Как проверить балласт люминесцентной лампы: Как проверить балласт для люминесцентных ламп

Содержание

Схема люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с увеличением тока напряжение между электродами снижается.

Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 – балластник, как видно из рисунка. Устройство также служит для создания кратковременного повышенного напряжения зажигания ламп, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 – стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыканием контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивается и нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать. При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс напряжения, зажигающий ЛЛ. При этом через нее начинает проходить ток, равный по величине номинальному, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 позволяют уменьшить реактивные нагрузки и увеличить кпд.

Балластники для люминесцентных ламп подключения и принципы работы

Люминесцентная лампа (ЛЛ) – это источник света из стеклянной герметичной колбы, внутри которой создается электрический электродный разряд, протекающий в газовой среде. На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника – сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА ) в виде дросселя и стартера, и электронным (ЭПРА ), в котором физические условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.

Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старение, износ и перегорание самой лампы.

Правильное определение причин позволит осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных лампочек накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, скорый износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска. Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.

Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение – данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы – ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА. Замена лампы на новую позволит точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во первых, ее нужно утилизировать, согласно государственным законам, так как внутри колбы имеются вредные пары ртути.

Во вторых, даже если перегорели нити накаливания, можно продлить строк эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даже исправный люминесцентный светильник моргает при запуске из-за череды неблагоприятных стартовых обстоятельств – разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен – пускорегулирующий аппарат поддерживает ток в газе на одном уровне.

Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Принцип работы люминесцентной лампы и область ее применения

Рабочая способность лампы дневного освещения заключается в свечении люминофоров, которые реагируют на воздействие ультрафиолетовых лучей.

Светоотдача этого прибора в 5 раз превышает свойство у ламп накаливания.

Принцип работы люминесцентной лампы и область ее применения

Срок действия может быть достаточно длительным, но на это влияет ряд важных факторов, таких как, соблюдение электрического балласта, исключения скачков напряжения и коротких замыканий.

Лампа дневного освещения сегодня пользуется большим спросом и применяется в домашних условиях. Этот прибор достаточно экономичен в стоимости и в дальнейшей эксплуатации. Не исключено применение люминесцентных ламп в производстве. В этой отрасли они очень практичны и позволяют хорошо освещать помещение в любое время суток. Немного рассмотрев, как работает люминесцентная лампа, перейдем к вопросу утилизации данного приспособления.

Внимание! Хранение в домашних условиях люминесцентной лампы опасно для вашего здоровья!

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Правила поиска неисправности лампы

Каждое дело по работе с электрическими приборами должно начинаться правилами, поэтому рассмотрим, как следует выявить неисправность люминесцентного прибора, при этом не повредив его оболочку и рабочие детали.

  1. Снимаем рассеиватель света. Для этого аккуратно отгибаем все крепежи. Если корпус прикреплен болтами, значит пользуемся фигурной отверткой.
  2. Снимаем из гнезд саму лампу дневного света, рассматриваем внимательно ее внешний вид. Встречаются случаи, когда на белом фоне видны темные пятна. Они говорят о том, что этот прибор навряд ли уже будет годен к применению.

Внимание! Не выбрасывайте дневную лампу, если на ней по краям есть почернение—проверьте ее дополнительно

  1. Теперь проводим механическую диагностику. Берем мультиметр и проверяем работоспособность нитей накала. Значения прибора, указывающие на сопротивление, подскажут, что нити, еще способны работать. Показания электроники равные единице—это знак неисправности одной из нитей.
  2. В случае, когда проверка показала рабочие результаты, но освещение так и не появилось, прибегают к ремонту электронного балласта. Возможно, из-за окислившихся контактов, лампа не способна пропускать электроды.
  3. Далее очищаются контакты, если есть необходимость. В ситуациях, когда прибор не заработал, он заменяется на новый.

Как проверить люминесцентную лампу

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Ремонт ЭПРА

Источник: https://1posvetu.ru/istochniki-sveta/proverka-rabotosposobnosti-startera-lyuminestsentnyh-lamp.html

Электронный балласт для переносной лампы дневного света (10…15 Вт)

Принципиальная схема самодельного электронного балласта для подключения к лампе дневного света (10…15 Вт) и с питанием от бортовой сети автомобиля.

Технические характеристики

  • Напряжение питания…………………..10…15 В (типовое 14,4 В)
  • Ток потребления………………………………….1 А
  • КПД……………. ……………………………………….90%
  • Рекомендуемый тип лампы………………………OSRAM 11W/21-840

Предлагаемый набор NK017 позволит радиолюбителю собрать простой и надежный автомобильный переносной электронный балласт для люминесцентной лампы (лампа дневного света, ЛДС). ЛДС обладает более высоким КПД, экономичностью и светоотдачей в отличие от стандартной лампы накаливания.

Рис. 1. Внешний вид электронного балласта для переносной лампы дневного света.

Принципиальная схема

Это устройство заменит вам привычную автомобильную «переноску», поможет в трудную минуту в дороге и пригодится на отдыхе. Общий вид устройства показан на рис.1, схема электрическая — на рис.2.

Электронный балласт выполнен по схеме однотактного обратноходового источника тока. Задающий генератор реализован на таймере 555 (DA1) в типовом включении.

Частота генерации в данной комплектации фиксирована и составляет примерно 25 кГц. Ключевой элемент, коммутирующий первичную обмотку трансформатора TR1, — полевой транзистор VT1 (IRF640). Светодиод HL1 индицирует работу устройства.

Рис. 2. Принципиальная схема электронного балласта для переносной лампы дневного света.

  • С1 — 0,01 мкФ/630 В (тип K73-17 или CAP FILM)
  • С2 — 470 мкФ/25 B (МАХ 10×20)
  • С3 (не устанавливается)
  • C4 — 0,1 мкФ (обозначение 104)
  • С5 — 0,01 мкФ (обозначение 103)
  • С6 — 1000 пФ (обозначение 102)
  • DA1- NE555 (ИМС-таймер, тип 555, DIP-8)
  • HL1 — LED (03 мм, RED/GRN/YEL)
  • R1 — 10 Ом (коричневый, черный, черный) R2 — (не устанавливается)
  • R3 — 1кОм (коричневый, черный, красный) R4 — 2,2 кОм (красный, красный, красный) R5 — 10 кОм (коричневый, черный, оранжевый)
  • R6 — 22 кОм (красный, красный, оранжевый)
  • SW1 — PSW-9AG (9AR) (кнопка квадратная, НР)
  • TR1 — трансформатор (ИТ типа TR017N1) VT1 — IRF640 (транзистор полевой)
  • VD1 — 1N5817 (1N5818, 1N5819)
  • VD2 (не устанавливается)
  • VD3-1N4148 Колодка МС DIP-8 Клеммник 5 мм, 2 контакта Клеммник 7,5 мм, 2 контакта BOX-G025 (корпус)
  • А017 (печатная плата 67×45 мм).

В данном устройстве не предусмотрен автоматический поджиг ЛДС, поэтому после подачи питания необходимо вручную замкнуть SW1 на 0,5.1 с для разогрева нитей. Когда нити прогреются, произойдет поджиг лампы.

Устройство имеет защиту от переполюсовки питания. Напряжение питания подключают к контактам Х1 (+), Х4 (-), лампу — к контактам Х2, Х3 и Х5, Х6 согласно рис.3.

Конструкция

Конструктивно балласт выполнен на печатной плате из фольгиро-ванного стеклотекстолита размерами 67×45 мм. Конструкция предусматривает установку платы в корпус BOX-G025, для этого по краям платы имеются монтажные отверстия под винты 2,5 мм.

Для удобства подключения питающего напряжения и ЛДС на плате предусмотрены посадочные места под клеммные винтовые зажимы.

Рис. 3. Примерная компоновка деталей на печатной плате.

Резисторы R4, R5 и диод VD1 на плату устанавливают вертикально; транзистор VT1 -горизонтально, со стороны печатных проводников; вместо переменного резистора R6 набор комплектуется постоянным резистором. Цоколевка элементов показана на рис. 4, 5.

Рис. 4. Цоколевка деталей.

Трансформатор собран из двух чашек 426 феррита 2000НМ с броневым сердечником с зазором 0,05…0,1 мм (чашки склеивают клеем через бумагу и пропитывают парафином).

Намотку производят проводом ПЭВ-0,3.,.0,4 виток к витку с послойной изоляцией (можно скотчем или трансформаторной бумагой) на двухсекционном каркасе. Первичная обмотка содержит 30 витков, вторичная обмотка — 125 витков.

Рис. 5. Цоколевка транзистора IRF640.

Настройка. Правильно собранный электронный балласт не требует настройки. Однако перед его использованием необходимо проделать несколько операций: проверить правильность монтажа; проверить правильность и надежность подключения источника питания и лампы; подать напряжение питания; замкнуть кнопку SW1 0,5.1 с для поджига лампы.

Внимание! Особенно внимательно проверьте правильность установки микросхемы, транзистора, диодов и электролитического конденсатора. Готовый набор в Мастеркит — NK017.

Ю. Садиков, г. Москва. Электрик-2004-12

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.


Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

способы реализации электронного балласта для люминесцентных ламп, схемы устройства

Основным фактором нормальной работы люминесцентных ламп является вид электрического тока. Так как эти осветительные устройства работают от постоянного электротока, в их схему приходится устанавливать пускорегулирующий аппарат (ПРА) или балласт. Наиболее популярным является electronic ballast, обладающий рядом преимуществ перед электромагнитным агрегатом.

Основные разновидности

Сегодня существует два типа балласта – электромагнитный и электронный. Они отличаются принципом работы, поэтому стоит познакомиться с каждым из них.

Электромагнитный балласт

Этот вид реализации предполагает последовательное подключение дросселя к лампе. Также для работы электромагнитного ПРА требуется стартер, с помощью которого регулируется процесс зажигания светильника. Эта деталь представляет собой газоразрядную лампу, внутри колбы которой находятся биметаллические электроды.

Работает устройство следующим образом:

  1. Когда на стартер поступает напряжение, биметаллические электроды замыкаются от нагрева. Это приводит к увеличению силы тока, так как ограничивать его может лишь внутреннее сопротивление обмоток дросселя.
  2. С ростом показателя электротока начинают разогреваться электроды люминесцентной лампы.
  3. При остывании стартера размыкаются биметаллические электроды.
  4. В момент разрыва цепи стартером в катушке дросселя возникает импульс высокого напряжения, что и приводит к зажиганию осветительного прибора.

Когда люминесцентное устройство переходит в штатный режим работы, напряжение на нем и стартере оказывается на 50% меньше сетевого, а этого недостаточно для срабатывания второго элемента. В результате стартер переходит в отключенное состояние и перестает влиять на работу осветительного прибора.

Электромагнитный балласт отличается низкой стоимостью и простой конструкцией. Длительное время эти устройства активно использовались при изготовлении светильников, однако они имеют ряд недостатков:

  1. Для перехода люминесцентного устройства в рабочий режим требуется около 3 секунд.
  2. Осветительные приборы с электромагнитным балластом во время работы мерцают, что негативно влияет на органы зрения.
  3. Расход энергии у этих устройств значительно выше по сравнению с электронным балластом.
  4. Дроссель шумит во время работы.

Из-за этих недостатков сегодня электромагнитный балласт для ламп используется крайне редко.

Электронная реализация

Электронные устройства представляют собой преобразователи напряжения, с помощью которых обеспечивается питание люминесцентных ламп. Хотя создано много вариантов электронного балласта, в большинстве случаев используется единая блок-схема. При этом производители могут вносить в нее определенные изменения, например, добавить схему управления яркостью осветительного прибора.

Перевод люминесцентного светильника лампы в штатный режим работы с помощью электронного ПРА чаще всего осуществляется одним из двух способов:

  1. До момента подачи на катоды лампы зажигающего напряжения они предварительно нагреваются. Это позволяет избавиться от мерцания, а также увеличить КПД осветительного прибора.
  2. В конструкцию светильника установлен колебательный контур, который входит в резонанс до того, как в колбе лампы появится разряд.

При использовании второго способа схема электронного балласта реализована так, что нить накала лампочки является частью контура. Как только в газовой среде появляется разряд, изменяются параметры колебательного контура, после чего он выходит из резонанса. В результате напряжение снижается до рабочего.

Схема пускорегулирующего аппарата для ламп 36w.

Сегодня большое распространение получили компактные люминесцентные устройства с цоколем Е14 и Е27. В них балласт устанавливается непосредственно в конструкцию прибора. Пример схемы электронного балласта для люминесцентных ламп 18w приведен ниже.

Поиск неисправностей и ремонт

Если возникли проблемы с работой газоразрядных ламп, часто ремонт может быть проведен самостоятельно. Основной задачей в такой ситуации является определение источника проблемы – осветительный прибор либо балласт. Для проверки электронной схемы необходимо предварительно удалить линейную лампочку, замкнуть электроды и подключить обыкновенную лампу. Если она начала светиться, то проблема не в балласте.

Для поиска неисправности в люминесцентных осветительных устройствах сначала требуется поочередно прозвонить все элементы начиная с предохранителя. Если эта деталь оказалась рабочей, необходимо переходить к проверке конденсатора и диодов. Если все элементы пускорегулирующего аппарата оказались исправными, стоит проверить дроссель. Своевременный ремонт осветительного устройства позволит увеличить срок его эксплуатации.

Как проверить дроссель мультиметром

Статьи

Главная › Новости

Опубликовано: 01.09.2018

КАК ПРОВЕРИТЬ КОНДЕНСАТОРЫ, ТРАНСФОРМАТОРЫ И КАТУШКИ ИНДУКТИВНОСТИ НА СХЕМАХ [РадиолюбительTV 49]

В широком понимании слова, дроссель является специальным ограничительным элементом.


Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.

 

Конструктивные особенности

Любые лампы дневного света , содержащие во внутренней части люминесцентные частицы, очень хорошо подходят для освещения в жилых помещениях.

Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:


ЧТО ТАКОЕ ДРОССЕЛЬ И ЗАЧЕМ ОН НУЖЕН
в желтоватых тонах; в холодных белых тонах; в теплых белых тонах.

Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.


Дроссель люминесцентной лампы

Cиловые дроссели EPCOS AG

В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.

Перед приобретением элементов для установки в светильник с лампами дневного света, настоятельно рекомендуется уточнять в точке реализации наличие гарантии на продукцию, что позволит в случае определения заводского дефекта осуществить замену.

Особенности дросселя

Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:

защитой от перепадов в показателях напряжения; разогревом катода; созданием напряжения достаточного уровня для запуска светильника; ограничением силовых показателей электрического тока непосредственно после запуска; стабилизацией процессов работы осветительного прибора.

Конструкция дросселя

Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.

Характеристики ЭмПРА

Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:

пульсирующим световым потоком, вызывающим усталость органов зрения; порядка 10-15% потери электрической энергии; шумностью работы в пусковой момент; недостаточно устойчивым запуском в низкотемпературных условиях; большими размерами и ощутимым весом; продолжительным запуском источника света.

ЭМПРА дроссель

Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.

Следует отметить, что любые подбираемые люминесцентные источники света и дроссели, в обязательном порядке должны быть равными по мощности, что сделает срок службы осветительного прибора максимально продолжительным.

Характеристики электронного балласта

Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.

Преимущества электронного балласта представлены:

любой скоростью запуска; отсутствием необходимости устанавливать стартер; исключено проявление мерцания; максимальными показателями световой отдачи; компактными размерами и небольшим весом устройства; оптимальными условиями функционирования.

Так выглядит электронный балласт

Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.

Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа , обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.

Самые часты неисправности

Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:

наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда; темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками; перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.

Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.

Если люминесцентный источник света не включается, то чаще всего такая проблема является результатом неисправности пускорегулирующего устройства или обмоточного обрыва, поэтому важно правильно выполнить проверку дросселя и стартера тестером.

Как проверить дроссель лампы дневного света мультиметром

Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.

Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.

Стартер и дроссель для люминесцентных ламп

Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.

Наличие ничтожно малых показателей сопротивления при замерах, чаще всего является результатом нарушения изоляции на проводах, межвиткового замыкания на обмотке, или обмоточного замыкания на сердечнике.

Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.

Как проверить стартер люминесцентной лампы

Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.

После того, как будет вскрыт корпус светильника, источники света проверяются на отсутствие почернений в колбе и сохранение функциональной активности стартера, работающего в неблагоприятных условиях температурных колебаний. Осмотру подлежат: конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети; колба источника света, которая не должна быть почерневшей.

Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.

Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.

Видео на тему

Fintar 418 01 схема ремонт

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Как устранить неполадки электронных балластов

Люминесцентный электронный балласт — это устройство, которое помогает люминесцентным осветительным приборам светиться. Компактные люминесцентные лампы не имеют балластов, в отличие от традиционных светильников с длинными лампами. Устранение неисправностей балласта люминесцентной лампы — довольно простой тест. Для этого вам понадобится несколько инструментов и базовое понимание того, как работает высоковольтный трансформатор.

Шаг 1. Отключите электричество от света

Перед тем, как начать, вам нужно будет отключить электричество, идущее к свету.К ЭЛЕКТРИЧЕСТВУ НЕ СЛЕДУЕТ РАССМАТРИВАТЬСЯ, ОНА СОЗДАЕТ СЕРЬЕЗНУЮ ОПАСНОСТЬ И МОЖЕТ БЫТЬ ОПАСНЫМ, ЕСЛИ НЕ ПРИНЯТЬ ПРАВОВЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ. ВЫКЛЮЧАТЕЛЬ ЭТОЙ ЦЕПИ ДОЛЖЕН БЫТЬ ВЫКЛЮЧЕН НА ГЛАВНОЙ ПАНЕЛИ, после чего вам нужно будет подождать несколько секунд, чтобы позволить любому накопленному току в балласте рассеяться в цепи освещения. Снимите люминесцентную лампу с приспособлений, которые удерживают ее на месте с обоих концов; эти части также известны как надгробия. Люминесцентные лампы очень хрупкие, поэтому устанавливайте их в таком месте, где они не сломаются.

Шаг 2 — Снимите защитное покрытие и осмотрите балласт

Используя отвертку, снимите защитное покрытие, закрывающее балласт, и осмотрите его. Если вы заметили, что из него течет масло, вам нужно будет заменить все дело. Утечка масла указывает на то, что внутреннее уплотнение было повреждено из-за чрезмерного нагрева.

Шаг 3 — Проверка балласта

Чтобы определить проблему, вам нужно сначала проверить балласт. Используя мультиметр, проверьте сторону высокого напряжения на непрерывность между проводами, идущими к надгробиям.Обычно к каждому приспособлению идет один или два провода. Синий или желтый провода обозначают провода питания, а белый — нейтральный провод.

Установите мультиметр в положение «Ом» и проверьте его батареи, соединив концы двух щупов. Измеритель должен показывать прямое замыкание. В противном случае батареи нуждаются в замене или у них нет внутреннего предохранителя. Затем вам нужно прикоснуться одним из щупов к белому проводу, а другим щупом к одному из цветных проводов, идущих от балласта.Если ваш счетчик не показывает никаких показаний, балласт необходимо заменить. Если вы получаете все показания примерно одного и того же значения при измерении между белым и любым из цветных проводов, балласт должен быть исправен, показывая непрерывную цепь. После проверки работоспособности всех пар проводов переходите к проверке стороны низкого напряжения балласта.

Шаг 4 — Тестирование стороны низкого напряжения трансформатора

Если все ваши балласты хорошо протестированы, вам нужно будет проверить сторону низкого напряжения трансформатора.Начните с удаления гаек с черно-белого провода, идущего со стороны подачи питания балласта. Прикоснитесь щупами вольт-омметра к черному и белому проводам. Если ваш балласт исправен, он будет показывать непрерывный контур. Если нет, то вам потребуется замена.

Если вы проверили свои балласты как со стороны высокого, так и со стороны низкого напряжения, и оказалось, что он работает правильно, проверьте соединения проводов от надгробий. Иногда один провод может отсоединиться, что приведет к неправильной работе вашего балласта.

Что делать, если у вашего магнитного балласта T12 выходит из строя

Эта статья была обновлена ​​новой информацией и новыми продуктами. Первоначально он был опубликован в 2017 году.

Если в вашем здании все еще есть T12, и они работают на магнитных балластах, вы можете вскоре столкнуться с проблемой: что вы будете делать, когда ваши балласты умирают?

Ну, как и сами T12, найти магнитные балласты в наши дни становится все труднее. Они действительно больше не производятся в США.S., поэтому сегодня большинство людей используют люминесцентные лампы T12 на электронных балластах. Что такое балласт? Прочитайте больше.

Прежде чем мы перейдем к вариантам устранения неполадок, давайте кратко определим, как определить, неисправен ли балласт.

5 симптомов плохого люминесцентного балласта

Если на вашем люминесцентном освещении отображается какой-либо из следующих признаков, это может быть признаком плохого балласта:

Мерцание

Если ваше освещение периодически мерцает или мигает, это не обязательно означает, что лампа или трубка вот-вот перегорят.С таким же успехом может случиться так, что балласт испортился.

гудение

Плохие балласты часто гудят или гудят, когда уходят. Если вы слышали это, вам нужно проверить балласт.

Отложенный старт

Если ваше флуоресцентное освещение начинает действовать как HID, когда вы его включаете, и оно медленно достигает полной яркости (то, что специалисты по освещению называют освещенностью), скорее всего, виноват ваш балласт.

Низкая мощность

Тусклый свет или низкий световой поток почти всегда являются причиной одной из двух причин: старой люминесцентной лампы или устаревшего, плохого балласта.

Несоответствие уровней освещения

Люминесцентные лампы почти всегда изменяют цвет и выцветают. Таким образом, на разных этапах жизни лампы будут создаваться разные уровни освещенности. Но если вы видите темные углы и непостоянное освещение в своем помещении, это может быть не только из-за ламп. Вполне возможно, что это тоже балласт.

Подробнее: Вот ваши варианты замены светодиодов для люминесцентных ламп T12

Варианты замены магнитного балласта T12

Вам будет очень трудно заменить магнитный балласт на новый.Но вы, наверное, уже поняли это.

Вот что вы можете сделать:

1. Переключиться на электронный балласт, оставить лампу

Это, наверное, самый дешевый и наименее трудоемкий вариант, но ненамного. Однако, как только вы поймете общую стоимость освещения, вы увидите, что есть лучшее долгосрочное решение. Подход «работай умнее, а не усерднее» в этом фиаско будет заключаться в замене лампы во время замены балласта для чистого, полного обновления.

Тем не менее, вы можете использовать большинство T12 с электронным балластом, поэтому, если вы думаете, что в ваших лампах еще много жизни, это вариант.

2. Переключитесь на электронный балласт, переключитесь на люминесцентный Т8.

Как упоминалось выше, если вы собираетесь подняться по лестнице, чтобы произвести замену балласта, вы также можете взять с собой лампу. Поскольку производство ламп T12 в основном прекращено, наиболее доступным вариантом было бы оставить люминесцентные лампы, установив более энергоэффективную лампу T8 меньшего диаметра.

3. Перейти на электронный балласт, перейти на T8 linear LED

В зависимости от области применения и среднего времени горения ламп, это, вероятно, лучший вариант как для долгосрочной экономии, так и для первоначальных затрат.Стоимость линейных светодиодов значительно снизилась, и, в целом, очень мало приложений, в которых вам было бы лучше использовать флуоресцентные лампы.

Вот статья, которая поможет вам лучше взвесить линейные светодиоды по сравнению с линейными флуоресцентными.

Кстати, теперь существует продукт, который действительно совместим как с магнитными, так и с электронными балластами. Поэтому, если вы хотите заменить лампы T12 на светодиодные, но не хотите заменять все балласты сразу, лампы Philips UniversalFit могут стать отличным вариантом для рассмотрения.

4. Переключитесь с T12 на новый встроенный светодиодный светильник или комплект для модернизации

Если у вас есть средства для полной модернизации освещения, можно рассмотреть один из вариантов — установить новый светодиодный светильник. Этот вариант обеспечивает отличную визуальную привлекательность, обладая при этом одним из самых долгих показателей срока службы и вариантами максимальной эффективности, доступными в системе освещения. Вот список плюсов и минусов этого варианта из нашей статьи «Замена светодиодной лампы по сравнению со светодиодной арматурой: что лучше для вас?»:

Светодиодный светильник Pro
  • Максимальный контроль над светоотдачей и размещением (отлично подходит для ситуаций, когда дизайн освещения имеет первостепенное значение)
  • Более длительный срок службы и эффективность, чем у сменных светодиодных ламп
  • Более низкая максимальная мощность светильника, чем у традиционных светильников, что является преимуществом для соблюдения строгих строительных норм и правил или стандартов Title 24
  • Отличные характеристики для управления и регулировки яркости

Расход светодиодного светильника
  • Более длинная и дорогая установка
  • Более высокая первоначальная стоимость, чем стоимость замены светодиодных ламп
  • Возможны трудности при переходе на новые технологии будущего

Многие из этих продуктов продаются в нашем интернет-магазине, и если вы являетесь бизнес-клиентом, вы можете создать учетную запись, чтобы получать коммерческие расценки.

Или, если вам нужна дополнительная помощь в определении наилучшего курса действий, мы будем рады помочь. Вы можете связаться с нами здесь.

Устранение неисправностей люминесцентного балласта

Первичный ток:
Поместите зажим вокруг черного первичного горячего вывода. Это показание должно быть на уровне балласта, указанном на этикетке, или ниже. Если общее количество отснятых материалов не соответствует максимальному пределу люминесцентного балласта, то это значение будет меньше, чем указано на этикетке.Если это показание превышает номинальное, значит, в проводке короткое замыкание или проводка неправильная. Дважды проверьте фактическую проводку по схеме на этикетке и найдите провода, которые могут быть закорочены на массу или друг на друга.

Первичное напряжение:
Измерьте напряжение на черно-белом проводе. Напряжение должно составлять +/- 5% от номинального значения. Любое отклонение от этого приведет к преждевременному выходу балласта из строя. Если это напряжение низкое, попытайтесь определить причину; убедитесь, что провод, используемый для питания цепи, имеет достаточный размер для расстояния от панели и номинальной нагрузки.Проверьте напряжение в различных точках первичного участка, чтобы выяснить, где может существовать проблема.

Напряжение накала:
Измерьте напряжение в розетке от контакта к контакту. Показание здесь должно быть от 3,5 до 4,5 В переменного тока.

Если значение напряжения ниже 3,5:
a) Проверьте низкое первичное входное напряжение.
b) Проверьте, не закорочены ли нити накала внутри знака.
c) Возможно повреждение балласта.

Если значение напряжения выше 4.5 вольт:
a) Проверьте высокое входное первичное напряжение.
б) Возможно повреждение балласта.

Ток накала:
С помощью зажимного щупа с усилителем измерьте ток в каждом проводе, за исключением черного и белого. Нормальное значение составляет от 0,5 до 2 ампер. Показание выше этого значения указывает на неправильное подключение или короткое замыкание.

Если значение тока ниже 0,5 А:
a) Обрыв нити накала лампы (неисправная лампа)
b) Неправильное соединение проводки накала, вызывающее разрыв цепи.
c) Проверьте низкое первичное входное напряжение.
d) Возможно поврежденный или неисправный балласт.

Если значение тока выше 2 ампер:
a) Внешнее короткое замыкание в проводке накала.
б) Неправильная лампа или дефектная нить накаливания лампы.
c) Проверьте высокое входное первичное напряжение.
d) Возможно поврежденный или неисправный балласт.

Сопротивление нити лампы:
С помощью стандартных щупов измерьте сопротивление между двумя контактами на конце лампы.Это испытание следует проводить для обоих концов лампы и каждой лампы в цепи.
Ожидаемое сопротивление должно быть приблизительно (от 0,5 до 1,2 Ом).


a) Сопротивление выше этого значения указывает на обрыв нити накала лампы, и лампу необходимо заменить.
b) Сопротивление меньше указанного означает короткое замыкание нити накала, и лампу следует заменить.

Напряжение холостого хода:
Измерьте напряжение на синем и красном проводе. Показание должно быть от 300 до 1000 вольт в зависимости от модели балласта.На моделях Allanson 696 и 4120 показания следует снимать между синим / белым и красным, а также синим / белым и синим, потому что это двухконтурные балласты.


Конкретные значения напряжения холостого хода указаны на этикетке балласта.

Если значение OCV ниже номинала, указанного на этикетке:
a) Проверьте низкое первичное входное напряжение.
б) Возможно повреждение балласта.

Если значение OCV выше номинала, указанного на этикетке:
a) Проверьте высокое первичное входное напряжение.
б) Возможно повреждение балласта.

Ток лампы:
Поместите щуп усилителя вокруг лампы, пока она горит. Показание должно быть от 400 до 800 МА. Меньшие люминесцентные балласты должны быть в верхней части диапазона, а большие балласты должны быть в нижней части диапазона.

Если текущее значение ниже 400 мА:
a) Общее количество футов лампы превышает номинальное значение балласта.
б) Неисправная лампа (и).
c) Проверьте низкое первичное входное напряжение.
d) Возможно повреждение балласта.

Если текущее значение превышает 800 мА:
a) Общее количество футов лампы ниже номинального балласта.
б) Неисправная лампа (и).
c) Проверьте высокое входное первичное напряжение.
d) Возможно повреждение балласта.

Есть ли наземный самолет?:
Балласты предназначены для использования со стартовыми шинами. Они помогают балласту при запуске лампы в холодное время года или когда балласт работает с максимальной нагрузкой.На односторонних знаках, где лампы находятся в непосредственной близости от металлической задней части знака, полосы могут не понадобиться. Единственный случай, когда это является проблемой при устранении неполадок, — это когда лампы мигают только при запуске или требуется очень много времени для достижения полной яркости.

Холодная погода и светоотдача
Светоотдача люминесцентной лампы является функцией давления паров ртути. Давление паров ртути регулируется температурой стенки колбы в самом холодном месте. Таким образом, световой поток лампы зависит от температуры стенки колбы.Когда температура окружающей среды падает, температура стенки колбы также падает, и аналогичным образом может происходить значительное падение светоотдачи.

Другие факторы, такие как ветер, тип светильника и тип используемого кожуха, также могут влиять на светоотдачу при данной температуре. При установке на открытом воздухе при температуре 10 ° C (50 ° F) и ниже необходимо получить рекомендации производителя лампы.

5 основных тестов освещения с помощью тестера флуоресцентного света

Проверка потолочного светильника без лестницы

Если вы специалист по обслуживанию зданий коммерческого, розничного или институционального объекта с флуоресцентным освещением, у вас, вероятно, есть сотни или тысячи люминесцентных ламп чтобы продолжать работать. И хотя эти лампы служат десятки тысяч часов, они выходят из строя, причем некоторые преждевременно. А некоторые перестают работать из-за других проблем с балластом, в котором они установлены.

Так что, если ваша задача — убедиться, что все эти трубки выполняют свою работу, вам придется преодолеть немало вопросов. В прошлом для этого требовалось много проб и ошибок. Если вы обнаружили, что свет погас, вам придется подняться по лестнице, открыть крышку, снять неисправную трубку и заменить ее. Если новая трубка не загоралась, вы либо пытались снова, либо вызывали электрика, либо приносили тестер напряжения.Это заняло больше времени, и вы еще не решили проблему.

Проверка балласта с помощью тестера флуоресцентного света Fluke 1000FLT.

Удовлетворение потребностей пользователей в полевых условиях

Услышав эту историю несколько раз, компания Fluke решила разработать инструмент, который использует метод проб и ошибок, а также значительный промежуток времени для обслуживания флуоресцентного освещения. Результатом стал тестер флуоресцентного света Fluke 1000FLT, разработанный для удовлетворения потребностей специалистов по обслуживанию зданий.Это тестер люминесцентных ламп, тестер балласта, бесконтактный тестер напряжения, тестер целостности контактов и дискриминатор балластного типа — все в одном.

«Мы выслушали клиентов и посмотрели, что там есть, и смогли объединить все функции, необходимые в одном тестере, который позволяет техническим специалистам по обслуживанию зданий устранять все аспекты системы люминесцентного освещения», — говорит Луис Сильва, менеджер по маркетингу продукции. в компании Fluke.

Пять тестов. Без ожидания.

Некоторые имеющиеся на рынке тестеры люминесцентного освещения могут иметь одну или две функции тестирования.Но компания Fluke хотела разработать устройство, которое позаботится обо всех основных испытаниях освещения, что позволит сэкономить время рабочих, место в их сумках с инструментами и возможность путешествовать по лестницам. Таким образом, вместо того, чтобы носить с собой два или три инструмента для тестирования или вызывать электрика, они могут просто нести 1000FLT для выполнения:

  • Проверка лампы: Позволяет проводить испытания без снятия трубки с балласта. Тестер посылает импульс энергии, который зажигает трубку, если в ней есть газ. 1000FLT совместим с люминесцентными лампами T5, T8 и T12.
  • Проверка балласта: Легко определяет, исправен ли балласт.
  • Бесконтактный тест напряжения: Быстро проверяет наличие напряжения, не касаясь источника.
  • Проверка целостности штифта: Проверяет целостность нитей в трубке.
  • Дискриминатор балластного типа: 1000FLT — первый многофункциональный тестер, включающий эту функцию, позволяющую техническим специалистам легко определять, является ли балласт электронным или магнитным, не разбирая прибор и даже не поднимаясь по лестнице.Просто наведите тестер на балласт с земли, и он сразу определит, какой у вас тип. Это помогает быстро идентифицировать энергоемкие магнитные балласты старого образца для обслуживания или замены.

Пользовательский интерфейс 1000FLT был разработан, чтобы быть максимально простым, и это так. Все эти тесты дают мгновенные результаты. Тесты балласта, напряжения и целостности контактов показывают результаты с помощью световых индикаторов «Go» или «No Go». Дискриминатор балластного типа загорается либо «магнитным», либо «электронным» светодиодом на лицевой стороне тестера, а результат проверки лампы определяет пользователь, загорается трубка или нет.

Красный означает «Нет».

Экономия времени на тестирование

Вы можете запустить все пять тестов на 1000FLT примерно за 30 секунд, поэтому, если вам нужно обслуживать сотни люминесцентных ламп, это может сэкономить часы тестирования каждую неделю. «Один из наших клиентов, у которого есть один полный рабочий день и один неполный рабочий день специалиста по обслуживанию здания, занимающегося обслуживанием люминесцентных ламп, подсчитал, что вместе они сэкономили от 40 до 60 минут, тестируя примерно 50 осветительных приборов в день с 1000FLT, — говорит Силва .

Сколько времени вы можете сэкономить с 1000FLT? Узнайте, как достать люминесцентные балласты

— электрические 101

В люминесцентных лампах используется балласт, который преобразует линейное напряжение в напряжение для запуска и работы лампы (ей). Новые люминесцентные балласты обычно рассчитаны как на 120 вольт, так и на 277 вольт. Некоторые из них рассчитаны всего на 120 вольт, другие — только на 277 вольт (используются в коммерческой среде).

КЛЛ

для дома имеют встроенный балласт в основании лампы. В коммерческих КЛЛ используется отдельный балласт. У балластов есть электрическая схема, на которой показано, как они подключаются к патронам.

Есть четыре основных типа люминесцентных балластов:

Электронные балласты с мгновенным запуском используют высокое пусковое напряжение (около 600 вольт) для очень быстрого запуска (менее 0,1 секунды). Для максимальной энергоэффективности электроды не подогреваются, но лучше всего подходят для ограниченного количества переключений (от 10 000 до 15 000 циклов переключения до отказа).ПРА мгновенного пуска подключаются параллельно.

Электромагнитные балласты с быстрым пуском или пуском с триггера используются в светильниках T12 и более старых моделей T8 и соединяются последовательно.

Электронные балласты быстрого запуска нагревают электроды при подаче пускового напряжения (около 500 вольт) для быстрого запуска ламп примерно за 0,5–1,0 секунды. Нагрев электродов продолжается, пока лампы включены, и они потребляют немного больше энергии (около 2 Вт на лампу), чем балласты с мгновенным запуском. Они могут проработать от 15 000 до 20 000 циклов переключения до отказа.Балласты быстрого пуска подключаются последовательно.

Программируемый пуск Электронные балласты запускаются быстро примерно за 1,0 — 1,5 секунды. Они предварительно нагревают электроды контролируемым образом перед подачей пускового напряжения. Программируемые пусковые балласты минимизируют нагрузку на электроды и продлевают срок службы лампы при частом включении (зоны с датчиками присутствия). Они могут проработать до 50 000 циклов переключения до отказа. Запрограммированные пусковые балласты подключаются последовательно.

Лампы

T8 с новым электронным балластом потребляют примерно на 20– 30% меньше энергии, чем магнитные балласты T12.При выходе из строя магнитного балласта T12 его следует заменить электронным балластом T8. ПРА Т12 доступны, но лампы Т12 сняты с производства. В зависимости от осветительной арматуры и способа ее установки может быть проще и примерно по той же цене заменить светильник вместо балласта. Новый гаражный люминесцентный светильник может стоить меньше, чем замена балласта.

Совместимые типы ламп для этого балласта

(4) F32T8 — До четырех люминесцентных ламп, 32 Вт, лампа Т8.

(4) F25T8 — До четырех люминесцентных ламп, 25 Вт, лампа Т8.

(4) F17T8 — До четырех люминесцентных ламп, 17 Вт, лампа Т8.

Светильники с балластами иногда имеют таблички с указанием необходимого типа лампы и балласта (F32T8).

Люминесцентные этикетки балласта

Этикетка балласта показывает две важные метки.

  • Таблица совместимости ламп (типы ламп, которые могут использоваться с этим балластом)
  • Схема подключения балласта (показывает, как балласт подключается к лампам)

Диаметр люминесцентных трубок

Люминесцентные лампы имеют две общие формы: прямую и форму u-.Наиболее распространены типы T12, T8 и T5. T обозначает трубку, а число обозначает диаметр в 1/8 дюйма. Диаметр лампы определяется типом балласта. В светильнике с балластом T12 должна использоваться лампа T12. В светильнике с балластом T8 должна использоваться лампа T8 и т. Д.

Подбор балласта к лампе

При подборе балласта к лампе необходимо выполнить три требования. В приведенном выше примере к лампе типа F32T8 предъявляются следующие три требования:

1.Люминесцентная лампа

2. 32 Вт

3. T8.

Люминесцентные лампы T12 Снято с производства

Люминесцентные лампы T12 больше не производятся из-за низкой энергоэффективности. Хотя эти лампы все еще есть в наличии в некоторых магазинах, замена балласта на более эффективный электронный балласт T8 могла бы быть лучшим выбором.

Лучшие способы узнать, когда заменить балласт люминесцентного света


Люминесцентные лампы — это энергоэффективная альтернатива традиционным лампам накаливания, но они могут стать помехой, если начнут мигать в середине дня.

Часто причиной мерцания огней является неисправная лампочка.

Но иногда виноват сам балластный механизм. Хорошо то, что балласты люминесцентных ламп легко проверить и заменить.

Что такое балласт люминесцентного света?

Балласт в системе люминесцентного освещения — это механизм, который регулирует ток в лампах и обеспечивает правильное напряжение, необходимое для запуска ламп.

Без этого балласта не было бы ничего, что могло бы регулировать возрастающий ток, и лампочка перегорела бы за секунды после включения лампы.

Старые балласты называются магнитными балластами. Они полагаются на постепенное регулирование электричества, проходящего через лампу. Если ваша люминесцентная лампа гудит или гудит, скорее всего, из-за более старой модели балласта. Это связано с тем, что ток проходит через катушки из медной проволоки, прежде чем перейти к лампочке.

Когда ток попадает в медь, он создает магнитное поле, которое останавливает большую часть тока, который продолжал бы течь к лампочке. Таким образом, к лампочке действительно поступает только небольшой ток, и свет не перегревается и не перегорает.

Новые балласты являются электронными, что позволяет им выдавать несколько электрических частот без необходимости изменять входное напряжение. Усовершенствованная электроника в современном балласте более эффективно регулирует ток, уменьшая как мерцание, так и заметный гул, который обычно ассоциируется с люминесцентными лампами.

Три различных типа электронных балластов

Электронные люминесцентные балласты обычно производятся с одним из трех рабочих режимов: быстрый запуск, запрограммированный запуск и мгновенный запуск .

Балласты быстрого запуска

Балласты быстрого запуска основаны на методе предварительного нагрева, при котором механизм всегда остается включенным и мгновенно зажигает лампочку при включении переключателя. Проблема с этим типом заключается в том, что лампа не может включиться, если она находится в климате ниже 50 градусов. Поэтому, если вы устанавливаете люминесцентный свет в морозильной камере, это не самый надежный балластный механизм для работы.

Программируемые пусковые балласты

Программируемые пусковые балласты являются обычным выбором, если ваши фары подключены к датчику движения.Датчики движения и запрограммированные пусковые балласты являются более энергоэффективным вариантом для офисного освещения, поскольку они могут максимизировать количество циклов включения лампы при сохранении энергии.

Балласты мгновенного запуска

Балласты мгновенного запуска не нагреваются до включения света. Эти типы балластов имеют высокое пусковое напряжение, которое способствует возникновению разряда на ненагретых электродах. Этот вариант более надежен, чем балласты с быстрым запуском, поскольку вы можете запустить лампу при более низких температурах.

Как узнать, когда пора менять балласт?

Некоторые из наиболее очевидных признаков неисправности балласта — это быстрое мигание или жужжание огней. Лампы могут быть тусклыми, хотя они не должны быть такими же, или менять цвет.

Если вы видите, что это происходит, возможно, пришло время заменить балласт.

Хороший способ проверить, возвращается ли балласт, — это сначала заменить лампы в приспособлении. Если вы устанавливаете новые лампочки, а фары все еще мерцают, самое время взглянуть на сам балласт.

Проверка балласта люминесцентного света

Если вам нужно проверить балласт люминесцентного света, это можно сделать довольно легко. Все, что вам нужно, — это крестовая или шлицевая отвертка и вольт-омметр.

Сначала отключите питание светильника, отключив его от сети или отключив питание в комнате через блок выключателя. Подождите несколько минут, чтобы ток, накопленный в балласте, рассеялся, затем выньте лампу из светильников.

П-образные лампочки можно просто вытащить из патронов, так как они закреплены пружинами растяжения.Вам нужно будет открутить прямые люминесцентные лампы, чтобы вынуть их из розеток.

Обязательно храните лампы вдали от рабочего места, чтобы они не сломались.

Если балласт еще не открыт, снимите крышку балласта с приспособления с помощью отвертки. Дважды проверьте крышку, чтобы убедиться в отсутствии утечки масла из балласта. Если есть масло, то вам необходимо заменить весь балласт, так как внутреннее уплотнение было повреждено из-за чрезмерного нагрева от света.

Чтобы убедиться, что балласт работает правильно, возьмите вольт-омметр и проверьте сторону высокого напряжения балласта. Вам нужно обеспечить непрерывность между проводами и розетками. Установите мультиметр в положение «Ом» и вставьте один щуп в разъем, который соединяет белые провода. Затем прикоснитесь другим щупом к концам синего, красного и желтого проводов, идущих от балласта.

Если балласт неисправен и его необходимо заменить, стрелка мультиметра не будет двигаться или на экране появится сообщение об отсутствии непрерывной цепи.Если балласт все еще в порядке, вы увидите движение стрелки или указание на то, что цепь непрерывна. Обязательно проверьте все пары проводов и убедитесь, что они положительные. Если есть, проверьте сторону низкого напряжения.

Для проверки стороны низкого напряжения трансформатора снимите гайки с черно-белого провода, подключенного к стороне подачи питания вашего балласта. Прикоснитесь щупами мультиметра к черному и белому проводам. Если он показывает непрерывный контур, значит, с вашим балластом все в порядке, и его не нужно заменять.

Если вы проверили обе стороны балласта, но по-прежнему возникают проблемы с мерцанием лампочек, возможно, в самих патронах ламп плохо закреплен провод. Убедитесь, что все соединения надежны, а затем соберите светильник.

Замена вышедшего из строя балласта люминесцентного света

Если вам необходимо заменить балласт после его проверки, отключите электричество от прибора и снимите крышку балласта, если вы этого еще не сделали.

В зависимости от типа крышки может потребоваться открутить болты, удерживающие ее на месте. После того, как вы сняли крышку, отрежьте старую проводку на расстоянии нескольких дюймов от конца балласта кусачками или кусачками для проволоки. Обязательно перережьте все провода, которые подключаются к старому балласту.

После того, как вы отсоединили проводку, открутите монтажное оборудование и опустите старый балласт из его установленного положения. Обычно требуется как минимум две крепежные гайки, которые нужно открутить.

Важно взять его с собой в магазин, чтобы убедиться, что вы покупаете новый балласт, соответствующий старому. Перед покупкой необходимо убедиться, что новый балласт имеет подходящую проводку, напряжение и ток.

Иногда покупка нового балласта может оказаться дороже, чем покупка совершенно нового приспособления, поэтому перед покупкой рекомендуется совершить небольшую закупку цен.

Если вы решили заменить только балласт, установить новый в приспособление довольно просто.

Сначала установите новый балласт с помощью крепежных гаек, затем зачистите электрическую проводку примерно на полдюйма как на новой проводке балласта, так и на исходной проводке, оставшейся от старого крепления. Подключите провода подходящего цвета и используйте скрученные соединители, чтобы обеспечить надежное соединение.

Как только это будет завершено, вы должны закончить.

Установите крышку и соберите фонарь. Включите выключатель и проверьте свет. Если все сделано правильно, значит, ваш свет должен исправно работать.

Старые балласты могут содержать ПХД или другие вредные вещества, поэтому не забудьте сдать старый балласт в местный центр утилизации для надлежащей утилизации.

Стоит ли заменять магнитный балласт на электронный?

Многие производители начинают постепенно отказываться от ламп, совместимых со старыми магнитными балластами, поэтому неплохо было бы подумать о замене их на более современные электронные.

Кроме того, магнитные балласты считаются опасными отходами, поскольку они содержат вредные вещества.

Если ваши осветительные приборы установлены таким образом, что будет затруднительно заменить весь светильник, то переход на электронный балласт может быть лучшим выбором. Электронные балласты намного эффективнее и сэкономят вам много денег на счетах за электричество.

Однако, прежде чем покупать новый электронный балласт, сравните цены на новый балласт с совершенно новым приспособлением.

Вы можете обнаружить, что проще и дешевле заменить весь осветительный прибор, а не только сам пускорегулирующий аппарат.

Поиск и устранение неисправностей балласта люминесцентного света не так сложен, как кажется.

Все, что нужно, — это базовое понимание того, как работает механизм, и несколько инструментов, и вы на правильном пути.

Так что в следующий раз, когда ваши огни начнут мерцать, не волнуйтесь.

Теперь вы знаете, как с этим справиться, и диагностика и устранение проблемы не займет много времени.

Замена балласта люминесцентного света — это просто

Теперь, когда вы знаете, как определить, выходит из строя балласт люминесцентного света, вы сможете принять осознанное решение о том, следует ли вам его заменить.

Если он выходит из строя, его легко заменить, и это то, что вы можете сделать дома с помощью всего нескольких инструментов.

Featured Image: CC авторства SA, Денниса Брауна, через Wikimedia Commons.

Как проверить, неисправен ли балласт в люминесцентном освещении


Для люминесцентных ламп требуется балласт для подачи необходимого количества электричества на люминесцентную лампу. Балласт обеспечивает достаточное напряжение для запуска люминесцентной лампы, которая быстро снижает ток после включения запускается, генерируя достаточно энергии для получения стабильного источника света.Люминесцентные лампы будут подключены напрямую к 120-вольтовому току — без балластного тока, лампочка быстро сгорит. Когда вы слышите гудение от устройства или мигает лампочка, или она не включается, проверьте балласт, чтобы узнать, нуждается ли его в замене .Отключите автоматический выключатель люминесцентного светильника внутри панели автоматического выключателя. Снимите крышку объектива с приспособления. В соответствии со стилем приспособления крышка объектива оборачивается вокруг приспособления, прикрепляется к приспособлению с помощью ряда винтов или сдвигается. из корпуса приспособления.Выньте люминесцентную лампу из светильника. Если в вашем приспособлении используется круглая люминесцентная лампа, вилка соединит лампу с балластом. U-образная и прямая люминесцентная лампа устанавливается в люминесцентный патрон, подключенный к балласту. лампа фиксируется в патроне с помощью натяжной пружины. потяните за U-образный профиль. Снимите фасонные лампы с натяжной пружины, чтобы высвободить их из патрона. поверните прямые люминесцентные лампы по часовой стрелке или против часовой стрелки, чтобы высвободить их из патрона. не подвергались воздействию, снимите крышку балласта с приспособления.Эта крышка крепится винтом или вставляется в прорезь, куда вставляется зажим. Если в балласте есть ожог, вздутие или утечка масла, замените его. Установите мультиметр на настройки Ом. Если установлено несколько значений Ом. мультиметра выберите «X1K». Вставьте щуп мультиметра в соединительный элемент, который соединяет белые провода вместе. Прикоснитесь оставшимся щупом к концу синего, красного и желтого проводов, вытянутых от балласта. В зависимости от балласта. , у вас могут быть только красные и синие провода.Если балласт сломан, стрелка на мультиметре не будет двигаться. Если балласт все еще в порядке, стрелка должна провести по поверхности мультиметра вправо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *