Как правильно подключить транзистор: Эта страница ещё не существует

Содержание

Подключение входа и выхода (биполярные транзисторы)

Добавлено 1 января 2018 в 19:25

Сохранить или поделиться

Чтобы решить проблему создания необходимого постоянного напряжения смещения для входного сигнала усилителя, не прибегая к установке батареи последовательно с источником сигнала переменного напряжения, мы использовали делитель напряжения, подключенный к источнику питания постоянного напряжения. Чтобы заставить его работать в сочетании с входным сигналом переменного напряжения, мы «подключили» источник сигнала к делителю через конденсатор, который действовал как фильтр верхних частот. При такой фильтрации низкий импеданс источника сигнала переменного напряжения не может «закоротить» на корпус напряжение, падающее на нижнем резисторе делителя напряжения. Решение простое, но не без недостатков.

Наиболее очевидным является тот факт, что использование конденсатора фильтра для подключения источника сигнала к усилителю означает, что усилитель может усиливать сигналы только переменного напряжения.

Постоянное напряжение, подаваемое на вход, будет блокироваться конденсатором связи так же сильно, как напряжение смещения с делителя блокируется от источника входного сигнала. Кроме того, поскольку емкостное реактивное сопротивление зависит от частоты, низкочастотные сигналы переменного тока будут усиливаться не так сильно, как высокочастотные сигналы. Несинусоидальные сигналы будут искажаться, поскольку конденсатор реагирует по-разному на каждую из составляющих гармоник сигнала. Самым заметным примером этого может служить низкочастотный прямоугольный сигнал на рисунке ниже.

Емкостная связь вызывает искажение низкочастотного прямоугольного сигнала

Кстати, эта же проблема возникает, когда входы осциллографа устанавливаются в режим «AC» (закрытый вход), как показано на рисунке ниже. В этом режиме конденсатор связи последовательно соединен с измеряемым сигналом, чтобы исключить любое смещение отображаемой формы сигнала по вертикали из-за постоянного напряжения в этом сигнале. Это отлично работает, когда составляющая переменного напряжения в измеряемом сигнале имеет довольно высокую частоту, и конденсатор не оказывает большого сопротивления сигналу. Однако если сигнал имеет низкую частоту или содержит значительные уровни гармоник в широком диапазоне частот, отображение формы сигнала на осциллографе будет неточным (рисунок ниже). Низкочастотные сигналы можно просмотреть, установив осциллограф в режим «DC» (открытый вход).

Со связью по постоянному току осциллограф правильно показывает форму прямоугольного сигнала, поступающего от генератора сигналовНизкие частоты: при использовании связи по переменному току фильтрация верхних частот конденсатором связи искажает форму прямоугольного сигнала, поэтому осциллограмма не является точным представлением реального сигнала

В приложениях, где ограничения емкостной связи (рисунок выше) недопустимы, можно использовать другое решение: прямое соединение. Прямое соединение позволяет избежать использования конденсаторов или любых других частотно-зависимых компонентов связи в пользу резисторов. Схема усилителя с прямым подключением показана на рисунке ниже.

Непосредственное подключение усилителя: прямое соединение к громкоговорителю

Этот вид связи, без конденсатора для фильтрации входного сигнала, не зависит от частоты. Сигналы постоянного и переменного напряжения будут усиливаться транзистором с одним и тем же коэффициентом усиления (сам транзистор может иметь тенденцию усиливать некоторые частоты лучше других, но это совсем другая тема!).

Если прямая связь работает как с постоянным, так и переменным напряжениями, то зачем использовать емкостную связь? Одна из причин может заключаться в том, чтобы избежать нежелательного постоянного напряжения смещения в усиливаемом сигнале. Некоторые сигналы переменного тока могут быть наложены на неконтролируемое постоянное напряжение прямо в источнике, а неконтролируемое постоянное напряжение сделает невозможным надежное смещение транзистора. Фильтрация верхних частот, выполняемая конденсатором связи, в этом случае очень пригодится, чтобы избежать проблем со смещением.

Другой причиной использования емкостной связи, вместо прямой, является малая величина вносимого ею затухания сигнала. Прямое соединение через резистор обладает недостатком – уменьшением или ослаблением уровня входного сигнала, поэтому только часть сигнала достигает базы транзистора.

Во многих приложениях необходимо вносить какую-то величину затухания, чтобы избежать «перегрузки» транзистора по уровню входного сигнала, что могло бы ввести транзистор в режимы отсечки и насыщения, поэтому любое ослабление в схеме связи в любом случае полезно. Однако в некоторых приложениях для максимального усиления по напряжению требуется отсутствие потерь сигнала во входной цепи базы транзистора, а прямое соединение с делителем напряжения смещения не удовлетворяет этому требованию.

До сих пор мы обсудили пару методов подключения входного сигнала к усилителю, но не решили проблему связи выхода усилителя с нагрузкой. Пример схемы, используемый для иллюстрации входной связи, хорошо послужит и для иллюстрации проблем, связанных с выходной связью.

В нашем примере схемы нагрузка – это громкоговоритель. Большинство динамиков являются электромагнитными устройствами: то есть они используют силу, создаваемую легкой электромагнитной катушкой, подвешенной в сильном поле постоянного магнита, для перемещения конуса из тонкой бумаги или пластика, создавая в воздухе колебания, которые наши уши интерпретируют как звук. Приложенное напряжение одной полярности перемещает конус наружу, а напряжение противоположной полярности будет перемещать конус внутрь. Чтобы использовать полную свободу движения конуса, на динамик должно поступать чистое (без смещения) переменное напряжение. Смещение постоянным напряжением приложенное к катушке динамика смещает конус от его естественного центрального положения, что ограничивает его движение назад и вперед, которое он мог бы выдержать от приложенного переменного напряжения без повреждений. Однако в нашем примере схемы (рисунок выше) к динамику прикладывается напряжение только одной полярности, поскольку динамик соединен последовательно с транзистором, который может проводить ток только в одном направлении. Это было бы неприемлемо для любого мощного аудиоусилителя.

Нам нужно как-то изолировать динамик от смещения постоянным напряжением от тока коллектора, чтобы он получал только переменное напряжение. Одним из способов достижения этой цели является соединение коллекторной схемы транзистора с динамиком через трансформатор (рисунок ниже).

Трансформаторная связь отделяет постоянное напряжение от нагрузки (динамика)

Напряжение, наводимое во вторичной (со стороны динамика) обмотке трансформатора, будет строго зависеть от изменений тока коллектора, поскольку взаимная индукция трансформатора работает только на изменениях тока обмотки. Другими словами, только переменная составляющая тока коллектора будет подключена к вторичной обмотке, питающей динамик. Динамик будет «видеть» на своих выводах истинный переменный ток без какого-либо постоянного смещения.

Выходная трансформаторная связь работает и обладает дополнительным преимуществом – возможностью обеспечить согласование импедансов транзисторной схемы и катушки динамика при заданных соотношениях обмоток. Однако трансформаторы могут быть большими и тяжелыми, особенно для мощных приложений. Кроме того, сложно спроектировать трансформатор для обработки сигналов в широком диапазоне частот, что почти всегда требуется в аудиоприложениях. Хуже того, постоянный ток через первичную обмотку добавляет намагничивания сердечника только с одной полярностью, что приводит к тому, что сердечник сильнее насыщается в одном полупериоде полярности переменного тока, чем в другом.

Эта проблема напоминает ту, с которой мы столкнулись при непосредственном последовательном подключении динамика к транзистору: смещение постоянным током приводит к ограничению амплитуды выходного сигнала, которую система может выдавать без искажений. Как правило, трансформатор может быть сконструирован таким образом, чтобы обрабатывать без проблем большее значение постоянного тока смещения, чем громкоговоритель, поэтому в большинстве случаев трансформаторная связь по-прежнему является жизнеспособным решением. В качестве примера трансформаторной связи смотрите связь между Q4 и динамиком в схеме первого массового радиоприемника Regency TR1 (глава 9).

Другой способ изолировать динамик от смещения постоянным током в выходном сигнале состоит в том, чтобы немного изменить схему и использовать конденсатор связи аналогично подаче на усилитель входного сигнала (рисунок ниже).

Конденсатор связи не пропускает постоянный ток в нагрузку

Схема на рисунке выше напоминает более традиционную схему усилителя с общим эмиттером, причем коллектор транзистора подключен к аккумулятору через резистор. Конденсатор действует как фильтр верхних частот, передавая большую часть переменного напряжения на громкоговоритель, блокируя всё постоянное напряжение. Опять же, номинал этого конденсатора связи выбирается таким образом, чтобы его импеданс на частоте ожидаемого сигнала был минимален.

Блокировка постоянного напряжения от выхода усилителя, будь то через трансформатор или конденсатор, полезна не только при соединении усилителя с нагрузкой, но и при соединении одного усилителя с другим усилителем. «Каскадные» усилители часто используются для получения большей мощности, чем та, что была бы возможна при использовании одного транзистора (рисунок ниже).

Три каскада усилителей с общим эмиттером, связанных с помощью конденсаторов

Хотя каждый каскад можно связать с другим напрямую (через резистор, а не через конденсатор), это сделает весь усилитель очень чувствительным к изменениям напряжения смещения первого каскада, поскольку это постоянное напряжение будет усиливаться вместе с сигналом переменного тока до последнего каскада. Другими словами, смещение первого каскада повлияет на смещение второго каскада и так далее. Однако если каскады соединены с помощью емкостной связи (как показано на рисунке выше), смещение одного каскада не влияет на смещение следующего каскада, поскольку постоянное напряжение блокируется от перехода на следующий каскад.

Трансформаторная связь между каскадами также возможна, но используется реже из-за некоторых проблем, присущих трансформаторам и упомянутым ранее. Одним из примечательных исключений из этого правила являются радиочастотные усилители (рисунок ниже) с небольшими трансформаторами связи, имеющими воздушные сердечники (что делает их невосприимчивыми к эффектам насыщения), которые являются частью резонансной системы для блокировки частот нежелательных гармоник от перехода на следующие каскады. Использование резонансных схем предполагает, что частота сигнала остается постоянной, что характерно для радиосхем. Кроме того, эффект «маховика» LC-контуров позволяет работать для большей эффективности в классе C.

Пример трансформаторной связи в 3-х каскадном резонансном радиочастотном усилителе

Обратите внимание на трансформаторную связь между транзисторами Q1, Q2, Q3 и Q4 в схеме Regency TR1 в главе 9. Три трансформатора промежуточной частоты (ПЧ) в пунктирных прямоугольниках проводят сигнал ПЧ от коллектора к базе следующего транзистора усилителя ПЧ. Усилители промежуточной частоты представляют собой радиочастотные усилители, хотя и на частоте, отличающейся от той, что подается на антенный РЧ (RF) вход.

Сказав всё это, следует упомянуть, что в многокаскадной схеме транзисторного усилителя возможно использование прямого соединения. В тех случаях, когда усилитель, как ожидается, будет обрабатывать сигналы постоянного тока, это единственная альтернатива.

Тенденция электроники к более широкому использованию интегральных микросхем стимулировала использование прямого соединения, вместо емкостной и трансформаторной связи. Единственным легко производимым компонентом интегральной схемы является транзистор. Могут также производиться стабильные резисторы. Хотя транзисторы всё же предпочтительнее. Возможны и интегральные конденсаторы, но только на несколько десятков пикофарад. Большие конденсаторы «не интегрируемы». При необходимости они могут использоваться в качестве внешних компонентов. То же самое касается и трансформаторов. Поскольку интегральные транзисторы являются недорогими, то ими по максимуму заменяются проблемные конденсаторы и трансформаторы. В микросхемах, как можно больше, используются прямые соединения. Если это необходимо, то при конструировании микросхем учитываются внешние конденсаторы и трансформаторы. Результатом этого является то, что современный радиоприемник на микросхеме (смотрите главу 9) совсем не похож на первоначальный радиоприемник Regency TR1 (глава 9).

Даже дискретные транзисторы недороги по сравнению с трансформаторами. Громоздкие аудиотрансформаторы могут быть заменены транзисторами. Например, схема с общим коллектором (эмиттерный повторитель) может служить для согласования выходного импеданса с такой низкоомной нагрузкой, как динамик. Также большие конденсаторы связи возможно заменить на транзисторные схемы.

Мы по-прежнему хотели бы проиллюстрировать текст с помощью аудиоусилителей с трансформаторной связью. Эти схемы просты. В них небольшое количество компонентов. И эти схемы хорошо подходят для обучения – они просты для понимания.

Схема на рисунке ниже (a) представляет собой упрощенную схему двухтактного аудиоусилителя с трансформаторной связью. В двухтактных парах транзисторы поочередно усиливают положительную и отрицательную составляющие входного сигнала. При отсутствии сигнала на входе ни один из транзисторов не проводит электрический ток. Положительный входной сигнал даст положительный сигнал на верхнем конце вторичной обмотки входного трансформатора, что заставит верхний транзистор проводить электрический ток. Отрицательный сигнал на входе создаст положительный сигнал на нижнем конце вторичной обмотки входного трансформатора, который приведет нижний транзистор в режим проводимости. Таким образом, транзисторы усиливают чередующиеся полупериоды сигнала. Как показано на рисунке ниже (a), ни один из транзисторов не будет проводить ток при входном сигнале ниже 0,7 В(пик). Практическая схема соединяет среднюю точку на вторичной обмотке не с корпусом, а с резисторным делителем напряжения на 0,7 В (или выше), чтобы перевести оба транзистора с помощью смещения в класс B.

(a) Двухтактный усилитель с трансформаторной связью. (b) Усилитель на комплементарной паре с прямым соединением заменяет трансформаторы на транзисторы.

Схема на рисунке выше (b) – это современная версия, которая заменяет трансформаторы на транзисторы. Транзисторы Q1 и Q2 являются усилителями с общими эмиттерами, инвертирующими усиленный сигнал от базы к коллектору. Транзисторы Q3 и Q4 известны как комплементарная пара, потому что эти транзисторы NPN и PNP усиливают чередующиеся полуволны сигнала (положительную и отрицательную, соответственно). Параллельное соединение баз позволяет получить фазовое разделение без входного трансформатора (как на рисунке (a)). Громкоговоритель является эмиттерной нагрузкой Q3 и Q4. Параллельное соединение эмиттеров NPN и PNP транзисторов исключает необходимость в выходном трансформаторе со средней точкой (как на рисунке (a)). Низкий выходное сопротивление эмиттерного повторителя служит для согласования 8-омного сопротивления динамика с предыдущим каскадом с общим эмиттером. Таким образом, недорогие транзисторы заменяют собой трансформаторы. Полную схему смотрите схему аудио усилителя 3 Вт с комплементарной симметрией и прямой связью в главе 9.

Подведем итоги:

  • Емкостная связь на входе усилителя действует как фильтр верхних частот. Это приводит к тому, что на более низких частотах входного сигнала коэффициент усиления по напряжению усилителя уменьшается. Усилители с емкостной связью практически не реагируют на входные сигналы постоянного тока.
  • Прямое соединение с последовательным резистором вместо последовательного конденсатора устраняет проблему частотно-зависимого усиления, но имеет недостаток – уменьшение усиления для всех частот сигнала за счет ослабления входного сигнала.
  • Трансформаторы и конденсаторы могут использоваться для соединения выхода усилителя и нагрузки, чтобы исключить попадание на нагрузку постоянного напряжения. Многокаскадные усилители часто используют емкостную связь между каскадами, чтобы устранить проблемы влияния смещения одного каскада на смещение следующего.

Оригинал статьи:

Теги

Биполярный транзисторГальваническая развязкаДвухтактный усилительЕмкостная связьОбучениеРазвязкаТрансформаторная развязкаТрансформаторная связьУсилитель на комплементарной пареЭлектроника

Сохранить или поделиться

Соединение транзисторов параллельно.Как умощнить маломощный транзистор | Электронные схемы

соединение маломощных транзисторов в параллель

соединение маломощных транзисторов в параллель

Чтобы повысить мощность и ток коллектора одного маломощного транзистора,достаточно параллельно ему соединить еще один или несколько однотипных транзисторов. Если соединить два транзистора параллельно,то никаких дополнительных деталей может не потребоваться.Но если транзисторов будет пять,как в моем случае,потребуется применение выравнивающих ток резисторов,которые требуются подключить в эмиттеры транзисторов.Сопротивление таких резисторов надо рассчитывать по формуле,я подобрал экспериментально.

Для эксперимента,применил задающий генератор с выходной мощностью около 100мВт на частоте примерно 3.5МГц. В усилитель мощности поставил вначале один кт315. Такой транзистор максимум может выдать мощность 190мВт в течении нескольких секунд,после чего выходит из строя.Далее,соединил пять кт315 в параллель без резисторов.Такой общий транзистор выдает 440мВт,но через минуту один или два транзистора сильно нагреваются,из-за чего этот общий транзистор меняет свои характеристики и сигнал искажается и мощность падает.

соединение нескольких транзисторов параллельно

соединение нескольких транзисторов параллельно

Потом каждому транзистору подключил в эмиттер по резистору сопротивлением 10 Ом каждый. Такой общий транзистор также выдает мощность в нагрузку 440 мВт на частоте примерно 3.5МГц и сигнал,даже через пять минут работы не искажается и мощность не падает.Все транзисторы теплые,один нагрет чуть больше чем другие,но его работа стабильна.

Вывод: резисторы в эмиттере транзисторов,которые подключены параллельно,делают работу такого транзистора стабильнее.Мощность маломощного транзистора можно реально увеличить,подключив параллельно ему такие-же транзисторы.

Как включить транзисторы параллельно.

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ СИЛОВЫХ ТРАНЗИСТОРОВ

    Вопросы на тему использования силовых транзисторов в параллельном включении появляются все чаще и чаще. Причем вопросы относятся как и к автомобильным преобразователям, так и к сетевым.
    Лень меня одолела и я решил ответить сразу на все вопросы в один заход, чтобы больше на эту тему не отвлекаться.
    Для примера возьмем последний вопрос на эту тему:
    Прошу помощи или совета с подбором MOSFET и рекомендации по ремонту. Ремонтирую преобразователь 12/220 1800 Ватт. Там в каждом плече выхода 220 Вольт стоят 6 транзисторов. В общем их всего 12шт. родные BLV740. Часть накрыльсь. До меня туда влепили IRF740 3 шт. Проверил нашёл пару ещё неисправных. Докупил ещё 3 IRF740 (чтобы все транзисторы в одном плече были одинаковые). Схема не заработала то включалась то уходила в защиту.
    В конце концов умерли ещё часть полевиков. Поставил все IRF740, заменив сгоревшие — снова не работает. Часть транзисторов греется и в конце концов опять часть сгорела. Предположил, что параметры транзисторов «разбежались», выпаял все, оставил по 1 транзистору на полупериод т.е 2 вверху и 2 внизу. Подключил-всё работает, нагрузку 100 Ватт держит. Теперь вопрос. Прав ли я что транзисторы нужно менять все одновременно. И можно ли заменить BLV740 на IRF740?
    Я конечно мог бы не разводить балобольню и ответить коротко, но я не люблю клонеров (бездумно клонирующих чущие схемы), поэтому данный ответ построю на ряде вопросов таким образом, что думающий человек поймет о чем речь, а бестолковый будет и дальше тратить свою бюджет на взрывающиеся полевики. (Ехидно хихикаю…)

    Итак, потихоньку поехали:
    Изначально стояло несколько штук BLV740, открываем даташник и смотрим всего одну единственную строчку — количество энергии, запасенной затвором, которая обозначается Qg.
    Почему именно эту строчку?
    Потому что от этого значения на прямую зависит время открытия и закрытия полевого транзистора технологии MOSFET. Чем больше это значение, тем больше требуется энергии, чтобы открыть или закрыть полевой транзистор. Сразу оговорюсь — есть такое понятние в полевых транзисторах, как емкость затвора. Этот параметр тоже важный, но уже когда преобразование происходит на частотах сотни кГц. Лезть туда настоятельно не рекомендую — нужно съесть не одну собаку в этой области, чтобы успешно перешагнуть хотя бы сотню килогерц, причем есть собаку вместе с будкой.
    Поэтому для наших относительно низкочастотных целей наиболее важным является именно Qg. Открываем даташник на BLV740, при этом не забываем отметить у себя в голове, что эти транзисторы производит только SHANGHAI BELLING CO. Итак, что мы видим:

    Нижнее значение Qg вообще не нормировано, впрочем как и типовое, указано только максимальное — 63 nC. Из этого напрашивается какой вывод?
    Не понятно?
    Ладно, подскажу чуточку — отбраковка производится только по максимальному значению, т.е. транзисторы выпущенные заводом SHANGHAI BELLING CO в январе и мае могут отличаться друг от друга, причем не только параметром Qg, а и всеми остальными.
    Че делать?
    Ну например можно вспомнить, что максимально одинаковые транзисторы могут получится только когда производится одна партия, т. е. когда «пилится» один кристалл кремния, в помещении одна и таже влажность и температура и обслуживает оборудование одна и таже смена обслюживающего персонала со своим идивидуальным запахом, влажностью рук и т.д.
    Да, да, это все влияет на качество конечного кристалла и всего транзистора в целом и именно поэтому разброс параметров в одной партии не превышает 2%. Обратите внимание даже в одинаковых условиях нет одинаковых транзисторов, есть разброс не более 2-х %. Что уж говорить о транзисторах других партий.
    Теперь включаем и прогреваем думатель…
    Готово? Тогда вопрос — что произойдет, если у нас включены два транзистора в параллель, но у одного энергия затвора равна 30 nC, а у второго 60 nC?
    Нет, первый не откроется в 2 раза быстрее — это зависит еще от резисторов в затворах, однако мысль потекла в нужном направлении — ПЕРВЫЙ ОТКРОЕТСЯ БЫСТРЕЕ ВТОРОГО. Другими словами первый транзистор возьме на себя не половину нагрузки а всю. Да, это будет длится какие то наносекунды, но даже это уже увеличит его температуру и в конечном итоге приведет через десяток-другой часов к перегреву и тепловому пробою. Про токовый пробой я не говорю — обычно технологический запас позволяет транзистору остаться живым, но работа на технологическом запасе это раскуривание кальяна на пороховой бочке.
    Теперь случай чуток тяжелее — параллельно включено четыре транзистора. У первого Qg равно 50 nC, у второго — 55 nC, у третьего — 60 nC, у четвертого — 45 nC.
    Вот тут уже говорить о тепловом пробое смысла не имеет -есть огромная вероятность того, что тот, кто открывается первым даже прогреться не успеет как слдеует — он принимает на себя нагрузку, предназначенную для четырех транзисторов.
    Кто догадался какой транзистор кончится первым молодец, ну а кто не доехал, то возвращаемся на три абзаца вверх и чиатем второй раз.
    Итак, надеюсь понятно, что транзисторы параллельно включать можно и нужно, только необходимо соблюдать определенные правила, чтобы не было лишних трат. Правило первое и самое простое:
    ТРАНЗИСТОРЫ ДОЛЖНЫ БЫТЬ ОДНОЙ ПАРТИИ, о производителе я вообще молчу — это само собой разумеется, поскольку даже нормированные параметры у заводов могут отличаться:

    Итак, в итоге видно, что транзисторы от STMicroelectronics и Fairchild имеют типовое значение Qg, которое может отличаться как сторону уменьшения, так и увеличения, а вот Vishay Siliconix решил не заморачиваться и обозначил только максимальное значение, а остальное как Бог на душу положит.
    Для тех же, кто часто балуется ремонтом всяких преобразователей или собирает мощные усилители, где в оконечном каскаде несколько транзисторов настоятельно рекомендую собрать стенд для отбраковки именно силовых транзисторов. Денег съест этот стенд не много, а вот нервы и бюджет будет экономить регулярно. Подробнее об этом стенде здесь:

    Кстати сказать — видео можно просмотреть и сначала — есть некоторые моменты, которые любят пропускать начинающие и не очень опытные паяльщики.
    Данный стенд универсален — позволяет отбраковать как биполярные транзисторы, так и полевые, причем обоих структур. Принцип отбраковки основан на выборе транзисторов с одинаковым коф усиления, причем это происходит при токе кллектора порядка 0,5-1 А. Этот же параметр для полевых транзисторов на прямую связан со скоростью открытия-закрытия.
    Разработанно это устройство было ОЧЕНЬ давно, когда собирались на продажу услители Холтона на 800 Вт и в оконечном каскаде стояло по 8 штук IRFP240-IRFP9240. В брак уходило ОЧЕНЬ мало транзисторов, но это было до тех пор, пока их выпускала International Rectifier. Как только на рынке появились IRFP240-IRFP9240 Vishay Siliconix с усилителями Холтона в оригинале было покончено — из 10 транзисторов даже одной партии одинаковых попадалось лишь 2 или 3. Холтон был переведен на 2SA1943-2SC5200. Пока еще есть из чего выбирать.
    Ну если с параллельным включением все более-менее прояснилось, то как быть с плечами преобразователя? Можно использовать в одном плече транзисторы из одной пратии, а во втором из другой?
    Ответ я был дал, да вот только злоупотреблю уже прогретым Вашим думателем — разная скорость открытия-закрытия, одно плечо открыто дольше другого, а сердечник должен полностью размагничиваться и для этого на него нужно подавать ПЕРЕМЕННОЕ напряжение с одинаковой длительностью как отрицательной, так и положительной полуволны. Если этого не будет происходить, то некоторый момент времени намагниченный сердечник будет выстпать в роли АКТИВНОГО сопротивления, равного активному сопротивлению обмотки. Это когда на ОМах измеряешь сколько она Ом. Ну так и что будет?
    Снова ехидно хихикаю…
    Что до биполярных транзисторов, то тут решающим фактором является коф усиления. Именно от него зависит какой транзистор откроется быстрее и сильнее, он же на прямую влияет на ток перехода база-эмиттер.

  На последок настоятельно рекомендую почитать о расчетах импульсных блоков питания в Экселе — там о времени открытия-закрытия довольно подробно. ЧИТАТЬ.

 

 

   
   
   

   


Адрес администрации сайта: [email protected]
   

 

Урок 2.5 — Транзисторы и микросхемы

Транзистор

Я очень долго думал, как объяснить простыми человеческими словами, что же такое транзистор. Даже если рассказывать о транзисторе очень-очень поверхностно, мне придётся написать не менее пяти листов, используя заумные термины.

Потом меня осенило: ведь главная цель моего обзора – не дать академические знания (за ними пожалуйте в университет или хотя бы в Википедию), а научить начинающего радиолюбителя хотя бы отличать транзистор от конденсатора и резистора, чтобы успешно собрать свои первые конструкции (например, наборы Мастер Кит).

Поэтому лучше всего сказать так: транзисторы – это радиодетальки с тремя выводами, предназначенные для усиления и преобразования сигналов. Так они могут выглядеть в жизни:

 

 

Так обозначается транзистор на схеме:

У транзистора, как мы уже поняли, три вывода: база (B), коллектор (C), эмиттер (E).
На базу обычно подаётся входной сигнал, с коллектора — снимается усиленный сигнал, а эмиттер является общим проводом схемы. Конечно, это очень примитивное описание принципов работы транзистора, и вообще есть очень много нюансов, но мы уже договорились, что я не буду мучить вас чтением многостраничного труда.


На самой радиодетали выводы никак не маркированы. Какого-либо стандарта расположения выводов тоже нет. Так как же определить, где какой вывод?
Придётся воспользоваться справочной информацией: на каждый транзистор имеется так называемый даташит, или, иными словами, паспорт радиодетали. В даташите приводится вся информация по транзистору: максимально допустимые ток и напряжение, коэффициент усиления, расположение выводов и многое-многое другое. Даташиты проще всего искать в сети Интернет, также основные параметры транзисторов можно найти в радиолюбительской литературе.

 

Взаимозаменяемость транзисторов

Так как транзистор имеет гораздо более сложное устройство и больше значащих параметров, чем резистор, конденсатор или диод, подобрать допустимую замену отсутствующему компоненту непросто. Как минимум, у заменяемого транзистора должен быть такой же тип корпуса и цоколёвка (расположение выводов). Новый транзистор должен иметь такую же структуру: NPN или PNP. Кроме того, необходимо учитывать электрические параметры: допустимые токи, напряжения, в некоторых случаях – граничную частоту и т.п.
Иногда разработчик схемы делает этот труд за вас, предлагая возможные аналоги транзистора. В сети Интернет и в радиолюбительской литературе также имеются справочные таблицы с информацией о возможных аналогах транзисторов.
В наборы Мастер Кит также иногда вкладываются вместо оригинальных (временно отсутствующих на складе) транзисторов их аналоги, и такая замена не ухудшает качества работы готовой конструкции.

 

Установка транзистора на печатную плату

 Вообще же, для успешной сборки набора Мастер Кит необязательно знать, где какой вывод у транзистора. Достаточно совместить «ключи» на транзисторе и на печатной плате – и выводы транзистора «автоматически» установятся так, как положено.

Посмотрите на рисунок. У транзистора есть «ключ» — при взгляде на него сверху явно видно, что корпус полукруглый. Такой же «ключ» имеется на печатной плате. Для корректной установки транзистора достаточно совместить «ключи» на транзисторе и на печатной плате:

 

Микросхема


Микросхема – это уже почти готовое устройство, или, образно говоря, электронный полуфабрикат.

Микросхема содержит в себе электронную схему, выполняющую определённую функцию: это может быть логическое устройство, преобразователь уровней, стабилизатор, усилитель. Внутри микросхемы размером с ноготь могут содержаться десятки (а иногда и сотни, миллионы и миллиарды) резисторов, диодов, транзисторов и конденсаторов.

Микросхемы выпускаются в различных корпусах и имеют разное количество выводов. Вот некоторые примеры микросхем, с которыми может работать начинающий радиолюбитель:

 


Цоколёвка микросхемы

Выводы нумеруются против часовой стрелки начиная с левого верхнего. Первый вывод определяется с помощью «ключа» — выемки на краю корпуса или точки в виде углубления.


Взаимозаменяемость микросхем

Микросхема – это узкоспецифическая готовая электронная схема, содержащая в себе огромное количество элементов, и в общем случае каждая микросхема уникальна.
Но всё же в некоторых случаях можно подобрать замену. Разные производители могут выпускать одинаковые микросхемы. Проблема только в том, что не существует никакой унификации в названии (иногда, но не обязательно, могут совпадать цифры наименований). Например, MA709CH, MC1709G, LM 1709L SN72710L, К153УД1А/Б — это одна и та же микросхема разных фирм-производителей.

В некоторых случаях в наборы Мастер Кит также могут входить аналоги микросхем. Это нормально, и не ухудшает характеристик готовой схемы.


Микросхемы — стабилизаторы напряжения

Микросхемы стабилизаторов напряжения имеют три вывода, поэтому их легко можно перепутать с транзистором. Но в корпусе этого маленького компонента могут содержаться десятки транзисторов, резисторов и диодов. Например, на рисунке ниже представлена микросхема 78L05. Вы можете подавать на её вход напряжение от 5 до 30В, на выходе же микросхемы будет присутствовать неизменное напряжение 5В, при этом нагрузочная способность микросхемы – 100 мА. Подобный стабилизатор выпускается и в более мощной версии – до 1А нагрузочной способности, называется он 7805 и имеет более крупный корпус.

 

 

 

Установка микросхемы на печатную плату

На микросхеме и на печатной плате имеются «ключи», и при установке микросхемы на плату обязательно требуется их совмещать, как показано на рисунке ниже:

 

Скачать урок в формате PDF

TL431, что это за «зверь» такой? — Начинающим — Теория

Николай Петрушов

 


Рис. 1 TL431.

TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.

Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, «даташиту» (кстати, аналогами этой микросхемы являются — КА431, и наши микросхемы КР142ЕН19А, К1156ЕР5х).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?


Рис. 2 Устройство TL431.

Оказывается всё очень просто. Внутри находится обычный операционный усилитель ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения.
Только здесь эта схема играет немного другую роль, а именно — роль стабилитрона. Ещё его называют «Управляемый стабилитрон».
Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, ОУ имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе ОУ, коллектор (К) и эмиттер (А), которого объединены с выводами питания усилителя и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.


Рис. 3 Цоколёвка TL431.

Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы имеется встроенный источник опорного напряжения — 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 — напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит для того, чтобы открылся выходной транзистор, необходимо на вход (R) операционного усилителя, подать напряжение — чуть превышающее опорное 2,5 вольт, (приставку «чуть» можно опустить, так как разница составляет несколько милливольт и в дальнейшем будем считать, что на вход нужно подать напряжение равное опорному), тогда на выходе операционного усилителя появится напряжение и выходной транзистор откроется.
Если сказать по простому, TL431 — это что то типа полевого транзистора (или просто транзистора), который открывается при напряжении 2,5 вольта (и более), подаваемого на его вход. Порог открытия-закрытия выходного транзистора здесь очень стабильный из-за наличия встроенного стабильного источника опорного напряжения.


Рис. 4 Схема на TL431.

Из схемы (рис. 4) видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
Так как резисторы делителя одинаковые (напряжение источника питания делится пополам ), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении источника питания 5 вольт и более ( 5/2=2,5). На вход R в этом случае с делителя R2-R3 будет подаваться 2,5 вольт.
То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания — 5 вольт и более. Потухнет соответственно при напряжении источника менее 5-ти вольт.
Если увеличить сопротивление резистора R3 в плече делителя, то необходимо будет увеличить и напряжение источника питания больше 5 вольт, для того, что-бы напряжение на входе R микросхемы, подаваемое с делителя R2-R3 опять достигло 2,5 вольт и открылся выходной транзистор ТЛ-ки.

Получается, что если данный делитель напряжения (R2-R3) подключить на выход БП, а катод ТЛ-ки к базе или затвору регулирующего транзистора БП, то изменением плеч делителя, например изменяя величину R3 — можно будет изменять выходное напряжение данного БП, потому что при этом будет изменяться и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) — то есть мы получим управляемый стабилитрон.
Или если подобрать делитель не изменяя его в дальнейшем — можно сделать выходное напряжение БП строго фиксированным при определённом значении.

Вывод; — если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя R2-R3 сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 — 36 вольт (максимальное ограничение по «даташиту»).
Напряжение стабилизации в 2,5 вольта — получается без делителя, если вход ТЛ-ки подключить к её катоду, то есть замкнуть выводы 1 и 3.

Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным операционником?
— Можно, только если есть желание конструировать, но необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на операционник отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство. В этом случае можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП — напряжение подаваемое на вход микросхемы было равно опорному.

Ещё один вопрос — а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?

— Можно, но так как она отличается от обычного компаратора уже наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;


Рис. 5 Терморегулятор на TL431.

Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается — называются позисторы.
В этом терморегуляторе при превышении температуры выше установленного уровня (регулируется переменным резистором), сработает реле или какое либо исполнительное устройство, и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ООС между выводами 1-3, например подстроечный резистор 1,0 — 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором — в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема TL431 в схеме мощного блока питания для  трансивера, которая приведена на рисунке 6, и какую роль здесь играют резисторы R8 и R9, и как они подбираются.

Рис. 6 Мощный блок питания на 13 вольт, 22 ампера.

 

Для самых начинающих — транзисторы. — Конструкции простой сложности — Схемы для начинающих

ДЛЯ САМЫХ НАЧИНАЮЩИХ

   Транзисторы лежат в основе большинства электронных устройств. Он могут быть в виде отдельных радиодеталей, или в составе микросхем. Даже самый сложный микро­процессор состоит из великого множества малюсеньких транзисторов, плотно разме­щенных в его могучем кристалле.

   Транзисторы бывают разные. Две основ­ные группы — это биполярные и полевые. Биполярный транзистор обозначается на схеме, так как показано на рисунке 1. Он бывает прямой (р-п-р) и обратной (п-р-п) проводимости. Структура транзистора, и физические процессы, происходящие в нем изучается в школе, так что здесь о ней гово­рить не будем, —  так сказать, ближе к прак­тике. В сущности, разница в том, что р-п-р транзисторы подключают так, чтобы на их эмиттер поступал положительный потенциал напяжения, а на коллектор — отрицательный. Для транзисторов n-p-п — все наоборот, на эмиттер дают отрицательный потенциал, на коллектор — положительный.

   Зачем нужен транзистор?   В основном его используют для усиления тока, сигналов, напряжения. А усиление происходит за счет источника питания. Попробую объяснить принцип работы «на пальцах». В автомаши­не есть вакуумный усилитель тормоза. Когда водитель нажимает на педаль тормоза, его мембрана перемещается и открывается клапан через который двигатель машины всасывает эту мембрану, добавляя ей усилие. В результате слабое усилие нажима на педаль тормоза приводит к сильному усилию на тормозных колодках. А добавка силы происходит за счет мощности работаю­щего мотора машины.

   Вот и с транзистором похоже. На базу подают слабенький ток (рис. 2). Под действием этого тока проводимость коллек­тор — эмиттер увеличивается и через коллек­тор уже протекает куда более сильный ток, поступающий от источника питания. Изменя­ется слабый ток базы, — соответственно изменяется и сильный ток коллектора. В идеале, график изменения тока коллектора выглядит как увеличенная копия графика изменения тока базы.

    Это различие между слабым током базы и сильным током коллектора называется коэф­фициентом усиления транзистора по току, и обозначается И21э. Определяется так: h31э = Ik /I6 (ток коллектора делить на ток базы). Чем больше данный параметр, тем лучше усилительные свойства транзистора.

   Но это все в идеале. На самом деле зависи­мость тока коллектора от напряжения на базе не так уж и линейна. Следует вспомнить BAX диода, где в самом низу характеристики тока очень мал, и начинает резко наростать когда напряжение достигает определенного значения. Поскольку в основе транзистора лежат те же физические процессы, то и здесь имеется аналогичный «дефект».

   Если мы соберем схему усилителя, показан­ную на рисунке 3, и будем говорить в микро­фон, в динамике звука не будет. Потому что напряжение на микрофоне очень мало, оно ниже порога открывания транзистора. Здесь не только не будет усиления, а даже наоборот, будет ослабление сигнала.

   Чтобы транзистор заработал как усилитель нужно увеличить напряжение на его базе. Это можно сделать каким-то образом увели­чив напряжение на выходе микрофона. Но тогда теряеТся смысл усилителя. Или нужно схитрить, и подать на базу транзистора некоторое постоянное напряжение (рис.4) через резистор, такое чтобы транзистор приоткрыть. И слабое переменное напряже­ние подать на базу этого транзистора через конденсатор. Вот теперь самое важное, — слабое переменное напря­жение сложится с постоян­ным напряжением на базе. Напряжение на базе будет изменяться в такт слабому переменному напряжению. Но так как постоянное напряжение сместило рабо­чую точку транзистора на крутой линейный участок характеристики, происходит усиление.

   Проще говоря, у слабого напряже­ния небыло сил чтобы открыть транзистор, и мы добавили ему в помощь постоян­ное напряжение, которое при­открыло транзис­тор. Еще проще (опять с водой), допустим, есть туго завинченный винтель, и ребенок повернуть его не может. Но папа может приоткрыть этот винтель, повернув его в приоткрытое положение, в котором он вращается легко. Теперь ребенок может регулировать напор воды в некоторых пределах. Вот здесь ребенок — это слабое переменное напряжение, а папа — это постоянное напряжение, поданное на базу транзистора через резистор.

   Постоянное напряжение, которое подают на базу транзистора чтобы сместить его режим работы в участок с более крутой и линейной характеристикой, называется напряжением смещения. Изменяя это напряжение мы можем даже регулировать коэффициент усиления усилительного каскада.

   Но транзисторы далеко не всегда исполь­зуются с напряжением смещения. Например, в усилительных каскадах передатчиков напряжение смещения на базы транзисторов могут и не подаваться, так как амплитуды входного переменного напряжения там впол­не достаточно для «раскачки» транзистора.

   И если транзистор используется не в качестве усилителя, а в качестве ключа, то напряжение смещения тоже на базу не дают. Просто, когда ключ должен быть закрыт, — напряжение на базе равно нулю, а когда он должен быть открыт, — подают напряжение на базу достаточное для открывания транзистора. Это используется обычно в цифровой электронике, где есть только нули (нет напряжения) и единицы (напряжение есть) и никаких промежуточных значений.

 

   На рисунке 5 показана практическая схема как сделать из репродуктора радиоточки компьютерную колонку. Нужен простой одно- программный репродуктор только с одной вилкой для подключения в радиосеть (у многопрограммного есть вторая вилка для электросети). Никаких изменений в схему репродуктора вносить не нужно. К коллек­тору транзистора он подключается так же как к радиосети. 

   Внутри однопрограммного репродуктора есть динамик, переменный резистор для регулировки громкости и трансформатор. Все это нужно, и оно остается. Когда вскроете корпус репродуктора, подпаивайте коллектор транзистора и плюс источника питания к тем местам, к которым подпаян его провод с вилкой. Сам провод можно убрать.

   Для подключения к компьютеру нужен экранированный провод с соответствующим штекером на конце. Или обычный двухпро­водной провод. Если провод экранирован­ный, — оплетку подключайте к эмиттеру транзистора, а центральную жилу к конден­сатору С1.

   Сигнал от компьютерной звуковой карты подают через штекер на конденсатор С1. Напряжение питания подают от сетевого блока питания. Лучше всего подходит блок питания от игровой приставки к телевизору, типа «Денди», «Кенга». Вообще годится любой блок питания с напряжением на выходе от 7V до 12V. Для подключения к блоку питания потребуется соответствующее гнездо, его нужно установить на корпусе репродуктора, просверлив для него отверстие. Хотя, конечно, можно подпаять провода от блока питания и непосредственно к схеме. Подключая источник питания нужно соблюдать полярность. Диод VD1 в принципе не нужен, но он защищает схему от выхода из строя, если вы перепутаете плюс с минусом у блока питания. Без него при неправильном подключении питания транзис­тор можно сжечь, а с диодом, если полюса блока питания перепутаете, просто схема не включится.

   Транзистор КТ315 в прямоугольном корпусе, у которого с одной стороны есть скос (на рисунке показано). Вот если этим скосом повернуть его от себя, а выводами вверх, то слева будет база, справа эмиттер, а коллектор посредине. Подойдет транзистор КТ315 с любой буквой (КТ315А, КТ315Б… ). Транзистор нужно запаять правильно, не перепутав его выводы. Если ошибетесь и включите питание он может сдохнуть. Поэтому, после того как все спаяете не поле­нитесь раза три проверить правильность монтажа, правильно ли подпаяны выводы транзистора, конденсаторов, диода. И только когда будете уверены на все 100%, — включайте.

   Диод VD1 типа КД209. На нем отмечен анод. Можно поставить и другой диод, например, 1N4004 или какой-то еще. Если диод впаяете неправильно схема работать

не будет. Так что, если все включили, но не работает, начинайте с проверки правиль­ности подключения диода.

    Еще несколько причин того, что схема может не заработать:

—   неправильно подключили источник питания.

— нет сигнала на выходе компьютера, либо громкость уменьшена или выключена регулировками в программе компьютера.

— регулятор громкости репродуктора в мини­мальном положении.

   Конденсаторы — электролитические, на напряжение не меньше 12V. Подойдут наши К50-16, К50-35 или импортные аналоги. Следует заметить, что у наших конденсато­ров на корпусе стоит плюсик возле положи­тельного вывода, а у импортных минусик или широкая вертикальная полоска у отрицатель­ного вывода. Вместо конденсатора 10 мкф можно выбрать на любую емкость от 2 мкф до 20 мкф. Вместо конденсатора на 100 мкФ подойдет конденсатор любой емкости не менее 100 мкФ.

    На рисунке ниже схемы показана монтажная схема, на ней места паек отмечены точками. Не перепутайте места паек с пересечением проводов. Монтаж сделан навесным спосо­бом, используя выводы деталей и монтаж­ные проводки. Всю схему желательно поместить внутрь корпуса репродуктора (там обычно очень много места).

 

   Если все работает, но сильно фонит, — значит, вы перепутали провода, идущие к звуковой карте. Поменяйте их местами.

Запитывать схему от источника питания компьютера НЕ СЛЕДУЕТ!

   Для стереоварианта можно сделать две колонки, входы объединив в один стерео- кабель для подключения к звуковой карте, ну и запитать обе колонки от одного блока питания.

   Конечно с одним транзисторным каскадом колонка будет звучать негромко, но достаточно для прослушивания в небольшой комнате. Громкость можно регулировать как регулятором компьютера, так и ручкой, что есть у репродуктора.

Андреев С.

Что такое транзисторы и как они работают

Рубрика: Статьи про радиодетали Опубликовано 09.06.2020   ·   Комментарии: 0   ·   На чтение: 7 мин   ·   Просмотры:

Post Views: 389

Транзисторы – это основа всей цифровой электроники 21 века. Они выполняют самые разнообразные функции. Это правопреемники и наследники радиоламп, так называемых вакуумных триодов. В этой статье мы на простом примере рассмотрим концепцию, принцип работы и применение транзисторов в электронике.

Концепция транзисторов

Что такое концепция? Это общее представление об объекте или процессе. Например, концепция автомобиля – это четыре колеса, руль, корпус, двигатель и коробка передач. Концепция одна, а выпускаются автомобили с разной конструкцией, устройством и предназначением.

У транзисторов, как и у вакуумных триодов, очень простая концепция и принцип работы.

Триод – это та деталь, у которой три контакта.

Давайте представим бак с водой, в центре которого установлена задвижка.

Что мы можем сделать с потоком воды? Мы можем управлять им за счет задвижки.

Например, если в баке течет вода, и задвижки нет в нем, то вода проходит без препятствия.

В тоже время, если мы полностью перекроем путь задвижкой, то и вода не будет поступать во вторую условную часть бака и поток прекратится.

А еще мы можем полностью управлять потоком воды при помощи регулировки задвижки.

Получается, что при помощи небольшой задвижки можно контролировать огромный поток воды.
Небольшие колебания (перемещения) задвижки позволяют с такой же частотой пропускать большой поток воды.

И именно в этом суть транзисторов и вакуумных триодов. С их помощью можно управлять электрическим током больших значений применяя небольшие усилия.

Но в тоже время транзисторы могут быть по разному устроены.

Полевые транзисторы

Описанный выше пример – это полевой транзистор. У самого простого полевого транзистора есть сток, исток и затвор.

Транзисторы изготавливаются из полупроводниковых материалов. Поэтому, у них есть второе название — полупроводниковые триоды.

При помощи полупроводников можно изготовить p-n переход.

Любой транзистор состоит из p-n переходов, которые пропускают электрический ток в одном направлении. И этот переход позволят управлять электрическим током как задвижкой.

Полевые транзисторы управляются при помощи напряжения, которое подается на затвор.

Так выглядит состав полевого транзистора с каналом p – типа.

А вот так с n – типом.

Канал транзистора – это область между истоком и стоком.

Почему транзисторы бывают разными по проводимости? Транзистор с n типом управляется при помощи положительного потенциала, а с p типом наоборот, отрицательным потенциалом. Это позволяет усиливать сигналы с разными потенциалами.

Затворов у полевых транзисторов на самом деле два, но их выводы объединены в один, так как функция у них одинакова. Зачем нужно два затвора? Так транзистором проще управлять.

Подавая напряжение на затвор, мы можем регулировать электрический ток проходящий от истока к стоку.

А самое главное не это. Самое главное, что мы можем таким образом не просто включить или выключить электрический ток по цепи, но и управлять его движением.

Например, можно подать на затвор полевого транзистора переменный сигнал 5 мкВ. И он будет модулировать электрический ток, который проходит через исток и сток транзистора. Так можно получить усиленный сигнал.

Также полевые транзисторы имеют разные схемы включения, которые позволяют согласовывать сопротивления и регулировать усилительные функции.

Обозначение (УГО) полевого транзистора с каналом n типа на принципиальных схемах:

Биполярные транзисторы

Это другой тип транзисторов. Такие транзисторы управляются при помощи электрического тока. И они состоят из чередующихся p-n переходов.

Как и у полевого транзистора, у биполярного тоже три контакта. Это эмиттер, база и коллектор. База всегда по типу противоположна эмиттеру и коллектору.

А также размеры базы транзистора намного меньше, чем у коллектора или эмиттера. База только открывает транзистор. И так как через нее протекает ток, она не должна быть большой, чтобы на нее не тратилось много энергии.

Эмиттер — это большой источник основных носителей заряда. А коллектор — это самый большой контакт из этой троицы. С коллектора снимается усиленный сигнал в классической схеме, чтобы получить максимальную мощность. В транзисторах большой мощности коллектор припаян напрямую к корпусу, чтобы рассеивать тепло.

Бывают биполярные транзисторы n-p-n типа.

и p-n-p типа.

Обозначение (УГО) биполярного n-p-n транзистора на принципиальных схемах:

Отличие биполярных транзисторов от полевых

Полевые транзисторы управляются при помощи электрического поля и благодаря этому они очень энергоэффективны. Именно по этой причине они используются при производстве процессоров.

С другой стороны, у полевых транзисторов есть слабое место. Это их тонкий p-n переход. Он очень чувствителен к статическому электричеству. Кстати, именно из-за статического электричества перестают работать флешки и карты памяти, если вы их вытащили из устройства во время работы.

Схемы защиты от статического электричества не успевают сработать, и статика разрушает полевые транзисторы.

А вот биполярные транзисторы наоборот, лучше переносят статику. Но в тоже время, они потребляют больше мощности, так как для их открытия нужен электрический ток.

Схемы включения

Так как у транзисторов три контакта, то можно чередовать вход и выход. Что это даст? У каждого контакта свои особенности. Например, если мы подадим сигнал на базу и эмиттер биполярного транзистора, а снимать итоговый сигнал будем с эмиттера и коллектора, то такая схема будет называются с общим эмиттером.

Этот тип включения позволяет передать максимум мощности в нагрузку.

Прочитать подробнее про работу схемы с общим эмиттером можно в этой статье.

Аналогичным образом можно подключить схему с общим коллектором и с общей базой. По сути, общий контакт — это такой контакт, который работает и на входе и на выходе одновременно с разными контактами.

Все тоже самое справедливо и для полевых транзисторов. Есть схемы с общим стоком, истоком и затвором.

Другие типы транзисторов

А еще бывают однопереходные, комплементарные и КМОП, МДП (MOSFET) и множество других транзисторов. Они разные по своим характеристикам, выполняют разные задачи и предназначены для конкретных целей. Но в целом, принцип работы у всех одинаков. Это управление электрическим током.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

  • Коэффициент усиления по току;
  • Коэффициент усиления по напряжению;
  • Коэффициент усиления по току;
  • Коэффициент обратной связи;
  • Коэффициент передачи по току;
  • Входное сопротивление;
  • Выходное сопротивление;
  • Время включения;
  • Максимально допустимый ток и др.

У биполярных:

  • Обратный ток коллектор-эмиттер;
  • Частота коэффициента передачи тока базы;
  • Обратный ток коллектора;
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером и др.

Режимы работы

В целом, можно выделить несколько режимов работы:

  • Номинальный режим;
  • Инверсный;
  • Насыщения;
  • Отсечка;
  • Барьерный.

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Чем транзисторы уступают лампам

Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:

  • Устойчивость к высоким электромагнитным наводкам и помехам. Это не значит, что полупроводниковая техника может выйти из строя от любых помех. Но если случится сильнейшая магнитная буря от Солнца (или мощный ЭМИ удар от ядерных бомб), то все p-n переходы в полупроводниковой технике могут выйти из строя из-за высоких токов наводки. Вакуумная техниках намного устойчивее к таким помехам.
  • Ламповая техника намного лучше и стабильнее работает на высоких частотах. И это уже особенности конструкции. Так как в транзисторах есть p-n переходы, то у них тоже есть своя емкость. А паразитная емкость на высоких частотах негативно влияет на усиление сигнала. Появляются нелинейные искажения. А в вакуумной технике есть такие лампы, у которых по несколько экранирующих сеток, которые позволяют снизить эффект паразитных емкостей. Пример радиолампы — это клистрон.

Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.

Post Views: 389

Как использовать транзисторы — Самодельные схемотехнические проекты

Если вы правильно поняли, как использовать транзисторы в схемах, вы, возможно, уже покорили половину электроники и ее принципов. В этом посте мы делаем попытку в этом направлении.

Введение

Транзисторы представляют собой полупроводниковые устройства с 3 выводами, которые способны проводить относительно высокую мощность через свои два вывода в ответ на значительно низкую мощность, потребляемую на третьем выводе.

Транзисторы в основном бывают двух типов: транзистор с биполярным переходом (BJT) и полевой транзистор металл-оксид-полупроводник (MOSFET)

Для BJT 3 клеммы обозначаются как база, эмиттер, коллектор. .Сигнал малой мощности на выводе базы / эмиттера позволяет транзистору переключать нагрузку сравнительно высокой мощности на выводе коллектора.

Для полевых МОП-транзисторов они обозначаются как затвор, источник, сток. Сигнал малой мощности на выводе затвор / исток позволяет транзистору переключать нагрузку сравнительно высокой мощности через вывод коллектора.

Для простоты мы обсудим здесь BJT, поскольку их характеристика менее сложна по сравнению с MOSFET.

Транзисторы (BJT) являются строительными блоками всех полупроводниковых устройств, используемых сегодня.Если бы не было транзисторов, не было бы никаких микросхем или любого другого полупроводникового компонента. Даже ИС состоят из тысяч тесно связанных транзисторов, которые составляют особенности конкретного чипа.

Начинающим любителям электроники обычно трудно обращаться с этими полезными компонентами и настраивать их как схемы для предполагаемого применения.

Здесь мы изучим функции и способы использования и внедрения биполярных транзисторов в практические схемы.

Как использовать транзисторы, такие как коммутатор

Биполярные транзисторы, как правило, представляют собой трехвыводный активный электронный компонент, который в основном работает как переключатель для включения или выключения питания внешней нагрузки или связанного с ней электронного каскада схемы.

Ниже приведен классический пример, в котором транзистор подключен как усилитель с общим эмиттером:

Это стандартный метод использования любого транзистора в качестве переключателя для управления заданной нагрузкой. Вы можете видеть, когда к базе подается небольшое внешнее напряжение, транзистор включается и проводит более сильный ток через выводы эмиттера коллектора, включая большую нагрузку.

Значение базового резистора можно рассчитать по формуле:

R b = (Базовое питание V b — прямое напряжение база-эмиттер) x hFE / ток нагрузки

Также помните, что отрицательный или отрицательный линия заземления внешнего напряжения должна быть соединена с линией заземления транзистора или эмиттером, иначе внешнее напряжение не будет влиять на транзистор.

Использование транзистора в качестве драйвера реле

Я уже объяснял в одном из своих предыдущих постов, как сделать схему драйвера транзистора.

В основном используется та же конфигурация, что и показанная выше. Вот стандартная схема для того же:

Если вы не уверены в реле, вы можете обратиться к этой всеобъемлющей статье, которая объясняет все о конфигурациях реле.

Использование транзистора для регулятора освещенности

Следующая конфигурация показывает, как транзистор может использоваться в качестве регулятора яркости света с использованием схемы эмиттерного повторителя.

Вы можете видеть, как изменяется переменный резистор или горшок, интенсивность лампы также меняется. Мы называем это эмиттерным повторителем, потому что напряжение на эмиттере или на лампе следует за напряжением на базе транзистора.

Если быть точным, то напряжение на эмиттере будет всего на 0,7 В ниже напряжения базы. Например, если базовое напряжение 6 В, эмиттер будет 6 — 0,7 = 5,3 В и так далее. Разница 0,7 В обусловлена ​​минимальным падением прямого напряжения транзистора на базе эмиттера.

Здесь сопротивление потенциометра вместе с резистором 1 кОм образует резистивный делитель на базе транзистора. При перемещении ползунка потенциометра изменяется напряжение на базе транзистора, что, соответственно, изменяет напряжение эмиттера на лампе, и соответственно изменяется интенсивность лампы.

Использование транзистора в качестве датчика

Из приведенных выше обсуждений вы могли заметить, что транзистор выполняет одну важную функцию во всех приложениях.Он в основном усиливает напряжение на своей базе, позволяя переключать большой ток через его коллектор-эмиттер.

Эта функция усиления также используется, когда в качестве датчика используется транзистор. В следующем примере показано, как его можно использовать для определения разницы в окружающем освещении и соответствующего включения / выключения реле.

Здесь также LDR и предустановка 300 Ом / 5 кОм образуют делитель потенциала на базе транзистора.

На самом деле 300 Ом не требуется.Он включен, чтобы гарантировать, что база транзистора никогда не будет полностью заземлена, и, таким образом, она никогда не будет полностью отключена или отключена. Это также гарантирует, что ток через LDR никогда не может превысить определенный минимальный предел, независимо от того, насколько яркой является интенсивность света на LDR.

В темноте LDR имеет высокое сопротивление, которое во много раз превышает комбинированное значение 300 Ом и предустановки 5 К.

Из-за этого база транзистора получает большее напряжение со стороны земли (отрицательное), чем положительное, и его проводимость коллектор / эмиттер остается выключенной.

Однако, когда на LDR попадает достаточно света, его сопротивление падает до нескольких килоомов.

Это позволяет базовому напряжению транзистора значительно превышать отметку 0,7 В. Теперь транзистор смещается и включает коллекторную нагрузку, то есть реле.

Как вы можете видеть, в этом приложении транзисторы в основном усиливают крошечное базовое напряжение, так что большая нагрузка на его коллекторе может быть включена.

LDR можно заменить другими датчиками, такими как термистор для измерения тепла, датчик воды для измерения воды, фотодиод для измерения инфракрасного луча и т. Д.

Вопрос к вам: Что произойдет, если поменять местами положение LDR и предустановки 300/5 K?

Пакеты транзисторов

Транзисторы обычно распознаются по внешнему корпусу, в который может быть встроено конкретное устройство. Наиболее распространенными типами корпусов, в которые помещаются эти полезные устройства, являются Т0-92, ТО-126, ТО-220 и ТО-3. Мы постараемся разобраться во всех этих характеристиках транзисторов, а также научимся использовать их в практических схемах.

Общие сведения о транзисторах TO-92 с малым сигналом:

Транзисторы, такие как BC547, BC557, BC546, BC548, BC549 и т. Д., Подпадают под эту категорию.

Это самые простые устройства в группе, которые используются для приложений с низкими напряжениями и токами. Интересно, что эта категория транзисторов наиболее широко и повсеместно используется в электронных схемах из-за их универсальных параметров.

Обычно эти устройства рассчитаны на работу с напряжением от 30 до 60 вольт на коллекторе и эмиттере.

Базовое напряжение не более 6, но они могут легко срабатывать при уровне напряжения всего 0,7 В на их базе. Однако ток должен быть ограничен примерно до 3 мА.

Три вывода транзистора TO-92 можно идентифицировать следующим образом:

Если держать печатную сторону к нам, правый вывод — это эмиттер, центральный вывод — основание, а левая сторона — вывод коллектор устройства.


ОБНОВЛЕНИЕ: Хотите знать, как использовать транзисторы с Arduino? Прочтите здесь


Как сконфигурировать транзистор TO-92 на практике Конструкции.

Транзисторы в основном бывают двух типов, NPN-типа и PNP-типа, оба дополняют друг друга.В основном они оба ведут себя одинаково, но в противоположных направлениях и направлениях.

Например, устройству NPN потребуется положительный триггер относительно земли, в то время как устройству PNP потребуется отрицательный триггер по отношению к положительной линии питания для достижения указанных результатов.

Трем выводам описанного выше транзистора необходимо назначить определенные входы и выходы, чтобы заставить его работать для конкретного приложения, которое, очевидно, предназначено для переключения параметра.

Выводам необходимо назначить следующие входные и выходные параметры:

Эмиттер любого транзистора является эталонной распиновкой устройства , то есть ему необходимо назначить указанное общее опорное напряжение питания, чтобы оставшиеся два вывода может действовать применительно к нему.

NPN-транзистору всегда потребуется отрицательный источник питания в качестве опорного, подключенный к его эмиттерному выводу для правильного функционирования, в то время как для PNP это будет положительная линия питания для его эмиттера.

Коллектор — это провод, несущий нагрузку транзистора, а нагрузка, которую необходимо переключить, вводится на коллекторе транзистора (см. Рисунок).

База транзистора — это триггерный вывод, к которому требуется приложить небольшой уровень напряжения, чтобы ток через нагрузку мог проходить через линию эмиттера, замыкая схему и управляя нагрузкой.

Удаление источника питания триггера на базу немедленно отключает нагрузку или просто ток через клеммы коллектора и эмиттера.

Общие сведения о силовых транзисторах TO-126, TO-220:

Это силовые транзисторы среднего типа, используемые для приложений, требующих переключения мощных, относительно мощных нагрузок, трансформаторов, ламп и т. Д., А также для управления устройствами TO-3, например BD139, BD140, BD135 и т.п. левая сторона является основанием.

Функционирование и принцип срабатывания точно такие же, как описано в предыдущем разделе.

Устройство работает с нагрузкой от 100 мА до 2 А через коллектор до эмиттера.

Базовый триггер может иметь напряжение от 1 до 5 В с токами, не превышающими 50 мА, в зависимости от мощности переключаемых нагрузок.

Общие сведения о силовых транзисторах TO-3:

Их можно увидеть в металлических корпусах, как показано на рисунке.Типичными примерами силовых транзисторов TO-3 являются 2N3055, AD149, BU205 и т. Д.

Выводы корпуса TO-3 можно идентифицировать следующим образом:

Удерживая выводную сторону устройства к себе так, чтобы металлическая часть рядом с выводами, имеющими большую площадь, удерживается вверх (см. рисунок), правый вывод является основанием, левый вывод является эмиттером, а металлический корпус устройства образует коллектор корпуса.

Функция и принцип работы примерно такие же, как описано для малосигнального транзистора, однако характеристики мощности увеличиваются пропорционально, как указано ниже:

Напряжение коллектор-эмиттер может составлять от 30 до 400 вольт, а ток — от 10 до 30 ампер. .

Базовый триггер должен оптимально составлять около 5 В с уровнями тока от 10 до 50 мА в зависимости от величины нагрузки, которая должна срабатывать. Базовый ток срабатывания прямо пропорционален току нагрузки.

Есть более конкретные вопросы? Пожалуйста, задавайте их через свои комментарии, я здесь, чтобы решить их все за вас.

Разница между логикой приемника и источника

Для человека, никогда не имевшего опыта подключения ввода-вывода для управления движением, это может быть пугающим с первого раза.Если устройства подключены неправильно, это может вызвать ряд проблем, поскольку двигатель просто не выполняет ожидаемых действий, что может привести к необратимому повреждению продукта. Я до сих пор нервничаю перед тем, как нажать кнопку СТАРТ в демоверсии. Кто-нибудь знает закон Мерфи?

Сложность начинается, когда инженеры или производители используют различную терминологию проводки. Как можно быть уверенным, что вы говорите яблоки с яблоками? Например, совпадает ли логика поиска с логикой PNP? «Мы тонем или берем затонувший источник?» По нашему опыту поддержки приложений управления движением мы все это слышали.

В большинстве случаев инженеры службы поддержки направят вас к электрической схеме и посоветуют ей следовать. Что на самом деле означают логика приемника и логика источника? Начнем с базовой терминологии.

Электронная схема (цифровая)

Электронная схема содержит электронные компоненты, такие как резисторы, транзисторы, конденсаторы, катушки индуктивности и / или диоды. Они соединены токопроводящими проводами или дорожками на печатной плате. Для этого требуется напряжение и земля, где земля действует как земля для измерения потенциального напряжения.Цифровая электронная схема использует напряжение постоянного тока и дискретные значения (вкл. / Выкл.). Источник питания постоянного тока перетекает с положительного на отрицательный.

В / В

I / O определяется как входы / выходы, которые в простейшем смысле представляют собой все, что выполняет вывод на основе ввода. Это может быть клавиатура (вход) и монитор (выход). В этом случае ввод / вывод описывает передачу сигналов между двумя устройствами (например, ПЛК и драйвером шагового двигателя) с использованием двоичной логики включения / выключения.

Электрическая нагрузка

Электрическая нагрузка — это электрический компонент или часть цепи, потребляющая электроэнергию.Это противоположность источника питания, такого как батарея или генератор, который производит энергию. Примеры нагрузок — лампочки и моторы. В данном случае мы говорим о входной цепи.

Логическая схема

Логическая схема определяется как электрическая цепь (I / O), выход которой зависит от входа. Он может включать один или несколько двоичных входов (вкл. / Выкл.) И один двоичный выход. Он может состоять из любых двоичных электрических или электронных устройств, включая переключатели, реле, твердотельные диоды и транзисторы.

Логика приемника и логика источника

Логические схемы приемника и истока обычно связаны с сигналами ввода-вывода ПЛК, и они применяются только к цепям постоянного тока. Они различаются типом используемого компонента и определяют текущий поток.

  • Логика определяется типом компонентов в схеме.
  • Логика определяет протекание тока в цепи.
  • Какую бы логику вы ни использовали для выхода, для входа требуется обратное.

Логика мойки

Для логики потребителя транзистор NPN обеспечивает путь к земле для электрической нагрузки. Чтобы схема транзистора NPN работала, она должна быть подключена к схеме транзистора PNP. Другими словами, логическая схема приемника должна быть подключена к логической схеме источника.

На рис. 1 показан входящий цифровой выход, подключенный к исходному цифровому входу. Входная цепь подключена между положительной стороной источника питания (Vcc) и транзистором NPN.

Исходная логика

Для логики истока транзистор PNP обеспечивает путь к напряжению для электрической нагрузки. Чтобы схема транзистора PNP работала, она должна быть подключена к схеме транзистора NPN. Другими словами, логическая схема истока должна быть подключена к логической схеме приемника.

На рис. 2 показан исходный цифровой выход, подключенный к входному цифровому входу. Входная цепь подключена между транзистором PNP и GND источника питания (0 В).

Полезный мнемонический трюк для логики «сток против истока» состоит в том, чтобы рассматривать логическую схему истока как источник напряжения (она обеспечивает путь к источнику), а логическую схему приемника как опускающуюся к земле (она обеспечивает путь к земле).

СОВЕТ: сравните расположенные рядом электрические схемы

Когда я имею дело с проводкой ввода-вывода между ПЛК и сервоприводом или шаговым драйвером, полезный прием, который сработал для меня, — это распечатать электрические схемы как от ПЛК, так и от драйвера, а затем положить их рядом.Это помогает визуализировать ток, протекающий от источника напряжения до нагрузки на землю.

Большая часть моей поддержки осуществлялась удаленно по телефону. Это сделало поддержку проводки очень сложной. Чтобы не повредить ПЛК моих клиентов, я распечатывал электрические схемы, а затем отслеживал ток, протекающий от источника напряжения до электрической нагрузки и вплоть до земли. Поддерживая удаленно, я также узнал, что очень важно точно знать, о какой стороне ввода-вывода имеет в виду заказчик.

Для того, чтобы выходной сигнал источника ПЛК запускал входящий сигнал на драйвере, мы должны убедиться, что все имеет необходимую мощность. Достаточное напряжение и ток должны поступать на положительный вывод со стороны ПЛК через выходную цепь во входную цепь (электрическая нагрузка), а затем выходить через другой вывод обратно на землю источника питания, чтобы замкнуть цепь. В ПЛК каждый отдельный сигнал ввода / вывода должен обеспечивать 2 клеммы для подключения: одну для входящего тока и одну для выхода.В целях экономии места иногда терминалов сгруппированы вместе и поэтому называются «общими». Этим «общим» может быть либо источник напряжения, либо земля. Подробнее позже.

СОВЕТ: не забывайте требования к питанию для ввода / вывода
Также важно обращать внимание на требования к напряжению и току для входов и выходов. Если для выхода требуются токоограничивающие резисторы, используйте закон Ома для расчета внешнего сопротивления, но не забывайте о внутреннем сопротивлении.Помните, что вы должны соответствовать требованиям входа как по напряжению, так и по току.

Важно обратить внимание на тип логики или транзистора, чтобы определить правильный метод подключения. Кроме того, есть разница в отношении безопасности. Если случайно что-то случится с устройством пользователя и вызовет утечку на землю сигнальной линии ввода / вывода или короткое замыкание линии заземления (0 В), это может быть потенциально опасным.

Однако, если использовалась логика источника, входная цепь не была напрямую подключена к положительной стороне питания (Vcc), поэтому утечка на землю или короткое замыкание сигнальной линии не приведет к включению входа.Вот почему он считается одним из самых безопасных способов подключения.

Сводка

Приемник и Источник — это термины, используемые для определения потока постоянного тока в электрической цепи.

  • Понижающаяся входная или выходная цепь обеспечивает заземление для электрической нагрузки.
  • Вход или выход источника обеспечивает источник напряжения для электрической нагрузки.

Логика определяется типом компонентов в схеме.

  • Для входной или выходной цепи источника требуется транзистор PNP.
  • Для входной или выходной цепи с понижением частоты требуется транзистор NPN.

Простая электронная схема состоит из одного цифрового входа, соединенного с цифровым выходом. Для питания схемы необходим источник напряжения, заземление и нагрузка.

  • Входная или выходная цепь источника обеспечивает необходимое напряжение для цепи.
  • Понижающаяся входная или выходная цепь обеспечивает необходимое заземление для цепи.
  • Цифровой ввод / вывод обеспечивает электрическую нагрузку, необходимую для работы схемы.

Для обеспечения гибкости используйте продукты, которые предлагают как приемную, так и исходную логику

Некоторые продукты на рынке предлагают логику как приемника, так и источника для гибкости в подключениях. Это возможно благодаря параллельному соединению двунаправленных диодов. Фотоэлементы также помогают минимизировать повреждение проводки.Используйте эти продукты, если требуется гибкость или если вы планируете использовать их позже.

Вот как выглядят настоящие электрические схемы для. Есть одна схема для подключения логических выходов приемника и другая схема для логических выходов источника. ПЛК, или «Программируемый контроллер», находится слева, а драйвер двигателя — справа. Обозначения INx — это входы, а обозначения OUTx — выходы.

Посмотрите на первый вход «IN-COM0» (общие входы).На верхней схеме подключения он подключен к 24 В постоянного тока, а вход имеет заземление. На нижней диаграмме «IN-COM0» подключен к 0 В, а вход имеет путь к источнику напряжения. Двунаправленные диоды во входных цепях позволяют это.

Надеюсь, это поможет. Большинство наших новых драйверов предлагают логику как приемника, так и источника. Если вам нужна помощь в их поиске, спросите нашего полезного.

Спасибо, что дочитали до этого места, и, пожалуйста, подпишитесь!

Низкая сторона vs.Транзисторный ключ высокого уровня

Обычная задача транзистора — это включение и выключение устройства. Существует две конфигурации транзисторного переключателя: со стороны низкого и высокого уровня. Расположение транзистора определяет тип схемы и ее название. Любая конфигурация транзистора может использовать BJT или MOSFET.

В этом посте я рисую конфигурацию для обоих типов транзисторов, рассказываю о том, для чего требуется драйвер, и объясняю, почему вы должны использовать любой из них. Если вы плохо знакомы с транзисторами, ознакомьтесь с ссылками на ресурсы внизу.У меня есть несколько видеороликов, которые я снял, и некоторые из «Учебной схемы element14», которые отлично справляются с внедрением транзисторов.

Конфигурация транзисторов нижнего плеча

Когда транзистор заземлен, это означает, что нагрузка находится между + V и транзистором. Поскольку транзистор переключает путь на землю или находится на стороне низкого напряжения нагрузки, он называется переключателем низкого уровня.

Обычно они используют NPN BJT или N-канальный MOSFET.

Примеры транзисторов нижнего уровня (обратите внимание, что полевой транзистор имеет понижающий резистор.)

Для NPN BJT эмиттер подключается к земле, а коллектор подключается к отрицательной стороне нагрузки. В качестве переключателя BJT работает в режиме насыщения. Насыщение означает, что базового тока достаточно для полного включения транзистора.

Для N-канального MOSFET исток подключается к земле, а сток подключается к отрицательной стороне нагрузки. Хотя вы можете использовать JFET для этой схемы, MOSFET в режиме улучшения работает лучше.

Переключатель на транзисторах верхнего плеча

Переключатель со стороны высокого давления противоположен переключателю со стороны низкого давления.Этот транзистор соединяет + V и нагрузку. Из-за того, как работают транзисторы, их может быть немного сложнее использовать в схеме Arduino или Raspberry Pi.

Обычно они используют PNP BJT или MOSFET с P-каналом.

Транзисторы верхнего плеча (обратите внимание, что полевой транзистор имеет подтягивающий резистор.)

Для PNP BJT эмиттер подключается к источнику напряжения, а коллектор подключается к положительной стороне нагрузки. Глядя на схематический рисунок для NPN и PNP, PNP может выглядеть так, как будто он перевернут.Как и NPN, PNP BJT должен работать в области насыщения, чтобы полностью включить транзистор.

Для МОП-транзистора с P-каналом, исток подключается к источнику напряжения, а сток подключается к положительной стороне нагрузки. Как и в случае с нижней стороной, вы, вероятно, захотите использовать MOSFET в режиме улучшения. Имейте в виду, что вы никогда не найдете P-Channel в режиме истощения. Они существуют только в учебниках и как ошибки при вводе данных.

МОП-транзистор с каналом P с одинаковым напряжением нагрузки

При использовании транзистора P-типа при напряжении нагрузки, которое имеет тот же уровень напряжения, что и сигнал, управляющий транзистором, приведенная выше схема работает нормально.Ну, логика перевернута, но в остальном все в порядке. Для подробного объяснения ознакомьтесь с этим постом, который я написал в Учебном пособии по P-Channel MOSFET только с положительным напряжением.

Когда напряжение нагрузки ВЫШЕ, чем напряжение сигнала, вам нужен драйвер. Затем давайте посмотрим, как драйвер используется с транзисторными переключателями низкого и высокого уровня.

Транзистор управляет другим транзистором

Схема задающего транзистора — это схема, которая управляет другим транзистором. Эта схема отличается от пары Дарлингтона BJT, которая представляет собой BJT с высоким коэффициентом усиления.Вместо этого используется драйвер транзистора, когда напряжение (или ток) управляющего сигнала несовместимо с нагрузочным транзистором. Ниже приведены два случая, когда вам может потребоваться драйвер транзистора. Это ни в коем случае не единственные. Поэтому, если вы знаете о каком-либо случае или подозреваете, что он вам нужен, оставьте комментарий.

Примеры транзисторных драйверов

Сильноточные полевые МОП-транзисторы имеют значительный порог Vgs. Хотя 5 вольт на выводе Arduino GPIO может быть достаточно для включения транзистора, этого недостаточно для его насыщения.Пока полевой транзистор не будет насыщен, его Rds-ON может быть относительно высоким, ограничивая максимальный ток, который он может выдержать.

Часто используется драйвер NPN с PNP BJT или P-канальным MOSFET, когда напряжение нагрузки выше, чем напряжение сигнала. Без драйвера транзистор может никогда не выключиться. Драйвер, по сути, повышает управляющее напряжение до достаточно высокого уровня, чтобы не смещать переход Vbe или Vgs транзистора. Мой учебник по ШИМ-вентилятору для ПК — это пример того, как Arduino управляет вентилятором на 12 В с помощью PNP.

Зачем вообще заморачиваться с транзисторами верхнего плеча?

Как для BJT, так и для MOSFET транзисторов их P-тип обычно имеет большее сопротивление (или меньшую допустимую нагрузку по току), чем их аналоги N-типа. По этой причине некоторые могут прийти к выводу, что вам всегда следует использовать N-тип в конфигурации низкого уровня.

Однако сделайте шаг назад и подумайте на секунду, что делают два разных типа схем. Переключатель нижнего плеча подключает массу, в то время как выключатель верхнего плеча подключает источник напряжения.Как правило, в цепи вы хотите, чтобы земля оставалась подключенной, а питание переключалось. Одна из причин заключается в том, что даже когда транзистор полностью открыт, на нем все еще есть небольшое падение напряжения. Это падение напряжения означает, что заземление этого устройства не равно 0 вольт. Для чего-то простого, например, светодиода, не имеет значения, что вы переключаете. Однако активное устройство, такое как микроконтроллер, нуждается в заземлении! Поэтому, когда у вас есть нагрузка, которая требует заземления, вам НЕОБХОДИМО использовать переключатель высокого напряжения.

Как простое практическое правило, если вы включаете и выключаете устройство, переключатель нижнего уровня является простым решением.Однако, если вы подаете питание на всю цепь или устройство, чувствительное к напряжению, вам следует использовать переключатель высокого напряжения.

Между прочим, есть готовые компоненты, называемые «выключателем нагрузки». Это ИС, которые имеют полевой МОП-транзистор с P-каналом в качестве переключающего транзистора со встроенным драйвером для этого P-канала. Для компонентов этого типа не требуется внешний драйвер.

Ссылки по основам транзисторов

(для справки)

  • Схема обучения, как работают транзисторы.Карен объясняет с нуля, как работают биполярные переходные транзисторы (BJT). В сети есть много объяснений физики транзисторов, но Карен — самая ясная из тех, с которыми я сталкивался.
  • Схема обучения, обратная связь BJT. В этом эпизоде ​​TLC я присоединился к Карен и рассмотрел некоторые заблуждения сообщества (и я подозреваю, что другие) в видео, указанном выше.
  • Аддомс, БЮЦ. Видео, которое я сделал о БЮТ. Я не буду вдаваться в подробности того, как работают электроны, но вместо этого покажу, как их использовать в цепи.
  • AddOhms, MOSFETs. Вторая часть моих видео о транзисторах. В этом эпизоде ​​я объясню, как использовать полевые МОП-транзисторы. (Это видео является самым популярным на моем канале YouTube с миллионом просмотров.)

Npn Transistor — обзор

Bipolar Transistors

Традиционный линейный биполярный процесс, который все еще очень широко используется, предлагает npn-транзисторы с частотой примерно 500 МГц F t , боковые pnp-транзисторы с F t 3–7 МГц, и pnp подложки (часто ошибочно называемые вертикальными pnp) с F t около 15 МГц.Ранние тексты IC цитировали боковой pnp-транзистор как устройство с очень низким коэффициентом усиления, но это неверно для современных процессов с хорошо отожженными поверхностными оксидами. Такой pnp, созданный на основе процесса типа операционного усилителя с эпи-материалом 5 Ом, теперь может иметь пиковый бета-коэффициент в диапазоне 50-200, и этот пик обычно возникает при токе коллектора около 10 мкА для небольшого устройства. При более низких токах бета уменьшается, но, как правило, ее можно использовать даже в диапазоне пикоампер. При высоких токах инжекция высокого уровня резко снижает коэффициент усиления по току, что делает боковой pnp крайне непригодным в качестве силового устройства, если он не сделан неоправданно большим.Кроме того, низкий F t (и высокий избыток фазы) ограничивают этот транзистор низкочастотными приложениями. Подложка pnp, конечно, имеет свой коллектор, неизменно подключенный к отрицательному источнику питания (или, точнее, подложку p-типа, которая почти всегда должна быть отрицательным источником питания), но нашла применение в качестве повторителя выходного эмиттера благодаря своей улучшенной F т. и грузоподъемность. Однако эти улучшения не являются существенными, и такой выходной каскад быстро выходит из строя при токах, значительно превышающих несколько десятков миллиампер, или на частотах выше нескольких мегагерц.

Несколько процессов развились из этого линейного биполярного процесса стандартного типа, который включает в себя многократно рассеиваемый pnp-транзистор с характеристиками, более близкими к npn-транзистору.

Обычный метод достижения этого — диффузия в p-лунке, которая действует как коллектор pnp, и дополнительная диффузия n-типа для базы pnp. Излучатель pnp обычно может использоваться как основание npn, а скрытый слой p-типа (если он есть) также использовался как часть изолирующей диффузии.Диэлектрическая изоляция упрощает эту процедуру, и поэтому первые коммерчески успешные примеры такого процесса использовали этот тип изоляции. Еще один метод создания такого «дополнительного» процесса — перевернуть биполярный процесс с ног на голову, чтобы оптимизировать его для pnp-транзистора. Хотя это действительно усложняет изготовление npn-устройства, здесь можно воспользоваться большей свободой из-за неотъемлемого преимущества в производительности.

Такие процессы занимают от 10 до 18 шагов маски и обеспечивают pnp-транзисторы с F t в диапазоне 150–600 МГц, что является значительным улучшением по сравнению с латеральными типами.

Другая тенденция — снижение напряжения питания для линейных интегральных схем. Если не требуется широкий динамический диапазон сигнала, этот подход позволяет изготавливать биполярные транзисторы значительно меньшего размера и, следовательно, быстрее. Кроме того, такие процессы позволяют интегрировать схемы «аналоговых БИС», а также позволяют комбинировать изрядное количество биполярной логики на одном кристалле.

Типичные низковольтные аналоговые биполярные процессы (обычно предусмотрен пробой 12 В для облегчения работы от источников питания ± 5 В) используют очень быстрые npn-транзисторы с F t от 1.От 5 до 8 ГГц или около того. Из-за задействованной небольшой геометрии боковые pnp-транзисторы часто могут быть удивительно быстрыми, F t на 80 МГц не редкость.

Опять же, есть тенденция к интеграции действительно комплементарного pnp-транзистора, и теперь для некоторых из этих процессов доступны F t 1–4 ГГц.

Обычная диэлектрическая изоляция (почти оксюморон) не может обеспечить необходимый для этих процессов контроль эпитаксиальной толщины, поэтому все они в основном изолированы, хотя емкость боковых стенок часто снижается с помощью траншеи, протравленной плазмой или реактивно-ионным травлением.Последние достижения в области кислородной имплантации и соединения пластин показывают, что диэлектрически изолированные версии этих процессов скоро станут реальностью, но я быстро выхожу за рамки этой главы.

Транзисторы

Транзисторы Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой
На этой странице описаны практические вопросы, такие как меры предосторожности при пайке. и выявление потенциальных клиентов.Эксплуатация и использование транзисторов регулируется Страница «Транзисторные схемы».

Типы | Подключение | Пайка | Радиаторы | Тестирование | Коды | Выбор | Пара Дарлингтон

См. Также: Радиаторы | Транзисторные схемы

Функция

Транзисторы усиливают ток , например их можно использовать для усиления небольшого выхода ток от логической микросхемы, чтобы он мог управлять лампой, реле или другим сильноточным устройством.Во многих схемах используется резистор для преобразования изменяющегося тока в изменяющееся напряжение, поэтому транзистор используется для усиления напряжения .

Транзистор может использоваться как переключатель (либо полностью включен с максимальным током, либо полностью выключен с нет тока) и как усилитель (всегда частично включен).

Величина усиления тока называется коэффициентом усиления по току , символ h FE .
Для получения дополнительной информации см. Страницу «Транзисторные схемы».


Типы транзисторов

Обозначения схемы транзистора
Есть два типа стандартных транзисторов, NPN и PNP , с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Если вы новичок в электронике, лучше всего начать с изучения того, как использовать транзисторы NPN.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E).
Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, так что относитесь к ним как к ярлыкам!

Пара Дарлингтона — это два транзистора, соединенные вместе. чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярных) транзисторов, есть полевые транзисторы , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они (пока) не рассматриваются на этой странице.


Выводы транзистора для некоторых распространенных стилей корпуса.

Подключение

Транзисторы имеют три вывода, которые должны быть подключены правильно. Пожалуйста, будьте осторожны, потому что неправильно подключенный транзистор может выйти из строя. повреждается мгновенно при включении.

Если вам повезет, ориентация транзистора будет видна на печатной плате или схема макета стрипборда, в противном случае вам нужно будет обратиться к каталогу поставщика для определения потенциальных клиентов.

На рисунках справа показаны отведения для некоторых из наиболее распространенных стилей корпусов.

Обратите внимание, что схемы выводов транзисторов показывают вид от до с ведет к вам. Это противоположно схемам выводов микросхем (микросхем), которые показывают вид сверху.

См. Ниже таблицу, в которой показаны стили корпуса некоторые общие транзисторы.


Пайка

Транзисторы могут быть повреждены нагреванием при пайке, поэтому, если вы не являетесь экспертом, это Целесообразно использовать радиатор, прикрепленный к проводу между соединением и корпусом транзистора.Стандартный зажим «крокодил» можно использовать в качестве радиатора.

Не путайте этот временный радиатор с постоянным радиатором (описанным ниже) что может потребоваться для силового транзистора, чтобы предотвратить его перегрев во время работы.


Радиаторы

Из-за протекающего через них тока в транзисторах выделяется лишнее тепло. Радиаторы необходимы силовым транзисторам, потому что они пропускают большие токи. Если вы обнаружите, что транзистор становится слишком горячим, чтобы к нему прикасаться, безусловно, необходимо радиатор! Радиатор помогает рассеивать (отводить) тепло, передавая это в окружающий воздух.

Для получения дополнительной информации см. Страницу «Радиаторы».


Тестирование транзистора

Транзисторы могут быть повреждены нагреванием при пайке или неправильным использованием в цепи. Если вы подозреваете, что транзистор может быть поврежден, есть два простых способа его проверить:
Тестирование транзистора NPN
1. Тестирование мультиметром
Используйте мультиметр или простой тестер (аккумулятор, резистор и светодиод) чтобы проверить каждую пару проводов на проводимость.Установите цифровой мультиметр на проверку диодов и аналоговый мультиметр для диапазона низкого сопротивления.

Проверить каждую пару проводов в обе стороны (всего шесть тестов):

  • Переход база-эмиттер (BE) должен вести себя как диод и вести только в одну сторону.
  • Переход база-коллектор (BC) должен вести себя как диод и вести только в одну сторону.
  • Коллектор-эмиттер (CE) не должен проводить ни в коем случае.
На схеме показано, как ведут себя переходы в NPN-транзисторе. В транзисторе PNP диоды перевернуты, но можно использовать ту же процедуру тестирования.
Простая схема переключения
для проверки транзистора NPN
2. Тестирование в простой схеме переключения
Подключите транзистор к схеме, показанной справа, которая использует транзистор в качестве переключателя. Напряжение питания не критично, подходит от 5 до 12 В.Эту схему можно быстро построить, например, на макетной плате. Позаботьтесь о включении 10k резистор в соединении с базой, иначе вы разрушите транзистор, когда будете его проверять!

Если транзистор в порядке, светодиод должен загореться при нажатии переключателя. и не загорается при отпускании переключателя.

Для проверки транзистора PNP используйте ту же схему, но поменяйте местами светодиод и напряжение питания.

Некоторые мультиметры имеют функцию проверки транзисторов, которая обеспечивает известный базовый ток и измеряет ток коллектора, чтобы отобразить Коэффициент усиления по постоянному току транзистора h FE .


Коды транзисторов

В Великобритании используются три основных серии кодов транзисторов:
  • Коды, начинающиеся с B (или A), например BC108, BC478
    Первая буква B обозначает кремний, A — германий (сейчас редко используется). Вторая буква указывает на тип; например, C означает звуковую частоту малой мощности; D означает звуковую частоту высокой мощности; F означает низкую мощность и высокую частоту. Остальная часть кода идентифицирует конкретный транзистор.В системе нумерации нет очевидной логики. Иногда в конце добавляется буква (например, BC108C) для обозначения специальной версии. основного типа, например, с более высоким коэффициентом усиления по току или другим типом корпуса. Если в проекте указана версия с более высоким коэффициентом усиления (BC108C), ее необходимо использовать, но если указан общий код (BC108), подходит любой транзистор с этим кодом.
  • Коды, начинающиеся с TIP, например TIP31A
    TIP относится к производителю: силовой транзистор Texas Instruments.Буква в конце обозначает версии с разным номинальным напряжением.
  • Коды, начинающиеся с 2N, например 2N3053
    Начальное «2N» идентифицирует деталь как транзистор, а остальную часть кода обозначает конкретный транзистор. В системе нумерации нет очевидной логики.

Выбор транзистора

В большинстве проектов указывается конкретный транзистор, но при необходимости обычно можно замените эквивалентный транзистор из широкого ассортимента.Самое важное свойства, которые следует искать, — это максимальный ток коллектора I C и коэффициент усиления по току h FE . Чтобы упростить выбор, большинство поставщиков группируют свои транзисторы в категориях, определяемых их типовым использованием или максимальная мощность рейтинг.

Чтобы сделать окончательный выбор, вам необходимо обратиться к таблицам технических данных, которые обычно представлены в каталогах. Они содержат много полезной информации но их может быть трудно понять, если вы не знакомы с сокращениями использовал.В таблице ниже приведены наиболее важные технические данные некоторых популярных транзисторов. таблицы в каталогах и справочниках обычно содержат дополнительную информацию, но это вряд ли будет полезно, если у вас нет опыта. Количества, указанные в таблице, поясняются ниже.

NPN транзисторы
Код Структура Корпус
стиль
I C
макс.
V CE
макс.
ч FE
мин.
P до
макс.
Категория
(стандартное использование)
Возможные замены
BC107 НПН TO18 100 мА 45 В 110 300 мВт Аудиосистема с низким энергопотреблением BC182 BC547
BC108 НПН TO18 100 мА 20 В 110 300 мВт Общего назначения, малой мощности BC108C BC183 BC548
BC108C НПН TO18 100 мА 20 В 420 600 мВт Общего назначения, малой мощности
BC109 НПН TO18 200 мА 20 В 200 300 мВт Аудио (низкий уровень шума), малое энергопотребление BC184 BC549
BC182 НПН TO92C 100 мА 50 В 100 350 мВт Общего назначения, малой мощности BC107 BC182L
BC182L НПН ТО92А 100 мА 50 В 100 350 мВт Общего назначения, малой мощности BC107 BC182
BC547B НПН TO92C 100 мА 45 В 200 500 мВт Аудиосистема с низким энергопотреблением BC107B
BC548B НПН TO92C 100 мА 30 В 220 500 мВт Общего назначения, малой мощности BC108B
BC549B НПН TO92C 100 мА 30 В 240 625 мВт Аудио (низкий уровень шума), малое энергопотребление BC109
2N3053 НПН TO39 700 мА 40 В 50 500 мВт Общего назначения, малой мощности BFY51
BFY51 НПН TO39 1A 30 В 40 800 мВт Общего назначения, средней мощности BC639
BC639 НПН ТО92А 1A 80 В 40 800 мВт Общего назначения, средней мощности BFY51
TIP29A НПН TO220 1A 60 В 40 30 Вт общего назначения, большой мощности
TIP31A НПН TO220 3A 60 В 10 40 Вт общего назначения, большой мощности TIP31C TIP41A
TIP31C НПН TO220 3A 100 В 10 40 Вт Общего назначения, большой мощности TIP31A TIP41A
TIP41A НПН TO220 6A 60 В 15 65 Вт общего назначения, большой мощности
2N3055 НПН ТО3 15A 60 В 20 117 Вт Общего назначения, большой мощности
Обратите внимание: данные в этой таблице были составлен из нескольких источников, которые не совсем согласованы! Большинство расхождений незначительны, но, пожалуйста, обратитесь к информации у вашего поставщика, если вам требуются точные данные.
Транзисторы PNP
Код Структура Корпус
стиль
I C
макс.
V CE
макс.
ч FE
мин.
P до
макс.
Категория
(стандартное использование)
Возможные замены
BC177 PNP TO18 100 мА 45 В 125 300 мВт Аудиосистема с низким энергопотреблением BC477
BC178 PNP TO18 200 мА 25 В 120 600 мВт Общего назначения, малой мощности BC478
BC179 PNP TO18 200 мА 20 В 180 600 мВт Аудио (низкий уровень шума), малое энергопотребление
BC477 PNP TO18 150 мА 80 В 125 360 мВт Аудиосистема с низким энергопотреблением BC177
BC478 PNP TO18 150 мА 40 В 125 360 мВт Общего назначения, малой мощности BC178
TIP32A PNP TO220 3A 60 В 25 40 Вт Общего назначения, большой мощности TIP32C
TIP32C PNP TO220 3A 100 В 10 40 Вт Общего назначения, большой мощности TIP32A
Обратите внимание: данные в этой таблице были составлен из нескольких источников, которые не совсем согласованы! Большинство расхождений незначительны, но, пожалуйста, обратитесь к информации у вашего поставщика, если вам требуются точные данные.
Структура Показывает тип транзистора: NPN или PNP. Полярности двух типов разные, поэтому, если вы ищете замену, она должна быть того же типа.
Тип корпуса На схеме показаны отведения для некоторых из наиболее распространенных стилей корпуса. в разделе «Подключение» выше. Эта информация также имеется в каталогах поставщиков.
I C макс. Максимальный ток коллектора.
V CE макс. Максимальное напряжение на переходе коллектор-эмиттер.
Вы можете игнорировать это значение в цепях низкого напряжения.
ч FE Это коэффициент усиления по току (строго коэффициент усиления по постоянному току). Гарантированное минимальное значение дано, потому что фактическое значение варьируется от транзистор на транзистор — даже для однотипных! Обратите внимание, что текущее усиление — это просто число, поэтому у него нет единиц измерения.
Коэффициент усиления часто указывается при определенном токе коллектора I C который обычно находится в середине диапазона транзистора, например «100 @ 20 мА». означает, что усиление составляет не менее 100 при 20 мА. Иногда указываются минимальные и максимальные значения. Поскольку коэффициент усиления примерно постоянный для разных токов, но он меняется в зависимости от транзистора. к транзистору эта деталь действительно интересует только специалистов.
Почему h FE ? Это один из целого ряда параметров транзисторов, каждый со своим собственным символом.Здесь слишком много объяснений.
P до макс. Максимальная общая мощность, которую может развивать транзистор, обратите внимание, что радиатор потребуется для достижения максимального рейтинга. Этот рейтинг важен для транзисторов, работающих как усилители, мощность примерно равна I C × V CE . Для транзисторов, работающих как переключатели, максимальное ток коллектора (I C макс.) важнее.
Категория Это показывает типичное использование транзистора, это хорошая отправная точка при поиске заменитель. В каталогах могут быть отдельные таблицы для разных категорий.
Возможные заменители Это транзисторы с аналогичными электрическими свойствами, которые подойдут заменители в большинстве схем. Однако у них может быть другой стиль корпуса. поэтому будьте осторожны при размещении их на печатной плате.

Дарлингтон пара

Это два транзистора, соединенных между собой так, что усиленный ток с первого усиливается вторым транзистором. Это дает паре Дарлингтонов очень высокий коэффициент усиления по току, например 10000. Пары Дарлингтона продаются в виде полных пакетов, содержащих два транзистора. У них есть три вывода ( B , C и E ) которые эквивалентны выводам стандартного отдельного транзистора.

Вы можете составить свою собственную пару Дарлингтона из двух транзисторов.
Например:

  • Для TR1 используйте BC548B с h FE1 = 220.
  • Для TR2 используйте BC639 с h FE2 = 40.
Общий коэффициент усиления этой пары составляет h FE1 × h FE2 = 220 × 40 = 8800.
Максимальный ток коллектора пары I C (макс.) Такой же, как у TR2.

Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой

© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.

Теория транзисторов

ТЕОРИЯ ТРАНЗИСТОРА

Вы должны вспомнить из предыдущего обсуждения, что

с опережением PN-переход

сопоставим с элементом схемы с низким сопротивлением, поскольку он проходит через ток для заданного напряжения. В свою очередь, PN-переход с обратным смещением сопоставим с высокоомный элемент схемы.Используя формулу закона Ома для мощности (P = I 2 R) и предполагая, что ток остается постоянным, можно сделать вывод, что мощность, развиваемая через высокое сопротивление больше, чем при низком сопротивлении. Таким образом, если кристалл должны были содержать два PN-перехода (один с прямым смещением, а другой с обратным смещением), маломощный сигнал может быть введен в переход с прямым смещением и произвести мощный сигнал на обратносмещенном переходе. Таким образом, прирост мощности будет получается поперек кристалла.Эта концепция, которая является просто продолжением материала Рассмотренная в главе 1, это основная теория усиления транзистора. С этим информация свежая в вашей памяти, давайте перейдем непосредственно к транзистору NPN.

Работа транзистора NPN

Как и в случае диода с PN переходом, материал N, составляющий два конца секции транзистора N P N содержат некоторое количество свободных электронов, в то время как центральная секция P содержит избыточное количество отверстий.Действие на каждом стыке между эти секции такие же, как ранее описанные для диода; то есть истощение области развиваются, и появляется стыковой барьер. Чтобы использовать транзистор в качестве усилителя, каждый из этих переходов должен быть изменен некоторым внешним напряжением смещения. Для транзистора чтобы функционировать в этом качестве, первый PN-переход (переход эмиттер-база) смещен в прямое направление или направление с низким сопротивлением. В то же время второй переход PN (переход база-коллектор) смещен в обратном или высокоомном направлении.А Простой способ запомнить, как правильно смещать транзистор, — это наблюдать NPN или PNP элементы, из которых состоит транзистор. Буквы этих элементов указывают, какая полярность напряжение, используемое для правильного смещения. Например, обратите внимание на транзистор NPN ниже:

Излучатель, который является первой буквой в последовательности N PN, подключен к n egative сторона батареи, в то время как основание, которое является второй буквой (N P N), подключено к положительной стороне p .Однако, поскольку второй PN-переход должен быть с обратным смещением для правильной работы транзистора, коллектор должен быть подключен к напряжение противоположной полярности ( p ositive), чем указано его буквой обозначение (НП N ). Напряжение на коллекторе также должно быть положительнее, чем база, как показано ниже:

Теперь у нас есть правильно смещенный NPN-транзистор.

Таким образом, база транзистора N P N должна быть p ositive относительно к эмиттеру, а коллектор должен быть положительнее базы.

NPN ПЕРЕДНЕЕ СМЕЩЕНИЕ. — Важный момент, который необходимо вынести на данный момент, который не обязательно упоминалось во время объяснения диода, это тот факт, что N материал на одной стороне перехода с прямым смещением более легирован, чем P материал. Это приводит к тому, что через соединение проходит больше тока большинством электроны-носители из материала N, чем дырки-носители из материала P.Следовательно, проводимость через смещенный в прямом направлении переход, как показано на рисунке 2-5, составляет в основном электронами основных носителей из материала N (эмиттер).

Рисунок 2-5. — Прямо смещенный переход в NPN-транзисторе.

Когда переход эмиттер-база на рисунке смещен в прямом направлении, электроны покидают отрицательную клемму батареи и попадают в материал N (эмиттер).Поскольку электроны являются основными носителями тока в материале N, они легко проходят через эмиттер, пересеките соединение и совместите с отверстиями в материале P (основание). Для с каждым электроном, заполняющим дырку в материале P, другой электрон покидает P материала (создавая новое отверстие) и введите положительный полюс батареи.

ОБРАТНОЕ СМЕЩЕНИЕ NPN. — второй PN-переход (база-коллектор), или обратносмещенный переход, как его называют (рис.2-6), блокирует большинство носителей тока от пересечения перекрестка. Однако есть очень слабый ток, о котором говорилось ранее, что действительно проходит через этот перекресток. Этот ток называется миноритарный ток или обратный. текущий . Как вы помните, этот ток создавался электронно-дырочными парами. В неосновными носителями для обратносмещенного PN перехода являются электрон в P материала и отверстий в материале N.Эти неосновные перевозчики фактически проводят ток для обратносмещенного перехода, когда электроны из материала P входят в N материала, а отверстия из материала N входят в материал P. Однако меньшинство текущие электроны (как вы увидите позже) играют наиболее важную роль в работе транзистор NPN.

Рисунок 2-6. — Обратно-смещенный переход в NPN-транзисторе.

На этом этапе вы можете задаться вопросом, почему второй PN-переход (база-коллектор) не прямое смещение, как и первый PN переход (эмиттер-база).Если бы оба стыка были с прямым смещением электроны будут иметь тенденцию течь из каждой торцевой секции N Транзистор P N (эмиттер и коллектор) к центральной части P (база). По сути, мы будет иметь два переходных диода с общей базой, что исключает любые усиление и поражение цели транзистора. Слово предостережения в порядке на данный момент. Если вы ошибочно смещаете второй PN-переход в прямом направлении направлении, чрезмерный ток может выработать достаточно тепла, чтобы разрушить соединения, делая транзистор бесполезным.Поэтому убедитесь, что полярность напряжения смещения правильная. перед выполнением любых электрических подключений.

NPN-ПЕРЕХОДНОЕ ВЗАИМОДЕЙСТВИЕ. — Теперь мы готовы посмотреть, что произойдет, когда мы разместим одновременно работают два перехода NPN-транзистора. Для лучшего Чтобы понять, как эти два соединения работают вместе, обратитесь к рис. 2-7 во время обсуждение.

Рисунок 2-7. — Работа на NPN транзисторе.

Батареи смещения на этом рисунке имеют маркировку V CC для коллектора. напряжение питания, и V BB для источника напряжения базы. Также обратите внимание на базу Батарея питания довольно мала, на что указывает количество ячеек в батарее, обычно 1 вольт или меньше. Однако запас коллектора в целом намного выше базового. питание, обычно около 6 вольт. Как вы увидите позже, эта разница в напряжениях питания необходимо, чтобы ток протекал от эмиттера к коллектору.

Как указывалось ранее, протекание тока во внешней цепи всегда связано с движение свободных электронов. Следовательно, электроны текут с отрицательных выводов подавать аккумуляторы к эмиттеру N-типа. Это комбинированное движение электронов известно как эмиттер . текущий (I E ). Поскольку электроны являются основными носителями в материале N, они будут перемещаться через эмиттер материала N к переходу эмиттер-база.С этим переход смещен вперед, электроны продолжают движение в базовую область. Как только электроны находятся в основе, которая представляет собой материал P-типа, они становятся неосновными носителями . Некоторые из электроны, которые движутся в базу, рекомбинируют с доступными дырками. Для каждого электрона который рекомбинирует, другой электрон движется через вывод базы как базовый ток I B (создавая новое отверстие для возможной комбинации) и возвращается к базовой батарее питания V

ББ

.Электроны, которые рекомбинируют, теряются, что касается коллектора. Поэтому, чтобы сделать транзистор более эффективным, базовая область сделана очень тонкой и слегка допированный. Это уменьшает возможность рекомбинации электрона с дыркой и Потерянный. Таким образом, большая часть электронов, которые перемещаются в базовую область, попадают под влияние обратного смещения большого коллектора. Это смещение действует как смещение вперед для неосновных носителей (электронов) в базе и, как таковые, ускоряет их через переход база-коллектор и далее в коллекторную область.Поскольку коллектор выполнен из материал N-типа, электроны, которые достигают коллектора , снова становятся большинством Перевозчики . Попадая в коллектор, электроны легко проходят через N материала и возврат к плюсовой клемме коллекторной аккумуляторной батареи V CC как ток коллектора (I C ).

Для дальнейшего повышения КПД транзистора выполнен коллектор физически больше, чем база, по двум причинам: (1) для увеличения вероятности сбора носители, которые диффундируют в сторону, а также непосредственно через основную область, и (2) к позволить коллектору обрабатывать больше тепла без повреждений.

Таким образом, полный ток в транзисторе NPN проходит через вывод эмиттера. Следовательно, в процентном отношении I E составляет 100 процентов. С другой стороны, поскольку база очень тонкая и слегка легированная, меньший процент от общего тока (ток эмиттера) будет течь в цепи базы, чем в цепи коллектора. Обычно нет от 2 до 5 процентов общего тока составляет базовый ток (I B ), в то время как оставшиеся от 95 до 98 процентов — ток коллектора (I C ).Очень простые отношения существует между этими двумя токами:

I E = I B + I C

Проще говоря, это означает, что ток эмиттера разделен на базовый и коллекторный ток. Поскольку количество тока, выходящего из эмиттера, зависит исключительно от смещение эмиттер-база, и поскольку коллектор принимает большую часть этого тока, небольшой изменение смещения эмиттер-база будет иметь гораздо большее влияние на величину коллектора. тока, чем он будет иметь на основе текущего.В заключение, относительно небольшой Смещение эмиттер-база управляет относительно большим током эмиттер-коллектор.

Q.6 Для правильного смещения NPN-транзистора, напряжение какой полярности подается на коллектор, и как он соотносится с напряжением базы?
Q.7 Почему проводимость через смещенный в прямом направлении переход NPN-транзистора в первую очередь в одну сторону, а именно от эмиттера к базе?
Q.8 Какой участок NPN-транзистора сделать очень тонким по сравнению с двумя другими? разделы?
В.9 Какой процент тока в NPN-транзисторе достигает коллектора?

Тестирование транзисторов в схемах с помощью мультиметров, омметра и измерителя кривой

Транзистор — это небольшое полупроводниковое устройство, которое может быть повреждено при неправильном подключении. Транзистор также может выйти из строя, если на входе будет подаваться более высокий ток или напряжение. Предлагается проверить транзистор. Эффект горения транзистора можно наблюдать, взглянув на схему. Тестирование транзисторов в схемах с помощью мультиметров — хорошая идея, если на печатной плате не наблюдается визуального эффекта.

В зависимости от функциональности цифрового мультиметра, транзистор может быть проверен на его работу в виде «прошел» и «не прошел». Другие мультиметры также могут проверить коэффициент усиления транзистора, установив его в режим hFE.

  • Как рассчитать кВА трансформатора: Калькулятор кВА трансформатора
  • Классификация трансформаторов тока на основе четырех параметров

Транзистор также можно проверить с помощью омметра и измерителя кривой. Омметр проверяет подключение двух клемм.Трассировщик кривой использует разные точки тока и напряжения для построения VI-характеристик транзистора.

Тестирование транзисторов в цепи с помощью мультиметра

Этапы тестирования транзисторов в цепях с помощью мультиметра

Выполните следующие шаги для тестирования транзистора в цепи с помощью мультиметра.

Отсоедините

Отсоедините транзистор, который вы хотите проверить, от печатной платы. В противном случае мультиметр может выйти из строя, и правильный результат не будет отображаться.

Вставка транзистора

Если в вашем цифровом мультиметре есть порт для проверки транзисторов, используйте его. И вставьте транзистор в специальный порт для тестирования транзисторов. Вставьте транзистор в соответствии с обозначениями NPN или PNP. Если нет порта для транзистора, проверьте транзистор с помощью омметра.

Вставка транзистора в порт для тестирования транзисторов
Настройка режима

Теперь поверните ручку, чтобы правильно установить режим проверки транзистора. Используйте символ hFE, чтобы получить коэффициент усиления транзистора.

Считывание

На этом этапе на экране цифрового мультиметра будет считываться коэффициент усиления транзистора. Если показания не отображаются, измените конфигурацию транзистора с E-B-C на B-C-E.

Разные конфигурации портов NPN и PNP

Тестирование транзисторов с помощью омметра

Тестирование транзистора с помощью омметра — это старый способ тестирования транзисторов. Омметр для тестирования транзистора имеет два PN перехода база-эмиттер и база-коллектор.Рассмотрение этих двух переходов как отдельных диодов может помочь в определении работы транзистора.

  • Разница между CAT5 и CAT6 Какой из них лучше для проводки в новом доме
  • Тестирование транзисторов в цепях с помощью мультиметров, омметра и измерителя кривой

Шаги по тестированию транзистора с помощью омметра

Прежде всего, убедитесь, что удалить транзистор из схемы.

Этап 1. Проверка базового эмиттера

Для NPN-транзистора подключите положительный вывод к базе, а отрицательный — к эмиттеру транзистора.Хороший транзистор должен иметь возможность подключения. И наоборот для транзистора PNP.

Для транзистора NPN, теперь меняем местами выводы, т. Е. Соединяем положительный полюс с эмиттером, а отрицательный — с базой транзистора. В этом случае не будет возможности подключения хорошего транзистора.

Проверка транзистора омметром
Этап 2: проверка база-коллектор

Для NPN-транзистора подключите положительный вывод к базе, а отрицательный — к коллектору.

Добавить комментарий

Ваш адрес email не будет опубликован.