режим измерения сопротивлений. Предел изменений зависит от параметров измеряемого конденсатора. Чем выше напряжение, на которое рассчитан элемент, тем выше ставим предел. Например, для 50 В выставляем 20 кОм, для 1000 В  выбираем 2 МОм. И, лучше, выставить более высокий предел, чем низкий.

Подготовив прибор, к разряженному элементу прикладываем щупы, смотрим на экран. Сначала высвечивается цифра 1, затем показания начинают расти. Это накапливается заряд. В какой-то момент рост прекращается, на экране снова цифра «1». Конденсатор зарядился.

Конденсатор заряжается, его сопротивление растет

Поменяв местами щупы, мы меняем полярность питания. На экране сразу высвечиваются цифры с «минусом» впереди, затем они уменьшаются — идет разряд. После перехода через ноль, цифры начинают расти — идет заряд, затем снова высвечивается единица. Конденсатор проверили на работоспособность и он исправен. Если «поведение испытуемого» отличается от описанного, значит элемент нерабочий. Теперь вы знаете, как проверить конденсатор мультиметром в режиме омметра.

Проверка напряжения на заряженном конденсаторе

Убедиться что заряд накоплен можно, если измерить напряжение на выводах заряженной емкости. Переводим мультиметр в режим измерения постоянного напряжения. Предел измерений выбираем в зависимости от параметров элемента. Напряжение, на которое он рассчитан указано обычно на корпусе. Для мелких деталей придется поискать в технических характеристиках. Предел измерений выставляем не меньше указанного.

Измерение напряжения на заряженном конденсаторе с помощью мультиметра

Дальше все аналогично: прикладываем щупы к выводам и следим за показаниями. Значение не меняется, но может быть как с плюсом, так и с минусом.  Это и есть напряжение на заряженной емкости. Если выводы закоротить через нагрузку, цифра начинает уменьшатся — происходит разряд. Чем закоротить? При небольшом вольтаже — до 50 В — можно одним из щупов. Для более мощных лучше использовать или все ту же лампу накаливания, или сопротивление на один мегаом. Теперь вы знаете не только как проверить конденсатор мультиметром, но и как измерить напряжение на заряженной емкости.

В режиме прозвонки диодов

Если на мультиметре есть режим прозвонки диодов, можно проверить работоспособность конденсатора с его помощью. Этот метод позволяет на слух определить пригодность элемента.

Вот такой значок обозначает прозвонку диодов

Все еще проще: ставим переключатель в положение прозвонки диодов, прикладываем щупы. Ждем некоторое время. Если емкость исправна, время от времени слышится «писк». Чем больше емкость конденсатора, тем дольше время ожидания и тем короче «писк». Если писка нет — емкость нерабочая.

Мультиметр с функцией измерения емкости

Как проверить конденсатор мультиметром, который может измерять емкости, написано в инструкции по эксплуатации к прибору. Но, обычно, сколько-нибудь значимых отличий в измерениях между разными приборами нет, так что можем описать порядок действий. Все что требуется:

  • перевести переключатель прибора в нужный сектор;
  • выбрать диапазон измерений;
  • приложить щупы к выводам конденсатора;
  • просмотреть показания на экране.

Как проверить конденсатор мультиметром

В некоторых моделях мультиметров в корпусе рядом со шкалой измерений есть специальные отверстия, в которые вставляются конденсаторы. В этом случае переключатель переводится в положение измерения емкости, выбираем предел измерений. Затем вставляется конденсатор, ждем пока на экране высветятся результаты измерений.

Со специальными гнездами для установки емкостей

Емкость конденсатора написана на корпусе, кроме слишком малых для этого видов. Показания мультиметра не всегда совпадают с тем, что указано на корпусе. Но рядом с номиналом стоит допуск точности в процентах. Если отклонения в рамках этого допуска, элемент считается исправным. Если нет — надо менять.

Как правило, обычные мультиметры не позволяют измерять конденсаторы малой емкости — меньше 100 пикофарад. Для этих целей необходим специализированный прибор, например, цифровой измеритель емкости CM7115A или Mastech MY6013A.

Как проверить конденсаторы на плате, не выпаивая

Как известно, измерить емкость конденсатора не выпаивая его невозможно. Зато узнать рабочий конденсатор или нет достаточно просто, если он не зашунтирован низкоомной цепью. Его исправность можно проверить мультиметром в режиме измерения сопротивлений или постоянного напряжения. Любым из этих способов можно найти неисправный конденсатор на плате.

Сначала осматриваем элементы визуально, вздутые и имеющие потеки проверяем в первую очередь. А порядок проверки и все, что вы должны увидеть на приборе, описано выше. Разницы никакой. Но еще раз: на плате можно только определить исправность конденсатора. Чтобы проверить его емкость, узнать не уменьшилась ли она, хотя бы один вывод конденсатора надо выпаять.

Проверить конденсатор на работоспособность мультиметром можно и не выпаивая его с платы

Вся процедура проверки работоспособности точно такая же. Если позволяет монтаж, можно прикасаться щупами к ножкам емкости с лицевой стороны. Если детали расположены так, что к ним не подлезть, определитесь где с изнаночной стороны они припаяны, прикасайтесь щупами к местам пайки «с изнаночной стороны платы».

Особенности SMD конденсаторов

Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.

SMD технологии позволяют делать миниатюрные радиоэлементы

Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.

Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета

Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).

Как проверить конденсатор на исправность мультиметром

В прошлых статьях были рассмотрены вопросы: принципов работы, характеристик и схем соединения конденсаторов. Сейчас Я подробно расскажу как его проверить при помощи недорого и распространенного измерительного прибора- мультиметра, а так же как, его используя при наличии соответствующий функции, узнать величину емкости.

Перед проверкой конденсатор необходимо выпаять из схемы, потому что не выпаивая это сделать практически невозможно из-за влияния на измерения других компонентов схемы. В большинстве случаев, не выпаивая из схемы можно лишь проверить мультиметром только на пробой, при котором на выводах конденсатора будет короткое замыкание.

Некоторые радиолюбители используют метод для проверки на плате при помощи зарядки — разрядки конденсатора, меняя полярность перестановкой концов мультиметра или тестера. Сомнительный метод, Я один раз попробовал данным методом воспользоваться и у меня ничего не получилось проверить, потому что в схеме было много других конденсаторов. Рекомендую, если внешним осмотром ничего выявить не удалось, для правильной проверки выпаивать конденсатор.

Помните, что приступая к любым работам с конденсаторами— необходимо перед этим разрядить его выводы. Я для этого использую отвертку с изолированными ручкой, за которую держась необходимо  замкнуть контакты конденсатора.  Мощные модели во избежания повреждения искровым разрядом металлической части отвертки, лучше разрядить при помощи лампочки накаливания. Необходимо держась за изолированную часть проводов коснуться выводов конденсатора. Лампочка вспыхнет и погаснет, после этого произойдет полный разряд. Но одной лампочкой необходимо только разряжать при рабочем напряжении 220 Вольт, для 380 Вольт- используйте 2 последовательно соединенные между собой лампочки.

Как проверить конденсаторы внешним осмотром

Прежде чем выпаивать со схемы конденсатор сделайте внешний его осмотр. Очень часто визуально неисправность определяется при осмотре электролитических конденсаторов.
Если Вы обнаружили подтеки электролита в нижней части и следы коррозии (левая картинка) или вздутие в области перекрестия сверху (правая картинка), то такие конденсаторы необходимо заменить.

Довольно просто в большинстве случаев удается проверить конденсаторы на 220 Вольт следующим методом:

  1. Проверяем пробником или тестером на отсутствие короткого замыкания внутри конденсатора.
  2. Заряжаем конденсатор от электросети рабочим напряжением с соблюдением мер предосторожности.
  3. Отключаем его от электропитания.
  4. Закорачиваем или подключаем лампочку, как было описано выше- увидели искровой разряд или вспышку в лампочке, значит конденсатор в порядке.

Как проверить конденсатор мультиметром

Конденсаторы бывают полярные и неполярные. К полярным относятся только электролитические. Они впаиваются в схемы только с соблюдением полярности к плюсу плюсовой контакт, к минусу- минусовой контакт. Минус напротив контакта указывается галочкой на золотистой или светлой продольной линии на корпуса конденсатора.

Неполярные- без разницы какими контактами подключать или впаивать в схему.

Перед началом проверки не забываем закоротить выводы. После этого берем мультиметр и переключаем его в режим прозвонки или измерения сопротивления. У исправного конденсатора сразу после подключения начнется зарядка постоянным током и сопротивление на табло будет минимальным (рисунок 1). Далее сопротивление будет плавно расти пока не достигнет  максимально большого значения или  бесконечности (рисунок 2).

При неисправности конденсатора:

  • При проверке мультиметром сразу высвечивается бесконечность. Это говорит о том, что внутри конденсатора произошел обрыв.
  • Мультиметр пищит и показывает нулевое сопротивление- в конденсаторе произошел пробой изолятора и возникло короткое замыкание.

В обоих случаях конденсаторы подлежат замене.

Неполярные конденсаторы проверяются гораздо проще. Устанавливаем предел измерения сопротивления на мультиметре Мега Омы и касаемся измерительными щупами контактов конденсатора. У неисправного конденсатора сопротивление будет меньше 2 Мега Ом.

Вы должны учитывать, что большинство моделей тестеров позволяют проверить лишь на короткое замыкание неполярные и полярные конденсаторы номиналом менее 0.25 мкФ.

Как определить емкость конденсатора

Все параметры наносятся на корпусе конденсаторов, для проверки соответствия емкости или если эту величину невозможно прочесть- необходимо воспользоваться мультиметром с функцией измерения емкости «Сх».

Для измерения величины емкости переключите мультиметр в режим Cx с предполагаемым максимальным пределом измерения для данного конденсатора. В некоторых моделях есть специальные гнезда для проверки небольших конденсаторов, в которые вставляются контактные ножки согласно пределам измерения. В других- для этого используются измерительные щупы.

На рисунке показан пример измерения конденсатора на 9.5 Микрофарад, поэтому предел выставлен на 20 Микрофарад.

Не забывайте только перед проверкой всегда разряжать конденсаторы.

Что такое ESR. Измерение ESR. Прибор для измерения ESR

Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер китайского происхождения Mega328. Купил его на алиекспресс у этого продавца. Какие именно достоинства этого прибора?

Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость. Это те самые микрофарады которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.

Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR.

ESR — Equivalent Series Resistance – параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.

Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом. Если этот параметр выше, то я меняю конденсатор на новый.

На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.

Измерение ESR

Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.

Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.

ESR 220 мкф на 35в

Или такой же 220мкф на 35в из статьи Ремонт кадровой развертки на примере телевизора AIWA TV-215KE, где ESR уже 15 Ом.

Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

Как видите, его ESR до 1 Ом, да и номинал стал меньше менее чем на 3 мкф, так что такие конденсаторы я оставляю в работе. Приведу пример идеального конденсатора. Это 1500мкф на 10в.

Здесь ESR вообще ноль Ом, а номинал больше заявленного.

Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны,  мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.

Пример проверки полевого транзистора:

Прибор показывает тип транзистора, порог открытия  и расположение ножек. Очень удобно, особенно для новичка.

Вот пример проверки обычного N-P-N транзистора.

Полный перечень возможностей данного тестера:

  Проверка: Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ, Сопротивление, регулируемые потенциометры и др.
Сопротивление: от 0.1 Ом до максимум 50 мОм
Конденсатор: от 25pF   до 100,000 мкФ
Индукторы: от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы . Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.

Очень важно!!! Перед измерением ESR, конденсатор необходимо разрядить !!!

Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил  в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

Не сильно красиво, но за красотой я особо и не гнался :).

Виде обзор работы ESR метра
Рекомендую покупать на алиекспресс напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка на продавца, где покупал я. Прибор пришел в Украину за 18 дней.

Рекомендую посмотреть обзор моего нового ESR метра на аккумуляторе по этой ссылке

Перечень всех моих инструментов для ремонта можете зайти здесь:

Спасибо за внимание.



Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Загрузка… Конденсатор

Технические характеристики и их значение »Электроника

Понимание соответствующих спецификаций конденсаторов, параметров и характеристик, указанных в технических паспортах, необходимо для выбора правильного конденсатора для любой конкретной схемы.


Capacitor Tutorial:
Использование конденсатора Типы конденсаторов Электролитический конденсатор Керамический конденсатор Танталовый конденсатор Пленочные конденсаторы Серебряный слюдяной конденсатор Супер конденсатор Конденсатор SMD Технические характеристики и параметры Как купить конденсаторы — подсказки и подсказки Коды и маркировка конденсаторов Таблица преобразования


Технические характеристики и параметры или характеристики конденсатора должны быть известны и поняты до того, как будет сделан выбор конденсатора в данной цепи.

Электролитический конденсатор, керамический, пленочный, танталовый конденсатор и т. Д. Могут иметь значения емкости, которые можно приравнять, но некоторые из их других свойств могут различаться, что делает один тип более подходящим для конкретной схемы, чем другой.

Необходимы основные характеристики конденсатора, такие как номинал, допуск и рабочее напряжение, а также другие характеристики, включая самоиндукцию, ESR, диэлектрическое поглощение и другие. Хотя они не всегда могут быть важны в каждой цепи, необходимо знать и понимать, какие именно.

Хорошее понимание всех различных характеристик и параметров конденсаторов позволяет выбрать правильный конденсатор при выборе и покупке конденсаторов для электронных схем.

Основные характеристики конденсатора

Некоторые из основных спецификаций и характеристик конденсаторов, которые необходимо учитывать при выборе и покупке конденсаторов, включают:

  • Значение емкости: Номинальная емкость, вероятно, является наиболее важной характеристикой конденсатора. Базовая единица емкости — Фарад, хотя большинство конденсаторов имеют значения значительно ниже Фарада — наиболее распространенными являются доли, указанные ниже:
    • микрофарад, мкФ, миллионная доля Фарада, 10 -6
    • наонофарад, нФ 1000-миллионная фарада, 10 -9
    • пикофарад, пФ миллионная миллионная фарада, 10 -12
    Иногда конденсаторы можно маркировать двумя способами. Например, 100 нФ — это то же самое, что 0.1 мкФ. Это означает, что конденсаторы можно маркировать несколькими способами.

    Стоит отметить, что некоторые суперконденсаторы имеют очень высокие уровни емкости, которые фактически измеряются в фарадах.

    Номинальная емкость также может указываться на определенной частоте, поскольку емкость для некоторых типов конденсаторов, обычно электролитических, будет незначительно изменяться с частотой.

    Очевидно, что величина емкости будет определять импеданс, который она обеспечивает на разных частотах. Чем больше емкость, тем меньше сопротивление.

  • Допуск: Еще одним ключевым параметром конденсатора является допуск на его значение. В зависимости от конденсатора и его свойств он может быть очень точным или может иметь большой допуск на значение.

    Значение допуска — это степень, в которой фактическое значение конденсатора может отличаться от заявленного или номинального значения, и оно часто выражается в процентах., Хотя для значений в несколько пикофарад оно может быть выражено как фактическое значение, т.е. .е. 20 пФ ± 1 пФ и т. Д.

    Обычно допуск конденсатора выражается в виде процентного отклонения, выраженного как ± NN%. Значения ± 5% и ± 10% обычно используются для приложений связи и развязки. Для компонентов, используемых в приложениях, где требуются более высокие допуски, многие из них имеют допуски ± 1 и ± 2%, а иногда и лучше.

    Керамические конденсаторы, используемые для связи и развязки, обычно рассчитаны на значения ± 5% и ± 10%, хотя некоторые из керамических конденсаторов с более высокими характеристиками, особенно в форматах для поверхностного монтажа, доступны с улучшенными керамическими диэлектриками и могут иметь допуски ± 1 и ± 2%. Конденсаторы с пластиковой пленкой традиционно имеют версии с жесткими допусками, хотя обычно они не доступны с корпусами для поверхностного монтажа.

    Электролитические конденсаторы часто имеют допуск от -20% до + 80%, поэтому они обычно не используются там, где важно точное значение.

  • Рабочее напряжение: Характеристика конденсатора рабочего напряжения определяет максимальное непрерывное напряжение, которое может быть приложено к конденсатору. Обычно это напечатано на корпусе и будет упомянуто в техническом описании.Напряжение обычно относится к самому большому напряжению постоянного тока, которое может быть приложено. Также имейте в виду, что когда конденсатор работает в цепи с формой волны переменного тока, наложенной на напряжение постоянного тока, тогда возникающие напряжения могут быть намного выше значения постоянного тока в состоянии покоя.

    Для некоторых конденсаторов, используемых в приложениях переменного тока, может быть указано значение переменного тока. Имейте в виду, что это относится к среднеквадратичному напряжению, а не к пиковому значению, которое в √2 или 1,414 раза больше.

    Хотя некоторые конденсаторы могут выдерживать кратковременное пиковое напряжение, это может привести к необратимому выходу из строя других, поэтому стоит быть осторожными.В результате некоторые конденсаторы также могут иметь номинальные характеристики перенапряжения — как правило, эти конденсаторы могут использоваться для источников питания переменного тока, где возникают перенапряжения.

    Рекомендуется всегда использовать конденсаторы в пределах их номинального напряжения. Между фактическим напряжением, при котором работает конденсатор, и его номинальным рабочим напряжением существует связь. Чем больше маржа, тем выше надежность.

    Часто руководящие принципы коммерческого проектирования предусматривают, что конденсаторы не должны работать выше 50% от их номинальных значений, а руководящие принципы проектирования высоконадежного военного оборудования следуют аналогичным рекомендациям. Работа с хорошей маржой обеспечивает высокий уровень надежности.

  • Диэлектрик: Диэлектрик является одним из ключевых элементов, определяющих многие характеристики конденсаторов. В результате конденсаторы часто называют их диэлектриками: электролитическими; тантал, керамика; пластиковая пленка; серебряная слюда; и тому подобное. Поскольку характеристики этих конденсаторов и доступные диапазоны емкости различаются, важно выбрать требуемый диэлектрик, внимательно изучив характеристики и общие характеристики конденсатора в таблице данных.

    Диэлектрик имеет тенденцию определять ряд аспектов работы конденсатора, поэтому конденсаторы с разными типами диэлектрика, как правило, используются для разных приложений.

    • Алюминиевые электролитические конденсаторы: Большая емкость — обычно выше 1 мкФ, большой ток пульсаций, низкочастотная способность — обычно не используется выше 100 кГц или около того, утечка выше, чем у других типов.
    • Танталовые конденсаторы: Высокое значение при очень небольшом объеме — значения обычно выше 1 мкФ, более высокая частота, чем у алюминиевых электролитических, обычно низкое напряжение, очень нетерпимо к перенапряжению и обратному напряжению.
    • Керамические конденсаторы: Значения, как правило, ниже 1 мкФ, нормально работают при высокой частоте, малом токе утечки; Так как существует несколько видов керамического диэлектрика, проверьте свойства.
    Принимая во внимание различные характеристики, необходимо проверить, какой диэлектрик наиболее подходит для схемы и положение в схеме, где он будет использоваться.
  • Рабочая температура: Все конденсаторы имеют ограниченный диапазон рабочих температур, будь то керамические конденсаторы, электролитические конденсаторы, танталовые конденсаторы или другие конденсаторы.В этой спецификации подробно описаны пределы, в которых конденсатор будет работать удовлетворительно и в которых он рассчитан.

    Некоторые аспекты, ограничивающие рабочий диапазон конденсатора: напряжение — оно падает с увеличением температуры; ток пульсации — снова меньше с повышением температуры. Спецификация более низкой температуры может определяться рядом факторов. Один из них — это действие электролита в таких компонентах, как электролитические конденсаторы. Рабочая температура особенно важна для электролитических конденсаторов, поскольку их ожидаемый срок службы быстро падает с повышением температуры.

  • Температурный коэффициент: Конденсаторы, как и все компоненты, зависят от температуры. Степень относительно мала и не имеет значения в схемах, где значение не является критическим, но в других, где схема зависит от точного значения, например генератор LC и т. д., температурный коэффициент может быть очень важным.

    Температурный коэффициент часто выражается как изменение в миллионных долях на градус Цельсия.

  • Сопротивление утечки / ток: Спецификация тока утечки или сопротивления утечки указывает величину тока, протекающего через конденсатор. Ток утечки возникает из-за того, что конденсаторы не являются идеальными изоляторами. Если конденсатор заряжается, а затем отсоединяется, он медленно теряет свой заряд. Также, когда он заряжен и непрерывно питается, через него будет течь ток.

    Как ток утечки, так и сопротивление утечки или изоляции указаны в технических характеристиках. Поскольку они связаны законом Ома, их легко перевести между ними. Обычно сопротивление изоляции используется там, где встречаются очень высокие значения сопротивления, а ток часто используется для больших конденсаторов и там, где есть большая утечка.Например: суперконденсаторы и алюминиевые электролитические конденсаторы обычно имеют указанные значения тока утечки, но для керамических конденсаторов или конденсаторов с пластиковой пленкой, где ток утечки незначителен, обычно указываются значения сопротивления.
    Где:
    C = ожидаемая емкость конденсатора
    R L = сопротивление утечки
    R ESR = Эквивалентное последовательное сопротивление
    L ESR = Эквивалентная последовательная индуктивность (собственная индуктивность)
    R DA = Диэлектрическое поглощение
    C DA = Диэлектрическое поглощение В эквивалентной схеме сопротивление утечки представлено сопротивлением R R L , которое появляется непосредственно на главном конденсаторе C

    Ток утечки и сопротивление могут иметь большое влияние на многие цепи. Например, в цепи высокого напряжения даже небольшой ток утечки может привести к значительному рассеиванию тепла. В других схемах ток утечки может привести к неправильной работе схемы — это может быть особенно заметно в схемах с высоким импедансом.

    Для конденсаторов, таких как алюминиевые электролитические конденсаторы, для которых указан ток утечки, эта спецификация включает напряжение и температуру. Очевидно, что из закона Ома влияет напряжение, но также увеличивается ток утечки с ростом температуры.

    Для других типов, в которых указано сопротивление утечки, оно указывается в МОм или как значение в Ом x 10 X . Сравнение характеристик утечки для разных типов конденсаторов Хотя существует несколько типов материализованных пленочных конденсаторов, полипропиленовый конденсатор из полипропилена имеет лучшие характеристики в диапазоне от 10 5 до 10 7 .

    Примечание: Очень высокое значение сопротивления утечки может означать, что если конденсатор используется в цепи высокого напряжения, то эти напряжения могут оставаться в течение некоторого времени после выключения устройства, если нет внешнего пути утечки. Будьте осторожны при работе с цепями, в которых присутствует высокое напряжение, так как остаточный заряд может присутствовать в течение некоторого времени после отключения.

  • ESR: Эквивалентное последовательное сопротивление или ESR, является важной характеристикой во многих случаях. Это импеданс конденсатора по отношению к переменному току, который особенно важен на высоких частотах. Спецификация ESR включает сопротивление диэлектрического материала, сопротивление постоянному току выводов, сопротивление постоянному току соединений с диэлектриком и сопротивление пластины конденсатора, измеренные на определенной частоте.
  • Собственная индуктивность: Конденсаторы — это не просто чистая емкость — они включают в себя различные другие паразитные элементы помимо основной емкости. Самая важная особенность высокочастотных / РЧ-цепей — это собственная индуктивность.

    Обычно индуктивность в конденсаторах относительно мала — она ​​может находиться в диапазоне 1–20 нГн, но фактическое значение будет очень зависеть от типа конденсатора и его конструкции. Из-за небольшого значения индуктивности эффекты самоиндукции обычно наблюдаются только на высоких частотах.

  • Собственная резонансная частота: Собственная резонансная частота конденсатора возникает из резонансного контура, установленного между эквивалентной последовательной индуктивностью и емкостью конденсатора. Это часто указывается отдельно для конденсаторов, которые используются в ВЧ приложениях — иногда может быть включен график отклика, поскольку может быть несколько резонансных частот.

    Кривая импеданса конденсатора, показывающая собственный резонанс На резонансной частоте Fr индуктивный и реактивный импедансы компенсируются, оставляя резистивные элементы цепи, т.е.е. СОЭ. Также помните, что выше резонансной частоты конденсатор будет индуктивным. Резонансная частота обычно связана с радиочастотными цепями, и поэтому обычно могут быть указаны керамические конденсаторы.

  • Пульсации тока: Эта спецификация имеет большое значение для цепей, в которых протекают значительные уровни тока. Одно из основных приложений, где это важно, — в цепях питания, особенно в сглаживающих секциях источника питания.Необходимо определить максимальный ток пульсаций в цепи, а затем свериться с таблицей данных, чтобы убедиться, что спецификации тока пульсаций не превышены, и, что еще лучше, имеется хороший запас.
    Электролитический конденсатор с выводами с маркировкой, включая максимальный ток Причина, по которой это важно, заключается в том, что высокие уровни пульсаций тока приводят к заметному количеству тепла, рассеиваемого в конденсаторе. Если выделяемое тепло слишком велико, конденсатор может выйти из строя или его срок службы и надежность уменьшатся.

    Пульсации тока обычно связаны с электролитическими конденсаторами, поскольку они, как правило, используются в источниках питания, где наблюдаются более высокие уровни тока. Эта спецификация также применима к суперконденсаторам. Танталовые конденсаторы не любят значительного тока и могут взорваться, если от них ожидается слишком много.

Есть много параметров, которые влияют на общую производительность конденсатора. Выбор правильных конденсаторов для конкретной схемы зависит не только от фактического уровня емкости, но и от других факторов.Это будет зависеть от фактического используемого контура. Такие аспекты, как собственная индуктивность, будут очень важны для ВЧ-цепей, тогда как ток утечки может иметь значение в цепях с высоким импедансом и ток пульсаций в цепях питания.

Знание области применения и ее требований и соответствие их требованиям к конденсатору с правильными характеристиками — ключ к выбору и покупке правильного конденсатора.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

S Параметры конденсатора

ThePhoton дал очень хороший ответ. Однако ниже представлена ​​расширенная версия с полным выводом формулы и проверкой в ​​LTSpice, а также анализом передачи мощности.

I. S-матрица для 2-портовой системы:

$$ \ begin {pmatrix} {\ frac {Z} {{2 {Z_0} + Z}}} и {\ frac {{2 {Z_0}}} {{2 {Z_0} + Z}}} \\ {\ frac {{2 {Z_0}}} {{2 {Z_0} + Z}}} и {\ frac {Z} {{2 {Z_0} + Z}}} \ end {pmatrix}, $$

, где \ $ Z \ Equiv {1 \ over {j \ omega C}} \ $, \ $ {Z_0} \ $ — действительное характеристическое сопротивление системы.Матрица верна для любого Z, как с резистивной, так и с реактивной составляющими.

II. Вывод

Для реальных \ $ {Z_0} \ $ $$ {a_i} = {{{V_i} + {I_i} {Z_0}} \ over {2 \ sqrt {{Z_0}}}}, \: {b_i} = {{{V_i} — {I_i} {Z_0 }} \ over {2 \ sqrt {{Z_0}}}} $$ Источник: «Волны мощности и матрица рассеяния», К. Курокава, IEEE, 1965, URL.

Из правила делителя напряжения
$$ {V_1} = {V_s} {{Z + {Z_0}} \ over {2 {Z_0} + Z}}, \: {V_2} = {V_s} {{{Z_0}} \ over {2 {Z_0} + Z}} $$

По закону Ома
$$ {I_1} = {{{{V_s}} \ over {2 {Z_0} + Z}}} $$

Тогда значение входного коэффициента отражения равно

.

$$ {S_ {11}} = {\ left.{{{{b_1}} \ over {{a_1}}}} \ right | _ {{a_2} = 0}} = {{{V_1} — {I_1} {Z_0}} \ over {{V_1} + { I_1} {Z_0}}} = {{{V_s} {{Z + {Z_0}} \ over {2 {Z_0} + Z}} — {{{V_s}} \ over {2 {Z_0} + Z}} {Z_0}} \ over {{V_s} {{Z + {Z_0}} \ over {2 {Z_0} + Z}} + {{{V_s}} \ over {2 {Z_0} + Z}} {Z_0} }} = {Z \ over {2 {Z_0} + Z}} $$

Применяя \ $ {I_2} = — {I_1} \ $, значение прямого усиления равно
$$ {S_ {21}} = {\ left. {{{{b_2}} \ over {{a_1}}}} \ right | _ {{a_2} = 0}} = {{{V_2} — {I_2} {Z_0}} \ over {{V_1} + { I_1} {Z_0}}} = {{{V_2} + {I_1} {Z_0}} \ over {{V_1} + {I_1} {Z_0}}} = {{{V_s} {{{Z_0}} \ over {2 {Z_0} + Z}} + {{{V_s}} \ over {2 {Z_0} + Z}} {Z_0}} \ over {{V_s} {{Z + {Z_0}} \ over {2 { Z_0} + Z}} + {{{V_s}} \ over {2 {Z_0} + Z}} {Z_0}}} = {{2 {Z_0}} \ over {2 {Z_0} + Z}} $$

Обратите внимание, что \ $ {S_ {11}} + {S_ {21}} = 1 \ $, что и ожидалось, если во втором порту не будет входящей волны (\ $ {a_ {2}} = 0 \ $).2}}}}}} = 0,30, \, $$
при \ $ {Z_ {0}} \ $ = 50 Ом, \ $ \ omega \ $ = 10 МГц и C = 50 пФ.

Экстракция в LTSpice:

На этой диаграмме показано, что
1) на более низких частотах прямое усиление низкое (ничего не пробивается к нагрузке), поскольку конденсатор ведет себя как разомкнутый,
2) на более высоких частотах прямое усиление близко к единице: входящая волна мощности полностью передается на нагрузку, так как конденсатор ведет себя максимально коротко.

Учебное пособие по конденсаторам

— символ, параметры, соединения

Конденсатор — основной пассивный электронный компонент (рядом с индуктором и резистором ), который состоит как минимум из двух электрических проводников (пластин) и разделяющий их диэлектрик (изолятор).После подачи напряжения на пластины начинается накопление электрического заряда .
В зависимости от конструкции, параметров и типа системы, в которой применяются конденсаторы, они могут собирать энергию , задействовать (передача энергии), фильтровать и блокировать сигналы . Фильтры и RC-таймеры получили свое название от комбинации резистора и конденсатора в одной системе — аналогично в системе RLC использовались резистор и конденсатор, но с добавлением катушки .

Рис. 1. Символ конденсатора

Емкость конденсатора (количество заряда, которое может накапливать конденсатор) выражается в фарадах [F] . Несмотря на то, что 1 Фарад — это большая единица, обычно производимые конденсаторы имеют значения емкости пико [ пФ] , нано [ нФ, ] и микро [ мкФ ] фарад.

C — емкость конденсатора [F F арад]
Q — электрический заряд на одной пластине [ C C oulomb] 021 V 021 — напряжение между пластинами [ В В олт]

Конденсаторы — раздел
  • электролитический — они работают только на низких частотах, имеют значительную емкость и величину утечки,
  • керамические — обычно работают на высоких частотах, подстроечные конденсаторы, которые представляют собой конденсаторы переменной емкости, также изготавливаются из этого материала,
  • полимер — (пластик) — подходят для работы при больших токах и отличаются высоким сопротивлением напряжению.

Конденсатор — Основные технические параметры
  • Номинальная емкость — значение, указанное производителем, оно определяет емкость этого элемента,
  • Допуск емкости — указывается в процентах [%], максимальное отклонение фактического значения элемента от его номинального значения,
  • Номинальное напряжение — максимально допустимое значение напряжения для соответствующего компонента, обычно оно выражается как сумма напряжения и пикового значения переменного напряжения,
  • Испытательное напряжение — значение напряжения, которое конденсатор способен «выдержать» за короткое время,
  • Температурный коэффициент емкости ( TCC ) — описывает максимальное изменение емкости в заданном диапазоне температур,
  • Leakage — отвечает за саморазряд конденсатора, зависит от сопротивления изоляции,
  • Сопротивление импульсам напряжения — описана оптимальная частота зарядки и разрядки конденсатора,
  • Коэффициент рассеяния конденсатора (tan δ) — он зависит от температуры и частоты, чем выше значение, тем хуже качество конденсатора.

Конденсаторы — последовательное и параллельное соединение

Как и в случае катушек индуктивности и резисторов, конденсаторы могут быть подключены параллельно и последовательно.

Последовательное соединение:

Рис. 2. Конденсаторы, соединенные последовательно

Емкость конденсаторов, соединенных последовательно (в отличие от резисторов), можно описать следующей формулой:

Параллельное соединение

Емкость конденсаторов, подключенных параллельно, определяется по формуле:

Электрический заряд конденсаторов, подключенных параллельно, представляет собой сумму зарядов, собранных на них — как показывает приведенное выше соотношение.

Рис. 3. Параллельное соединение конденсаторов

— Объявление —

Конденсаторы и расчет емкости Формулы Формулы

Конденсаторы — это пассивные устройства. в электронных схемах для хранения энергии в виде электрического поля. Они комплимент индукторы, хранящие энергию в виде магнитного поля. Идеальный конденсатор является эквивалентом разомкнутой цепи (бесконечное сопротивление) для постоянного тока (DC) и представляет собой импеданс (реактивное сопротивление) относительно переменные токи (AC), зависящие от частоты тока (или напряжения).Реактивное сопротивление (сопротивление току расход) конденсатора обратно пропорционален частоте сигнала, воздействующего на него. Конденсаторы изначально были называемые «конденсаторами» по причине, восходящей к временам Лейденской банки, когда считалось, что электрические заряды накапливаться на пластинах в результате конденсации.

Свойство емкости, которое противодействует изменению напряжения, используется для передачи сигналов с компонент с более высокой частотой, предотвращая прохождение сигналов компонентов с более низкой частотой.Обычное применение конденсатор в РЧ (радиочастотной) цепи — это место, где есть напряжение смещения постоянного тока, которое необходимо заблокировать от присутствия в цепи, позволяя прохождению радиочастотного сигнала. Источники питания постоянного тока используют большие значения емкости параллельно с выходом. клеммы для сглаживания низкочастотных пульсаций из-за выпрямления и / или переключения сигналов.

При использовании последовательно (левый рисунок) или параллельно (правый рисунок) с его комплемент схемы, индуктор, комбинация индуктора-конденсатора образует цепь, которая резонирует на определенной частоте это зависит от значений каждого компонента.В последовательной цепи сопротивление протеканию тока на резонансной частоте равен нулю с идеальными компонентами. В параллельной цепи (справа) сопротивление протеканию тока бесконечно с идеальными компонентами.

Реальные конденсаторы, состоящие из физических компонентов, демонстрируют больше, чем просто емкость, когда присутствует в цепи переменного тока. Слева показана модель симулятора общей схемы. Он включает в себя собственно идеальный конденсатор с параллельным резистивным компонент («Утечка»), реагирующий на переменный ток. Эквивалентный резистивный компонент постоянного тока (‘ESR’) последовательно с идеальным конденсатором и эквивалентной последовательной индуктивной составляющей («ESL») присутствует из-за металлических выводов (если они есть) и характеристик поверхностей пластин. Эта индуктивность в сочетании с емкостью создает резонансную частоту, на которой конденсатор выглядит как чистое сопротивление.

Когда рабочая частота увеличивается за пределы резонанса (также известной как собственная резонансная частота или SRF), схема ведет себя как индуктивность, а не как емкость.Следовательно, требуется тщательное рассмотрение SRF, когда выбор конденсаторов. В симуляторах типа SPICE используется эта или даже более сложная модель для облегчения более точных расчетов. в широком диапазоне частот.

Уравнения для последовательного и параллельного объединения конденсаторов приведены ниже. Дополнительные уравнения приведены для конденсаторов различной конфигурации. Как показывают эти цифры и формулы, емкость — это мера способности двух поверхностей для хранения электрического заряда.Разделенный и изолированный диэлектриком (изолятором), чистый положительный заряд накапливается на одна поверхность и чистый отрицательный заряд хранится на другой поверхности. В идеальном конденсаторе заряд будет храниться бесконечно; однако реальные конденсаторы постепенно теряют свой заряд из-за токов утечки через неидеальный диэлектрик.


Общая емкость последовательно соединенных конденсаторов равна обратной величине сумма обратных величин индивидуальных емкостей.Держите единицы постоянными.

Емкость (C в фарадах) двух параллельных пластин равной площади равна произведению площади (A, в метрах) одной пластины. расстояние (d, в метрах), разделяющее пластины, и диэлектрическая проницаемость (ε, в Фарадах на метр) пространства разделение пластин. ε, полная диэлектрическая проницаемость, является произведением диэлектрической проницаемости свободного пространства, ε 0 , и относительная диэлектрическая проницаемость материала ε r .Обратите внимание, что единицы длины и площади могут быть метрическими. или английский, если они согласованы.

Коэффициент рассеяния (DF), также известный как тангенс потерь (tan δ), взаимозаменяемо определяется как величина, обратная коэффициенту качества (QF) или отношению эквивалентного последовательного сопротивления (ESR) и емкостного реактивного сопротивления (Х С ).Это мера потери накопленного заряда. DF обычно используется в низкочастотных приложениях, в то время как tan δ чаще используется в высокочастотных приложениях.


Общая емкость конденсаторов, соединенных параллельно, равна сумме индивидуальных емкости. Держите единицы постоянными.

К уравнениям на этой странице относятся следующие физические константы и механические размерные переменные.Единицы для уравнений показаны в скобках в конце уравнений; например, означает, что длина дана в дюймах, а индуктивность — в единицах Генри. Если единицы не указаны, можно использовать любые, если они согласованы для всех объектов; т.е. все измерители, все мкФ, пр.

C = емкость
L = индуктивность
W = энергия
ε r = относительная диэлектрическая проницаемость (безразмерная)
ε 0 = 8,85 x 10 -12 Ф / м (диэлектрическая проницаемость свободного пространства)
µ r = Относительная проницаемость (безразмерная)
µ 0 = 4π x 10 -7 Гн / м (проницаемость свободного пространства)

1 метр = 3.2808 футов <—> 1 фут
= 0,3048 метра
1 мм = 0,03937 дюйма <—> 1 дюйм
= 25,4 мм

Кроме того, точки (не путать с десятичными знаками) используются для обозначения умножения. во избежание двусмысленности.

Емкостное реактивное сопротивление (X C , в Ω) обратно пропорционально частоте (ω, в радианах / сек или f, в Гц) и емкости (C, в Фарадах).Чистая емкость имеет фазовый угол -90 ° (напряжение отстает от тока с фазовым углом 90 °).

Заряд (Q, в кулонах) конденсатора Пластины — это произведение емкости (C в фарадах) и напряжения (V в вольтах) на устройстве.

Энергия (Вт, в Джоулях) хранится в конденсаторе представляет собой половину произведения емкости (C в фарадах) на напряжение (V в вольтах) на устройстве.

Ток действительно течет «через» идеальный конденсатор. Напротив, заряд, накопленный на его пластинах, передается в подключенную цепь, тем самым облегчая ток. поток. И наоборот, сетевое напряжение, приложенное к пластинам, вызывает протекание тока в подключенной цепи по мере накопления заряда. на тарелках.

Добротность безразмерная. отношение реактивного сопротивления к сопротивлению в конденсаторе.

Связанные страницы на RF Cafe
— Конденсаторы и Расчет емкости
— Конденсатор Цветовые коды
— Преобразование емкости
— Конденсатор Dielectrics
— Стандартные значения конденсатора
— Поставщики конденсаторов
— Благородное искусство разъединения

Как читать технический паспорт конденсатора — EEE Parts Database

Конденсаторы

используются в электронных схемах для широкого спектра применений, включая связь, синхронизацию, фильтрацию, развязку и формирование волны.Эти пассивные компоненты бывают самых разных форм, размеров и конструкций, и обычно нелегко определить компонент, отвечающий конкретным требованиям приложения. В большинстве электронных схем общие характеристики схемы в значительной степени определяются выбором конденсаторов.

Таким образом, определение компонента, отвечающего требованиям приложения, является критическим шагом при проектировании электронных схем. Рабочие характеристики любого электронного компонента указаны производителями в технических описаниях продукта.Это делает таблицу данных одним из самых полезных ресурсов для проектировщиков схем и инженеров.

Несмотря на свою полезность, листы данных могут содержать много информации, что затрудняет извлечение пользователями сведений, которые им требуются для данного компонента. Типичное техническое описание конденсатора содержит следующую информацию о компоненте:

  • Тактико-технические характеристики
  • Типовые области применения
  • Ограничения компонента

В этом руководстве мы дадим вам советы, которые помогут вам максимально эффективно использовать технические характеристики конденсатора.Итак, откуда вы берете нужную таблицу данных? Паспорта конденсаторов обычно доступны на веб-сайте производителя. Кроме того, вы можете легко скачать здесь любой технический паспорт конденсатора. Важно дважды проверить номер модели и дату публикации, чтобы убедиться, что вы используете правильный лист данных.

Таблицы данных конденсаторов

, как и другие спецификации продуктов, различаются по конструкции и компоновке в зависимости от производителя. В этом руководстве мы рассмотрим различные разделы типовой спецификации конденсатора.

Обзор

В этом разделе приведены характеристики, функции и типичные области применения компонента.

Приложения

Большинство производителей предоставляют примеры приложений, для которых можно использовать конденсатор. Этот раздел помогает разработчикам схем легко находить компоненты, подходящие для их приложений. Этот список обычно не является исчерпывающим.

Электрические характеристики

В этом разделе представлены электрические параметры, представляющие интерес для разработчиков схем.Некоторые параметры указаны непосредственно в таблице данных, а другие нет. Важно отметить, что большинство этих параметров задаются при определенных условиях.

Напряжение

Это один из ключевых параметров, который следует учитывать при выборе конденсатора для вашего приложения. Для большинства типов конденсаторов производители указывают характеристики напряжения в виде номинального напряжения, импульсного напряжения, рабочего напряжения, переходного напряжения, обратного напряжения и пульсирующего напряжения.Номинальное напряжение определяет максимальное пиковое значение напряжения, которое может быть приложено между выводами компонента. Это номинальное напряжение обычно указывается на компоненте производителем. Для сравнения, рабочее напряжение определяет диапазон допустимых напряжений, которые можно приложить к компоненту без его повреждения.

Емкость

В большинстве технических паспортов конденсаторов емкость компонента указывается с точки зрения номинальной емкости, емкости переменного / постоянного тока и свойств защиты от заряда-разряда.Подробная информация о том, как емкость компонента зависит от температуры и частоты, обычно приводится в этом подразделе.

Калькулятор импеданса конденсатора

— Инструменты для электротехники и электроники

Этот инструмент вычисляет реактивное сопротивление конденсатора для заданного значения емкости и частоты сигнала.

Обзор

Наш калькулятор емкостного реактивного сопротивления поможет вам определить полное сопротивление конденсатора, если заданы его значение емкости (C) и частота сигнала, проходящего через него (f).Вы можете ввести емкость в фарадах, микрофарадах, нанофарадах или пикофарадах. Для частоты доступны следующие единицы измерения: Гц, кГц, МГц и ГГц.

Уравнение

$$ X_ {C} = \ frac {1} {\ omega C} = \ frac {1} {2 \ pi fC} $$

Где:

$$ X_ {C} $$ = реактивное сопротивление конденсатора в Ом (Ом)

$$ \ omega $$ = угловая частота в рад / с = $$ 2 \ pi f $$, где $$ f $$ — частота в Гц

$$ C $$ = емкость в фарадах

Реактивное сопротивление (X) указывает сопротивление компонента переменному току.Импеданс (Z) показывает сопротивление компонента как постоянному, так и переменному току; он выражается в виде комплексного числа, т. е. Z = R + jX. Импеданс идеального резистора равен его сопротивлению; в этом случае действительная часть импеданса — это сопротивление, а мнимая часть равна нулю. Импеданс идеального конденсатора по величине равен его реактивному сопротивлению, но эти две величины не идентичны. Реактивное сопротивление выражается обычным числом в единицах Ом, тогда как полное сопротивление конденсатора — это реактивное сопротивление, умноженное на -j, i.е., Z = -jX. Член -j учитывает фазовый сдвиг на 90 градусов между напряжением и током, который возникает в чисто емкостной цепи.

Вышеприведенное уравнение дает вам реактивное сопротивление конденсатора. Чтобы преобразовать это значение в импеданс конденсатора, просто используйте формулу Z = -jX. Реактивность — более простое значение; он сообщает вам, какое сопротивление будет иметь конденсатор на определенной частоте. Однако для всестороннего анализа цепей переменного тока необходимо полное сопротивление.

Как видно из приведенного выше уравнения, реактивное сопротивление конденсатора обратно пропорционально как частоте, так и емкости: более высокая частота и более высокая емкость приводят к более низкому реактивному сопротивлению.Обратная зависимость между реактивным сопротивлением и частотой объясняет, почему мы используем конденсаторы для блокировки низкочастотных компонентов сигнала, позволяя проходить высокочастотным компонентам.

Дополнительная литература

Учебник — Конденсаторные цепи переменного тока

Учебник

— Цепи резистор-конденсатор серии

Рабочий лист — Емкостное реактивное сопротивление

Чистая мощность для каждой ИС: общие сведения о байпасных конденсаторах

Измерение ESR и индуктивности конденсатора

Измерение ESR и индуктивности конденсатора Высокочастотные измерения Страница в Интернете
Дуглас К.Смит

Адрес: P.O. Box 1457, Los Gatos, CA 95031
ТЕЛ: 800-323-3956 / 408-356-4186
ФАКС: 408-358-3799
Мобильный: 408-858-4528
URL: www.dsmith.org
Эл. Почта: [email protected]


Самоиндуктивность измерительного конденсатора и ESR

Рисунок 1. Контрольная схема для измерения самоиндукции конденсатора и ESR

Техническая информация

Паразитные параметры конденсатора, то есть его эквивалента серии сопротивление (ESR) и его индуктивность влияют на работу конденсатора в цепях.Некоторые приложения очень чувствительны к этим параметрам. Например, байпасный конденсатор, используемый между питанием и землей в цифровой цепи, должен иметь возможность быстро подавать ток на близлежащие активные устройства. Если это тоже большой индуктивности он не сможет этого сделать. Точно так же переходный реакция конденсатора, используемого для отвода импульса тока из-за электростатического Разряд очень важен для способности конденсатора выполнять свою работу.

Итак, как можно измерить паразитные параметры конденсатора? Один конечно, можно было бы подключить конденсатор к анализатору цепей и получить очень хорошая характеристика.Однако такой инструмент может быть довольно дорогим. Даже менее дорогие приборы для измерения емкости могут быть недоступны. при необходимости. Оба инструмента не могут предоставить информацию в удобной форме. полезная форма. Если у вас есть генератор импульсов (желательно с выходом 50 Ом импеданс) и осциллографа, вы можете легко измерить переходную характеристику конденсатора. Исходя из этих данных, ESR и индуктивность конденсатора можно определить.

Сначала постройте простую сеть, показанную на Рисунке 1 в конце коаксиальный кабель 50 Ом, питаемый от генератора импульсов 50 Ом.Резистор 50 Ом используется на рисунке 1 для отключения коаксиального кабеля во время нарастающего фронта и обеспечения полное сопротивление источника 100 Ом. Показанный резистор — 51 Ом. Резистор на 1/2 Вт из углеродистой стали с одним обрезанным выводом, резистор просто устанавливается с обрезанным проводом, полностью вставленным в разъем BNC. Возможно, потребуется немного припаять вывод резистора. так, чтобы он оставался надежно в разъеме BNC. Конденсатор, подлежащий испытанию подключается между концом резистора и корпусом разъема BNC.Осциллограф подключается непосредственно к конденсатору с помощью проводов. как можно короче, чтобы подключить зонд. Пробники с резистивным входом Рекомендуется импеданс от 500 до 1000 Ом. Стандартные пробники 10X «Hi-Z» часто имеют эффекты нарастающего фронта, которые искажают часть формы волны используется для расчетов.

Для длительности импульса, большой по отношению к постоянной времени RC, можно увидеть экспоненциальный рост напряжения холостого хода импульса источник. Для целей этого обсуждения мы рассмотрим первые пару сотен милливольт экспоненциального нарастания на 5 вольт.Пример это показано на рисунке 2.


Рисунок 2. Начальное повышение

На рисунке 2 показано начало экспоненциального роста напряжения на конденсатор при запуске генератора импульсов. Вертикальный масштаб около 200 мВ, а горизонтальное время составляет небольшую часть постоянной времени RC 100 Ом и измеряемый конденсатор. Поскольку напряжение на конденсаторе все еще очень мала по сравнению с выходом холостого хода генератора 5 В, ток через конденсатор можно считать постоянным и равным к напряжению холостого хода генератора, деленному на 100 Ом, 50 мА в этом дело.

Время нарастания тока будет таким же, как напряжение генератора. Если подъем представляет собой наклон с постоянным наклоном и конденсатор не имеет индуктивности, начальный подъем, показанный на рисунке 2, будет следовать пунктирной линии, а затем наклон изменится на начальный наклон экспоненциального роста, определенного к:

1) dv / dt = i / C = 50 мА / C
где C — значение конденсатора при этом низком напряжении
и время нарастания текущего << RC.

Смещение между базовой линией и началом экспоненты подъем — это просто напряжение, которое развивает ток, в данном случае 50 мА через ESR конденсатора. ESR можно легко оценить в этом в случае деления смещения напряжения (обозначенного ESR на рисунке 2) на 50 мА.

Паразитная индуктивность в конденсаторе вызовет всплеск формы волны показано на рисунке 2, превышающее значение пунктирной линии по ее длине. Если бы подъем тока на самом деле был пандусом с постоянным уклоном и очень крутым углы (high di 2 / dt), то пик будет прямоугольным импульсом ценности:

2) E = L * di / dt
где L — паразитная индуктивность конденсатора.

Рост тока от генератора, используемого для данных в этой статье не был пандус с очень острыми углами и постоянным уклоном (случай для большинство генераторов, которые я использовал). Эта характеристика генератора в сочетании с зондовыми эффектами привело к образованию пика спайка Ldi / dt как показано на рисунке 2. Используя уравнение 2, индуктивность конденсатора может рассчитываться. Часто нет необходимости рассчитывать индуктивность или ESR, но просто выберите конденсатор из нескольких доступных, который имеет самая низкая индуктивность и / или ESR.

Припаивание компонентов к разъему BNC, как показано на рисунке 1, работает. до 300 МГц. Я оцениваю индуктивное сопротивление контура, образованного конденсатор и резистор должны быть около 20 Ом на 300 МГц (оценка индуктивность при 10 нГн). Это достаточно мало по сравнению с 100 Ом. сопротивление в цепи, чтобы существенно не влиять на начальный ток очень. Для этого частотного диапазона генератор с временем нарастания 1 до двух наносекунд хватит.

Если вам нужно проверить конденсатор, используя более быстрое время нарастания, он Лучше всего построить испытательную установку на небольшой печатной плате с заземлением плоские и контролируемые импедансы.В этот момент паразитная емкость резистора 50 Ом также будет проблемой, которую следует принять во внимание. К счастью, такая точность часто не нужна. Особенно, если просто сравнение относительной производительности нескольких конденсаторов.

Данные

На Рисунке 3 ниже показан начальный подъем от генератора. Черный квадрат указывает вертикальное напряжение и горизонтальную шкалу времени. Открыто напряжение в цепи было немногим более 4 В с временем нарастания около 5 наносекунд.Данные на рисунках с 3 по 6 были получены с помощью аналогового осциллографа несколько лет назад. назад. На рисунках с 4 по 6 показаны данные, полученные от нескольких выводных конденсаторов. (в отличие от поверхностного монтажа). Для каждого конденсатора было снято по две трассы. Нижняя кривая была измерена на корпусе конденсатора, где выводы входят в а верхний след включал минимальное количество свинца, чтобы практически подключить конденсатор к печатной плате. Верхний след не требуется для современных конденсаторов для поверхностного монтажа, если только не требуется смоделировать индуктивность подключения конденсатора к интересующей точке на печатной монтажной плате.


Рис. 3. Вход от генератора импульсов

На рис. 4 показаны данные для электролитического конденсатора емкостью 4 мкФ. Смещение ESR составляет около 50 мВ, что дает оценку ESR чуть более одного Ом. Уведомление что, по-видимому, есть некоторые колебания на 1 / C части склона. Это может быть резонанс зонда осциллографа или резонанс в конденсаторе. В данные были получены с помощью стандартного зонда 10X Hi-Z, поэтому зонд является подозрительным. Я видел конденсаторы с ярко выраженными колебаниями от внутреннего резонанса.Если вы планируете поставить большой конденсатор параллельно меньшему один, особенно если они построены по разным технологиям, это было бы неплохо проверить импульсную характеристику комбинации используя этот метод. Возможно, что меньший конденсатор резонирует с индуктивностью большего, вызывая неожиданный результат.

Рисунок 4. Конденсатор 4 мкФ

На рисунке 5 показан результат для конденсатора 1 мкФ той же конструкции. как конденсатор 4 мкФ, испытанный на Рисунке 4.Обратите внимание, что индуктивность аналогична к конденсатору 4 мкФ, но ESR немного ниже. Поскольку аналоговый прицел использовался, форма волны повторялась, а небольшой наклон слева половина сигнала была концом экспоненциального спада с 5 вольт. Если на цифровом осциллографе использовался одиночный импульс, наклон слева от пик Ldi / dt будет равен нулю.


Рисунок 5. Конденсатор 1 мкФ

На рисунке 6 показан результат для радиального керамического конденсатора емкостью 1 мкФ (квадратный дело).Обратите внимание на низкую индуктивность и неопределяемое ESR. Отметим также, что наклон экспоненциального нарастания 1 / C более пологий, что указывает на большую емкость чем конденсатор 1 мкФ на Рисунке 5. Это может быть связано с тем, что электролитический конденсатор, используемый на рисунке 5, может иметь меньшую емкость вблизи нулевое напряжение, чем при его рабочем напряжении, тогда как керамический конденсатор имеет более постоянную емкость с напряжением. Индуктивность, соответствующая к нижнему следу оценивается в 4,4 нГн.


Рисунок 6. Керамический конденсатор 1 мкФ

Интересно отметить, что керамический конденсатор 0,1 мкФ в том же размер пакета, поскольку 1 мкФ на Рисунке 6 показал немного больше индуктивность в этой испытательной установке. Я считаю, что это произошло из-за того, что меньший конденсатор не заполнял корпус и внутреннюю индуктивность вывода вызвал эффект. В этом случае конденсатор емкостью 1 мкФ был лучшим выбором, чем 0,1 мкФ!

Одним из преимуществ этого теста является то, что выходной сигнал переходная характеристика конденсатора.Напряжения, возникающие в конденсатор в этом тесте напрямую связан с тем, что будет происходить в реальной цепи, если время нарастания тока от генератора такое же, как конденсатор увидим по назначению.

Начало страницы
Дом


Вопросы или предложения? Свяжитесь со мной по адресу [email protected]

Авторские права © 2000 Дуглас С. Смит .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *