Как проверить ик диод мультиметром: Инфракрасные диоды: проверка работоспособности, обзор

Содержание

Инфракрасные диоды: проверка работоспособности, обзор

 

Сегодня в радиоэлектронике имеются самые разнообразные изделия, применяемые для создания качественной и эффективной подсветки. Одним из таких изделий является инфракрасный тип диода.

Чтобы использовать его для создания подсветки, необходимо знать не только то, где они применяются, но и их особенности. Разобраться в данном вопросе поможет эта статья.

Особенности диодов, работающих в инфракрасном диапазоне

Инфракрасные светодиоды (сокращенно называются ИК диоды) — это полупроводниковые элементы электронных схем, которые при прохождении через них тока излучают свет, находящийся в инфракрасном диапазоне.

Обратите внимание! Инфракрасное излучение является невидимым для человеческого глаза. Это излучение можно засечь только путем применения стационарных видеокамер или же видеокамер мобильных телефонов. Это один из способов проверить, работает ли диод в инфракрасном спектре излучения.

Мощные светодиоды (например, лазерный вид) инфракрасного спектрального диапазона производятся на базе квантоворазмерных гетероструктур. Здесь применяется лазер FP-типа. В результате чего мощность светодиодов стартует с отметки 10мВ, а ограничивающим порогом служит 1000мВ. Корпуса для данного рода изделий подходят как 3-pin-типа, так и HHL. Излучение в результате этого оказывается в спектре от 1300 до 1550нм.

Устройство ИК-диода

Структура ИК-диода

В результате такой структуры лазерный мощный диод служит отличным источником излучения, благодаря чему его часто используют в волоконно-оптической системе передачи информации, а также во многих других сферах, о которых речь пойдет немного ниже.

Лазерный инфракрасный тип диода является источником мощного и концентрированного лазерного излучения. В его работе применяется, соответственно, лазерный принцип работы.
Мощные диоды (лазерный тип) имеют следующие технические характеристики:

Обратите внимание! Из-за того, что изделие излучает свет в инфракрасном диапазоне, то такие привычные характеристики, как освещенность, мощность испускаемого светового потока и т.п. здесь не подходят.

Графическое отоброжение угла в 1cp

Графическое отображение телесного угла в 1 ср

  • такие светодиоды способны генерировать волны, находящиеся в диапазоне 0,74- 2000 мкм. Этот диапазон служит той гранью, когда излучение и свет имеют условное деление;
  • мощности генерируемого излучения. Этот параметр отражает количество энергии в единицу времени. Такая мощность дополнительно привязывается к габаритам излучателя. Данный параметр измеряется в Вт с единицы имеющейся площади;
  • интенсивность излучаемого потока в рамке сегмента объемного угла. Это достаточно условная характеристика. Она связана с тем, что с помощью оптических систем испускаемое диодом излучение собирается и потом направляется в требуемую сторону. Данный параметр измеряется в ВТ на стерадианы (Вт/ср).

В некоторых ситуациях, когда нет необходимости в наличии постоянного потока энергии, а достаточны импульсные сигналы, вышеописанное строение и характеристики позволяют увеличить мощность энергии, излучаемой элементом радиосхемы, в несколько раз.

 

Обратите внимание! Иногда в характеристиках инфракрасных диодов выделяют показатели для непрерывного и импульсного режима работы.

Как проверить работоспособность

Фотография на телефоне

Проверка ИК диода

При работе с данным элементом электросхемы нужно знать, как проверить его работу. Так, как уже говорилось, визуально проверить наличие этого излучения можно с помощью видеокамер. Здесь можно оценивать работоспособность при помощи обычных видеокамер мобильных телефонов.

Обратите внимание! Использование видеокамер является самым простым способом проверки.

Такой ИК-элемент в дистанционном пульте проверяется легко, его просто следует направить на телевизор и нажать на кнопку. При исправности системы, диод вспыхнет и телевизор включится.
А вот эмпирически проверить работоспособность подобного светодиода можно с помощью специального оборудования. Для этих целей подойдет тестер. Чтобы проверить светодиод, тестер следует подключить к его выводам и установить на пределе измерения mOm. После этого смотрим на него через камеру, к примеру через мобильный телефон. Если на экране виден луч света, значит все в порядке. Вот и вся проверка.

Область применения ИК диодов

На данный момент времени светодиоды инфракрасного спектра применяются в следующих областях:

  • в медицине. Такие элементы радиосхем служат качественным и эффективным источником для создания направленной подсветки разнообразного медицинского оборудования;
  • в охранных системах;
  • в системе передачи информации с помощью оптоволоконных кабелей. Благодаря своему особому строению данные изделия способны работать с многомодовым и одномодовым оптоволокном;
  • исследовательская и научная сферы. Подобная продукция востребована с процессах накачивания твердотельных лазеров в ходе научных исследованиях, а также подсветки;
  • военная промышленность. Здесь они имеют такое же широкое применение в качестве подсветки, как и в медицинской сфере.

Помимо этого, такие диоды встречаются в различном оборудовании:

  • устройства для дистанционного управления техникой;
ИК диод в пульте

ИК диод в пульте дистанционного управления

  • разнообразные контрольно-измерительные оптические приборы;
  • беспроводные линии связи;
  • коммутационные оптронные устройства.

Как видим, сфера применения данной продукции впечатляющая. Поэтому приобрести такие диодные комплектующие для своей домашней лаборатории можно без особых проблем, они в избытке продаются на рынке и в специализированных магазинах.

Заключение

Сегодня в эффективности инфракрасных мощных светодиодов не приходиться сомневаться. Это подтверждается тем фактом, что такие элементы электрических систем имеют обширный диапазон применения. Благодаря своему строению ИК светодиоды отличаются безупречными эксплуатационными характеристиками и качественной работой.

 

Как проверить ИК светодиод?

Совсем небольшая заметка как быстро и просто проверить исправность ИК-светодиода в оптопаре.

Как известно, в оптопарах для датчиков бумаги аппаратов применяются светодиоды с инфракрасным спектром излучения, это сделано для того, чтобы обычный свет не мог дать ложный сигнал фотодиоду оптопары. Глаз человека не видит ИК излучение, по-этому мы не видим светится ли светоизлучающий диод или нет. Иногда при диагностики аппаратов надо быстро определиться с исправностью или неисправностью оптопары и визуально это сделать невозможно. Камера же телефона регистрирует это излучение и с помощью сотового телефона, который всегда под рукой, можно провести первичную диагностику оптопары. Включаем режим фотоаппарата и подносим объектив камеры к светодиоду и если он исправен, то на экране телефона мы видим как он светится:

оптопара

Если нет возможности легко добраться до светоизлучающего диода, в том случае, если он находится в корпусе оптопары, то приходится этот диод доставать из корпуса оптопары, для проверки, хотя, если приноровиться, то тоже видно свечение:

оптопара

Обычно выходит из строя как раз светоизлучающий диод в оптопаре и именно в оптопаре, которая находится около фьюзера — высокая температура делает свое дело.

Проверить фотодиод оптопары можно так — подключить к его выводам тестер на пределе измерения mOm и посветить фонариком на него:

Как видим, сопротивление фотодиода при освещении резко уменьшается.

Само же свечение светодиода выглядит так:

Таким же способом можно проверить лазерный диод в блоке LSU, снимаем крышку с блока, отправляем задание на печать и направляем камеру на лазерный диод, и наблюдаем свечение.

Как проверить инфракрасный свето- и фотодиод, мощная доработка тестера ut61e

Как известно, одним из лучших, если не лучшим тестером в категории до 50 баксов является uni-t ut61e. Однако, у него есть несколько недостатков, которые можно и нужно исправлять, о чём я и расскажу в этом обзоре.

Недостатков у данного тестера три: отсутствие автоотключения, отсутствие измерения температуры и отсутствие подсветки. С температурой придётся, к сожалению, смириться. Подсветку я лично не считаю чем-то необходимым, особенно в случае использования «кроны» и «классической» реализации, когда подсветка загорается на 15-30-60с. А вот задействовать автоотключение — не только можно но и нужно, потому что забыть включенный прибор и утром обнаружить полностью севшую батарейку — чертовски неприятно.

Перейдём к диодам. Тут особо писать нечего — диоды как диоды. В пакете 50 штук совершенно стандартных ИК светодиодов диаметром 3мм в прозрачном корпусе, и 50 штук 3мм фотодиодов в черном корпусе, что должно отфильтровать видимый спектр. На деле фонарик вполне засвечивает и открывает фотодиод даже через это чёрное стекло. Длину излучаемой волны измерить нечем, но в темноте светодиод я не разглядел, а в фотоаппарат — вполне.

На этом обзор диодов можно считать завершенным 😉

Переходим к доработке мультиметра. Доработка будет состоять из нескольких этапов: доработка ИК порта, доработка мультиметра в части автоотключения, и бонусом — установка внешнего источника опорного напряжения. Последнее, к сожалению, актуально только для приборов старых ревизий, где на плате предусмотрено место для внешнего ИОНа и обвязки.

Часть первая, ИК порт. Идея взята тут.

Во-первых — для чего переделывается порт? Для того, чтобы обеспечить И автоотключение, И передачу данных — мало ли когда оно понадобится?

Берём комплектный шнурок и разбираем его:

Берём светодиод

Загибаем ему ноги как у уже запаянного фотодиода, и запаиваем на место. Полярность на плате подписана.

Кроме светодиода запаиваем резистор на 10кОм

Всё, можно собирать. Я заклеил суперклеем.

Теперь переходим к мультиметру. Идея переделки заключается в том, чтобы не только отпаять и приподнять 111 ножку чипа, отвечающую за автоотключение, но и подключить к ней фотодиод или фототранзистор для управления от порта.

Для начала изготовим платку для фотодиода и резистора. Я просто из обрезка одностороннего стеклотекстолита вырезал и пропилил надфилем в двух местах.


Теперь замеряемся куда и как ставить нашу плату:

Как видим, расстояние между диодами должно быть 16.5мм, а высота диода над платой — 10мм. Изгибаем, запаиваем, клеим на плату на «китайские сопли» (термопистолет), или тонкий двухсторонний скотч:

Ищем точки подключения:

… и выводим провод на противоположную сторону платы через штатное отверстие. Провод нужен тоненький, чтобы пролез в отверстие и изоляция не повредилась нигде:

Поднимаем ногу микросхемы, и подпаиваем к ней провод, закрепляя тем же термоклеем. Кстати, плату с диодом и провода тоже нужно прицепить термоклеем, чтобы не развалилось всё это. Я этот момент не сфотографировал, к сожалению.

Хочется сделать так:

Но так делать НЕЛЬЗЯ — там расстояние до дисплея минимальное. Поэтому делаем так:

Обратите внимание, что анод (+) фотодиода подключается к V-, то есть включение «обратное», «стабилитронное» 😉

Всё, можно собирать и проверять. Как видим, значок передачи данных погас, а значок автоотключения загорелся:

Подключаем к компьютеру.

Нажимаем COM-connect:

Ура, всё работает.

Ну и бонусом — установка нового ИОНа LT1790ACS6-1.25 (я брал сразу три штуки, вышло не так дорого за один. возможно есть и более дешевые варианты). Тут я хочу повториться что данная доработка актуальна только для старых приборов, там на плате предусмотрены места установки данного ИОНа и обвязки. В новых ревизиях платы их установка не предусмотрена, соответственно, придётся вешать на соплях, ну и в этом случае разумно поискать что-то подешевле и без обвязки. Типа того что установлено в an8008, например.

Зачем это нужно? У внешней опорки LT1790 температурный коэффициент 10-25ppm (в зависимости от варианта), а у встроенной в es51922 — вроде как аж 75ppm (идея взята здесь).

К сожалению, маркировка микросхемы никак не зависит от типа этой микросхемы, то есть узнать реальную точность, температурный коэффициент и температурный диапазон — нельзя. таким образом может оказаться что китаец впаривает более дешевый чип под видом более дорогого — но доказать это невозможно без применения высокоточного оборудования.

Схема подключения такова:

Вместе с установкой ИОНа весьма желательно заменить также резисторы делителя, то есть R16 и многооборотный подстроечник — таким образом, чтобы подстроечник имел минимальное сопротивление. В этом случае он будет оказывать минимальное же влияние и обеспечивать комфортную регулировку. Штатный подстроечник имеет сопротивление аж 2кОм что явно многовато. рекомендуется установка подстроечника 50-100 Ом. Купить можно например тут. Я пока поставил первый попавшийся на 500 Ом, что всяко лучше штатного, а потом посмотрю что делать дальше. Сразу хочу сказать, что настройка стала заметно плавнее, последний разряд это пара оборотов подстроечника.

Итак, переделка:

Нужно запаять резисторы R52 и R53 размера 0603 и номиналом 10кОм и конденсатор С50 емкостью 10мкФ (размер 0805, наверно можно попытаться и 1206 воткнуть), а также перенести резистор R15 на позицию R51. Ну и запаять собственно сам ИОН. После этого подключаем внешний источник образцового напряжения (см в конце обзора) и калибруем по постоянному напряжению.

Если честно, данная переделка особо ничего не даёт, это просто такая «прикольная фишка» типа «прокачай свой мультиметр» 😉

А вот внедрение свето- и фото- диодов и допиливание автоотключения — это совершенно однозначно та самая операция, которая должна проводиться сразу же после приобретения тестера.

Теперь о подсветке. Если кому-то прям не спится без подсветки в тестере — то самый простой способ это поместить внутрь модуль на TTP223, типа такого, подключить его после выключателя питания и стабилизатора и переключить в режим «кнопка с фиксацией». 8мА он должен по выходу держать, а больше как-бы и не нужно для подсветки. Ну либо по выходу модуля поставить еще и транзистор, который позволит получить любой нужный ток.

На этом всё, дорабатывайте свои ut61e и наслаждайтесь удобством!

Как проверить ДУ или ИК светодиод


Как проверить ДУ или ИК светодиод

  Для того чтобы проверить любое дистанционное управление или ИК светодиод можно использовать следующее устройство. Оно просто в изготовлении, не нуждается в настройке и его легко можно разместить в компактном корпусе. Тока, протекающего через фотодиод, достаточно для открытия транзистора. Для проверки любого ДУ или ИК светодиода нужно поднести его к линзе D2. Вспышки D1 укажут на работоспособность устройства. Примечания админа: я запитал схему от «Кроны» — 9 В, а радиус действия при прямом попадании луча составил 10 см. Яркость свечения зависит от расстояния до диода. Если схема не работает — подбирайте фотодиод, у меня наилучшие результаты были с ФД-256. Потребление тока при отсутствии света 25 мкА.

D1- любой импортный с малым потреблением
D2- от любого датчика ИК излучения (ФД-256)
VT- любой, например, КТ3102Б, Г или КТ315Б

Еще один индикатор световых импульсов

  Описываемый индикатор предназначен для контроля наличия световых импульсов ИК-диапазона. Им можно быстро определить работоспособность пульта ДУ. Если при нажатии какой-либо кнопки проверяемого ПДУ индикатор не регистрирует импульсы, это указывает на неисправность ПДУ. При включении SA1 кратковременно вспыхивает светодиод HL1. Контролируемые световые импульсы принимаются фотодиодом VD1, включенным в обратном направлении, и через разделительный конденсатор С1 поступают на УПТ, собранный на транзисторах VT1…VT3. Транзисторы VT1, VT2 обеспечивают большое входное сопротивление, a VT3 — коэффициент усиления УПТ. Далее усиленные импульсы поступают с коллектора VT3 через R4 на светодиод HL1. Конденсатор С2 — антипаразитный. Резисторами R2, R3 задается режим работы УПТ. Индикатор регистрирует импульсы при точном направлении на излучатель ПДУ на расстоянии 10…15 см.

  При правильной сборке и исправных деталях нужно только установить общий ток схемы подбором R2. При напряжении питания 9 В схема потребляет ток 4,5 мА. При снижении напряжения питания до 6 В схема потребляет ток 1,2 мА, но сохраняет работоспособность, правда, с некоторым уменьшением дальности контроля. Проверить функционирование индикатора можно, направив на VD1 свет лампочки. Прикрывая его рукой, следует убедиться, что HL1 вспыхивает. Наличие солнечного света, а также непрямых лучей от других излучателей на работу схемы влияет очень слабо. Схема собрана на печатной плате размером 50 х 15 мм из одностороннего стеклотекстолита. Чертеж платы и расположение деталей изображены на рис.2. При вертикальном расположении резисторов размеры платы можно уменьшить. Конструкция корпуса может быть любой. Диод VD1 и индикатор HL1 расположены рядом на передней панели. Питается вся схема от батареи GB1 типа «Крона» (9 В). Транзисторы VT1… VT3 — КТ3102Е(Г) с коэффициентом Вст не ниже 600. Светодиод HL1 — импортный, зеленого цвета. С1 и С2 — КМ-5а. Переключатель SA1 — малогабаритный движковый. Данным пробником можно контролировать и другие излучатели импульсов ИК-диапазона.

Радиомир №8, 2002
А. ЩЕРБИНИН
г. Барнаул

Источник: shems.h2.ru

Тонкости проверки диода мультиметром на исправность

Проверить работоспособность светодиода возможно с помощью такого прибора, как мультиметр. Цифровой мультиметр или тестер – это многофункциональное измирительное устройство. Работоспособность светодиода проверяется с помощью функционала любого мультиметра. Поломка светодиода довольно распространённая причина выхода из строя целого ряда электроприборов.

Проверку исправности этого компонента можно провести и самостоятельно, но при этом необходимо иметь в наличии мультиметр.

Процесс не сложный, но, как показывает практика, ситуации бывают разные, особенно если речь идёт о новичках в таких вопросах. Электронщик с опытом уже по внешнему виду может определить параметры большинства светодиодов, а в некоторых случаях и их состояние – исправность или поломку.

Где встречаются диоды и зачем их проверять

Диод – это компонент электрической сети, который выступает в роли проводника с р-n переходом. Его конструкция позволяет пропускать электричество по цепи в одном направлении – от анода к катоду. При поломке, произвести проверку возможно с помощью тестера или мультиметра.

В радиоэлектронике различают следующие виды диодов:

  • Светодиод – при прохождении через него электротока он начинает излучать свет в следствии трансформации энергии в видимое свечение.
  • Обычный или защитный диод – это ограничитель напряжения или супрессор. Разновидностью такого диода есть диод Шоттки, который при прямом включении дает небольшое уменьшение напряжения, в нём применяется переход металл-полупроводник.

Применение обычных деталей и светодиодов применяется в большинстве устройств, а Шоттки – в основном для качественных блоков питания, таких как компьюеры. Проверка и тех и тех диодов по принципу ничем не отличается, разница только в том, что Шоттки встречаются сдвоенными, так как размещаются в общем корпусе, а также имеют общий катод. Что позволяет проверять эти детали без выпаивания, на месте.

Диоды Шоттки являются составляющими электронных схем, и довольно часто ломаются. Основными причинами чего являются:

  • Некачественные детали;
  • Нарушение правил эксплуатации устройства;
  • Превышение максимального разрешённого производителем уровня прямого тока;
  • Превышение обратного электронапряжения.

Проверять их работоспособность необходимо с помощью мультиметра, который позволит измерять напряжение, определить уровень сопротивления, а также проверить проводку на предмет наличия обрывов. Этот способ считается самым простым и удобным для всех типов светоизлучающих диодов, независимо от их исполнения и количества выводов. Проверка осуществляется с помощью «прозвона» диода, замыкая красный щуп на анод, а чёрный на катод. В следствии чего исправный светодиод должен засветиться, при смене полярности щупов на дисплее тестера должна отображаться единица.

Как проверить выпрямительный диод

Защитный, выпрямительный или диод Шоттки возможно проверить с помощью мультиметра или применить омметр. Для этого необходимо переключить измерительное устройство в режим «прозвонки», после чего щупы тестера прикрепляются к выводам радиоэлемента. Для получения значения порогового напряжения проверяемого диода необходимо красный провод присоединить к аноду, а чёрный к катоду, после чего дисплей мультиметра или омметра должен загореться. После смены полярности измирительный прибор должен показать очень большое сопротивление, что говорит об исправности диода. Если же мультиметр показывает утечку, значит, радиоэлемент неисправен.

Как проверить светодиод мультиметром

Для осуществления проверки светодиода мультиметром необходимо перевести измерительный прибор в режим Hfe для проверки транзисторов, затем вставить светодиод в разъем С зоны PNP (плюс), а катод в свою очередь в разъем Е зоны NPN (минус). Если появилось свечение, тогда проверка осуществлена, если же нет, тогда допущена ошибка в полярности или же диод не работает.

Для проверки светодиода тестером необходимо переключить прибор на соответствующий режим «прозвонки» и подключить контакты к щупам мультиметра. При подключении не стоит забывать о полярности диода. Анода подключается к красному щупу, а катод – к черному. При отсутствии информации об электродах, где какой, возможно перепутать полярность, но это не страшно, и мультиметр не покажет никаких результатов. После правильного подключения светодиод загорается.

Проверка инфракрасного диода

Без сомнения, в каждом доме есть LED, в пульте для телевизора они нашли особое применение. Инфракрасный диод, который не виден человеческому глазу, легко можно увидеть через камеру телефона. Такие же диоды применяются для камер видео наблюдения.

Проверить инфракрасный диод мультиметром можно точно так же, как и обычный. Но можно воспользоваться и другим способом, подпаяв параллельно ему LED красного свечения, который будет наглядным показателем работы ИК диода. При его мерцании сигналы поступают на диод, и значит, нужно заменить ИК диод. Если мерцание отсутствует, следовательно, сигнал не поступает, тогда проблема в пульте, а не в диоде.

В схеме управления техники с дистанционного пульта есть еще один нюанс, а именно наличие фотоэлемента, для проверки которого мультиметром необходимо включить режим сопротивления. Если на фотоэлемент попадает свет, меняется состояние его проводимости, а значит, изменяется и его сопротивление в меньшую сторону.

Для проверки LED-лампы мультиметром необходимо снять рассеиватель, который зачастую приклеен. После того как откроется доступ к плате со светодиодами, нужно щупами тестера прикоснуться к их выводам, которые в следствии должны загореться тусклым светом. Также можно проверить исправность с помощью «прозвонки» от батареи «крона». Такую проверку нужно осуществлять кратковременными прикосновениями к полюсам диодов. Если полярность определена правильно и свет не загорается, значит, LED требуется замена.

Как можно проверить диод при помощи тестера не выпаивая

Принцип проверки остаётся прежним, но изменяется способ реализации данной проверки. Удобным и практичным способом является проверка светодиодов без выпаивания, с помощью щупов. Щупы стандартного размера не подойдут для разъема транзистора, режима Hfe. Но для него подойдут любые тонкие проводники, по типу швейных иголок, кусочка проводки (витая пара) или же отдельные жилы из многожильного кабеля. Припаяв такой проводник к щупу, и присоединив к щупам без штекеров, получится своего рода переходник. И тогда можно будет произвести прозвон светодиодов тестером не выпаивая.

Как проверить работоспособность светодиода различными способами

как проверить работоспособность светодиода

В последнее время, когда светодиоды находятся практически в каждом приборе, нам все чаще и чаще приходится производить их тестирование, в случае их поломки (в случае, когда возникает вопрос «как проверить работоспособность светодиода»). Ранее мы рассматривали возможность тестирование и определения характеристик светодиодов с помощью мультиметра. В этой статье мы посмотрим как проверить работоспособность светодиода, если он перестал работать подобающим методом.

Как проверить работоспособность светодиода мультиметром


как проверить работоспособность светодиода мультиметромОдним из правильных способов проверки работоспособности светодиодов является метод с использованием мультиметра. В простонародии мультиметр — тестер, измерительный прибор, которым можно оперировать на передней панели. Практически в любом тестере имеется функция, позволяющая быстро определить работоспособность LED.

Что касаемо меня, то оговорюсь сразу. В моем арсенале только качественные и проверенные приборы. В частности, уже больше года как пользуюсь вот таким прибором. Качественный, дорогой и безотказный. Кому-то такой и не нужен, но мне, в силу профессии таким приходится пользоваться по нескольку раз на дню. Поэтому на таком и остановил свой выбор.

Для обычных пользователей пойдет самый, что ни наесть простой и стоимостью — сущие копейки. Но также он безотказный, т.к. проверенный временем. Можете посмотреть на него вот тут.

Вообще, я достаточно большое количество протестировал мультиметров и пока ни одного «ужасного» не встретил. Поэтому можно смело выбирать самый дешевый и быть уверенным, что не прогадаете. Но опять — лирика, а мы вернемся к нашей теме.

Прозваниваем отдельно светодиоды мультиметром


Наиболее простой способ проверить работоспособность светодиода мультиметром — это использовать тестер в режиме проверки транзистора. Для этого необходимо выбрать функцию hfe.

как проверить работоспособность светодиода

Вставьте анод светодиода в разъём C зоны обозначенной PNP, а катод в E. В PNP разъёмах C – это плюс, а E в NPN – минусовой вывод. Если светодиод светится, значит угадали с полярностью, если нет, значит ошиблись, либо светодиод не работает.

Такой вид разъемов — достаточно распространен у более дорогих видов мультиметров. У более дешевых вариантов — имеется разъем в виде синего круга.проверка светодиодов на работоспособностьМожно и не использовать мультиметр, т.к. существуют тестеры, работающие на аналогичном принципе.

Тестер светодиодов

Проверяем работоспособность светодиода в режиме прозвонки диодов


Другой способ проверки светодиодов — использовать режим прозвонки мультиметра. Для этого необходимо сделать следующее:

  1. Установить щупы в гнезда- COM и V.

как проверить работоспособность светодиода

2. Установить переключатель в режим прозвонки диодов

режим прозвонки диодов3. прикоснуться к выводам светодиода и в случае свечения — поздравляем, вы проверили работоспособность светодиода.

проверка диода в режиме прозвонкиКак проверить работоспособность светодиода на плате не выпаивая


Принцип прозвонки светодиодов аналогичен предыдущему, что мы рассматривали чуть выше. А именно — проверка в режиме транзистора. Если у Вас есть переходники для того, чтобы разместить щупы в разъеме — то зада облегчается. Если нет, то стоит придумать их самостоятельно. Раньше я делал переходники из обычных скрепок. Потом надоело и купил себе готовые и одной головной болью стало меньше.

В принципе, здесь мы рассмотрели самые основные способы проверки светодиодов. Но такими способами Вы можете проверить только «старые» светодиоды. Современные, к сожалению мультиметрами уже не проверить. Необходимо воспользоваться способами с использованием блоков питания, которые мы рассматривали в другой статье.

Как проверить диод мультиметром без выпаивания

Диод – одна из самых распространенных радиодеталей в современной электротехнике. Без нее невозможно собрать ни один электрический прибор. Он используется в производстве и электрических чайников и сложнейших аппаратов МРТ. Встает вопрос, как проверить диод? Это можно сделать самым обычным цифровым мультиметром, которые есть у любого радиолюбителя. Проверка для разных типов диодов отличается друг от друга и имеет некоторые характерные особенности, которые зависят от строения, назначения, типа, параметров работы и других свойств конкретного диода.

Для этого был разработан специальный режим, на котором осуществляется проверка диода. Именно таким образом проверяется его работоспособность, состояние, соответствие техническим характеристикам. При появлении на экране измерительного прибора появится напряжение в промежутке между 0,6-0,7 В, значит радиодеталь исправна. В статье подробно описан весь процесс проверки диода, порядок действия, все особенности и разных типов. В данном материале содержатся несколько видеороликов и подробный практический материал в заключении.

Проверка диода.

Проверка диода.

Тестирование обычного диода, используя аналоговый мультиметр.

Чтобы проверить обычный Кремниевый диод, используя аналоговый мультиметр, поместите селектор мультиметра в позицию низкого сопротивления (1K). Соедините положительный вывод мультиметра к аноду диода и отрицательный вывод мультиметра к катоду диода. Если мультиметр показывает чтение низкого сопротивления, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямосмещенный режим диода.

Теперь поместите селектор мультиметра в позицию высокого сопротивления (100K).  Соедините положительный вывод мультиметра к катоду диода и отрицательный вывод к аноду диода. Если мультиметр показывает бесконечное чтение, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить обратный режим блокирования диода. Мультиметр показывает бесконечное или очень высокое сопротивление, потому что у обратно-смещенного диода есть очень высокое сопротивление (обычно в диапазоне сотен Омов K).

Диод и светодиод.

Диод и светодиод.

Тестирование Диода Зенера

Прямые характеристики Диода Зенера подобны обычному диоду. Так методы, используемые для того, чтобы протестировать вперед проводящий режим любого обычного диода, также применимо к Диоду Зенера . Но в обратном режиме, у напряжения обратного пробоя есть большое значение, и это должно быть в частности протестировано. Например, 5.3-вольтовый Диод Зенера должен начать проводить только, когда примененное обратное напряжение просто превышает 5.3V. Режим обратного смещения Диода Зенера может быть легко протестирован при помощи схемы, данной ниже. Сопротивление R1 может обычно быть 100 Омов.

Мультиметр должен быть в режиме напряжения. Теперь медленно увеличивайте производство переменного источника питания и одновременно наблюдайте напряжение, показанное в мультиметре. Дисплей мультиметра увеличивается вместе с увеличением напряжения источника питания до напряжения пробоя. Кроме того показания мультиметра остается неизменным несмотря на напряжение источника питания. Это вызвано тем, что Диод Зенера находится теперь в области пробоя, и напряжение через него останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя.

Как проверить диод мультиметром?

Если показание мультиметра  равно напряжению пробоя, определенному производителем, мы можем предположить, что Диод Зенера исправен. При выполнении этого теста не забудьте не превышать входное напряжение возбуждения к точке, которая вынуждает Диод Зенера рассеять больше питания. Обычно оно не должно превышать  больше, чем 10mA

Особенности диодов

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-». Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультиметром.

Различные виды диодов.

Различные виды диодов.

На сегодняшний день в радиоэлектронике существует несколько видов диодов: Виды диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Подборка замеров диодов

Таблица замеров характеристик диодов с помощью мультимера.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.

Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Интересное по теме: Как используются фотореле для уличного освещения.

Что такое мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

С помощью этого прибора даже можно определить пригодность батарейки.

Проверка светодиодов в лампе.

Проверка светодиодов в лампе.

Как проверить диод

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев. Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Материал в тему: устройство подстроечного резистора.

Как проверить диодный мост

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  1. При подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;
  2. Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт
  3. При подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Материал в тему: Что такое кондесатор

Обратная проверка

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене. Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.

Как проверить диод мультиметром?

При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.

Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

Два диода Шоттки.

Два диода Шоттки.

Проверка работоспособности диода, светодиода, стабилитрона.

  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;
  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;
  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Проверка диода.

Проверка диода.

Заключение

В данной статье описаны главные этапы проверки диода мультиметром. Более подробную информацию можно узнать из статьи Как проверять мультиметром радиодетали.  В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.radioschema.ru

www.ledsovet.ru

www.electrongrad.ru

www.svetilnik.info

Предыдущая

ПрактикаПроверка реле при помощи мультиметра

Следующая

ПрактикаКак проверить стабилитрон на работоспособность

Как проверить полевой МОП-транзистор с помощью цифрового мультиметра

В сообщении объясняется, как тестировать МОП-транзистор с помощью мультиметра с помощью ряда шагов, которые помогут вам точно определить хорошее или неисправное состояние МОП-транзистора

МОП-транзисторы эффективны, но сложны Устройства

Полевые МОП-транзисторы

являются выдающимися устройствами, когда речь идет об усилении или переключении различных видов нагрузок. Хотя транзисторы также широко используются для вышеуказанных целей, оба аналога сильно отличаются по своим характеристикам.

Потрясающая эффективность МОП-транзисторов в значительной степени нейтрализуется одним недостатком, связанным с этими устройствами. Это сложность, которая делает эти компоненты трудными для понимания и настройки.

Даже самые простые операции, такие как проверка хорошего МОП-транзистора от плохого, никогда не являются легкой задачей, особенно для новичков в этой области.

Хотя МОП-транзисторы обычно требуют сложного оборудования для проверки их состояния, простой способ использования мультиметра также считается эффективным большую часть времени для их проверки.

Мы возьмем в качестве примера два типа N-канальных МОП-транзисторов, K1058 и IRFP240, и посмотрим, как эти МОП-транзисторы могут быть протестированы с помощью обычного цифрового мультиметра с немного разными процедурами.

Как проверить N-канальные МОП-транзисторы

1) Установите цифровой мультиметр на диодный диапазон.

2) Держите МОП-транзистор на сухом деревянном столе на его металлическом выступе стороной с печатью к вам и выводами к вам.

3) С помощью отвертки или измерительного щупа закоротите штырьки затвора и стока MOSFET.Изначально внутренняя емкость устройства будет полностью разряжена.

4) Теперь прикоснитесь черным щупом счетчика к источнику , а красным щупом к стоку устройства.

5) Вы должны увидеть индикацию обрыва цепи на счетчике.

6) Теперь, прикасаясь черным щупом к источнику , поднимите красный щуп со стока и на мгновение прикоснитесь им к затвору МОП-транзистора и верните его обратно на сток МОП-транзистора.

7) На этот раз измеритель покажет короткое замыкание (извините, не короткое замыкание, а «непрерывность»).

Результаты пунктов 5 и 7 подтверждают, что МОП-транзистор в порядке.

Повторите эту процедуру много раз для надлежащее подтверждение.

Для повторения описанной выше процедуры каждый раз вам потребуется сбросить полевой МОП-транзистор путем короткого замыкания затвора и вывода стока с помощью измерительного щупа, как описано ранее. Для P-канала шаги тестирования будут такими же, как 1,2,3,4 и 5, но полярность измерителя изменится.Вот как это сделать.

1) Установите цифровой мультиметр на диодный диапазон.

2) Закрепите МОП-транзистор на сухом деревянном столе на его металлическом язычке так, чтобы сторона с надписью была обращена к вам, а провода были направлены к вам.

3) С помощью любого проводника или измерительного щупа закоротите штырьки затвора и стока P-mosfet. Первоначально это позволит разрядить внутреннюю емкость устройства, что важно для процесса тестирования.

4) Теперь прикоснитесь КРАСНЫМ датчиком измерителя к источнику и ЧЕРНЫМ датчиком к стоку устройства.

5) На счетчике вы обнаружите «обрыв» цепи.

6) Затем, не перемещая КРАСНЫЙ датчик от источника , удалите черный датчик со стока и прикоснитесь им к затвору МОП-транзистора на секунду и верните его обратно на сток МОП-транзистора. ,

7) На этот раз измеритель покажет непрерывность или низкое значение на измерителе.

Вот и все, это подтвердит, что ваш MOSFET в порядке и без каких-либо проблем. Любая другая форма чтения укажет на неисправный МОП-транзистор.

Если у вас возникнут какие-либо сомнения относительно процедур, пожалуйста, не стесняйтесь выражать свои мысли в разделе комментариев.

Как проверить МОП-транзистор IRF540

Процедуры в точности аналогичны описанным выше процедурам тестирования N-канального МОП-транзистора. Следующий видеоролик показывает и доказывает, как это можно реализовать с помощью обычного мультиметра.

Практическое видеоурок

Схема приспособления для простого тестера Mosfet

Если вам неудобно использовать вышеупомянутую процедуру тестирования с использованием мультиметра, то вы можете быстро создать следующее приспособление для эффективной проверки любого N-канального МОП-транзистора. ,

После того, как вы сделаете это приспособление, вы можете подключить соответствующие контакты МОП-транзистора к данным гнездам G, D, S. После этого вам просто нужно нажать кнопку для подтверждения состояния MOSFET.

Если светодиод светится только при нажатии кнопки, то с вашим МОП-транзистором все в порядке, любые другие результаты будут указывать на неисправный или неисправный МОП-транзистор.

Катод светодиода перейдет на сток или на сток.

Для MOSFET с p-каналом вы можете просто изменить конструкцию, как показано на следующем изображении.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой, которая как устранить проверить и проверить конденсатор? Хороший, плохой (мертвый), короткий или открытый?

Здесь мы можем проверить конденсатор с помощью аналогового (AVO-метр, т. Е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо он в хорошем состоянии, либо мы должны заменить его новым.,

Примечание. Чтобы определить значение емкости, вам понадобится цифровой измеритель с функциями измерения емкости.

How to Test a Capacitor with Digital Multimeter and Analog AVO Meter. By six (6) Methods with pictorial View. How to Test a Capacitor with Digital Multimeter and Analog AVO Meter. By six (6) Methods with pictorial View.

Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .

Связанные сообщения:

Метод 1.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов. Будьте осторожны, выполняя эту практику, так как это опасно.Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2–6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждение и рекомендации по проверке конденсатора методом 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы 24 В постоянного тока вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство, в котором рассказывается, как можно проверить конденсатор этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
  5. Снимите предохранительные провода с источника питания 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (пожалуйста, сделайте это осторожно и убедитесь, что у вас есть защитные очки).
  7. Если возникает сильная искра, то конденсатор исправен .
  8. Если дает слабую искру, то это конденсатор плохой и немедленно замените его на новый.

How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods (pictorial) View How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods (pictorial) View

Связанные сообщения:

Метод 2.

Проверка конденсатора аналоговым мультиметром

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.

  1. Убедитесь, что предполагаемый конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Обратите внимание на чтение и сравните со следующими результатами.
  6. Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
  8. Good Capacitors : Сначала сопротивление будет низким, а затем постепенно увеличится до бесконечности. Это означает, что конденсатор в хорошем состоянии.

how to check that is a capacitor is good, open, dead, or short? how to check that is a capacitor is good, open, dead, or short?

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM), выполните действия, указанные ниже.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
  3. Подключите выводы измерителя к клеммам конденсатора.
  4. Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. И тут сразу вернется в OL (Open Line). Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, значит Конденсатор не работает .

How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods

Вы также можете проверить:

Метод 4.

Проверка конденсатора с помощью мультиметра в режиме емкости

Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или у вас есть мультиметр с функцией проверки емкости.Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (т. Е. Напечатанному значению на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
  7. Если вы читаете значительно меньшую емкость или ее отсутствие вообще, то конденсатор мертв, и вам следует его заменить. how to check a capaccitor that is good, bad, open, dead or short? how to check a capaccitor that is good, bad, open, dead or short?

Связанные сообщения:

Метод 5.

Тестирование конденсатора простым вольтметром.

  1. Обязательно отсоедините один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (при необходимости вы также можете полностью отключить его)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем нижеприведенном примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд, чтобы номинальное (не до точного значения, но меньше этого i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Убедитесь, что положительный (красный) вывод источника напряжения подключен к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательную и положительную клеммы конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.
  5. Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания слишком малы, значит, конденсатор неисправен. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Check & Test a Capacitor by Simple Voltmeter. Check & Test a Capacitor by Simple Voltmeter.

Связанные сообщения:

Метод 6.

Найдите значение конденсатора, измерив значение постоянной времени

Мы можем найти значение конденсатора, измерив постоянную времени ( TC или τ = Tau), если значение емкости конденсатора известно в микрофарадах (обозначается мкФ), напечатанном на нем i.е. конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки около 63,2% приложенного напряжения при заряде через резистор известного номинала, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:

τ = RxC

Где:

  • R = Известный резистор
  • C = Значение емкости
  • τ = TC или τ = Tau (постоянная времени)

Например, если напряжение питания 9V , затем 63.2% из этого составляет около 5,7В .

Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.

Обязательно отсоедините и разрядите конденсатор от платы.

Подключите резистор с известным значением сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени) .

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, так как он не работает должным образом.

Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.

Полезная информация : Можно также измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать так же, как и в формуле, чтобы найти емкость конденсатора.

find the value of a capacitor by measuring the Time constant find the value of a capacitor by measuring the Time constant

Похожие сообщения:

.

Как проверить транзистор мультиметром (DMM + AVO) — NPN и PNP

Как найти базу, коллектор, эмиттер, направление и состояние транзистора с помощью мультиметра

Как запомнить направление PNP и NPN Идентификация транзисторов и контактов, проверьте, хорошо это или плохо.

Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:

  • Запомните направление транзисторов NPN и PNP
  • Определите базу, коллектор и эмиттер Транзистор
  • Проверьте транзистор, исправен он или нет.

Запомните направление транзистора PNP и NPN

How to remember the direction of PNP and NPN Transistor & Pin Identification, Check if it is Good or Bad. How to remember the direction of PNP and NPN Transistor & Pin Identification, Check if it is Good or Bad.

PNP = заостренный
NPN = не заостренный.
, если вам кажется, что это немного сложно, попробуйте этот … он проще. Remember the direction of PNP & NPN Transistor Remember the direction of PNP & NPN Transistor

Щелкните изображение, чтобы увеличить.

PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN

Проверить транзистор с цифровым мультиметром в режиме диода или непрерывности

Сделать Итак, следуйте инструкциям, приведенным ниже.

  1. Удалите транзистор из цепи, т.е. отключите питание от транзистора, который необходимо проверить. Разрядите весь конденсатор (закоротив выводы конденсатора) в цепи (если есть).
  2. Переведите измеритель в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме (рис. Ниже). Вам необходимо выполнить 6 тестов, подключив черный (-Ve) тестовый провод и красный (+ Ve) тестовый провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно. просто замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).Цифры красного цвета — это красный тестовый провод, а номера черного цвета подключены к черному (-Ve) измерительному проводу мультиметра.
  4. Проверьте, измерьте и запишите показания дисплея, показанные на мультиметре в таблице ниже. Check Transistor with Digital Multimeter in Diode or Continuity Mode Check Transistor with Digital Multimeter in Diode or Continuity Mode

У нас есть следующие данные из приведенной ниже таблицы.

Из 6 тестов мы получили данные и результаты только по двум тестам, то есть точкам со 2 по 1 и со 2 по 3. Если мы получили точки со 2 по 1, это 0,733 В постоянного тока, а с 2 по 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также их коллектор, базу и эмиттер.

  1. Точка 2 — база транзистора в транзисторе BC55.
  2. BC 557 — это PNP-транзистор, у которого 2 nd (средний вывод — база) подключен к красному (+ Ve) измерительному проводу мультиметра.
  3. Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 557 PNP), потому что результат теста для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, то есть 2-1 > 2-3.
BC 557 PNP Checking BC 557 PNP Transistor Checking BC 557 PNP Transistor Точки измерения Результат
1-2 OL
1-3 OL
2-1 0.733 В постоянного тока
2-3 0,728 В постоянного тока
3-1 OL
3-2 OL
Нахождение базы транзистора :

Как указано в В приведенном выше руководстве общее число, найденное в приведенных выше тестах, является базовым. В нашем случае 2 nd терминал — это Базовый, а 2 — общий из 1-2 и 2-3.

2 nd Метод с использованием цифрового мультиметра для поиска базы транзистора.

Если вы следуете той же схеме и способу подключения выводов мультиметра и клемм транзисторов один за другим на рисунке, показанном выше, на рисунках «c» и «d», красный (+ Ve) измерительный провод подключается к среднему. я.е. Клемма 2 nd и черный (-Ve) измерительный провод подключена к 1 клемме транзистора 1 st .

Опять же, красный (+ Ve) измерительный провод подключен к среднему, т.е. 2 nd клемм, а черный (-Ve) измерительный провод подключен к 3 rd одной клемме транзистора, и мультиметр показывает некоторые показания, например 0,717 В и 0,711 В постоянного тока соответственно в случае BC 547 NPN.

Общий провод — это 2 и , подключенный к красному (+ Ve) измерительному проводу (т.е.е. P и да, два других вывода — N), который является базовым. В случае транзистора BC 557 PNP все наоборот.

NPN или PNP?

Все просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае 2 nd ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База клеммы, это NPN транзистор .

BC 547 NPN and BC557 PNP Transistor Checking BC 547 NPN and BC557 PNP Transistor Checking

Эмиттер или коллектор?

Прямое смещение EB (эмиттер — база) больше, чем CB (коллектор — база) i.е. EB> CB в транзисторе PNP, например BC 557 NPN. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), то есть BE> BC, например BC 547 PNP.

Вот и вывод.

  1. Точка 2 — база транзистора в транзисторе BC547.
  2. BC 547 — это транзистор NPN, где 2 nd (средняя клемма — база) подключена к красному (+ Ve) измерительному проводу мультиметра.
  3. Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3.
BC 547 NPN Checking BC 547 NPN Transistor Checking BC 547 NPN Transistor Точки измерения Результат
1-2 0,717 В постоянного тока
1-2 OL
1-3 OL
1-3 OL
2-3 OL
2-3 0,711 В постоянного тока

Проверить транзистор с аналоговым или цифровым мультиметром в Ом ( Ω) Режим диапазона:

Шаги:

  1. Отключите источник питания от цепи и удалите транзистор из схемы.
  2. Поверните переключатель и установите ручку мультиметра в положение Ом.
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод — ко 2-й клемме ( Рис. 1 (a). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно, всего лишь замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).(Цифры красного цвета показывают выводы транзистора, подключенные к измерительному выводу Red (+ Ve) мультиметра, а числа черного цвета показывают выводы транзистора, подключенные к измерительному выводу Black (-Ve) мультиметра. (Лучше) объяснение в таблице и на рис. ниже)
  4. Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах, изменив полярность транзистора или мультиметра, как показано на рис. 1 (а) и (b) (обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае клемма 2 nd транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где Красный (+ Ve) измерительный провод мультиметра подключен к 2 nd клемма транзистора. Другими словами, обычное число в тестах — это Base, что составляет 2 из 1, 2 и 3.

Щелкните изображение, чтобы увеличить

Check Transistor with Analog or Digital Multimeter in Ohm (Ω) Range Mode: Check Transistor with Analog or Digital Multimeter in Ohm (Ω) Range Mode:

PNP или NPN?

Теперь это транзистор NPN, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (т.е.е. Клемма P, где P = положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы сделаете обратное, то есть черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра подключен к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3) и покажет показания в обоих тестах, как указано выше , Клемма 2 nd все еще БАЗА, но транзистор — PNP (см. Рис. Ниже).

Проверить транзистор в цифровом мультиметре с транзистором или hFE или бета-режимом

hFE, также известный как beta, означает усиление постоянного тока, что означает «коэффициент усиления прямого тока гибридного параметра, общий эмиттер», используемый для измерения hFE транзистора, который можно найти по следующей формуле.

h FE = β DC = I C / I B

Его также можно использовать для проверки транзистора и его выводов, как показано на рис. 1.

Для проверки транзистор в режиме hFE, в мультиметре есть 8-контактный разъем, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные разъемы, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).

Если они отображают показания (это будет показание транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE), текущее положение на C, B, Слот E — это точные выводы транзистора (т. Е. Коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его новым. Check Transistor in Digital Multimeter with Transistor or hFE or Beta Mode Check Transistor in Digital Multimeter with Transistor or hFE or Beta Mode

Похожие сообщения:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *