Как подобрать резистор для понижения напряжения: Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) ?

Содержание

Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) ?

 В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ.

Закон Ома при понижении напряжения

 Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома. Закон описывает зависимость падения напряжения, тока от сопротивления.
Сам закон весьма понятен и схож с представлением таких физических событий как протекание жидкости по трубопроводу. Где жидкость, а вернее ее расход это ток, а ее давление это напряжение. Ну и само собой любые изменения сечения или препятствия в трубе для потока, это будет сопротивлением. Итого получается, что сопротивление «душит» давление, когда из трубы под давлением, могут просто капать капли, и тут же падает и расход. Давление и расход величины весьма зависящие друг от друга, как ток и напряжение. В общем если все записать формулой, то получается так:

R=U/I; То есть давление (U) прямо пропорционально сопротивлению в трубе (R), но если расход (I) будет большой, то значит сопротивления как такового нет… И увеличенный расход должен показывать на пониженное сопротивление.

 Весьма туманно, но объективно! Осталось сказать, что закон то этот впрочем, был получен эмпирическим путем, то есть окончательные факторы его изменения весьма не определены.

Теперь вооружившись теоретическими знаниями, продолжим наш путь в познании того, как же снизить нам напряжение.

Как понизить напряжение с 12 на 5 вольт с помощью резистора

 Самое простое это взять и использовать нестабилизированную схему. То есть когда напряжение просто понизим за счет сопротивления и все. Рассказывать о таком принципе особо нечего, просто считаем по формуле выше и все. Приведу пример. Скажем снижаем с 12 вольт до 5.

R=U/I. С напряжением понятно, однако смотрите, у нас недостаточно данных! Ничего не известно о «расходе», о токе потребления. То есть если вы решите посчитать сопротивление для понижения напряжения, то обязательно надо знать, сколько же «хочет кушать» наша нагрузка.

Эту величину вам необходимо будет посмотреть на приборе, который вы собираетесь питать или в инструкции к нему. Примем условно ток потребления 50 мА=0,05 А. Осталось также еще заметить, что по этой формуле мы подберем сопротивление, которое будет полностью гасить напряжение, а нам надо оставить 5 вольт, то 12-5=7 вольт подставляем в формулу.
R= 7/0,05=140 Ом нужно сопротивление, чтобы после из 12 вольт получить 5, с током на нагрузке в 50 мА.
 Осталось упомянуть о не менее важном! О том, что любое гашение энергии, а в данном случае напряжение, связано с рассеиваемой мощностью, то есть наш резистор должен будет «выдержать» то тепло, которое будет рассеивать. Мощность резистора считается по формуле.

P=U*I. Получаем. P=7*0,05=0,35 Вт должна быть мощность резистора. Не менее. Вот теперь курс расчет для резистора можно считать завершенным.

Как понизить напряжение с 12 на 5 вольт с помощью микросхемы

 Ничего принципиально не меняется и в этом случае. Если сравнивать этот вариант понижения через микросхему, с вариантом использующим резистор. По факту здесь все один в один, разве что добавляются полезные «интеллектуальные» особенности подстройки внутреннего сопротивления микросхемы исходя из тока потребления. То есть, как мы поняли из абзаца выше, в зависимости от тока потребления, расчетное сопротивление должно «плавать». Именно это и происходит в микросхеме, когда сопротивление подстраивается под нагрузку таким образом, что на выходе микросхемы всегда одно и тоже напряжение питания! Ну и плюсом идут такие «полезные плюшки» как защита от перегрева и короткого замыкания. Что касательно микросхем, так называемых стабилизаторов напряжения на 5 вольт, то это могут быть: LM7805, КРЕН142ЕН5А. Подключение тоже весьма простое.

Само собой для эффективной работы микросхемы ставим ее на радиатор. Ток стабилизации ограничен 1,5 -2 А.
Вот такие вот принципы понижения напряжения с 12 на 5 вольт. Теперь один раз их поняв, вы сможете легко рассчитать какое сопротивление надо поставить или как подобрать микросхему, чтобы получить любое другое более низкое напряжение.

Осталось сказать пару слов о ШИМ.

 Широко импульсная модуляция весьма перспективный и самое главное высокоэффективный метод питания нагрузки, но опять же со своими подводными камнями. Вся суть ШИМ сводится к тому, чтобы выдавать импульсами такое напряжение питание, которое суммарно с моментами отсутствия напряжения будет давать мощность и среднее напряжение достаточное для работы нагрузки. И здесь могут быть проблемы, если подключить источник питания от одного устройства к другому. Ну, самые простые проблемы это отсутствие тех характеристик, которые заявлены. Возможны помехи, неустойчивая работа. В худшем случае ШИМ источник питания может и вовсе сжечь прибор, под которые не предназначен изначально!

Резисторы, ток и напряжение

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Как выпаивать радиодетали из плат
  • Как проверить диодный мост
  • Как определить емкость конденсатора
  • Маркировка резисторов по мощности и сопротивлению

Опубликовано:
08.05.2018
Обновлено: 08.05.2018

Как уменьшить вольтаж трансформатора

Как уменьшить вольтаж на трансформаторе.

Привет коллеги!

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора.

На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины.

Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу»

Работать нужно очень осторожно, так как легко можно порезаться о пластины

Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В.

В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

 После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное.

Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали.

(Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке.

Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37.

Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков).

Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

Гасящий конденсатор вместо резистора

Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.

Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости.

Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.

Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.

Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.

Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.

Это видно и из формулы для емкостного сопротивления конденсатора:
Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле:

А посколькуито

Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания:
Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы:

Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.

Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,          Мы делаем звук живым!

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину. 

В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз

Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно

Как же снизить напряжение на электролампах? Существуют два простых способа.

Первый-включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо.

Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д.

Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис.2.).

На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности.

Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.

Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года.

В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.

Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209. Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами. Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время. Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности. Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями. Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом. При выборе типа диода помните, что его максимально допустимый  рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный  ток, потребляемый одновременно всеми  лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В ) не должен превышать 4А.

Как повышают и понижают напряжение?

Повышение и понижение напряжения осуществляют с помощью трансформаторов.

Трансформатор состоит из двух катушек изолированного провода, намотанных на общий стальной сердечник (рис. 16.4).

На одну катушку (называемую первичной обмоткой) подают переменный ток одного напряжения, а с другой катушки (вторичной обмотки) снимают переменный ток другого напряжения.

Рис. 16.4. Повышающий и понижающий трансформаторы.

Оно сосредоточено в основном внутри стального сердечника, поэтому обе обмотки пронизываются одним и тем же переменным магнитным потоком.

Поэтому вследствие явления электромагнитной индукции в каждом витке каждой обмотки возникает одна и та же ЭДС индукции.

Суммарная ЭДС в каждой из катушек равна сумме ЭДС во всех ее витках, так как витки соединены друг с другом последовательно. Поэтому отношение напряженийина вторичной и первичной обмотках равно отношению числа витков в них:Например, если во вторичной обмотке в 10 раз больше витков, чем в первичной, напряжение во вторичной обмотке будет в 10 раз больше, чем в первичной.

Если напряжение во вторичной обмотке трансформатора больше, чем в первичной, его называют повышающим, а если меньше, то понижающим.

Основными потребителями электроэнергии являются производство и транспорт. На бытовые нужды приходится не более 5-10% всей производимой электроэнергии.

Рис. 16.5. Основные этапы производства, передачи и потребления электроэнергии.

Статьи энциклопедии

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

А на плате он выглядит следующим образом:

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

Закон Ома для участка цепи

Пожалуй, закон Ома для участка цепи является основой электротехники и электроники. Любое Пособие по физике для поступающих в вузы описывает Закон Ома и любой инженер должен его знать. Этот закон настолько прост, что его, по идее, должен знать и понимать каждый школьник. Однако я встречал людей с высшим техническим образованием, которые не знали как рассчитать простейшую электрическую цепь из двух резисторов. И это не шутка. Именно поэтому я решил написать небольшую статью, посвящённую Закону Ома для участка цепи. Постараюсь сделать это понятными словами.

Закон Ома для участка цепи определяет зависимость между силой тока в проводнике и напряжением (разностью потенциалов) между двумя точками этого проводника. Эти точки ещё называют сечениями. Почему? Проводник, каким бы он ни был (круглым, квадратным или любой другой формы) можно мысленно рассечь (см. рис. 1). Это и будет сечение. А ещё есть понятие площадь поперечного сечения (обычно, когда говорят «сечение» по отношению к проводнику, то как раз и подразумевают площадь поперечного сечения, но это уже другая тема).

Рис. 1. Сечение проводника.

В 1826 г. немецким учёным Георгом Омом (1787-1854) было замечено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока является величиной постоянной, то есть:

U/I = R = const
Эта величина зависит от геометрических свойств проводника (то есть от его размеров, в частности, от площади поперечного сечения), а также от его электрических свойств и температуры. Эта величина называется омическим (активным) сопротивлением, или просто сопротивлением.

Определение закона Ома для участка цепи следующее

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:
I = U/R
Где
U – напряжение на данном участке цепи
R – сопротивление данного участка цепи
Сопротивление проводника – это основная электрическая характеристика проводника. Эта характеристика определяет упорядоченное перемещение носителей тока в этом проводнике (или на участке цепи).

Единица измерения омического сопротивления в СИ – ом (Ом). Проводник имеет сопротивление 1 Ом, если при силе тока в этом проводнике 1 А разность потенциалов (напряжение) на его концах равна 1 В, то есть

 
1 Ом = 1 В / 1 А
Иными словами, если взять проводник, по которому течёт ток силой 1 А, отмерить отрезок этого проводника таким образом, чтобы напряжение на концах этого отрезка было равно 1 В, то сопротивление этого отрезка будет 1 Ом (рис. 2).

Рис. 2. Сопротивление проводника.

Как говаривал один известный товарищ – теория без практики мертва. Надеюсь, что всё прочитанное выше вы поняли. Но остался один вопрос – зачем это надо? Где можно применить полученные знания на практике? Приведу два простых примера, которые, однако, используются очень часто в электронике.

Делитель напряжения

Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов (см. рис. 3). Если вы не знаете, что такое резисторы, то советую ознакомиться со статьёй РЕЗИСТОРЫ. Ну а если знаете, то дальше можете прочитать о том, как это сделать.

Задача, в общем-то, не сложная. Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором – (12 – 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А). Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:

R = U/I = 12 В / 0,05 А = 240 Ом
Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток – в АМПЕРАХ, а сопротивление – в ОМАХ.

Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:

R1 = U1 / I = 9 / 0,05 = 180 Ом
R2 = U2 / I = 3 / 0,05 = 60 Ом
Ну вот и всё. Задача решена. Однако использовать такой делитель нужно с умом. Ведь любая нагрузка имеет своё сопротивление, которое называется входным сопротивлением. Это значит, что, подключив нагрузку к выходу делителя, мы тем самым уменьшим сопротивление цепи, а это, в свою очередь, увеличит ток в цепи и падение напряжения на резисторе R1 увеличится, а на нагрузке, соответственно, уменьшится. Что из этого следует? А следует из этого тот печальный факт, что сколь-нибудь мощную нагрузку подключать к выходу делителя нецелесообразно. Поэтому такие делители используются в основном, в электронных схемах, где протекают относительно небольшие токи.

Если интересно, то вы можете немного поэкспериментировать с делителем напряжения при помощи представленного ниже флэш-ролика (рис. 3). Для изменения входного напряжения и сопротивления резисторов воспользуйтесь соответственными «ползунками» или непосредственно введите данные в поля жёлтого цвета. Если флэш-ролик не отображается или не работает, то вам придётся настроить (или заменить) ваш браузер и/или установить (обновить) флэш-плеер.

Рис. 3. Делитель напряжения.

Как зажечь (но не сжечь) светодиод?

Светодиоды в наше время применяются очень широко – от простых устройств индикации до автомобильных фонарей и светофоров. Возможно, у вас возникала мысль поменять лампочки в автомобиле на светодиоды. Как бывалый автомобилист я вам этого делать не советую – возни много, а смысла мало. А вот как электронщик – помогу разобраться в премудростях включения светодиодов в электрическую цепь. Дело это несложное, но многие просто понятия не имеют, что и здесь нужно всё делать «по науке». А потом говорят, что светодиоды – вещь ненадёжная, хотя, как правило, выходят из строя светодиоды при правильной эксплуатации очень и очень редко. А вот при неправильной – ещё как. При желании сжечь светодиод можно моментально.

Надо сказать, что сейчас в магазинах довольно много разных «мигающих» и прочих светодиодов, которые на самом деле являются электронными устройствами, встроенными в корпус светодиодов. Такие устройства можно подключать непосредственно к источнику питания, без гасящего резистора. Однако мы здесь будем говорить об обычных светодиодах.

Схема включения светодиода показана на рис. 4. При включении светодиода в цепь постоянного тока необходимо соблюдать полярность (см. документацию на светодиод).

Итак, главное, что нам нужно знать:

  • Максимальное напряжение
  • Максимально допустимый ток светодиода
Максимально допустимый ток светодиода – это ток, при котором гарантируется долговременная работа светодиода без выхода его из строя. Не надо путать с кратковременным максимальным током. Эти данные берутся из справочных материалов. Но обычно ток светодиода составляет 10…20 мА.

Итак, допустим, что мы зачем-то хотим установить светодиод на автомобиль. Напряжение бортовой сети автомобиля при исправном оборудовании не может превышать 15 В. На это напряжение и будем рассчитывать. Допустим, что максимальный ток нашего светодиода составляет 20 мА (0,02 А). Далее нам необходимо учесть тот факт, что на любом полупроводнике (коим является и светодиод) падает какое-то напряжение. Для светодиодов это обычно 1,5…2 В. Примем его для нашего случая равным 2 В.

Поскольку резистор и светодиод будут подключены последовательно, то максимально возможное напряжение на резисторе для нашего примера будет

U1 = U – Ud = 15 – 2 = 13
Где
U1 – напряжение на гасящем резисторе R1
U – входное напряжение
Ud – напряжение, падающее на светодиоде
Теперь остаётся рассчитать резистор таким образом, чтобы через него протекал ток 20 мА при напряжении 13 В. Делаем это с помощью известного нам закона Ома для участка цепи:
R = U1 / I = 13 / 0,02 = 650 Ом
Ну вот и всё. Задача решена – для включения светодиода с заданными характеристиками нам потребуется резистор сопротивлением 650 Ом. Однако сопротивление – это не единственный параметр резистора. Резистор ещё должен иметь подходящую мощность. Кроме того, промышленностью не выпускаются резисторы сопротивлением 650 Ом (точнее, выпускаются, но для особых случаев). Но это уже другая история. Хотите знать больше? Читайте статью РЕЗИСТОРЫ.

Ну и кроме того предоставлю вам возможность закрепить полученный материал с помощью флэш-ролика (рис. 4).

Рис. 4. Подключение светодиода.

См. также:


Потенциометр и делитель напряжения | Класс робототехники

Потенциометр и делитель напряжения

В одном из предыдущих уроков, для ограничения тока через светодиод, мы использовали резисторы. Как было тогда отмечено, существует множество резисторов разного номинала и рассчитанных на разную мощность. Но оказывается, кроме обычных резисторов есть и элементы с изменяемым сопротивлением, называемые переменными резисторами.

Обычно, переменные резисторы делают в виде делителя напряжения, и такие элементы называются потенциометрами. Кстати, потенциометры часто называют реостатами, хотя это и не совсем так. Вот так выглядит типичный регулировочный потенциометр.

Для чего может быть полезен прибор с переменным сопротивлением? Если говорить о чисто переменном резисторе, то он бывает нужен в ситуациях, когда нам требуется регулировать ток в цепи. Возьмем всё тот же светодиод. Если в цепи светодиода мы поставим переменный резистор — потенциометр, скажем, на 20 кОм, то с помощью него мы сможем регулировать яркость свечения.

Соберем эту схему на плате и проверим в действии. В этом макете мы используем потенциометр на плате от RobotClass. К нему удобно подключать провода и втыкать его в макетную плату.

Крутим ручку потенциометра — светодиод светится ярче или тусклее. Кроме самого потенциометра в схеме также можно заметить обычный резистор. Зачем он нужен? Дело в том, что поворачивая ручку потенциометра мы можем менять его сопротивление в диапазоне от 20 кОм до нуля. Получается, что в крайнем положении без дополнительного защитного резистора через светодиод потечет слишком большой ток и он сгорит!

Конечно, мы можем не крутить ручку потенциометра до упора, но разве можно удержаться?:) Лучше поставим дополнительный резистор, который в крайнем положении ручки не даст светодиоду сгореть. Для случая с кроной, подойдет резистор на 1 кОм. Если будем питать схему от Arduino (то есть от 5 Вольт), то можно поставить 200 Ом.

Вконтакте

Facebook

Twitter

Какой стабилитрон на 3 вольта. Блок питания. Схема блока питания с фиксированным выходным напряжением

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Как из 5 Вольт получить 3. 3 Вольта? Нужен наиболе простой способ

Есть микросхема, которая питается от 3. 3 Вольт. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? 3 годов назад от Евгений Пуртов

3 Ответы

Микросхема потребляет боле-мене стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100. 0 мкф на Землю) . Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3. 3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал. 3 годов назад от Andrey Fedaevskiy Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78х. Такие дела! 3 годов назад от asdasdasdas dasdasdasd Наиболе простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3. 3 v. если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3. 3 вольта. Или просто переменным резистором выставляешь 3. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая. 3 годов назад от Яркие Краски

Связанные вопросы

9 месяцев назад от *****

1 год назад от федор волошин

1 год назад от Андрей Козлов

engangs.ru

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ — domino22

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ

  1. микросхема-стабилизатор на 3.3В или микросхема-инвертор 5В на 3.3В сам
  2. Господи, да включи ее напрямую, какие 3.3 в, ты смотри максимально допустимые, да и те, можно в нку поднять 20%
  3. Можно поставить стабилизатор на 3,3 в. Их полно всяких, выбирайте подходящую.
  4. 1) никаких сопротивлений, если ты питаешь микросхему Сопротивление ставится, если тебе уровень сигнала уменьшить!2) Бершь LM1117-3.3 дешовая, доступная и дешовая. Только на вход и выход желательно поставить конденсаторы электоролитические — так стабильнее будет.
  5. Поставить стабилитрон на 3,3 вольта.
  6. Если бы вы указали, что за микросхема, получили бы дельный совет. Почему у этих вопрошающих все засекречено?
  7. Микросхема потребляет более-менее стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100.0 мкф на Землю) .Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3.3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал.
  8. Ищи LDO стабилизатор — это стабилизатор позволяющий подавать напряжение чуть выше чем на входе. Поясню почему 7833 не годится: у серии 78xx минимальное падение между входом и выходом около 2,5 Вольт, так что получить 3,3 из 5 не удастся. У LDO входное напряжение может отличаться от входного на 0,2…0,5 Вольт, Примеры: AMS1117-3.3, NCP551-3.3 и подобные.Микросхема — это и наджность и простота схемотехнического решения.
  9. Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78хх. Такие дела!
  10. Резистор 300Ом + стабилитрон 3.3В
  11. Наиболее простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3.3 v… если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3.3 вольта. Или просто переменным резистором выставляешь 3.3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая..
Внимание, только СЕГОДНЯ!

www.domino22.ru

Как из 5 вольт сделать 3 —

Сегодня мы разберём как из 5 вольт сделать 3 на примере прибора для удаления катышков. Данное руководство можно использовать для любого устройства с питанием 3 вольта. Прибор для удаления катышков http://ali.pub/1be8qi Понижающий преобразователь http://ali.pub/1be9f0



Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провожу небольшой эксперимент, и объясняю результаты. Обсудить н

Краткий ликбез по типам низковольтных стабилизаторов напряжения и принципам их работы. поддержать канал материально. http://www.donationalerts.ru/r/arduinolab

Подробно о явлениях в трехфазной электропроводке возникающих в результате обрыва нулевого проводника. Повышенное напряжение в розетке. Как защитить свою электри

Переделка старого блока питания. Группа ВК https://vk.com/beginner_electronika Всем привет! В этом видео я расскажу Вам, как можно переделать старый источник пи

Here are the instructions to wire a stable AMS1117-3.3 voltage regulator properly. This can power an ESP8266 or any 3.3V micro-controller reliably supporting cu

Как из зарядного устройства от мобильного телефона получить разное напряжение на выходе. ======================================================= Тестер RM 102

В видеомагнитофонах есть сборка-модулятор.Это готовый маломощный телевизионный передатчик и антенный усилитель.На вход модулятора нужно подать видео и аудио сиг

Подписывайтесь на нашу группу Вконтакте — http://vk.com/chipidip, и Facebook — https://www.facebook.com/chipidip * Казалось бы, что сложного в последовате

Давно хотел сделать из пьезоэлемента от зажигалки звуковое устройство. Радиопередатчик из пьезика https://youtu.be/3-SVSQQ-REU я соорудил, Фонарик из пьезоэлеме

Wireless зарядка на любой телефон — http://got.by/21qcge Зарядник QuickCharge 3в1 — http://got.by/294bwr Клей для ремонта дисплеев — http://got.by/294bpy Прогр

Внимание не суйте пальцы на высоковольтную часть схемы, там может укусить 220 вольт Недорогие блоки питания на 12V http://ali.pub/73zah и на 5V http://ali.pub

В видео показал как я паял себе стабилизаторы напряжения для автомобиля. с 14в понижает до 12в и не дает перегореть диодам! Моя партнерка на ЮТУБЕ — www.air.i

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ. ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ своими руками. ♦DIY CAM♦ Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса

Покупал для nrf24l01 стабилизаторы, за 50 штук отдал менее двух долларов, все естественно не проверял, но те что использовал работают. Как подключять и на какое

vimore.org

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.


В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

Работа схемы

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.

Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях — X.X (CX 1117 — X.X) (где XX — напряжение на выходе).

Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.

Поделись статьей:

Похожие статьи

Лошадка из картона и ниток с подвижными частями с видео. Урок технология 2 класс

Это не просто лошадка, это лошадка с подвижными деталями, лошадка-дергунчик. Дергаешь за ниточку, а она будто бежит, высоко поднимает ножки и задирает свой пушистый хвост. Изготовление такой поделки включено в программу Перспектива, тетрадь по технологии за 2 класс. Но не всякий ученик второго класса сообразит без подробной инструкции, как делать такую поделку, куда продевать нитки, чтобы лошадка побежала. Сейчас мы во всем том и разберемся: из чего и как вырезать, как скреплять, как придать лошадке движение. В конце инструкции — подробное видео о том, как правильно соединить движущиеся части фигурки.

Что понадобится для изготовления лошадки на урок технологии

Шаблон лошадки (из рабочей тетради по технологии за 2 класс), цветной картон, цветная бумага, карандаш, ножницы, клей, нитки, иголка.

Как сделать лошадку из картона

Вырезаем шаблон из тетради по технологии. Если вы делаете лошадку не на урок, то можете распечатать и вырезать этот шаблон:

Когда детали шаблона вырезали, переводим их на цветной картон. Чтобы получилось аккуратнее, обводить будем с изнанки. Из коричневого картона делаем туловище и ноги лошадки, из желтого — хвост.

Детальки вырезаем по контуру. На цветной бумаге обводим отдельно шаблон гривы и копыт лошадки, тоже вырезаем.

Приклеиваем гриву к голове, а копытца к ногам, используя клей.

Теперь необходимо прикрепить подвижные части — ноги и хвост — к туловищу. Обратите внимание, что на шаблоне отмечены крестики и точки. Отмечаем их на изнанке наших деталей. Делаем шилом или иголкой дырочки в центре крестиков и точек. Крестики и на туловище, и на подвижных деталях. Нам нужно будет соединить их так, чтобы крестики на туловище и детальках совпали, а делать это будем следующим образом:

Берем иголку с ниткой, завязываем на конце нитки большой узелок. Видим крестик у лошадки под грудью (лошадка повернута к нам цветной стороной). Втыкаем в него иголку с ниткой. На ту же иголку надеваем передние ноги, тоже попав в середину крестика. Вытягиваем нитку, пока узелок не упрется в крестик. 

Переворачиваем лошадку изнанкой к себе и втыкаем иголку в точку на ноге. В туловище в этом месте иголку заводить не нужно, точка только на детали ног. Продеваем иголку с ниткой в эту точку полностью, далее иголку с нитки снимаем, а нитку оставляем висеть. Не обрезайте ее, она нам нужна, за нее мы будем дергать, чтобы лошадка двигалась.

Аналогично прикрепляем вторую пару ног и хвост. Нитки опускаем вниз, соединяем друг с другом и завязываем внизу узелок. С изнанки правильно скрепленная поделка будет выглядеть так:

Дергаем за нитки, и лошадка будто бы бежит, высоко поднимая ножки и задирая свой чудной хвостик 🙂

Видео как сделать лошадку-дергунчика

 

Если есть желание, лошадку можно украсить, приклеив на нее блестки и звездочки. Лошадка-дергунчик готова. Идем получать пятерку!

Такую симпатичную лошадку можно сделать не только на урок технологии, но и просто так, чтобы интересно и с пользой провести время и порадовать своей поделкой родителей или младших братьев и сестер. А если пофантазировать, придумаете целое море разных зверюшек-дергунчиков, нарисовав вместо лошадиной головы, к примеру, собачью или кошачью мордашку и изменив хвостик.

Как уменьшить обороты кулера с помощь резистора — расчёт мощности и сопротивления

Купил я недорого для своего компа мощный БП (маде ин чина) — на полтора киловатта, для топового процессора + пару топовых видеокарт в кроссе + весь обвес с очень хорошим запасом.
Но радость моя была очень коротка — БП оказался ОЧЕНЬ и ОЧЕНЬ шумным!
Разобрал я корпус и посмотрев на данные вентилятора глаза мои округлились — смотрите сами

14.4 Ватт !!! — таких мощных вентиляторов для охлаждения БП я ещё не встречал! И дует конечно как турбина!
Самое печальное, что узкоглазые почему то использовали вентилятор без возможности регулирования оборотов — то есть БП работает в холостую а шумит как на полную нагрузку, или например установлен в помещении с кондиционером, т.к. хорошее внешнее охлаждение — а толку нет, будет херачить по полной 🙁

Итак, задача — понизить обороты вентилятора на треть!

Исходные данные:
Напряжение U=12V Сила тока I=1.2A

Вспоминаем закон Ома для участка цепи U = I*R и формулу мощности P=U*I

Соответственно, мощность кулера P=U*I=12v*1.2A=14.4W
Посчитаем сопротивление кулера R0=U/I=12V/1.2A=10 Ом

Схема до изменений
—(R0)—

Схема после изменений (последовательно добавляем резистор)
—[R1]—(R0)—

Источник питания в данную цепь даёт нам постоянное напряжение 12 вольт, соответственно, для снижения оборотов на треть добавим к имеющимся R0=10 Ом ещё сопротивление на R1=3 Ом.
Рассчитаем получившуюся силу тока в цепи
I = U / (R1+R2) = 12 V / 13 Ом = 0.923 А

Теперь рассчитаем падение напряжения на сопротивлении
U1 = I*R1 = 3 Ом * 0.923 А = 2,769 V
Рассчитаем необходимую мощность сопротивления
P1 = U1*I = 2,769 V * 0.923 A = 2.556 Вт
Итого, нам нужен резистор 3 Ом мощностью 2.556 Вт — лучше взять с запасом на 3 Вт

Для того, чтобы набрать нужное сопротивление можно использовать несколько резисторов, для этого вспоминаем правила последовательного и параллельного подключений в сети.
Думаю, нам будет проще подобрать последовательно R=R1+R2+..+RN с мощностью P=P1+P2+…+PN

Три последовательно соединённых резистора на 1ом мощностью 1Вт дадут нам нужный эффект.

PS
Либо проще — купить другой менее мощный и шумный вентилятор и заменить 🙂

Запись опубликована on 09.02.2018 at 10:34 and is filed under Полезности. Вы можете читать комментарии, используя RSS-ленту. Вы можете оставить комментарий, или отправить трекбек с Вашего сайта.

типов резисторов и как выбрать один

Знаете ли вы, что существует много типов резисторов?

В вашей электронной схеме указано, что вам нужен резистор на 100 кОм. Итак, вы идете в интернет-магазин, чтобы купить его. Но есть все эти варианты: тонкая пленка, углеродный состав, металлическая пленка +++.

«Просто дайте мне долбаного резистора 100к!», — кричите вы в отчаянии.

Поверьте, я знаю ваше разочарование. Мне потребовалось много времени, чтобы на самом деле читать о различных типах резисторов.Поэтому я просто выбрал случайные резисторы для всех своих электронных схем. Обычно это работало безупречно. Может быть, мне повезло, а может я просто не определил резистор как проблему, когда у меня была проблема.

В любом случае, моя цель — предоставить простое руководство по выбору резистора, не вдаваясь в подробности.

Типы резисторов

Резисторы

могут быть изготовлены из различных материалов и из разных материалов. Вот несколько типов резисторов:

  • Состав углерода
  • Карбоновая пленка
  • Металлопленка
  • Толстая и тонкая пленка
  • Фольгированный резистор
  • Проволочная

У разных типов разные свойства.Некоторые из них очень точны, некоторые могут выдерживать высокие температуры, некоторые — высокую мощность, а некоторые — дешевы. Некоторые из них подходят для приложений с низким уровнем шума, некоторые — для приложений с высокой мощностью, некоторые — для высокоскоростных приложений, а некоторые — для измерительных схем.

Если вы хотите узнать больше о конкретных типах резисторов, я рекомендую посетить сайт www.resistorguide.com

Выбор резистора

Итак, как выбрать резистор?

Прежде всего, вам нужно выбрать значение сопротивления.Для этого вы используете закон Ома. Один из распространенных примеров — найти значение резистора, необходимое для светодиода.

Далее необходимо учитывать мощность, которую резистор должен рассеивать. Рассеиваемая мощность в резисторе может быть рассчитана по формуле

где P — мощность в ваттах, V — падение напряжения на резисторе, а R — сопротивление резистора в Ом.

Давайте посмотрим на пример:

В этой схеме мы используем светодиод с падением напряжения около 2В.Мы обнаружили, что резистор должен иметь номинал 350 Ом. Схема питается от батареи 9 В.

Какая мощность рассеивается на резисторе?

Чтобы ответить на этот вопрос, мы сначала находим падение напряжения на резисторе. Допустим, мы используем светодиод с падением напряжения 2 В. Это означает, что падение напряжения на резисторе будет 9-2 В = 7 В.

Используя формулу для рассеиваемой мощности, находим P = 7 В * 7 В / 350 Ом = 0,14 Вт.

Значит, нам нужен резистор мощностью не менее 140 мВт.Но желательно побольше.

Практическое правило — найти резистор с удвоенной номинальной мощностью. Здесь я бы выбрал резистор 250 мВт, так как они самые стандартные.

Обычно вы можете просто использовать самый дешевый резистор, который вы можете найти, с правильной номинальной мощностью.

Когда выбрать нестандартный резистор?


Итак, почему все эти разные типы резисторов, о которых я упоминал ранее? Потому что для некоторых схем имеет значение и фактический тип резистора. Эти схемы включают:

  • Аудиосистемы чувствительные к шумам
  • Цепи РФ
  • Цепи большой мощности
  • Высокоточные измерительные схемы
  • Скоростные цепи

Какой тип резистора выбрать для какого приложения выходит за рамки данной статьи.Если вы строите какие-либо из этих типов схем, посмотрите, указан ли в схемах тип резистора. Если нет, возможно, эта статья может вам помочь.

Сводка

Для большинства стандартных схем вам не нужно беспокоиться о типах резисторов, которые вы выбираете. Все, о чем вам нужно беспокоиться, это значение сопротивления и сколько мощности оно может потребовать.

Если ваша схема не сообщает вам необходимую номинальную мощность резистора, и вы не знаете (или не хотите знать), как ее рассчитать, попробуйте использовать стандартный резистор 1/4 Вт.Если через короткое время он выйдет из строя, вам следует заменить его на более высокую мощность. Возможно, вам стоит даже попытаться вычислить приличную стоимость;)

А резистор подобрать сложно? Напишите свои комментарии и вопросы ниже!

Вернуться от типов резисторов к электронным компонентам онлайн

Как выбрать правильный резистор

Все, что вам нужно знать, чтобы выбрать правильный резистор для вашего первого проекта разработки печатной платы

Планируете ли вы приступить к разработке своей первой печатной платы? Существует так много типов компонентов, которые вы в конечном итоге будете использовать, но ни один из них не может превзойти печально известный из них — простой резистор.Если вы когда-нибудь смотрели на печатную плату, вы обнаружите, что резисторы повсюду, они контролируют ток и заставляют светиться светодиоды. Но что такое резистор, как он работает и как выбрать подходящий резистор для своей первой конструкции печатной платы?

Не бойтесь, мы предоставим вам все, что вам может понадобиться.

Итак… Что такое резистор? Резисторы

являются одним из нескольких пассивных электрических компонентов, и то, что они делают, относительно простое, но жизненно важное — создание сопротивления в потоке электрического тока.Вы когда-нибудь видели, как загорается светодиод? Это стало возможным благодаря надежному резистору. Поместив резистор позади светодиода в цепи, вы получите яркий свет, но ничего не перегорят!

Значение резистора — это его сопротивление, измеряемое в Ом (Ом). Если вы когда-либо проходили базовый курс электроники, то ваш инструктор, вероятно, вбил вам в голову закон Ома. При работе с резисторами вы будете снова и снова использовать закон Ома. Больше об этом:

Найти символ резистора на схеме очень просто.Международный символ имеет стандартную прямоугольную форму, но в стандарте США есть зигзагообразная линия, которая упрощает идентификацию. Независимо от формы, оба стиля имеют набор клемм, соединяющих концы.

Обозначение резистора как в американской, так и в международной версиях.

Какие бывают типы резисторов?

Вокруг плавает тонна резисторов, которые делятся на две категории — конструктивного типа и материала сопротивления .Давайте рассмотрим оба:

Конструкция Тип

  • Постоянные резисторы — Как следует из названия, эти резисторы имеют фиксированное сопротивление и допуск независимо от любых изменений внешних факторов, таких как температура, свет и т. Д.
  • Переменные резисторы — Эти детали имеют изменяемое сопротивление. Потенциометр — отличный пример, у которого есть циферблат, который можно поворачивать, чтобы увеличивать или уменьшать сопротивление. К другим переменным резисторам относятся подстроечный резистор и реостат.
  • Резисторы физического качества — Эти резисторы похожи на хамелеонов и могут изменять свое сопротивление в зависимости от множества физических свойств, включая температуру, уровень освещенности и даже магнитные поля. К резисторам физического качества относятся термистор, фоторезистор, варистор и магниторезистор.

Материал сопротивления Резисторы

также можно разделить на материал, из которого они сделаны, что сильно влияет на их сопротивление току.Эти материалы включают:

  • Состав углерода
  • Карбоновая пленка
  • Металлопленка
  • Толстая и тонкая пленка
  • Фольга
  • Проволочная обмотка

Углеродный состав — это более старая технология, которая существует уже некоторое время и позволяет производить резисторы с низкой степенью точности. Вы по-прежнему найдете их для использования в приложениях, где возникают импульсы высокой энергии.

Из всех типов материалов резисторов проволочные обмотки являются самыми старыми из всех, и вы все равно найдете их, когда вам понадобится точное сопротивление для приложений с большой мощностью.Эти древние резисторы широко известны своей надежностью даже при низких значениях сопротивления.

Сегодня резисторы из металлов и оксидов металлов являются наиболее широко используемыми, они лучше обеспечивают стабильные допуски и сопротивление, а также меньше подвержены влиянию изменений температуры.

Как использовать резисторы?

Вы найдете резисторы, которые используются во многих приложениях, помимо сопротивления току.Другие приложения включают разделение напряжения, генерирование тепла, согласование и нагрузку цепей, управление усилением и фиксацию временных ограничений. В более практических приложениях вы обнаружите, что большие резисторы используются для питания электрических тормозов в поездах, что помогает высвободить всю накопленную кинетическую энергию.

Вот еще несколько интересных приложений, для которых используется универсальный резистор:

  • Измерение электрического тока — Вы можете измерить падение напряжения на прецизионном резисторе с известным сопротивлением, когда он подключен к цепи.Это рассчитывается по закону Ома.
  • Питание светодиодов — Подача на светодиод слишком большого тока приведет к сгоранию этого прекрасного света. Подключив резистор за светодиодом, вы можете контролировать, какой ток получает светодиод, чтобы свет продолжал светиться.
  • Электродвигатели вентилятора — Эта система вентиляции в вашем автомобиле приводится в действие электродвигателем вентилятора, а специальный резистор используется для управления скоростью вентилятора. Этот тип резистора, что неудивительно, называется резистором двигателя вентилятора!

Как измерить резистор?

Значение, которое вы будете видеть снова и снова, — это сопротивление (R).Это значение отображается по-разному, и в настоящее время существует два стандарта для измерения того, как сопротивление отображается с помощью цветных маркеров или SMD-кодов.

Цветовое кодирование

Возможно, вы знакомы с системой цветового кодирования, если когда-либо возились с макетной платой. Этот метод был изобретен в 1920-х годах, и значения сопротивления и допуска отображаются несколькими цветными полосами, нарисованными на корпусе резистора.

Большинство резисторов, которые вы видите, имеют четыре цветных полосы.Вот как они распадаются:

  • Первые две полосы определяют основные цифры значения сопротивления.
  • Третья полоса определяет коэффициент умножения, который дает значение сопротивления.
  • И, наконец, четвертая полоса предоставляет вам значение допуска.

Все разные цвета на резисторе соответствуют разным номерам. Вы можете использовать удобный калькулятор цветового кода резистора, чтобы быстро определить эти значения в будущем.Если вы в большей степени визуально обучаетесь, вот отличное видео, которое мы нашли, показывает вам, как разобраться в цветовой кодировке:

Резисторы SMD

Не каждый резистор достаточно велик, чтобы его можно было идентифицировать по цветовой кодировке, особенно при использовании устройств поверхностного монтажа или SMD. Чтобы компенсировать меньшее пространство, резисторам SMD присваивается числовой код. Если вы посмотрите на современную печатную плату, вы заметите, что резисторы SMD также примерно одинакового размера.Это помогает стандартизировать производственный процесс с помощью этих быстрозажимных машин.

Как выбрать подходящий резистор?

Хорошо, время для самой важной части — научиться точно определять, какой резистор вам нужен для вашей первой конструкции печатной платы. Мы разбили это на три простых шага, которые включают:

  1. Расчет необходимого сопротивления
  2. Расчет номинальной мощности
  3. И, наконец, выбор резистора на основе этих двух значений.

Шаг 1. Расчет сопротивления

Здесь вы будете использовать закон Ома для расчета сопротивления. Вы можете использовать одну из стандартных формул ниже, когда известны ваше напряжение (В) и ток (I).

Шаг 2 — Расчет номинальной мощности

Затем вам нужно выяснить, сколько мощности потребуется вашему резистору для рассеивания. Это можно рассчитать по следующей формуле:

В этой формуле P — ваша мощность в ваттах, V, — падение напряжения на резисторе, а R — сопротивление резистора в Ом.Вот краткий пример того, как эта формула будет работать в действии:

В приведенной выше схеме у нас есть светодиод с напряжением 2 В, , резистор со значением 350 Ом (Ом), и блок питания, дающий нам 9 В . Итак, сколько мощности будет рассеиваться на этом резисторе? Подведем итоги. Сначала нам нужно найти падение напряжения на резисторе, которое составляет 9 В от батареи и 2 В от светодиода, поэтому:

9В — 2В = 7В

Затем вы можете вставить всю эту информацию в формулу:

P = 7V * 7V / 350 Ом = 0.14 Вт

Шаг 3 — Выбор резистора

Теперь, когда у вас есть значения сопротивления и номинальной мощности, пора выбрать настоящий резистор у поставщика компонентов. Мы всегда рекомендуем использовать стандартные резисторы, которые есть в наличии у каждого дистрибьютора. Использование стандартных типов резисторов значительно упростит вашу жизнь, когда придет время их производить. Три надежных поставщика компонентов, у которых вы можете найти качественные детали, включают Digikey, Mouser и Farnell / Newark.

Сопротивление сильное в этом

Итак, вот и все, что вам может понадобиться знать о резисторах для вашего первого проекта по разработке печатной платы. Резисторы настолько универсальны, что вы будете использовать их снова и снова в каждом проекте электроники, который вы завершаете. В следующий раз, когда вам нужно будет выбрать резистор, вспомните простой трехэтапный процесс: 1. рассчитайте сопротивление, 2. затем номинальную мощность, 3. а затем найдите поставщика!

Теперь, прежде чем вы начнете создавать собственные символы резисторов и посадочные места в программном обеспечении для проектирования печатных плат, не было бы проще, если бы они уже были сделаны для вас? Они уже есть! Ознакомьтесь с огромным количеством бесплатных библиотек деталей, доступных только в Fusion 360.Попробуйте электронику Fusion 360 бесплатно сегодня.

Как выбрать номинал резистора в делителе напряжения?

Главное актуально.

Взгляните на эту схему. Наведите указатель мыши на символ заземления, и вы увидите, что ток равен 25 мА. Теперь взгляните на эту схему, и вы увидите, что выходной ток равен \ $ 2.5 \ mbox {} \ mu A \ $.

Теперь посмотрим, как схемы ведут себя под нагрузкой.Вот первая схема с нагрузкой. Как вы можете видеть, ток 2,38 мА проходит через нагрузочный резистор справа, и напряжение на нем больше не ожидаемое 2,5 В, а вместо 2,38 В (поскольку два нижних резистора включены параллельно). Если мы посмотрим на вторую схему здесь, мы увидим, что теперь верхний резистор падает примерно на 5 В, в то время как два нижних резистора имеют напряжение 4,99 мВ. Это потому, что здесь изменилось соотношение резисторов. Поскольку два нижних резистора теперь включены параллельно, и у нас есть один резистор со значительно большим сопротивлением, чем другой, их общее сопротивление незначительно по сравнению с сопротивлением только нижнего правого резистора (вы можете проверить это, используя формулы параллельного резистора).Таким образом, теперь выходное напряжение значительно отличается от 2,5 В, которые мы получаем в случае отсутствия нагрузки.

Теперь посмотрим на противоположную ситуацию: здесь два небольших резистора в делителе напряжения и один большой в качестве нагрузки. И снова суммарное сопротивление двух нижних резисторов меньше, чем сопротивление меньшего из двух резисторов. Однако в этом случае это не оказывает большого влияния на напряжение, воспринимаемое нагрузкой. Напряжение на нем еще 2,5 В и пока все нормально.

Таким образом, при определении сопротивления резисторов мы должны учитывать входное сопротивление нагрузки, а два резистора делителя напряжения должны быть как можно меньше.

С другой стороны, давайте сравним ток, протекающий через делитель в цепи с большими резисторами на делителе и в цепи с маленькими резисторами на делителе. Как видите, большие резисторы имеют ток всего \ $ 2.5 \ mbox {} \ mu A \ $, проходящий через них, а маленькие резисторы имеют ток 25 мА.Дело в том, что ток тратится впустую делителем напряжения, и если бы он был, например, частью устройства с батарейным питанием, это оказало бы негативное влияние на срок службы батареи. Поэтому резисторы должны быть как можно большими, чтобы снизить потери тока.

Это дает нам два противоположных требования: иметь как можно меньше резисторов для лучшего регулирования напряжения на выходе и как можно больше резисторов, чтобы получить как можно меньшие потери тока. Итак, чтобы получить правильное значение, мы должны увидеть, какое напряжение нам нужно на нагрузке, насколько оно должно быть точным, получить входное сопротивление нагрузки и на основе этого рассчитать размер резисторов, которые нам нужны, чтобы получить нагрузку с приемлемым Напряжение.Затем нам нужно поэкспериментировать с более высокими значениями резисторов делителя напряжения и посмотреть, как они повлияют на напряжение, и найти точку, в которой мы не можем иметь большее изменение напряжения в зависимости от входного сопротивления. На данный момент у нас (в целом) есть хороший выбор резисторов делителя напряжения.

Еще один момент, который необходимо учитывать, — это номинальная мощность резисторов. Это идет в пользу резисторов с большим сопротивлением, потому что резисторы с меньшим сопротивлением будут рассеивать больше мощности и больше нагреваться.Это означает, что они должны быть больше (и обычно дороже), чем резисторы с большим сопротивлением.

На практике, сделав несколько делителей напряжения, вы увидите несколько популярных значений резисторов делителя напряжения. Многие люди просто выбирают один из них и не слишком заморачиваются вычислениями, если с выбором нет проблем. Например, для небольших нагрузок вы можете выбрать резисторы из диапазона \ $ 100 \ mbox {} k \ Omega \ $, а для больших нагрузок вы можете использовать \ $ 10 \ mbox {} k \ Omega \ $ или даже \ $ 1 \ mbox {}. резисторов k \ Omega \ $, если у вас есть запасной ток.

Делитель напряжения сам по себе бесполезен. Делитель должен во что-то направить свой вывод. Иногда это что-то вроде регулировки смещения в схеме операционного усилителя или иногда напряжения обратной связи на регуляторе напряжения. Разделитель может кормить тысячи вещей.

Что бы ни питал делитель, он будет принимать ток. Иногда его называют «входным током». В других случаях это не совсем точно или известно. Иногда ток течет «из» делителя, а иногда он течет «внутрь» делителя.Этот ток может испортить точность делителя, потому что ток будет проходить через один резистор больше, чем через другой. Чем больше входной ток, тем выше точность делителя.

Вот очень приблизительное эмпирическое правило: ток, протекающий через два резистора (при условии отсутствия входного тока), должен быть в 10–1000 раз больше, чем входной ток. Чем больше тока проходит через эти резисторы, тем меньше влияние входного тока.

Таким образом, всякий раз, когда у вас есть делитель, вы пытаетесь найти баланс между точностью и потребляемой мощностью. Более высокий ток (резисторы с меньшим номиналом) даст вам лучшую точность за счет повышенного энергопотребления.

Во многих случаях вы обнаружите, что входной ток настолько велик, что делитель напряжения сам по себе не работает. Для этих схем вы можете использовать делитель, питающий операционный усилитель, настроенный как «буфер единичного усиления». Таким образом, резисторы могут иметь довольно высокие значения и не зависеть от входного тока остальной цепи.

AndrejaKo и David дали хорошие ответы, поэтому нет необходимости повторять их здесь.

Дэвид упоминает буфер единичного усиления.

Это позволит вам потреблять довольно большой ток, по крайней мере, несколько мА, даже при небольшом токе через делитель. Может возникнуть соблазн, особенно в системах с батарейным питанием, где на счету каждый мА, выбрать для резисторов значение типа 1M \ $ \ Omega \ $. Однако имейте в виду, что большинство операционных усилителей также имеют небольшой входной ток.Во многих приложениях это незначительно, но при 1 \ $ \ mu \ $ A (типичное значение) резисторы 1M \ $ \ Omega \ $ вызовут напряжение 0,5 В. ошибка, не зависящая от входного напряжения. Таким образом, при 5 В вы получите не 2,5 В на делителе, а 2,0 В.

Вход полевого транзистора Операционный усилитель имеет гораздо более низкий входной ток смещения, часто порядка pA.

Как рассчитать падение напряжения на резисторе подробное объяснение

Если вы ищете, как рассчитать падение напряжения на резисторе, то SoManyTech предлагает вам полную теорию и практические примеры падения напряжения на резисторе.Перед этим давайте освежим в памяти закон Ома: (Прокрутите вниз, если вы профессиональный пользователь)

  • Распространенный способ показать поведение схемного устройства — это его характеристика.
    Это график зависимости тока «I» через устройство от приложенного к нему напряжения «V». Это устройство, резистор, имеет простую линейную характеристику V – I , показанную на рис. выше.
  • Эта линейная зависимость устройства выражается законом Ома :
    V = IR
  • Константа пропорциональности R известна как сопротивление устройства и равна наклону кривой I. –V характеристика.Единица измерения сопротивления — Ом, обозначение — Ом . Любое устройство с линейной ВАХ называется резистором.

Какое падение напряжения на резисторе?

  • Падение напряжения на резисторе — это не что иное, как значение напряжения на резисторе. Иногда его также называют «напряжение на резисторе» или просто «падение напряжения».
  • Обычно обозначается как:
    ‘V (drop ) ‘ или ‘Vr’ или ‘Vd’
    Для нескольких резисторов это записывается как Vr1, Vr2, Vr3 и т. Д.

Как мы все знаем, резистор — это устройство, которое оказывает сопротивление протекающему через него току. Затем, применяя закон Ома, резистор будет предлагать падение напряжения на резистивном устройстве, и оно определяется как:

В (падение ) = I × R

, где I = ток через резистор в (А) амперах
R = сопротивление в (Ом) Ом
В ( падение ) = падение напряжения в (В) вольтах

Как рассчитать падение напряжения по сопротивлению по шагам:

Шаг 1: Упростим данную схему.Если, скажем, схема заполнена резисторами, включенными последовательно и параллельно, то повторно подключите ее, чтобы упростить. (проверьте практический пример ниже)

Step2: Затем найдите эквивалентный резистор.
Для параллельного подключения: 1 / Треб. = 1 / R1 + 1 / R2…
Для серии: Треб. = R1 + R2 +. . .

Step3: Найдите ток через каждый резистор. (Ток через последовательный резистор одинаков, а ток через параллельные резисторы отличается и зависит от его значения)

Step4 : Примените формулу закона Ома для расчета падения напряжения.
В = IR

Напряжение в последовательной цепи — Практические примеры:

Случай I:

Если есть только один резистор последовательно с батареей или источником питания, как показано в этой схеме.


В этой схеме падение напряжения на резисторе такое же, как и в цепи питания. Это связано с тем, что оба компонента имеют общие потенциальные точки, разделенные между ними (точка A и точка B)

Vs = Vdrop = 5 вольт (скажем)

Случай II:

Если есть два или несколько резисторов, включенных последовательно с батареей, как показано на этой схеме.

В этой схеме мы должны вычислить полный ток «I», протекающий через цепь.
I (общий) = V (питание) / R (эквивалент)

∴ I (общий) = 5/30 = 0,166 A

Тогда падение напряжения на R1 будет: Vr1 = I × R1
Падение напряжения на R2 будет: Vr2 = I × R2
Падение напряжения на Rn будет: Vrn = I × Rn

  • Vr1 = I × R1 = 0,166 × 10 = 1,66 В & Vr2 = I × R2 = 0.166 × 20 = 3,33 вольт

Напряжение на параллельных резисторах:

Вариант I:
Два резистора включены параллельно батарее или источнику питания, как показано на этой схеме.


В этой схеме падение напряжения на этих параллельных резисторах такое же, как у источника питания.
Это связано с тем, что оба резистора имеют общие потенциальные точки, разделенные между ними (точки A и B), поэтому напряжение будет одинаковым, но ток будет другим.

Vs = Vdrop = Vr1 = Vr2 = 5 вольт (скажем)

Случай II:
Один резистор включен последовательно и два резистора с источником питания, как показано на этой схеме.

В этой схеме нам нужно вычислить ток «I» через каждый компонент.

  • i1 = I (всего) = Is = V (питание) / R (эквивалент)

    где, R (эквивалент) = R1 + Rp
    , где 1 / Rp = 1 / R2 + 1 / R3

    ∴ Rp = 12 Ом и R ( эквивалент ) = 22 Ом

  • i2 = i1 * (R3 / (R2 + R3))
    i3 = i1 * (R2 / (R2 + R3))
  • Падение напряжения на R1 будет Vr1 = R1 * i1
    Падение напряжения на R2 будет Vr2 = R2 * i2
    Падение напряжения на R3 будет Vr3 = R2 * i3

Положив значения, которые у нас есть,

Теперь i1 = V (поставка) / R (эквивалент) = 5/22 = 0.227 ампер
i1 = 0,227 A

Падение напряжения на 10 Ом -> Vr1 = 10 * i1 = 10 × 0,227 вольт
Vr1 = 2,27 вольт

Теперь, i2 = i1 * (R3 / (R1 + R2))
i2 = 0,1362 A

Падение напряжения на 20 Ом -> Vr2 = 20 * i2 = 20 × 0,1362 В
Vr2 = 2,724 В

Теперь i3 = i1 * (R2 / (R1 + R2))
i3 = 0.09 A

Падение напряжения на 30 Ом -> Vr2 = 30 * i2 = 30 × 0,09 В
∴ Vr3 = 2,7 В

Метод 2:

  • Найти i1 = В (питание) / R (эквивалент) = 0,227 A
    Тогда падение напряжения на R1 будет Vr1 = R1 * i1 = 10 × 0,227 = 2,27 В

    ∴ Эквивалентное напряжение в точке ‘A’ будет равно
    Veq = Va = Vs — Vr1

    ∴ Va = 5 — 2.27 = 2,73 В
    Следовательно, мы получаем одинаковое значение потенциала на R2 и R3.

  • Таким образом, Va = Vr2 = Vr3 = 2,73 вольт

Метод 3:

В этом методе мы используем цифровой мультиметр или, можно сказать, вольтметр. Все, что вам нужно, это установить мультиметр в режим измерения напряжения.
Теперь с помощью двух щупов проверьте напряжение на требуемом резисторе, подключив к нему щупы. (на рис. показания вольтметра только для справки)

Вуаля !! Ты понял.

Это самый простой способ найти падение напряжения на резисторе в любой цепи.

Как уменьшить напряжение с 24 В до 5 В с помощью резистора? — Mvorganizing.org

Как уменьшить напряжение с 24 В до 5 В с помощью резистора?

Вы можете использовать резисторы в соотношении 82: 22, напряжение на резисторе 22 будет примерно 5,07В. Этот метод будет полезен только в том случае, если вы хотите определить наличие напряжения 24 В с помощью микроконтроллера. Вам необходимо выбрать номинал резисторов в зависимости от силы тока, которую вы хотите рассеять.

Как снизить напряжение аккумулятора?

Иногда для вашего электронного проекта может просто потребоваться источник напряжения ниже доступного напряжения батареи. Когда это произойдет, вы можете снизить напряжение батареи до любого желаемого уровня, построив простую схему, называемую делителем напряжения.

Как уменьшить напряжение с 12 В до 4 В?

Два способа снизить напряжение 12-вольтовой системы до 4-х вольт — это использовать делители напряжения или стабилитроны. Делители напряжения изготавливаются из последовательно включенных резисторов.Входное напряжение делится на выходное, что зависит от номинала используемых резисторов.

Как уменьшить напряжение постоянного тока?

Самый простой способ уменьшить падение напряжения — увеличить диаметр проводника между источником и нагрузкой, что снизит общее сопротивление. В системах распределения электроэнергии заданное количество мощности может передаваться с меньшим падением напряжения, если используется более высокое напряжение.

Влияют ли резисторы на напряжение?

Как резистор влияет на напряжение? Резисторы влияют как на ток, так и на напряжение.Они делают это линейно. Напряжение на каждом сопротивлении будет изменяться прямо пропорционально току, протекающему через него.

Резисторы снижают напряжение?

Резистор имеет способность уменьшать напряжение и ток при использовании в цепи. Основная функция резистора — ограничивать ток. Закон Ома гласит, что увеличение номинала резистора приведет к уменьшению тока. Для снижения напряжения резисторы устанавливаются в конфигурации, известной как «делитель напряжения».

Почему на резисторах падает напряжение?

Когда электроны проходят через сопротивление, они теряют энергию, поскольку они взаимодействуют с электронами в проводящем материале. Когда энергия передается материалу, он получает тепловую энергию, поэтому его температура повышается. Движущиеся электроны теряют потенциальную энергию и, следовательно, происходит падение напряжения.

Почему падает напряжение при увеличении нагрузки?

Источники напряжения действительно имеют внутренние импедансы, включенные последовательно с нагрузкой. Когда нагрузка увеличивается, больше тока проходит через внутренний импеданс, что в большинстве случаев приводит к более высокому падению напряжения.

Как увеличить напряжение?

Для увеличения напряжения мы последовательно подключаем переменное напряжение, чтобы получить более высокое выходное напряжение. Если частота всех напряжений одинакова, величина напряжений просто складывается. Напряжения будут просто складываться, так что общее напряжение будет 28 В переменного тока при 60 Гц.

Почему падает напряжение при увеличении тока?

Увеличение тока вызывает большее падение напряжения на внутреннем сопротивлении, что снижает напряжение источника.Некоторые сопротивления увеличивают свое сопротивление, когда ток увеличивается из-за нагрева.

Какое падение напряжения допустимо?

Какое падение напряжения допустимо? В сноске (NEC 210-19 FPN № 4) в Национальном электротехническом кодексе говорится, что падение напряжения на 5% в самой дальней розетке в цепи ответвления является приемлемым для нормальной эффективности.

Что увеличивает падение напряжения?

Провода любой длины и размера будут иметь некоторое сопротивление, и пропускание тока через это сопротивление постоянному току вызовет падение напряжения.По мере увеличения длины кабеля пропорционально увеличиваются его сопротивление и реактивное сопротивление. Это условие заставляет нагрузку работать с меньшим напряжением, проталкивающим ток.

Когда вольт повышается, ампер падает?

ЕСЛИ вы не измените нагрузку (двигатель) для компенсации более высокого напряжения. Установки высокого напряжения вырабатывают мощность с меньшей силой тока, потому что в них используются двигатели с гораздо более низким kv. Ваша грузоподъемность, умноженная на вашу мощность, дает вам максимально безопасную силу тока. 20c 4000 мАч (4 Ач) может выдерживать 80 ампер.

Уменьшается ли напряжение с расстоянием?

Вне зависимости от того, высокое или низкое напряжение, сила будет передаваться одинаково. Но с расстоянием напряжение будет падать. Для компенсации падения напряжения на больших расстояниях можно использовать проводники большего размера. Цепи с более высоким напряжением также уменьшают падение напряжения за счет уменьшения тока, тем самым уменьшая I-квадратные потери.

Как выбрать резистор — Выбор номиналов резистора

Насколько просто резистор, но он очень важен в любых схемах.Роль резистора заключается в ограничении силы тока, протекающего в цепи. Без него другие электронные компоненты, схемы, модули или подсхемы не будут работать. При выборе резисторов следует учитывать несколько факторов. Обо всех этих факторах речь пойдет ниже. Это даст вам правильное руководство при выборе резистора для любых приложений. Это все параметры, которые я учел при выборе резистора для своих проектов.

1. Выбор типа резистора

Давайте начнем эту статью о том, как выбрать резисторы, возможно, определив ваше приложение, а затем вы сможете выбрать, какой тип резистора вы ищете.Если схема, которую вы хотите построить, требует переменного напряжения, вам понадобится переменный резистор. Это может быть триммер или потенциометр. Если в вашем приложении просто фиксированное напряжение, сконцентрируйтесь на резисторе фиксированного значения. Ваше приложение связано с высокой мощностью или только с небольшими сигнальными цепями? Что ж, на это можно ответить, если у вас уже есть данные о рассеиваемой мощности либо расчетом, либо моделированием. Вы также можете подумать о проволочной намотке, угле или пленке … Но это не так уж важно.Я имею в виду, что вам не нужно проводить мозговой штурм по этому поводу. Потому что, если номинальная мощность вам очень высока, в большинстве случаев этот резистор будет проволочного типа. С другой стороны, если вам нужна небольшая мощность, в основном это углеродные или пленочные композиции.

Несколько типов резисторов

2. Выбор резистора — сопротивление

Электрическое свойство резистора — сопротивление. Это сопротивление, которое будет препятствовать или ограничивать ток. Он определяется единицей Ом (Ом).Сопротивление очень важный элемент при выборе резистора. Как определить величину сопротивления? Это будет зависеть от силы тока, которую вы собираетесь позволить. Это также будет зависеть от требуемого напряжения, которое вы хотите. Давайте примем примеры, чтобы понять наглядно.

Пример 1: Предположим, что ток в цепи ограничен только 1 А, какое сопротивление будет необходимо для работы цепи от источника 10 В? См. Схему ниже.

Схема простого резистора

Используя принцип закона Ома,

I = V / R, R = V / I

Итак, R = 10V / 1A = 10 Ом

Выберите стандартное сопротивление резистора (10 Ом уже является стандартным значением).

Пример 2: В приведенной ниже схеме вам необходимо определить значение R1.

Простая последовательная схема

По закону Ом, ток на R2 равен I = 7 В / 10 Ом = 0,7 А .

R1 и R2 включены последовательно, поэтому они будут иметь одинаковое значение тока. Снова из закона Ома,

I = V / R, R = V / I, R2 = 3 В / 0,7 A = 4,2857 Ом.


Давайте еще раз проверим вычисление:

I = 10 В / (R1 + R2) = 10 В / (4.2857 + 10) = 0,7 А. Наш расчет верен.

Стандартного значения 4,2857 Ом не существует. Итак, выберите стандартное значение рядом с этим. Обратите внимание, что ток в цепи немного изменится, если вы используете резистор стандартного номинала.

Иногда нет необходимости вычислять значение сопротивления. Вместо этого сработает присвоение заранее определенного значения. Например, вам нужен резистор на 100 Ом, тогда просто вычислите фактический ток, напряжение, рассеиваемую мощность и оцените, соответствует ли это значение вашей цели.

3. Выбор номинальной мощности резистора

Одной из наиболее важных характеристик, которую следует учитывать при выборе резистора, является номинальная мощность. Резистор перегорит, если будет приложено слишком большое напряжение. Поэтому необходимо знать фактическую рассеиваемую мощность резистора.

Фактическая рассеиваемая мощность резистора может быть рассчитана как

Pdiss = I X I X R или Pdiss = V X V / R

Где;

Pdiss — рассеиваемая мощность резистора

I = ток, протекающий через резистор

В = напряжение на резисторе

R = значение сопротивления

Давайте возьмем в качестве примера простую схему ниже о том, как выбрать резисторы с точки зрения номинальной мощности.

Простая резистивная схема

Поскольку резистор R напрямую подключен к источнику напряжения, рассеиваемая мощность может быть вычислена напрямую.

Pdiss = V X V / R = 10 В X 10 В / 10 Ом = 10 Вт

Вы также можете вычислить ток цепи как I = V / R = 10 В / 10 Ом = 1A . Тогда рассеиваемая мощность составляет

Pdiss = I X I X R = 1A X 1A X 10 Ом = 10 Вт .

В своих проектах я всегда предпочитал не превышать 80% силовой нагрузки.Это означает, что мне нужно выбрать резистор с номинальной мощностью не менее 12,5 Вт (10 Вт / 0,8). Предел 80% является максимально допустимым. Вы всегда можете установить максимальный предел ниже 80%. Есть несколько соображений, по которым вам может понадобиться подняться так высоко (80%). Например, в приложениях, где выбор резисторов ограничен, а переход на детали с более высокой номинальной мощностью требует больших дополнительных затрат. Если вы занимаетесь дизайном, вы оцените все это и решите, основываясь на доступных вариантах и ​​фактах.

Номинальная мощность резистора будет уменьшаться с повышением температуры силовых резисторов. Также нужно это учитывать. Ниже приведена кривая снижения мощности, полученная от TE Connectivity серии HS. Как видите, мощность несколько снижается при достижении определенного температурного уровня.

Снижение номинальной мощности резистора

4. Как выбрать номинальное напряжение резистора

Еще один важный показатель, который следует учитывать при выборе резистора, — это номинальное напряжение. В технических данных указаны пределы максимального рабочего напряжения.Это фактическое напряжение, приложенное к резистору. По-прежнему от TE Connectivity серии HS, его максимальное рабочее напряжение указано ниже. Если я буду заниматься проектированием, то в моем понимании я не позволю резистору иметь фактическое напряжение более 1900 В для серии HSC100. Это абсолютный предел этой серии.

Предел рабочего напряжения резистора

Учтите, что это как-то сложно. Рейтинг дан для серии, а не для одного значения сопротивления.Предположим, вы используете 10-омную версию от HSC100, максимальное рабочее напряжение все еще равно 1900 В? Давайте разберемся.

На основании приведенной выше таблицы допустимая рассеиваемая мощность для серии HSC100 составляет 100 Вт и 50 Вт с радиатором и без радиатора. Давайте вычислим фактическую рассеиваемую мощность при допустимом напряжении 1900 В.

Pdiss = V X V / R = 1900 В X 1900 В / 10 Ом = 361000 Вт. Это смехотворное количество рассеиваемой мощности, которое сожжет резистор всего за микросекунды.

Учитывая более высокое значение сопротивления из этой серии, которое составляет 100 кОм, давайте снова вычислим рассеиваемую мощность.

Pdiss = V X V / R = 1900 В X 1900 В / 100 кОм = 36,1 Вт . Это находится в пределах номинальной мощности резистора 50 Вт и 100 Вт независимо от того, с радиатором или без него.

Если вы увеличите фактическое напряжение до 2000 В, соответствующая рассеиваемая мощность составит

.

Pdiss = V X V / R = 2000 В X 2000 В / 100 кОм = 40 Вт.Это все равно меньше номинальной мощности резистора. Я могу это сделать? Ответ — нет. вам нужно придерживаться таблицы данных.

Короче говоря, максимальное рабочее напряжение должно быть проверено с использованием номинальной мощности, и оба должны быть удовлетворены.

5. Выбор допуска резистора и температурного коэффициента

Идеального резистора не существует, поэтому при выборе резистора необходимо учитывать допуск. Резисторы имеют несколько допусков, например 10%, 5%, 1%, 0.1% и так далее. Чем выше процент, тем выше может варьироваться сопротивление. Например, резистор 10 кОм с допуском 10%. Диапазон сопротивления будет 9К — 11К. Это огромная вариация. Если ваше приложение очень критично, выберите деталь с меньшим допуском. В своих разработках я использую стандарт для чип-резисторов общего назначения с допуском 1%. Для критических цепей, таких как обратная связь и защита, я выбираю 0,1%.

Температурный коэффициент также указан в таблице данных.Это показатель того, как сопротивление изменяется в зависимости от рабочих температур. Чем меньше это значение, тем лучше, поскольку это означает, что сопротивление не будет так зависеть от температуры. Это очень важно при использовании резисторов в приложениях с высокими температурами окружающей среды. В своих проектах я выбираю 100 PPM / C или ниже. Не всегда верно, что деталь с меньшим допуском будет иметь более низкий температурный коэффициент. Я получил некоторые данные со страницы Mouser Electronics ниже.

Допуски резистора Температурный коэффициент резистора

6.Как выбрать рабочую температуру резистора

При выборе резистора не забывайте о диапазоне рабочих температур. Если вы знаете, что изделие, над которым вы работаете, будет подвергаться воздействию максимальной температуры окружающей среды 85 ° C, выберите резистор с рабочей температурой более 85 ° C. В своих проектах я установил максимальное температурное напряжение 80%. Это означает, что мне нужен резистор с максимальной рабочей температурой 106,25 ° C для температуры применения 85 ° C.

Аналогичным образом, если минимальная температура применения составляет -20 ° C, выберите резистор, который может работать при температуре до -20 ° C.

Необходимо измерить рабочую температуру резистора на корпусе. Для резисторов малой мощности повышение температуры из-за рассеяния мощности незначительно, поэтому температуру тела можно приравнять к температуре окружающей среды. Однако для резисторов большой мощности повышение температуры значительно. Таким образом, необходимо измерить реальную температуру тела. В силовых резисторах также снижается номинальная мощность при достижении максимальной температуры. Ниже приведен пример из серии HSC для подключения TE.

Кривая снижения номинальных характеристик резистора

7. Тип установки и физический размер

Способ монтажа также играет важную роль при выборе резистора. Вам может понадобиться микросхема, устройство для поверхностного монтажа или деталь со сквозным отверстием. Вам может потребоваться крепление на шасси или резистор для крепления на радиаторе и т. Д. Решение об этом иногда зависит от области применения, уровней мощности или доступности детали. Физический размер также является важным фактором, особенно в продуктах, критичных к пространству. Чиповые резисторы, такие как 0402, 0603, 1206, 1210 и т. Д., Меньше по размеру, но ограничены по номинальной мощности, а также по напряжению.Резисторы в сквозных отверстиях, установка для радиатора или шасси громоздки, но обеспечивают более высокую рассеиваемую мощность и более высокое номинальное напряжение.

Примеры номинальных характеристик резисторов

Ниже приведен образец таблицы с номинальными характеристиками резисторов, которую я получил со страницы обзора Mouser Electronics. Параметры, которые обсуждались выше при выборе резистора, показаны ниже.

Обзор номинальных характеристик резисторов

Связанные

Методы цифрового ввода / вывода

Цель
Дать обзор следующих методов цифрового ввода-вывода, используемых в отрасли сбора данных (DAQ):
  • Подтягивающий и понижающий резисторы
  • ТТЛ на твердотельные реле
  • Делители напряжения
  • Фильтр нижних частот

Целевая аудитория
Этот документ предназначен для пользователей, которые настраивают и управляют цифровыми каналами ввода / вывода системы сбора данных.

Theory
Подтягивающий и понижающий резистор s
Когда устройство включается или сбрасывается, контакты цифрового ввода / вывода обычно по своей конструкции настроены на вход с высоким импедансом. На входах может быть достаточно управляющего тока для включения любых подключенных выходных устройств, таких как твердотельные реле (SSR).

Чтобы предотвратить нежелательное переключение и перевести цифровые выходы в известное безопасное состояние после включения или сброса, подтяните все цифровые выводы к высокому или низкому уровню с помощью подтягивающего или понижающего резистора.

Подтягивающий резистор
В подтягивающей конфигурации линии ввода / вывода подключаются к логическому питанию через резисторы.

Когда цифровое устройство ввода-вывода сбрасывается, оно переходит в режим входа с высоким импедансом, и линии ввода-вывода подтягиваются к высокому уровню.

Цифровое устройство ввода / вывода и подключенные устройства воспринимают высокий сигнал. Плата, находящаяся в режиме вывода, имеет достаточно мощности, чтобы игнорировать высокий сигнал подтягивающего резистора и подавать на линию низкий уровень до 0 вольт.

Понижающий резистор
В понижающей конфигурации линии ввода / вывода подключаются к логической земле через резисторы.

Когда цифровое устройство ввода-вывода сбрасывается, оно переходит в режим входа с высоким импедансом, и линии ввода-вывода подтягиваются к низкому уровню .

Цифровое устройство ввода-вывода и подключенные устройства воспринимают слабый сигнал. Плата, находящаяся в режиме вывода, имеет достаточно мощности, чтобы отменить низкий сигнал понижающего резистора и подать на линии высокое напряжение до 5 вольт.

Цифровые устройства ввода-вывода на базе USB от Measurement Computing имеют встроенные тяговые резисторы.

TTL на твердотельные реле
Для многих приложений требуются цифровые выходы для включения и выключения высоких напряжений переменного и постоянного тока, а также для контроля наличия или отсутствия высоких напряжений переменного и постоянного тока. Однако высокое напряжение нельзя контролировать или считывать напрямую по цифровым линиям TTL устройства.Используйте SSR для управления и контроля переменного и высокого постоянного напряжения, а также для обеспечения изоляции> 1000 В. SSR — рекомендуемый метод для взаимодействия с сигналами переменного и постоянного тока.

Самый удобный способ использования SSR — установить их на интерфейсной стойке — печатной плате, на которой есть гнезда для SSR и буферных усилителей, достаточно мощных для переключения SSR. Стойки SSR доступны от Measurement Computing и большинства производителей SSR. Для получения дополнительной информации о SSR и стойках, доступных в Measurement Computing, посетите нашу страницу преобразования сигнала.

Делители напряжения
Для обнаружения сигнала с общей землей, но который изменяется в диапазоне, превышающем максимальные характеристики цифрового входа, рассмотрите возможность использования делителя напряжения или другого внешнего устройства для уменьшения напряжения входного сигнала. до безопасного уровня. Обратите внимание, что этот метод не обеспечивает изоляцию.

Закон Ома гласит, что Напряжение = Ток × Сопротивление

В делителе напряжения напряжение на любом из резисторов в цепи пропорционально его сопротивлению по отношению к общему сопротивлению цепи.

Цель использования делителя напряжения — выбрать два резистора с правильными пропорциями, чтобы достичь желаемого процента снижения входного напряжения.

Рисунок 3. Схема делителя напряжения

Пропорциональное падение напряжения называется ослаблением. Переменное затухание — это пропорциональная разница между желаемым выходным напряжением (максимальным входным напряжением устройства) и полным входным напряжением от полевого устройства.Формула для расчета затухания:

Затухание = R1 + R2

Например, если напряжение возбуждения варьируется от 0 до 10 вольт, и вы хотите определить, что при максимальном входном напряжении устройства 5 вольт, затухание должно быть 2: 1 или просто 2.

2 = 10 тыс. + 10 тыс.

Для заданного затухания (A) выберите удобный резистор и назовите его R2, затем используйте эту формулу для вычисления R1:

R1 = (А — 1) x R2

Для цифровых входов часто требуются делители напряжения.Например, для обнаружения полевого сигнала, имеющего 0 вольт в выключенном состоянии и 24 вольт во включенном состоянии, вы не можете подключить сигнал напрямую к цифровым входам большинства плат (исключение составляет серия Measurement Computing PDISO). Во включенном состоянии напряжение должно быть снижено максимум до 5 вольт. Требуемое затухание составляет 24: 5 или 4,8. Используйте приведенное выше уравнение, чтобы найти подходящее значение для R1, если R2 составляет 1 кОм. Помните, что вход TTL включен, когда входное напряжение превышает 2,5 В.

Расчет рассеиваемой мощности в цепи делителя
Резисторы R1 и R2 будут рассеивать всю мощность в цепи делителя в соответствии с уравнением:

Ток = Напряжение ÷ Сопротивление

Чем выше значение сопротивления (R1 + R2), тем меньше мощности рассеивается схемой делителя.Как простое правило:

  • Для ослабления 5: 1 или менее сопротивление резистора не должно быть меньше 10 кОм.
  • Для затухания более 5: 1 сопротивление резистора не должно быть меньше 1 кОм.

Фильтр нижних частот для подавления дребезга входов
Входной сигнал может испытывать шум, связанный с внешним компонентом в цепи, генерирующей сигнал, подлежащий мониторингу. Внешний компонент часто представляет собой механический переключатель.

Чтобы уменьшить этот шум, используйте фильтр нижних частот на сигнальных проводах между источником сигнала и цифровым устройством.Фильтр нижних частот предотвращает попадание частот, превышающих частоту среза, на цифровые входы цифрового устройства.

Частота отсечки — это частота, выше которой никакое изменение напряжения во времени не может попасть в цепь. Например, если фильтр нижних частот имеет частоту среза 30 Гц, помехи, связанные с линейным напряжением (60 Гц), будут в основном отфильтрованы. Однако сигнал с частотой 25 Гц будет проходить с меньшим затуханием.

В цифровой схеме фильтр нижних частот может использоваться для устранения дребезга или фильтрации входного сигнала от переключателя или внешнего реле.Однако, если контакты переключателя / реле натянуты ртутью, они имеют тенденцию кратковременно подпрыгивать при замыкании, генерируя пульсирующий шумовой сигнал.

На рисунке ниже показан простой фильтр нижних частот, состоящий из одного резистора (R) и одного конденсатора (C).

Рисунок 4. Схема фильтра нижних частот

Частота среза определяется по формуле:

Fc = 1 / (2πRC)

Где π = 3.

Добавить комментарий

Ваш адрес email не будет опубликован.