Как подключить люминесцентную лампу через дроссель – Схема подключения люминесцентных ламп — пошаговая инструкция!

Содержание

Схемы Подключения Люминесцентных Ламп Без Дросселя

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.


Рассмотрим несколько вариантов.

Тандемное подключение Ниже показана схема, где две лампы люминесцентного типа включены последовательно.
Подключение лампы дневного света

ЭПРА для двух ламп дневного света Преимущества электронных балластников описаны в видео. Простейшим вариантом является схема автогенераторного преобразователя на 1 транзисторе.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры ЭПРА.


По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами.

Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки.


Возможно, перегорела одна из нитей электродов. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Схема включения люминесцентных ламп дневного света через электромагнитный дроссель и стартер.

Устройство люминесцентных ламп

Второй контакт группы направляется на второй стартер. Это тоже люминесцентные лампы, только форма другая. В таком режиме лампа накаливания едва светится. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.


Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.

Это не идеальное решение, а скорее выход из ситуации.

По мере износа устройства звук нарастает.


Принцип работы люминесцентного светильника Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания.

Если разряд в колбе не возник, процесс подогрева и поджига повторяется несколько раз.

За счет резкого скачка очень быстро разогреваются электроды.
схема люминесцентного светильника с 1 лампой

Основные функции

При появлении устойчивого разряда сопротивление между электродами на противоположных концах колбы падает и ток протекает по цепи дроссель-электроды.


Работа ЭПРА может осуществляться в двух режимах: с предварительным подогревом электродов; с холодным запуском.

Автор: Engineer Схемы подключения люминесцентных ламп без дросселя и стартера Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Пока лампа погашена, напряжения на удвоителе VD1, VD2, С2, С3 достаточно для открывания стабилитронов, поэтому на электродах лампы присутствует удвоенное напряжение сети. В таких случаях только вам решать стоит ли продлевать жизнь умершим светильникам дневного света или бежать в магазин за новыми.

Лампу накаливания использовать на Вт, как показано на фото: Альтернативой описанным способам является использование платы от энергосберегающих ламп. ЭПРА, размещенный в цоколе В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств. Указывается мощность ламп и их количество, а также технические характеристики устройства. Для её работы также не нужен дроссель и стартер.

Как правило, первой наматывают первичную обмотку, затем главную вторичную на схеме обозначена, как III. Схема ее подключения есть справа. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами с перегоревшими нитями накала. Он наступает после того, как испарилась вся ртуть.

Классическая схема включения люминесцентных ламп


Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.

Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.

Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает.

СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ

Схема подключения люминесцентных ламп без стартера

Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.

Для работы больше никаких устройств не надо.

Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.

Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.

Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств

Принцип работы газоразрядных люминесцентных ламп

Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.

Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Схема подключения люминесцентных ламп с дросселем

Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.

В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.

Проверка стартера люминесцентной лампы

tokzamer.ru

Схема подключения люминесцентной лампы с дросселем и стартером, с двумя лампами

Содержание статьи:

Качественное равномерное освещение можно создать с помощью разных источников света. В домах, офисах, производствах активно устанавливаются энергосберегающие люминесцентные лампы. Их установка и схема сложнее, чем у лампочек накаливания. Для корректного монтажа мастер должен знать, как функционирует устройство, какие виды бывают и какую схему использовать для подсоединения.

Устройство лампы

Люминесцентные лампы цилиндрической формы

Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.

Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.


Колба наполняется смесью инертных газов с отрицательным сопротивлением и парами ртути.

Строение люминесцентной лампы

Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.

Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.

Принцип работы

Принцип работы люминесцентной лампы

Подается питающее напряжение. В начальный момент электрический ток не протекает, так как среда обладает высоким сопротивлением. Ток движется по спиралям, нагревает их и подается на стартер. Появляется тлеющий разряд. После нагрева контактов биметаллические пластины замыкаются. Температура на биметаллической части падает и контакт в сети размыкается. Это приводит к тому, что дроссель создает необходимый импульс в результате самоиндукции, и лампа начинает светить. Дуговой разряд поддерживается за счет термоэлектронной эмиссии, происходящей на на поверхности катода. Электроны разогреваются под действием тока, величину которого ограничивает балласт.

Свет появляется за счет того, что на лампу нанесено специальное вещество – люминофор. Он поглощает ультрафиолетовое излучение и дает свечение определенной гаммы. Цвет можно менять, нанося на колбу различные по составу люминофоры. Они могут быть из галофосфата кальция, ортофосфата кальция-цинка.

Основные преимущества лампы – экономия электроэнергии, долгий срок службы, яркое свечение. Из недостатков можно выделить невозможность прямого подключения к сети и наличие ртути внутри колбы. Лампы стоят дороже лампочек накаливания, но дешевле светодиодных источников света.

Способы подключения

Существуют различные варианты подключения люминесцентной лампы к сети. Самая популярная схема люминесцентного светильника — подсоединение с использованием электромагнитного балласта.

Схема с электромагнитным балластом (ЭмПРА)

Схема с электромагнитным балластом (ЭмПРА)

Принцип работы данной схемы основывается на том, что при подаче напряжения в стартере возникает разряд, приводящий к замыканию биметаллических электродов. Электрический ток в цепи ограничен внутренним дроссельным сопротивлением. Это приводит к тому, что рабочий ток возрастает почти в 3 раза, электроды резко нагреваются, а после уменьшения температуры возникает самоиндукция, приводящая к зажиганию стартерной люминесцентной лампы.

Минусы схемы люминесцентной лампы с ЭмПРА:

  • Высокие затраты на электроэнергию по сравнению с другими способами.
  • Долгое время запуска – примерно 1-3 секунды. Чем выше износ лампочки, тем дольше она будет зажигаться.
  • Не работает при низких температурах. Это приводит к невозможности использования в подвале или гараже, которые не отапливаются.
  • Стробоскопический эффект. Мерцание негативно сказывается на человеческом зрении и психике, поэтому подобное освещение не рекомендуется использовать на производстве.
  • Гудение при работе.

В схеме предусмотрен один дроссель для двух лампочек. Его индуктивности хватает на оба источника света. Напряжение стартера – 127 В, для светильника с одной лампой потребуется напряжение 220 В.

Есть схема люминесцентной лампы на 220 в с бездроссельным подключением. В ней отсутствует стартер. Такое бесстартерное подключение применяется при перегорании нити накала у лампочки. В конструкции также есть трансформатор и конденсатор для ограничения тока. Для ламп с перегоревшей нитью накала существуют переделки схемы и без трансформатора. Это облегчает конструкцию.

Два дросселя и две трубки

Дроссель

Этот метод применяется для двух ламп. Подключать элементы нужно последовательно:

  • Фаза – на вход дросселя.
  • От выхода дросселя один контакт подсоединить к первой лампе, второй – к первому стартеру.
  • С первого стартера провода идут на вторую пару контактов первой лампы, свободный провод нужно подсоединять к нулю.

Аналогичным образом подключается вторая лампа.

Подключение двух ламп от одного дросселя

Схема на две люминесцентные лампы

Этот вариант используется нечасто, но реализовать его несложно. Двухламповое последовательное подсоединение отличается своей экономностью. Для реализации потребуется индукционный дроссель и пара стартеров.

Схема подключения ламп дневного света от одного дросселя:

  • На штыревой выход ламп параллельным соединением подключается стартер.
  • Свободные контакты подсоединяются к электрической сети через дроссель.
  • Параллельно источникам света подключаются конденсаторы.

Бюджетные выключатели периодически могут залипать из-за повышения стартовых токов. В таком случае рекомендуется использовать высококачественные коммутационные устройства. Это обеспечит долгую и стабильную работу люминесцентной лампы.

Схема с электронным балластом

Схема подключения электронного балласта

Все минусы ЭмПРА привели к тому, что пришлось искать другой способ подключения. В результате электромагнитный балласт был заменен на электронный, работающий не на сетевой частоте 59 Гц, а на высокой 20-60 кГц. Благодаря этому решению исключается моргание света. Такие схемы применяются на производствах.

Визуально балласт представляет собой блок с клеммами. Внутри располагается печатная плата, на которой собирается электронная схема. Важное преимущество электронного балласта – миниатюрные размеры. Поместить блок можно даже в небольшой источник света. Также время запуска меньше, а работает устройство беззвучно. Метод с электронным балластом еще называется бесстартерным.


Собрать схему такого устройства несложно. Обычно она размещена на обратной стороне прибора. На схеме обозначается число лампочек для подсоединения, все поясняющие надписи, информация о технических характеристиках.

Как подключить светильник люминесцентный:

  • Контакты 1 и 2 – к паре контактов с лампы.
  • Контакты 3 и 4 – на оставшуюся пару.

На вход необходимо подать питающее напряжение.

Схема с умножителями напряжения

Для увеличения срока действия  может применяться способ без электромагнитного балласта. Время эксплуатации продляется при условии, что мощность лампы не превышает 40 Вт. Нити накала могут быть перегоревшими – их при любой ситуации следует закоротить.

Такая схема позволяет выпрямить напряжение и повысить его в два раза. Лампа загорается сразу же. Для реализации схемы нужно правильно подобрать конденсаторы. 1 и 2 выбираются на 600 В, 3 и 4 – на 1000 В. Недостаток – большие размеры конденсаторов.

Подсоединение без стартера

Стартер вызывает дополнительный нагрев у люминесцентной лампы. Также он часто выходит из строя, из-за чего эту деталь приходится заменять. Существуют схемы, в которых люминесцентный источник света работает без стартера. Электроды подогреваются до нужного уровня при помощи трансформаторных обмоток, выступающих в роли балласта.

При покупке лампочки нужно обратить внимание на надпись RS – быстрый старт. Именно такие изделия работают без стартера.

Схема с последовательным подключением двух ламп

Схема для последовательного подключения двух ламп

Есть две лампы, которые необходимо соединить при помощи одного балласта последовательным образом. Для выполнения подобных работ потребуются следующие компоненты:

  • Индукционный дроссель.
  • Два стартера.
  • Два люминесцентных светильника.

Схема подключения люминесцентной лампы следующая:

  • К каждой лампе подключается стартер параллельно на штыревой вход на торце колбы.
  • Оставшиеся контакты следует подключить в электрическую сеть через дроссель.
  • На контакты лампочек подключаются конденсаторы. Они необходимы для того, чтобы уменьшить интенсивность помех и реактивную мощность.

Конденсаторы выбираются с учетом нагрузки.

Замена люминесцентных ламп

Чтобы снять люминесцентную лампу, необходимо повернуть в том направлении, которое указано на держателе

Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.

Выполнить замену можно следующим образом:

  • Разобрать светильник. Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении. Оно указывается на держателе стрелками.
  • После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
  • Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
  • Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.

Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.

После того как система собрана, можно подавать питающее напряжение, выполнять включение и приступать к тестированию. Финальным шагом будет установка защитного плафона на светильник.

Проверка работоспособности

Прозвонка электродов мультиметром

Выполнить проверку собранной системы можно с помощью тестера, который проверяет нити накала. Его допустимое сопротивление должно составлять 10 Ом.

Если тестирующее устройство показало бесконечное сопротивление, лампочка подходит только для использования в режиме холодного запуска. Также бесконечность может показываться при неисправности источника света. Нормальное сопротивление, которое должен показывать тестер, достигает несколько сотен Ом. Это связано с тем, что в обычном состоянии контакты стартера находятся в разомкнутом виде. При этом конденсатор не пропускает постоянный ток.

Если коснуться щупами мультиметра дроссельных выводов, сопротивление будет постепенно падать до постоянного значения в несколько десятков Ом.

Точное значение определить нельзя при помощи обычного тестера. Но на некоторых приборах есть функция измерения индуктивности. Тогда по данным ЭмПРА можно проверить значения. В случае их несовпадения можно судить о проблемах с прибором.

strojdvor.ru

Схемы подключение люминесцентных ламп через дроссель и без него

Люминесцентные лампы являются наиболее распространенными источниками искусственного света. При этом схемы из подключения сложнее, чем схемы ламп накаливания. Требуется наличие пусковых приборов, качеством которых определяется срок службы ламп.

Схема с использованием ЭмПРА или электромагнитного балласта

Электромагнитный пускорегулирующий аппарат (или ЭмПРА), называемый дросселем, представляет собой наиболее простую схему со стартером. Она активно применяется с советских времен и позволяет подключать к электросети люминесцентные приборы дневного освещения.

Стартером называют небольшую лампочку, состоящую из неонового наполнения и двух электродов, выполненных из биметалла. Для нормального положения характерна их разомкнутость.

Читайте также: Как из шпаклевки сделать декоративную штукатурку

Принцип работы схемы следующий:

  • в момент включения электропитания почти все поступающее напряжение направлено на разомкнутые стартерные контакты. В результате этого происходит образование тлеющего разряда в стартере, который приводит к разогреванию биметаллических электродов. Под действием нагревания происходит их изгибание, приводящее к замыканию цепи;
  • далее внутреннее сопротивление ЭмПРА является единственным ограничением для тока в цепи стартера. Как следствие, происходит почти трехкратное возрастание рабочего тока в лампе, это приводит к моментальному разогреву электродов в люминесцентном светильнике;
  • в это время происходит размыкание цепи за счет остывания биметаллических электродов в стартере;
  • при разрыве цепе самоиндукция дросселя производит запуск высоковольтного импульса, приводящего к возникновению разряда в газовой среде, результатом чего становится зажигание лампы;
  • электроды стартера находятся в разомкнутом состоянии, а сам он не участвует в схеме работы в тот момент, когда светит лампа. Для схем с одной лампой требуются стартеры на 220 Вольт;
  • встречаются последовательные схемы, включающие 2 лампы, для которых требуются стартеры на 127 Вольт.

К основным недостаткам схемы относят:

  1. Расход электроэнергии в данном случае выше на 15%, чем при использовании электронных балластов.
  2. Длительное время запуска (от 1 секунды до 3), которое определяется износом лампы.
  3. Пластины дросселя издают гудящий звук, который постепенно усиливается.
  4. Стробоскопическое мерцание света отрицательно сказывается на зрении.
  5. В случае низких температур происходит отказ работы.

Применение электронного балласта или ЭПРА

Электронный пускорегулирующий аппарат, называемый ЭПРА (электронный балласт), подает напряжение высоких частот (25-133 кГц), тогда как электромагнитный осуществляет подачу напряжения сетевой частоты. Благодаря этому мигание света, заметное для глаз, исключается.

Читайте также: Самостоятельная установка посудомоечной машины

Такая схема подключения люминесцентных светильников фактически является преобразователем. Он необходим из-за особенностей конструкции, поскольку этого требует принцип работы лампы, являющейся источником света и обладающей отрицательным сопротивлением.

Основное отличие ЭПРА – это тот факт, что для работы не требуется ничего, даже стартера. В схемах с ЭПРА применяются автогенераторные схемы, состоящие из выходного каскада на транзисторах и трансформатора.

Плюсы таких схем следующие:

  • особый режим работы и пуск в результате прогревания контактов более бережным способом позволяет продлить срок эксплуатации лампы;
  • схемы ЭПРА сэкономить на электричестве 15-20%, чем при использовании ПРА;
  • мерцание и шум во время работы отсутствуют;
  • стартер для работы схемы не требуется.

Нельзя не отметить малых габаритов и выгодной стоимости ЭПРА по сравнению с дросселем.

Существуют модели, в которых можно регулировать уровень яркости.

Чаще всего такие аппараты комплектуются требуемыми проводами, имеются в продаже модели с удобным подключением сразу к лампам.

В схему включена микросхема, реализующая систему защиты от перегораний или включений в момент отсутствия лампы, это происходит путем блокирования работы транзисторов.

Схема подключения двух люминесцентных ламп

Рассмотрим, как осуществляется подключение двух ламп по 18 Ватт, а также порядок выполнения работ. Чтобы подключить два люминесцентных светильника последовательным путем, требуется наличие:

  • двух ламп;
  • индукционного дросселя;
  • двух стартеров.

Первым делом требуется параллельное подключение стартера к каждой линейной лампе. Чтобы это сделать, требуется воспользоваться одним штыревым выходом с каждого торца обеих ламп. Вторые контакты последовательным способом требуется подключить к сети через дроссель.

В целях компенсирования реактивной мощности, а также для снижения помех, которые постоянно возникают в электросетях, требуется подключение конденсаторов к лампам параллельным способом. В данном случае необходимо учитывать особенность залипания контактов в результате высокого тока при пуске. Особенно это относится к стандартным бытовым выключателям с невысокой стоимостью.

На сегодняшний день пускорегулирующая аппаратура отличается малыми габаритами. Ее устройство позволяет не только подключать лампы, а также защищает от перепадов напряжения, обеспечивает безопасное функционирование схем и др.

Электронные схемы дают возможность подключать сложные системы, такие как подсветка рекламных щитов, а также обеспечение освещением в крупных помещениях промышленного назначения.

Можно ли заменить люминесцентные лампы светодиодными

Люминесцентные лампы и подключенные линейные источники света применяются в учебных, медицинских и многих других заведениях.

Помимо этого, в продаже все чаще появляются новые виды ламп, внешне и габаритами напоминающие люминесцентные. Это светодиодные лампы. Они являются долговечными, экономичными, правда, их отличает относительно высокая стоимость.

Читайте также: Как правильно уложить паркетную доску

Такие лампы адаптированы для замены ими люминесцентной лампы в светильнике. Чтобы применить светодиодную вместо люминесцентной, не требуется механическая доработка конструкции. Потребуется только лишь проведение небольшой работы в целях изменения проводной разводки, а именно, необходимо удаление лишних.

remontposobie.ru

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп — это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

 

Как происходит процесс включения лампы дневного света

Люминесцентная лампа — это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Неисправность дросселя легко можно проверить при помощи обычной лампы накаливания. Один провод подсоединяют непосредственно к патрону лампы, а второй провод – через проверяемый дроссель. Если дроссель исправен, то при включении цепи в сеть лампочка должна гореть.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Для того, чтобы снизить потери энергии, в цепь схемы можно включить конденсатор ёмкостью до 5 мкФ. Включение выполняют параллельно сети.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

При использовании электромагнитного балласта вместо стартера можно применить обычную кнопку для входного звонка. Он включается в схему так, чтобы после его нажатия происходила подача электроэнергии, а после того как люминесцентная лампа засветится, можно прекратить удержание кнопки.

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Выбирая светильник с люминесцентными лампами нужно уделять внимание качеству выключателей – повышенные стартовые токи могут стать причиной «залипания» контактов.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Опытные электрики советуют раз в год переворачивать лампу дневного света, меняя местами контакты подключения – такая маленькая хитрость значительно увеличивает эксплуатационный срок люминесцентных ламп.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

www.expertporemontu.ru

Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

fb.ru

Подключение люминесцентных ламп с дросселем

Люминесцентные светильники намного экономнее ламп накаливания по электропотреблению, поскольку меньше тратят на образование тепла. Свет от них более рассеянный и может быть выбран по цвету в широком диапазоне, хотя наиболее популярны светильники белого дневного спектра.

Что касается недостатков люминесцентных ламп, то для их работы необходимы дополнительные устройства, обеспечивающие высокое напряжение до и ограничение тока после розжига.

Внутри лампы имеется азот, а как известно любой газ является плохим проводником электрического тока. Чтобы облегчить ионизацию газа внутрь закачивают небольшое количество паров ртути. Но для начального пробоя всё равно требуется напряжение выше сетевого. Также для облегчения пробоя внутри делаются спирали, которые во время первых секунд пуска накаляются и испускают массовый поток электронов из металла в газ.

Простое подключение лампы дневного света к сети 220 В не подойдет. Так как при таком подключении, во-первых, не может создаться импульс повышенного напряжения, необходимый для стартового розжига этого источника света; во-вторых, даже если лампа запустится, при искрении в розетке, то сразу же перегорит. Светящаяся лампа с плазмой внутри имеет отрицательное дифференциальное сопротивление, и за неимением в цепи другого импеданса, через неё течет ток короткого замыкания. Поэтому уже давненько придумали простую и надежную схему подключения с дросселем и стартером. Первым по этой схеме срабатывает стартер.

Стартер

Маленький бочонок внутри представляет собой газоразрядную лампу с нормально разомкнутыми биметаллическими электродами с параллельно соединенным конденсатором малой емкости 0,003–0,1 мкФ. Крошечный конденсатор растягивает скачок напряжения по фронту, чтобы хватило времени на создание газового разряда в лампе, а также он подавляет радиопомехи от замыкания электродов стартера.

Для запуска люминесцентной лампы требуется создать тлеющий разряд внутри неё. Тлеющий разряд случается при нагреве нитей лампы до температуры 800–900 градусов, когда через газ начинает проходить электрический ток порядка 30 мА. Только благодаря стартеру и происходит кратковременный накал спиралей при замыкании его внутренних электродов.

При размыкании биметаллических электродов стартера в работу подключается дроссель.

Дроссель

Катушка, включенная как электромагнитный балласт, ограничивает силу переменного тока, протекающего через неё за счет индуктивного сопротивления. Что спасает люминесцентную лампу от короткого замыкания, после того как в ней произойдет зажигание плазмы.

Дроссель крайне важен для запуска лампы, поскольку в предложенных схемах только он может повысить напряжение. Всё благодаря внутренней самоиндукции катушки. После того как электроды стартера размыкаются, дроссель выдает накопленную ЭДС импульсом на концы лампы.

Конденсатор

Электрическая емкость, подключенная на входе питания светильника, гасит реактивную мощность, которую всегда при работе тянет дроссель. Светильник без этого сетевого фильтра заработает, но будет потреблять больше электроэнергии из сети.

Конденсатор по напряжению следует подбирать с запасом выше сетевого, по емкости его выбор производится в зависимости от мощности люминесцентной лампы:

  • 2 мкФ — от 4 до 15 Вт;
  • 4 мкФ — от 15 до 58 Вт;
  • 7 мкФ — от 58 Вт до 100 Вт.

Подключение двух ламп

В случае подсоединения одной люминесцентной лампы подбирать элементы просто: лампа мощностью 40 Вт, значит и дроссель на 40 Вт, а стартер на напряжение 220 В.

При подсоединении двух ламп до одного дросселя, к работе нужно отнестись повнимательнее. В этом случае для двух 40 ваттных ламп нужен дроссель мощностью не ниже 80 Вт, также следует найти два стартера на напряжение 127 В. Если детально разобрать схему, то станет очевидно, что оба стартера соединены последовательно, следовательно, на каждый из них приходится лишь половина сетевого напряжения.

Предложенное тандемное подключение имеет лишь один недостаток — при выходе из строя одной лампы, вторая тоже перестанет работать.

volt-index.ru

Подключение двух ламп с одним дросселем

При подключении люминесцентных ламп или светильников дневного света иногда возникает желание использовать подключение двух ламп с одним дросселем. В таком случае конструкция светильника станет дешевле, так как вместо двух дросселей будет использоваться лишь один. В данной статье мы наглядно рассмотрим такую схему и изучим все ее подводные камни.

Подключение ламп таким способом тянет собой целый ряд проблем.

  1. На практике схема работает только с одинаковыми стартерами Phillips S2. Ради эксперимента, подключение двух ламп к одному дросселю, производилось с разными стартерами: Phillips S2 + Phillips S10. Схема отказалась запускаться. В дальнейшем при замене вышедших из строя со временем стартеров этот фактор надо учитывать.
  2. При выходе из строя одного из элементов схемы не запуститься ни одна лампа.

Если эти нюансы не являются помехой, можно смело приступить к сборке схемы.

Схема подключения двух люминесцентных ламп на один дроссель

Основная часть схемы дублируется со схемы стандартного подключения лампы.

Разница лишь в том, что лампы две, и соединены они вместе со своими стартерами последовательно согласно схеме.

Для наглядного примера схема была собрана на двух лампах синего и белого цвета свечения.




Но с ходу схема отказалась работать. После замены стартеров (одинаковой маркировки) лампы ярко засветились.

Применять такую схему или нет, решать вам, так как она имеет не только свои преимущества, но и ряд недостатков.

 

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Отправить ответ

avatar
  Подписаться  
Уведомление о