Как проверить наличие тока в проводе: Как проверить наличие тока в проводе – как определить кабель под напряжением или нет?

Содержание

Как проверить наличие тока в проводе – как определить кабель под напряжением или нет?

Как проверить наличие тока в проводе

Отвертка индикатор напряжения для дома

Сразу стоит сказать, что отвертка-индикатор это очень важный инструмент, который наравне с плоскогубцами и молотком, должен быть в любом доме и квартире.

Практически каждому человеку приходилось попадать в такую неприятную ситуацию – неожиданно в квартире гаснет свет. Что же случилось? Почему это произошло? Большинство людей сразу же задается вопросом: «Свет выключили только у меня или же повсюду?» Что ж, если под рукой есть индикаторная отвертка, найти ответ на этот вопрос можно очень быстро. Более того, имея минимальный набор навыков, в некоторых случаях можно даже самостоятельно устранить неисправность.

Например, если в выключателе или розетке просто был потерян контакт, исправить поломку можно очень быстро – достаточно лишь отыскать проблемное место. Но как это сделать? Использовать специальные, громоздкие, сложные и довольно дорогие приборы? Нет, если под рукой имеется отвертка индикатор.

Причем, если вы используете её, то вам не придется разбирать стену, чтобы добраться до проводки.

Серьезный плюс заключается в том, что никого не нужно учить, как пользоваться отверткой индикатором – он максимально прост в использовании. И при этом он позволяет моментально определить отсутствие или наличие напряжение на включателе или в розетке.

В данной статье рассмотрим, что такое отвертка индикатор их основные разновидности и конструкцию, а также как пользоваться отверткой индикатором.

Обычная отвертка индикатор – самое простое решение

Самые простые и распространенные пробники снабжены неоновыми лампами. Принцип их действия максимально прост.

Когда вы проверяете напряжение в розетке, электрический ток проходит через резистор установленный внутри индикатора (этот резистор ограничивает ток, его номинал составляет не менее 0,5 мОм) и передается на первый контакт неоновой лампочки.

При этом второй контакт лампочки замыкается на пользователе через контакт, расположенный на рукоятке.

У таких отверток сопротивление тела человека и емкость являются частью цепи лампочки. Другими словами, когда вы касаетесь пальцами контакта, а жалом – напряженного провода, то увидите свечение лампочки (при условии, что в сети есть напряжение).

Если контакт с пользователем отсутствует, лампа не загорается. Главным минусом данного типа отверток является довольно высокий порог срабатывания по напряжению – не ниже 60 В.

Поэтому они подходят только чтобы выявлять наличие фазы и напряжение. Определить обрывы цепи она не поможет. Так что, эта отвертка-индикатор не является многофункциональной – она лишь позволяет определять отсутствие или наличие напряжения в сети.

Индикаторная отвертка со светодиодом – большая функциональность

Отвертка-индикатор, снабженная светодиодом, имеет немало общего с описанной выше моделью. Их принцип действия одинаков. Но отличие все же имеется – светодиодные пробники подходят для работы с электрическими сетями, в которых напряжение значительно меньше, чем 60 В.

Ещё один фактор, отличающий светодиодный индикатор от обычного, это наличие собственного, автономного источника питания – батарейки. Также их отличает наличие транзистора, чаще всего биполярного.

Поэтому данный тип отверток-индикаторов уже можно назвать многофункциональным. С его помощью вы сможете не только проверять наличие или отсутствие фазы контактным, а также бесконтактным способом, но и проверять целостность цепей – предохранителей, проводов и кабелей.

Указатель состоит из двух рабочих частей. Первая выглядит как плоская отвертка. Она используется при работе с непосредственным контактом с элементами, которые находятся под напряжением.

Вторая же часть подходит, если необходимо определить наличие напряжение без контакта. При использовании с первой частью, она также позволяет определить целостность сети

В изолированной рукоятке из прозрачного материала расположен светодиод, который и сообщает о наличии напряжения в сети.

Универсальная индикаторная отвертка STAYER 4520-48

Но на сегодняшний день в продаже можно встретить специальные отвертки-индикаторы, при работе с которыми можно протестировать линию как контактным, так и бесконтактным способом.

Также она позволяет «прозвонить» проводку на предмет короткого замыкания или обрывов.

Такой отверткой-индикатором является STAYER 4520-48. Она прекрасно подходит, если нужно протестировать элементы цепей постоянного и переменного тока в автотранспорте, бытовых электроприборах и других устройствах. С её помощью можно легко определять полярность и проводить прозвонку методом звуковой или световой индикации.

Этот индикатор выгодно отличается от большинства аналогов наличием не только светового, но и звукового оповещения. Благодаря этому работа, связанная с проверкой наличия напряжения, становится ещё более простой, комфортной и безопасной.

Если напряжение в норме, то пользователь слышит звуковой сигнал, сопровождающийся зажжением индикатора зеленого цвета. Увы, эта отвертка индикатор имеет и серьезный минус. Дело в том, что она работает от батарейки, которая садится быстрее, чем того хотелось бы.

Как пользоваться отверткой индикатором

Ну что ж мы рассмотрели три вида индикаторных отверток, теперь рассмотрим как пользоваться отверткой индикатором и проверим их в работе.

Обычный индикатор

Указатель этой отвертки-индикатора снабжен двумя рабочими областями. Первая похожа на плоскую отвертку – она-то и контактирует в элементами электропроводки, которые находятся под напряжением. Вторая обеспечивает достаточное сопротивление, и находится на рукояти отвертки. Также она имеет двухполюсный выключатель.

Рассмотрим пример, при котором к первому контакту подведен фазный провод, а ко второму – нулевой. Индикатором напряжения определяется, по какому проводу идет фаза.

Чтобы определить достаточно зажать контакт на рукоятке индикатора напряжения большим пальцем, после чего поднести рабочую область индикатору поочередно к обоим контактам автоматического выключателя. При этом нужно следить, чтобы большой палец оставался голым – нельзя надевать перчатки при использовании устройства.

Как пользоваться индикаторной отверткой со светодиодом

Как уже говорилось выше, эти индикаторы отличаются наличием функции не только контактного, но и бесконтактного использования при наличии светового оповещения.

Если вы используете классический контактный способ, и вам нужно выяснить, где имеется фаза, достаточно приблизить рабочую часть к обоим контактам автоматического выключателя. Поднося прибор к нулевому контакту, вы не заметите никаких изменений. Когда же вы проверяете фазный, сразу же загорится сигнальная лампочка, что позволит вам сразу выяснить, что на этом контакте присутствует напряжение.

Чтобы определить наличие фазы, используя бесконтактный метод, достаточно использовать вторую рабочую часть, также известную, как пятка. Её необходимо поднести к изоляции кабеля. Не нужно даже касаться её – при наличии фазы диод загорится на небольшом расстоянии от кабеля.

Серьезный плюс – простота прозвонки (выявление разрывов в цепи). Необходимо подсоединить одну рабочую часть к первому концу цепи, которая проверяется, а другую – ко второму. Если цепь исправна, то загорится светодиодная лампочка. В противном случае ничего не произойдет.

Если контакт находится под напряжением, индикатор тут же просигнализирует об этом – в нем загорится красный огонек. Если же поднести индикатор напряжения к нулевому контакту, никакого сигнала не последует.

Как пользоваться индикаторной отверткой STAYER 4520-48

Эта отвертка индикатор снабжена пластмассовой рукояткой, имеющей переключатель режимов работы. Он может быть установлен в трех различных положениях:

  1. — 0 – это контактное использование с функцией светового оповещения. Сигнализация осуществляется путем загорания красной лампочки;
  2. — L – бесконтактное использование с низкой чувствительностью. При средней чувствительности возможно звуковое оповещение. Напряжение может быть выявлено на малом расстоянии даже при использовании двойной изоляции провода. При выявлении напряжения загорается зеленая лампочка;
  3. — Н – бесконтактное использование при высокой чувствительности – используется звуковое оповещение. Чувствительность такова, что позволяет выявлять напряжение на большом расстоянии – не только через плотную изоляцию проводов, но и через тонкий слой штукатурки на стене. В этом режиме возможно определение маршрута проводов, проложенных в стене. Выявление напряжения сопровождается зажженной зеленой лампочкой.

Защитный колпачок скрывает рабочую область, выполненную в форме плоской отвертки. Вторая торцевая сторона индикатора имеет специальный контакт, используемый для определения наличия разрывов в цепи.

Чтобы выполнить то действие, достаточно соединить провод одного конца цепи с указателем напряжения, а второй – с контактом целостности цепи. В случаях, когда цепь не повреждена, отвертка-индикатор соответственно просигнализирует пользователю об этом. При работе в режиме «О» загорается красный диод.

Если включен режим «L» или «Н», загорается зеленая лампочка, причем это сопровождается определенным звуковым сигналом. Если же цепь повреждена на каком-то участке, индикатор никак не отреагирует.

В качестве примера можно рассказать, как пользоваться отверткой индикатором при проверке целостности лампы накаливания. В одной руке держим прибор, причем контактная пластика соприкасается с рукой. Жало отвертки подносим к металлической части цоколя лампы. Второй рукой дотрагиваемся до второго конца лампы, таким образом, замыкая цепь.

Если обрыва нет, то можно увидеть, как загорается красный индикатор. Переключим прибор в режим «О» — контактная индикация. Сначала совместим индикатор с нулевым контактом автоматического выключателя – индикатор напряжения здесь ничего не покажет. А потом совмещаем с фазным контактом. Тут же загорается световая индикация.

Теперь переключаемся на бесконтактный режим «L». К контактам указателя не прикасаемся, а просто приближаем к автоматическому выключателю или розетке. Возле фазного загорится зеленая лампочка, а также раздастся звуковая сигнализация. А возле нулевого индикатор никак себя не проявит.

Наконец, проводим проверку в режиме «Н». Рабочая часть для этого не нужно. Наденем защитный колпачок, после чего подносим индикатор к автомату. На расстоянии около 20 сантиметров будет активировано звуковое оповещение. Одновременно с этим загорится зеленый диод.

Источник: https://electricvdome.ru/instrument-electrica/indikator-napryazheniya.html

Индикаторная отвертка при электромонтажных работах

📅 Создано: 16 Января 2018, 21:37 👀 Просмотров: 14907

Безопасность – главное условие проведения любых работ с электрической проводкой в доме. Поэтому очень важно удостовериться в отсутствии напряжения в проводе. Это сделать поможет один важнейший инструмент, называемый индикаторной отвёрткой. Как же правильно использовать её?

В доме запитывание электропроводки идёт от общего рубильника

Происходит поступление тока (при напряжении 220 В) по фазному проводу к потребителю, затем возвращение его по нулевому проводу к общему рубильнику. Причём нулевой провод находится под напряжением лишь в момент работы потребляющего ток прибора. Так вот, проверить, есть или нет напряжение в проводе, то есть «фазный» он или нет, помогает индикаторная отвёртка.

Перед тем как приступать к каким-либо работам, связанным с электричеством, рекомендуется хорошо ознакомиться с некоторыми общими правилами ведения работ с электропроводкой и научиться выявлять отсутствие или наличие напряжения в электропроводах, во избежание опасных ситуаций.

Электричество

В жилые дома поступление электроэнергии осуществляется по двум электропроводам, один из которых именуют фазовым (именно на него и подают напряжение), другой — нулевым. Они и являются теми двумя проводами, к которым производится подключение вилки любого домашнего электрического прибора, потребляющего электроэнергию (к примеру, настольной лампы). К вышеуказанным проводам часто добавляют третий, называемый «заземляющий».

Фаза

Самый первый шаг при работе с электричеством – выявление, в каком из проводов есть фаза, то есть определение находящегося под напряжением провода и другого – нейтрального. После нахождения фазового провода старайтесь к нему не прикасаться, чтобы не получить удар током.

Как определить фазу

Для выявления находящегося под напряжением провода следует пользоваться простейшим инструментом – фазоопределителем. Внешне он напоминает отвёртку (собственно, он и может служить отвёрткой), имеющую стержень из изоляционного материала и металлическое жало. Предлагаемые в продаже отвёртки-фазоопределители различаются по типу и размерам. При этом все они функционирую по одинаковому принципу. При покупке обращайте внимание на качество и надёжность изделия. Устройство индикаторной отвёртки следующее: стержень, находящийся внутри ручки, соединён с резистором, сопротивление которое довольно высокое, сам же резистор с другой стороны соединяется с крохотной индикаторной лампочкой, а та присоединена к металлической пластинке, установленной на конце ручки.

В момент касания жала индикаторной отвёртки находящегося под напряжением, фазного, провода, с одновременным прижатием пальца к металлической пластине, происходит загорание индикаторной лампочки. А не загорание лампочки, напротив, свидетельствует о том, что индикаторная отвёртка прикоснулась жалом к нулевому проводу (то есть, в зависимости от случая, любого провода не под напряжением). Но нужно быть осторожным: перегоревшая лампочка может показать неправильный результат, обманув вас. Поэтому следует заблаговременно проверить индикаторную отвёртку на работоспособность, тестируя её прикосновением к находящемуся под напряжением проводу, в «фазности» которого вы нисколько не сомневаетесь.

Фазоопределитель: принцип работы

Индикаторная отвёртка работает по простому принципу: при касании жала инструмента находящегося под напряжением провода происходит прохождение тока по стержню инструмента через резистор и принуждение лампочки к свечению, после – попадание в прикасающуюся контактной пластины руку, дальнейшее прохождение через тело человека, держащего в руках данный фазоопределитель, и уход тока в землю. В этот момент человеку ничего не угрожает (он даже не чувствует, что пропускает через себя ток), так как внутри инструмента очень высокое сопротивление, величина тока – не превышает миллиампер, что совершенно не чувствуется.

Применение фазоопределителя

Индикаторная отвёртка поможет определить, какой контакт розетки находится под напряжением. Кроме того, перед тем как заменить неработающий выключатель, используйте фазоопределитель для предварительной проверки наличия фазы. В случае если розетка удлинителя вышла из строя, индикаторной отвёрткой проверьте наличие напряжения на одном из гнёзд этой розетки. Применение отвёртки поможет произвести тестирование подводки фазы: как она подведена – к резьбе либо к центральному контакту. Прикоснувшись к корпусу того или иного электробытового прибора жалом фазоопределителя, можно выявить находится ли он под напряжением. Касаясь жалом инструмента центрального контакта розетки, можно проверить земляной провод на предмет исправности. Применение индикаторной отвёртки позволяет определить, есть ли фаза в любом месте каждого из двух имеющихся проводников, к контактам которых подсоединён не включенный светильник.

В каких случаях нужно определить, есть ли фаза в данном проводе?

Необходимость в этом возникает, если надо проложить электропроводку или выявить причину её неисправности. В первом варианте фазоопределитель является исключительно полезнейшим инструментом, который оказывает огромную помощь в ведении работ. Вместе с тем важно не забывать, согласно нормативным актам прокладыванием проводки должны заниматься исключительно профессионалы, то есть, простой обыватель, даже имеющий специальные знания, самостоятельно производить эти работы не должен.

Выявление поломок

Со временем при продолжительном использовании проводки бытовые электроприборы и другая техника могут начать контактировать с оголённым кабелем, что приводит к попаданию корпуса под напряжение, как говорят «корпус начинает пробивать». При возникновении у вас малейших опасений на этот счёт, рекомендуется предпринять следующие действия: подключите бытовое устройство к электророзетке и включите его. Далее, используя индикаторную отвёртку, следует прикоснуться её жалом к корпусу прибора в нескольких местах (особенно в тех зонах, где отсутствует лаковое, эмалевое или другое покрытие, и в неизолированных местах). Загорание индикаторного глазка является свидетельством наличия напряжения на корпусе объекта. Не обнаружится напряжение в том случае, если фазоопределитель касается заземлённого проводника.

Но быть в полной уверенности можно лишь после многократной проверки. Нередко домашняя проводка снабжается заземляющим проводом, подведенным ко всем электророзеткам, значит – к элекропотребителям. Однако часто провод сам по себе может быть не соединён с заземляющим электродом. Тогда электроустройство может быть под напряжением, будучи не соединённым с землёй. Удостовериться в не нахождении под напряжением всей земляной сети поможет снятие крышки с нескольких электророзеток и проверка заземляющего провода индикаторной отвёрткой (этот провод не перепутаешь с другим, так как он подсоединен к центральному контакту зажиму розетки, кроме того, его оплётка всегда жёлтая или зелёная).

Какой опасной ошибки следует не допускать

При не соблюдении определённых правил работы с электрическим током вполне возможно получить удар электротоком, особенно часто подобное случается, когда люди полагают, что выключив выключатель, можно работать с «внутренностями» осветительного прибора, не подвергаясь при этом опасности. Бывает одного выключения света недостаточно, если при создании проводки были нарушены определённые правила (выключатель подключен не к фазовому проводу, а к нулевому). Да и вообще, в случаях коммутирования осветительного прибора больше чем одним выключателем, без индикаторной отвёртки выявить, в каком проводе есть напряжение невозможно.

Статьи по теме

Возможно вас заинтересует

Индикаторная отвертка: как пользоваться

индикаторная отвертка

Индикаторная отвертка

В быту нам постоянно приходится контактировать с электроприборами или с электричеством. Излишне рассказывать о том, что оно небезопасно для человека. Поэтому в каждом доме должен быть простейший прибор, с помощью которого можно было бы легко определить наличие тока в каком-то проводнике, розетке или электрощитке. Это бывает необходимо при замене любого провода, электрического оборудования, при устранении неполадок в электрических цепях. Таким целям служит индикаторная отвертка. С ее помощью можно определить наличие «фазы» и «нуля», найти обрыв провода, проверить работоспособность автомата защиты или пробки.

проверка обрыва нуля с помощью индикаторной отвертки

Перед началом использования необходимо убедиться в исправности индикаторного прибора. Батарейка, от которой работает устройство, позволяет быстро провести проверку. Для этого достаточно коснуться одновременно металлического контакта на рукоятке и жала. Световой индикатор должен загореться. Для проверки устройства, не предусматривающего использование батарейки, нужно коснуться провода под напряжением и металла на рукоятке. Светодиод также загорится, если инструмент исправен.

проверка батарейки на индикаторной отвертке

Отвертка сигнализирует только о наличии фазы в проводнике или ее отсутствие. В этом случае срабатывает световой индикатор. Если индикатор не горит, то провод либо отключен от сети, либо на него подается «ноль».

Как работают различные модели индикаторных отверток?

Отвертка состоит из пластикового корпуса, металлического жала и токопроводящего контакта на рукоятке. Внутрь корпуса встроен ограничивающий резистор, световой индикатор неонового или светодиодного типа. Также могут присутствовать батарейки и пружина для их удержания.

разновидности индикаторных отверток

Индикаторная отвертка без батареек

Простейшая отвертка, без батареек, работает достаточно просто. Ток проходит через жало, затем через ограничивающий резистор и светоиндикатор, после чего замыкается на человеке. Если металлический контакт на рукоятке не будет зажат, то цепь не будет замкнута. Так прибор работать не будет. Достоинство такого аппарата: низкая стоимость, простая конструкция и отсутствие необходимости замены питания. Недостатки: светодиод имеет слабый уровень подсветки, ей можно проверить напряжение только более 60 В. Кроме того, такой отверткой невозможно определить наличие обрыва цепи.

простейшие индикаторные отвертки без батареек

Индикаторная отвертка на батарейках

Это более совершенный инструмент, имеющий яркую лампочку. Удобство работы заключается в том, что для проверки наличия тока достаточно просто коснуться провода жалом, не касаясь металлического контакта на рукоятке. Этим индикатором можно легко проверить обрыв проводки. Для этого нужно зажать металлический контакт, а жалом дотронуться до обесточенного провода. Другой рукой нужно коснуться второго конца этого провода. В случае обрыва индикатор ничего не покажет, а при целом проводе светодиод загорится.

индикаторные отвертки на батарейках

Так можно проверять любые провода. Например, для проверки удлинителя, необходимо отключить его от сети и изготовить металлическую перемычку из куска оголенного провода. Перемычку вставить в одну из розеток удлинителя для замыкания его проводов. Вилку удлинителя нужно взять рукой и удерживать пальцами один контакт, а второго контакта следует коснуться отверткой с зажатым металлическим верхом. Если провод целый, то индикатор отвертки будет светиться.

звуковой и световой сигнал индикаторной отвертки 2

Данную модель можно использовать в качестве индикатора проводки, находящейся под током. То есть, прибор позволяет определить заизолированные провода под напряжением, находящиеся на поверхности стены или заделанные неглубоко в стену. Для поиска провода необходимо взяться рукой за жало отвертки, а ее рукоятку вести вдоль проводки или стены. Загорание лампочки будет свидетельствовать о наличии тока в проводе или наличии в стене запитанных проводов. Такая функция бывает крайне полезна в случае проведения ремонта, когда необходимо пробивать стену, а расположение в ней скрытой проводки неизвестно.

Индикаторные отвертки с дисплеем

Это новомодные инструменты, оснащенные не только ЖК-дисплеем, показывающим величину напряжения в сети, но и звуковой сигнализацией. На корпусе прибора имеется кнопка переключения режимов работы. Повышенная функциональность позволяет использовать прибор в качестве простейшего тестера. Однако для полноценной работы нужен настоящий тестер, а отвертка с функциями тестера не совсем удобна для полноценных измерений. Да и цена ее великовата.

жк-дисплей индикаторной отвертки

Приобретайте индикаторные пробники сообразно вашим целям. Наиболее универсальным вариантом для дома является отвертка, работающая на батарейках. При периодическом использовании батареек хватает надолго.

Индикаторная отвертка. Видио.

Оцените качество статьи:

Как проверять напряжение индикаторной отвёрткой

Как проверять напряжение индикаторной отвёрткой

Индикаторная отвёртка – это многофункциональный прибор, главным назначением устройства становится оценка наличия фазы напряжения на данном токонесущем участке.

В арсенале любого электрика и уважающего себя домашнего мастера обязана присутствовать простейшая индикаторная отвертка, позволяющая очень просто определить наличие и место положения фазного контакта в розетке, на том или ином проводе проводки, на контакте автомата в квартирном электрощите, или даже на корпусе какого-нибудь бытового прибора.

Такое бывает необходимо, если в жилище, например, внезапно погас свет, и вы хотите убедиться в причине случившегося: является ли это результатом неисправности отдельного выключателя, а может быть просто перегорела лампа, или вся бытовая сеть квартиры почему-то оказалась обесточена. ..

Кроме того, полезно уметь идентифицировать фазный провод в вашей проводке при монтаже выключателя, ведь выключатель должен замыкать или размыкать именно фазный проводник от остальной цепи потребителя, а не нулевой проводник. Об этом, кстати, написана отдельная статья.

А в некоторых случаях индикаторная отвертка способна защитить человека от поражения электрическим током и даже спасти ему жизнь. Представьте себе, стиральная машина или водонагреватель подозрительно заискрили в том месте, где этого в принципе не должно быть. С чего начать диагностику? А если в помещении находятся дети?

Просто прикоснувшись индикаторной отверткой к корпусу подозрительного устройства, вы сможете наверняка убедиться, попала ли фаза на корпус или нет. После этого можно будет спокойно принять решение о том, какие меры предпринять, и как выдернуть вилку прибора из розетки, избежав при этом поражения током.

Короче говоря, такое простое устройство — «индикаторная отвертка» — должно быть под рукой любого домашнего мастера. И давайте все-таки рассмотрим сначала его конструкцию, чтобы понимать, почему им пользуются именно так как пользуются (голой рукой!), и почему это совершенно безопасно.

Классическая индикаторная отвертка изначально не предназначена для монтажа винтов. Ее назначение — при необходимости быть воткнутой в любое из отверстий розетки, в которые обычно втыкаются штырьки вилки какого-нибудь бытового прибора, рассчитанного на напряжение 220-240 вольт переменного тока (максимум 380 вольт).

Жало индикаторной отвертки является в данном случае проводящим контактным электродом, который может быть воткнут в любое из отверстий розетки на стене. Внутри корпуса отвертки, к ее жалу присоединен резистор номиналом порядка 1 МОм, рассчитанный на мощность не менее 0,25 Вт.

Далее внутри прозрачного корпуса можно увидеть неоновую лампочку, которая одним из своих выводов соединена с данным резистором, тогда как второй вывод неоновой лампочки соединен через пружину с внешним контактным электродом отвертки, который доступен снаружи на ее рукояти, выполнен в форме проводящей площадки, и предназначен для прикосновения голой рукой.

Желая обнаружить наличие или отсутствие напряжения в том или ином отверстии розетки, (индикаторную!) отвертку берут в руку так, чтобы конец рукояти отвертки контактировал с рукой. Другой конец отвертки втыкают в розетку. Если в данном месте «фаза» есть — неоновая лампочка внутри отвертки засветится.

Ток через отвертку (через резистор, неоновую лампу и тело человека) не превысит нескольких сотен микроампер, что безопасно для здоровья человека. Именно для этого внутри отвертки и установлен резистор номиналом минимум 1 МОм. Однако этого тока достаточно для того чтобы газ внутри неоновой лампочки начал светиться. Именно так принято пользоваться классической индикаторной отверткой.

Ранее ЭлектроВести писали, что существующие электронные устройства, представленные на рынке, состоят из неорганических, неодушевленных материалов. Однако в лабораториях готовятся «микробы-киборги», которые скоро начнут производить электричество.

По материалам: electrik.info.

Как проверить авто мультиметром, проверка мультиметром утечки тока, высоковольтных проводов, аккумулятора, генератора, датчиков

В этот раз расскажем, как и зачем перед покупкой нужно проверить авто мультиметром. Методами можно пользоваться прямо при встрече с продавцом и осмотре автомобиля. Чтобы дело шло быстрее, потренируйтесь накануне на машине друга или знакомого. 

Прежде всего, мультиметр нужен затем,  чтобы вовремя заметить утечку тока на машине. Из-за нее двигатель может работать неровно, выбросы станут более пахучими. Проводка может замкнуть, что выведет из строя магнитолу, электронный блок управления и другие приборы. Или железный конь просто не заведется.

Как проверить утечку тока на б/у автомобиле мультиметром

Проверка включает в себя:

    • Заглушите мотор, выньте ключ. Закройте двери, но откройте стекла — аккумулятор будет работать непостоянно, машина может закрыться на центральный замок.
    • Убедитесь, что дополнительная подсветка, магнитола отключены.
    • Снимите «минусовую» клемму с АКБ.
    • Положите один щуп между «минусовой» клеммой и отрицательным выводом аккумулятора — прибор покажет значение тока утечки. 

Нормальный показатель — 15-70 мА. Если цифры больше и вы с продавцом располагаете временем, попробуйте найти причину. Для этого также подключите мультиметр , после чего начните один за другим вынимать реле и предохранители.

Показания пришли в норму — вы нашли причину утечки тока. Возможно, дальше потребуется ремонт или замена детали,  а то и всей проводки. Можете уверенно просить у продавца авто скидку или совсем отказаться от покупки.

Причин утечки может быть несколько. К ней могут быть причастны:

  • аккумулятор;
  • датчики;
  • высоковольтные провода;
  • генератор. 

Каждый элемент можно проверить с помощью мультиметра.

Как проверить аккумулятор автомобиля мультиметром

Проверка аккумулятора автомобиля мультиметром включает в себя подключение сразу двух щупов. Мотор перед измерением также заглушите.

Красный щуп прислоните к «плюсовой» клемме, черный — к «минусовой». Если перепутаете — не страшно, прибор покажет актуальные цифры, просто со знаком минус.

Смотрите на экран прибора. Нормальный заряд аккумулятора колеблется в районе от 12,6 до 12,9 вольт.

Работу АКБ можно проверить также с запущенным мотором. При такой проверке аккумулятора автомобиля мультиметром вы также узнаете, как аккумулятор работает в паре с генератором, а также исправен ли регулятор напряжения.

Нормальные цифры при работающем двигателе — 13-14 вольт. Если мультиметр показывает меньше — аккумулятор нужно зарядить, или есть утечка тока.

Помните: мультиметр покажет заряд АКБ, но не расскажет о его работе исчерпывающе. Для этого существуют другие устройства. Например, нагрузочная вилка.

Как проверить датчики автомобиля мультиметром

Причиной «смерти» аккумулятора, скачков напряжения, ненужных значений на панели приборов могут быть различные датчики в машине. По опыту автомобилистов, чаще всего вызывают проблемы  5 видов датчиков:

  • коленвала;
  • скорости;
  • детонации;
  • ABS;
  • кислородный датчик. 

Понять, где они располагаются, вы можете из инструкции к машине, на сайтах автолюбителей, различных форумах.

Для проверки датчиков автомобиля мультиметром вам понадобится также информация о показателях напряжения в норме именно для вашего авто. Ее также можно найти в инструкции или в интернете.

Датчик ABS

Его проверяют по двум параметрам: напряжению и сопротивлению.

Чтобы начать измерение, выберите на мультиметре соответствующий режим. Если вы хотите узнать показатель сопротивления, для большинства норма – 1,2-1,8 кОм. Подключите прибор к датчику и начните замеры. При этом пошатайте провода, идущие к элементу. Если цифры на экране меняются и становятся выше или ниже нормы – с датчиком проблемы.

С измерением напряжения чуть сложнее – сделать это можно только с помощью домкрата или в автосервисе на стенде. Нужно раскрутить колесо автомобиля до 40-50 оборотов в минуту и следить за показаниями мультиметра. На любой машине он должен выдать 2 вольта.  

Датчик коленвала

Важный элемент — без него машина вообще не запустится, или ехать на ней вы не сможете. Если визуально он кажется исправным,  возьмитесь за мультиметр. Подключите прибор к датчику и измерьте сопротивление. Норма, как правило, от 550 до 750 Ом. Но обязательно проверьте, актуальны ли эти цифры для автомобиля, который вы смотрите.  

Кислородный датчик

Определяет, остался ли кислород в выхлопных газах. Перед замерами также осмотрите его – возможно, он поврежден и мультиметр вообще не понадобится. Тогда элемент нужно просто заменить.

Если все в порядке, измерьте, как с датчиком ABS, напряжение и сопротивление. Алгоритм тот же. Заводите машину и наблюдайте за прибором. После пуска на экране высветятся цифры 0,1-02, вольта. Машина прогреется – прибор покажет до 0,9 вольт. Не заметили, что показатель изменился – датчик, скорее всего, неисправен.

Если проверка напряжения прошла успешно, узнайте показатели сопротивления. Норма колеблется от 10 до 40 Ом. 

Датчик детонации

Определяет ударную волну при сгорании топлива. Показатели сопротивления у него на каждой машине индивидуальные – ищите информацию в разных источниках.

С напряжением чуть проще. Сначала снимите датчик. Щуп с плюсом подключите к сигнальному проводу, «минусовой» — к массе, ближе к крепежному болту. Дальше самое интересное – ударьте датчиком о стену, стул или стол. Только так мультиметр зафиксирует показатель напряжения. Норма на большинстве авто – от 30 до 40 милливольт.

Датчик скорости

Перед замерами обязательно осмотрите элемент. Возможно, он просто окислился или оплавился.

После подключайте мультиметр и измеряйте. Порядок действий тот же, что с датчиком детонации.

Единственное – ударять им обо что-либо не нужно. Можно просто повращать или потрясти. Если мультиметр вообще не покажет напряжения – датчик неисправен.

Как проверить высоковольтные провода на авто мультиметром

Если вы ощущаете потерю мощности авто, видите повышенный расход топлива, машину трясет, а холостые обороты плавают — пора проверить высоковольтные провода. Точнее — измерить в них сопротивление. Запоминайте порядок действий:

  • отсоедините провода от машины или отключите один провод с двух сторон;
  • включите прибор в режим омметра и прислоните щупы к обеим сторонам провода. 

Нормальный показатель сопротивления 6-10 кОм. Если прибор показывает меньше, вплоть до нуля, не пугайтесь. На цифры мультиметра влияет множество факторов, например:

  • качество изоляции проводов;
  • длина;
  • наличие микроповреждений;
  • тип проводов. 

Если показатели вашей машины выходят за пределы нормы, лучше обратитесь в автосервис, где сопротивление измерят профессиональными и более точными приборами.

Как проверить мультиметром генератор на машине

Проверка генератора происходит аналогично замерам показателей других элементов авто, из-за которых происходит утечка тока.

  • Традиционно выключаете зажигание, вынимаете ключ, выключаете магнитолу и прочее.
  • Подключаете мультиметр к аккумулятору.
  • Замеряете напряжение. Полностью заряженная батарея выдаст от 12,5 до 12,9 вольт.
  • После этого заводите двигатель, включаете подогрев стекол, сидений, «печку», ближний свет.

И снова измеряете напряжение. Норма — 13-14 вольт. Максимум — 14,8 вольт. В этих случаях генератор работает, как часы. Если мультиметр показывает цифры меньше, генератор не заряжает батарею.  Значит, готовьтесь выложить приличную сумму за замену или ремонт агрегата.

Вместо послесловия

При покупке машины с пробегом полезно знать, как найти утечку тока и понять ее причину. Берите мультиметр на осмотр машины — спасете себя от неприятных сюрпризов, вроде внезапно севшего аккумулятора, скачков напряжения или сгоревшей проводки.

С той же целью проверяйте историю автомобиля. Сделать это можно прямо во время беседы с продавцом. Удобно воспользоваться сервисом «Автокод» — промониторите информацию сразу в 13 источниках: ГИБДД, РСА, ЕАИСТО, банках, налоговой и других службах. Проверка займет 5 минут.

После вы узнаете реальный пробег, количество владельцев, историю штрафов, а также информацию об угоне,  участии в ДТП, ограничениях на регистрацию авто и многое другое. Будьте бдительны! 

Если вы профессиональный продавец авто, воспользуйтесь сервисом безлимитных проверок авто «Автокод Профи». «Автокод Профи» позволяет оперативно проверять большое количество машин, добавлять комментарии к отчетам, создавать свои списки ликвидных ТС, быстро сравнивать варианты и хранить данные об автомобилях в упорядоченном виде.

Полностью изучив онлайн-отчет, все же стоит внимательно приглядеться к техническим нюансам авто при покупке. А если вы не уверены в своих знаниях, или выехать на осмотр не предоставляется возможности, закажите услугу выездной проверки. Мастер проведет диагностику за вас и сделает подробное заключение с профессиональной точки зрения.

пошаговая инструкция, способы и рекомендации. Поиск жил кабеля мультиметром

При ремонте квартиры всегда следует уделять внимание электропроводке. Вызов специалиста для устранения неисправностей домашней электросети обойдется дорого. Если выполнять необходимые правила, ремонтом электричества можно заниматься самостоятельно. Ничего сложного здесь нет, чтобы понять, как мультиметром прозванивают провода. Достаточно обладать знаниями на уровне школьного курса физики. При этом следует помнить, что основой всех работ с электричеством является техника безопасности.

Что такое мультиметр

Проверка кабеля на наличие обрыва

При прозвонке выполняются следующие действия.

  1. Переключатель мультиметра устанавливается в положение 200 Ом.
  2. Щупами поочередно проверяется на обрыв каждая жила.
  3. Показания прибора правильно классифицируются. Если сопротивление не превышает 2 Ом, то провод исправен. Когда отметка доходит до 10 Ом, это означает, что где-то появился неплотный контакт или частичный обрыв.

Прозвонка проводки между распределительными коробками

В распределительной коробке сложно разобраться в подключениях. Опять же здесь применяется способ того, как мультиметром прозванивают провода. Для этого нужен дополнительный проводник, длина которого превышает расстояние между коробками.

  1. Сначала отключают электричество в квартире с помощью вводного автомата.
  2. Один конец дополнительного проводника через «крокодилы» подключается к одному из выводов в коробке, а другой — к одному щупу мультиметра. При этом везде отключаются нагрузки.
  3. Другим щупом находят соответствующий вывод в другой коробке по характерному писку прибора. На проверенный провод устанавливают маркировку и аналогично прозванивают остальные. Перебитую жилу находят методом исключения, когда будут проверены все остальные проводники.

Как проверить новую электропроводку

Чтобы быть уверенным в полной исправности домашней электросети, на этапе прокладки следует произвести ряд простых действий.

  1. Выбор качественного кабеля. Дешевые материалы не выдерживают больших нагрузок. Проверить изделие можно мегаомметром прямо в строительном магазине. Необходимые измерения обычно делает продавец.
  2. После монтажа кабеля необходимо тщательно проверить изоляцию на наличие дефектов, несмотря на то, что прибор показывает норму. Это делается до того, как он будет покрыт штукатуркой или другими отделочными материалами.

Алгоритм прозвонки проводки под напряжением следующий.

  1. Включение автомата, нахождение и маркировка фазы индикаторной отверткой.
  2. Включение мультиметра на измерение напряжения переменного тока и установка на диапазон выше 220 В. Одним щупом прибора следует прикоснуться к фазе, после чего другим по очереди протестировать провода. При появлении на дисплее величины 220 В искомый нулевой провод будет найден. Его следует замаркировать.
  3. Остальные пары проводов проверяются аналогичным образом и маркируются.

При проверке на замыкание щупы подсоединяются к разным проводникам в режиме омметра. Наличие сопротивления показывает, что они связаны электрически между собой. Проверка делается на небольших отрезках проводки, поскольку у прибора небольшое напряжение. Перед тем как прозвонить провода мультиметром на короткое замыкание, во всей схеме отключаются все приборы. Проверяя все линии, находится закороченная. Затем она вызванивается по участкам, пока не найдется место замыкания.

Обнаружение неисправностей в электрической цепи автомобиля

Если какое-либо устройство электрооборудования в автомобиле перестало работать, не стоит торопиться с его заменой.

В том, как прозвонить провода мультиметром в автомобиле, нет особых принципиальных отличий. Прежде всего, проверяется подача напряжения к исследуемому прибору:

  • мультиметр переключается в режим измерения напряжения;
  • один щуп цепляется на минус АКБ или массу автомобиля;
  • другой щуп подключается к подводящему проводу, отсоединенному от клеммы прибора.

Появление на табло значения напряжения аккумулятора говорит об исправности провода. Аналогичные операции делаются с другими проводами. Отсутствие напряжения в цепи говорит о наличии неисправности на данном участке.

Обратите внимание! Некоторые электрические цепи находятся под напряжением только при повороте ключа зажигания.

Проверка того, как прозвонить проводку мультиметром на утечку тока, производится в режиме амперметра. Выставляется предел 10 А. Прибор нужно правильно подключить к бортовой сети — в разрыв питания от плюсовой клеммы АКБ к потребителям. При этом все приборы следует отключить. На дисплее должно высветиться значение тока, соответствующее потреблению постоянно подключенных приборов. Если сила тока превышает норму, значит, появилась утечка. Прежде всего, проверяются нештатные электроприборы или места, где провода подвержены механическим воздействиям.

Участки с утечкой можно выявить, поочередно вынимая предохранители и проверяя искрение на контактах, а также показания тестера. После определения подозрительного участка провода прозваниваются там на предмет целостности и по величине их сопротивлений.

Способ, помогающий понять, как прозвонить высоковольтные провода мультиметром, заключается в измерении сопротивления каждого из них. Номинал выбивается на резиновой оболочке и проверяется тестером в режиме омметра. Сопротивление проводов находится в пределах 3,4-9,8 кОм. Разница между измеренным значением и допустимым не должна превышать 4 кОм.

Заключение

Найти самостоятельно неисправность в электропроводке можно, если разобраться, как мультиметром прозванивают провода, и овладеть методом исключения. При этом наличие схемы здесь обязательно. На ощупь проводку отремонтировать сложно, поскольку часто провода прокладываются жгутами, в которых непросто разобраться.

Люди давно живут в окружении электрических приборов, которые незаметно входят в жизнь каждого человека с самого детства. Электронные часы, электрочайники, телефоны, компьютеры, автомобили — незаменимые помощники человека в быту и на производстве. Но иногда устройства ломаются, и приходится их проверять и чинить. Ничего сложно в этом нет, если уметь пользоваться измерительными приборами и знать, например, как прозвонить проводку в машине мультиметром или как проверить целостность электрической цепи.

Общие сведения

Чтобы найти разрыв проводов,совсем не нужно быть профессиональным электриком. Достаточно иметь измерительное устройство — мультиметр . Мультиметр — это многофункциональный измерительный прибор с собственным источником напряжения. Аппарат умеет измерять напряжение в цепи, величину силы тока и значение сопротивления. Многие мультиметры применяют для проверки целостности соединения в цепи.

Если соединение найдено, то при наличии встроенного динамика прибор издает звуковой сигнал. Отсюда и произошел термин «звонить». Прибор звонит, если есть соединение. А также мультиметр может указывать, что связи между элементами нет, и помогает определить короткое замыкание. С помощью тестера проверяются всевозможные радиодетали: резисторы, транзисторы, диоды, реле, конденсаторы и так далее.

Прозвонка проводника базируется на законе Ома для участка электрической цепи. Закон Ома утверждает, что сопротивление элемента равняется отношению поданного напряжения к величине силы тока на участке электросети. Сопротивление измеряется в Омах. Сопротивление в один Ом говорит о том, что через проводник протекает ток равный одному Амперу при заданном напряжении в один Вольт. На основании высчитанных данных о сопротивлении и делаются выводы о результатах прозвонки.

То есть на мультиметре выставляется некоторое напряжение, а по шкале прибора определяется величина тока и высчитывается сопротивление. Другими словами, мультиметр является источником напряжения и амперметром для измерения силы полученного тока.

Устройство прибора

Устройства могут различаться по внешнему виду, но принципиально мультиметры делятся на аналоговые аппараты и цифровые приборы.

Аналоговые приборы уже постепенно вытесняются с рынка цифровыми, но в домах у многих домашних мастеров еще можно встретить аналоговые устройства.

Такие аппараты снабжены индикаторным экраном со шкалой и стрелкой. Преимуществом этих моделей является наглядность показа измерений. Отклонение стрелки визуально легче оценить, чем мелькание цифр на электронном табло цифровых приборов. Часто при прозвонке необходимо оценить примерные показатели сопротивления или, вообще, его наличие или присутствие, поэтому аналоговые устройства подходят для большинства практических работ.

Цифровые мультиметры имеют более сложную электронную начинку и цифровой дисплей. Этот тип устройств используют в основном на производстве и в промышленности.

Корпуса всех мультиметров имеют выходы для двух щупов. Это два провода в изоляции, заканчивающиеся иглоподобными металлическими насадками. В ряде случаев на насадки надевают специальные зажимы, так называемые «крокодилы». При выборе прибора нужно особое внимание уделять качеству щупов. От них зависит правильность измерений.

Провода должны быть гибкими с прочной пайкой и хорошо держаться в гнездах устройства. Часто бывает, что внешне эффектные щупы неудовлетворительного качества с плохими техническими характеристиками.

Принцип действия

Для аналогового типа прибора не требуется собственный источник питания . Его принцип работы такой же как у амперметра, и работает аналоговое устройство лучше всего в диапазоне радиоволн и электромагнитных полей. Внутри корпуса прибора находятся индукционные катушки, и когда щупы касаются проводника, то в катушках начинает образовываться ток. Созданное магнитное поле отклоняет индикаторную стрелку на некоторый угол. Величина этого угла зависит от силы возникшего тока, и стрелка по нарисованной шкале указывает значение измерений.

В цифровых приборах размещена текстолитовая печатная плата, на которой расположена цифровая микросхема , отвечающая за обработку полученных данных. Для работы электросхемы и экрана цифровые устройства питаются от батарей или от внешнего источника питания.

Цифровые мультиметры обладают меньшей погрешностью измерений и имеют более точные показатели, чем их аналоговые коллеги.

На передней панели мультиметра имеется переключатель, который выбирает режим измерений. Переключатель задает масштабный коэффициент, определяющий значение на шкале устройства.

Аналоговые приборы имеют два типа шкалы:

  • Равномерная индикация.
  • Логарифмические показатели.

Равномерная шкала очень чувствительная к перегрузкам, поэтому на переключателе сначала устанавливают большое значение масштабного коэффициента, который постепенно уменьшают. Логарифмическая шкала лишена этого недостатка и имеет диапазон значений от нуля до бесконечности.

Таким образом, основными узлами мультиметров являются:

  • Дисплей для показа измеряемых значений.
  • Разъёмы для щупов и сами щупы.
  • Переключатель различных режимов и диапазонов.

Прозвонка проводов

Обязательно перед началом любых измерительных работ проверяется исправность самого тестера.

Случается, что сама измерительная система неисправна. Для проверки концы щупов измерительного устройства соприкасаются. Если устройство работоспособно, то индикатор отобразит ноль или слегка отклонится. Небольшое отклонение указывает, что щупы и клеммы имеют свое маленькое сопротивление.

Если мультиметр имеет звуковой сигнал, то прибор устанавливается в режим зуммера. Это делается постановкой переключателя на соответствующий значок на корпусе тестера.

Щупы подносятся к концам проверяемой детали.

Возможные варианты поведения тестера:

  • Раздастся зум, если проводка не повреждена.
  • Кабель может быть исправен, но очень большой длины. В этом случае сопротивление проводника будет гораздо больше, чем-то, при котором срабатывает звуковой сигнал. На помощь придет дисплей и отобразит значение сопротивления.
  • Если на индикаторе высветилась единица, то величина сопротивления выше, чем допустимый диапазон шкалы мультиметра. Надо перейти в другой диапазон и повторить замер.
  • В случае неисправности проводника, мультиметр не произведет никаких действий.

При замерах мультиметром нельзя допускать контакта человеческого тела со щупами и проводами, где нет изоляции.

Поиск неисправностей в электроцепи автомобиля

Если в автомобиле не работает какой-то узел, то в первую очередь необходимо проверить электрическую цепь. Нет особых различий между тем как прозвонить мультиметром разные провода в различных автомобилях, кроме высоковольтного кабеля.

Сначала убеждаются, что есть напряжение в цепи неработающего блока:

  • Мультиметр настраивается переключателем на измерение напряжения.
  • Щуп мультиметра присоединяется к массе машины или на минус аккумуляторной батареи. Особенностью питающей пары в автомобиле является то, что минусовый кабель или очень короткий, или вообще отсутствует.
  • Оставшийся щуп касается подводящего кабеля. Провод должен быть отсоединен от клеммы устройства.

Если индикатор тестера показывает наличие напряжения, то значит, провод целый. По аналогии прозваниваются все провода узла. При поврежденном проводе шкала мультиметра показывает ноль.

Необходимо учитывать, что в некоторые участки автомобиля напряжение подается только при включенном ключе зажигания.

При завершении проверки наличия напряжения проверяют величину силы тока. Прибор переводится в режим амперметра, переключатель в диапазон измерения до десяти ампер. Все устройства автомобиля нужно выключить, а тестер правильно подсоединить в электрическую сеть автомобиля. Для этого мультиметр подключают между плюсовым контактом аккумуляторной батареи и проверяемым узлом. Экран прибора должен отобразить найденное значение силы тока, оно должно соответствовать потреблению постоянно включенных устройств машины. При превышении значения силы тока от нормы делают вывод о его утечке.

В этом случае начинают проверку устройств, не входящих в стандартную комплектацию автомобиля, и места, где проводка входит в состав подвижных механических узлов.

Опытные мастера выявляют зоны с падением силы тока, ориентируясь на показания мультиметра при поочередно вынутых предохранителях. Тогда проверяют искрение на контактах.

При обнаружении неправильно ведущего себя провода, его прозванивают для проверки целостности, а затем измеряется его сопротивление.

Одним из ответов на вопрос, как прозвонить провода мультиметром, является измерение сопротивления каждого из проводов узла. Номинал наносится на оплетке, и к проводу подключают тестер в режиме омметра. Обычно диапазон значений сопротивлений автомобильной проводки колеблется от 3.5 до 9.9 кОм. Разница между измеренным элементом и нормой не должна быть больше четырех килоом.

Проверка бронепровода

Питающие пары автомобиля состоят из высоковольтного провода системы зажигания. Перед тем как прозванивать мультиметром силовой провод, проводят визуальную диагностику при работающем моторе. При зажигании свечей напряжение доходит до нескольких тысяч вольт.

Поэтому при пробое высоковольтной изоляции возникает искра на расстоянии три-пять миллиметров от поврежденного участка. В этом случае, если изоляция повреждена, то искрообразование сопровождается пробоем на двигатель, и свеча не выполняет свою функцию. Если диагностика проводится в помещении или на темной улице, то пробой четко виден. Заряд от неисправного участка может разогревать изоляцию вплоть до её возгорания.

Причиной неисправности может быть повреждение контактного узла. В этом случае сопротивление центральной жилы возрастает. Во время коррозии из-за уменьшения толщины некоторые проводки в жгуте разламываются, и высокое сопротивление препятствует силе тока достичь необходимого уровня. Напряжение, в свою очередь, не подается к электродам зажигательных свечей.

Проверка высоковольтного кабеля отличается от того, как прозванивать провода мультиметром, потому что сила тока в кабеле маленькая. Это связано с очень высоким напряжением, которое проходит по силовому проводу. Поэтому такие провода имеют толстую изоляцию и малый диаметр сердечника. В режиме зуммера мультиметр не отличит целый провод от поврежденного.

В таком случае измеряют сопротивление. Для начала визуально просматривают соединение контактных групп. По статистике, обрывы чаще всего происходят именно в местах контактов.

Затем зачищают контакты наждачной шкуркой от коррозии и окислительного слоя, чтобы избежать погрешности при замере. Мультиметр переводится в режим измерения сопротивления при диапазоне замеров — до десятка кОм. Руки не должны соприкасаться с проводами и контактами. Неповрежденный бронепоезд имеет сопротивление от 3,5 кОм до 10 кОм. В любом случае лучше всего найти данные сопротивления в технической документации и сравнить с полученными. Разница не должна составлять более десяти процентов.

Если под рукой нет инструкции, то прозванивают поочередно несколько проводов. Разброс величин сопротивления каждого из элементов не должен составлять более чем два-три килоома.

Непосредственно во время замера, когда кабель скручивают, растягивают или гнут, сопротивление не должно «прыгать».

Тестировать любые провода, жгуты, особенно в автомобиле, лучше всего, если присутствует электрическая и принципиальная схема. Иначе сложно разобраться, где какой провод находится в жгуте.

После изучения основ измерения мультиметром и освоения работы методом исключения, любой человек может самостоятельно диагностировать и починить неисправность в проводах.

Если стоит задача проверить электрическую цепь на отсутствие разрывов (утечек), то необходимо ознакомиться с тем, как прозвонить провода мультиметром. Специализированный измерительный прибор незаменим при тестировании проводки. И даже если вы не профессиональный электрик, разобравшись с основными правилами безопасного использования мультиметра, вы сможете без труда определить проблемные участки в домашней электросети.

В каких случаях проводится прозвонка проводов?

Ответить на данный вопрос можно несколькими словами — при обрыве токопроводящей жилы или нарушении целостности ее изоляции.

Уточним данный ответ и рассмотрим типичные ситуации:

  • Допустим, перестала работать розетка или выключатель. После того, как убедились, что дело не в соединениях (в том числе и в распределительной коробке) и не лампочке (светильнике), целесообразно прозвонить провода на данном участке. Если целостность проводки будет нарушена, мультиметр просигнализирует об этом.
  • Развивая первый пример, можно отметить, что подобные ситуации не редкость при ремонтных работах (сверление отверстий) и коротких замыканий по причине ветхости проводки, перегрузок сети.
  • Нетипичное, но довольно действенное применение прозвонки мультиметром — определение нужных жил на больших участках проводки. Этот способ уместен, когда не позволяет точно определить нужный проводник.
  • Также, в быту прозвонка позволяет определить целостность электроприборов (лампа, утюг, выключатель, предохранитель). А если вы хорошо разбираетесь в электронике, то при пайке, ремонте печатных плат и иных приборов прозвонка схем является обязательным этапом.

Мультиметр для прозвонки проводов

Что нужно знать о данном приборе? Во-первых, стоит отметить ценовое разнообразие и доступность. Даже недорогие способны безупречно справиться со множеством поставленных задач, в том числе, и с прозвонкой проводов.

Рассмотрим более детально типичный бюджетный вариант. Ознакомимся с конструкцией, компоновкой и определим его функционал.

Как видно типовой прибор имеет цифровой дисплей, органы управления и гнезда для подключения щупов.
Расшифруем основные режимы мультиметра:

  • OFF – прибор выключен (на некоторых приборах для этого есть специальная кнопка).
  • ACV (может обозначаться V~) – измерение переменного напряжения.
  • DCV (может обозначаться V …) – измерение постоянного напряжения.
  • ACA (может обозначаться A~) – измерение переменного тока.
  • DCA (может обозначаться A …) – измерение постоянного тока.
  • Ω — измерение сопротивления.
  • hFE – измерение параметров транзисторов.
  • ->Ι- – проверка проводимости (прозвонка цепи).

Гнезда для подключения щупов маркируются следующим образом:

  • COM(-) – общее гнездо для подключения черного провода.
  • VΩmA(+) – гнездо для подключения красного провода.
  • 10A … MAX – гнездо для подключения красного провода при измерении постоянного тока, максимальное значение которого не превышает 10 Ампер.

В рамках рассматриваемого вопроса будут рассмотрены только два режима мультиметра:

Режим измерение сопротивления.
Режим проверки проводимости (прозвонка).
Наличие звукового сопровождения при проверке проводимости.

Наличие звукового сопровождения, не являющееся обязательным, дополняет режим прозвонки и упрощает процесс проверки. Вам не нужно постоянно отвлекаться и смотреть на дисплей прибора. Наличие или отсутствие сигнала зуммера даст четкое представление о целостности измеряемого проводника.

Принцип прозвонки и определения сопротивления

Если внимательно рассмотреть мультиметр, то можно заметить, что режим прозвонки (проверки диодов) находиться в зоне измерения сопротивления. Простыми словами, прозвонка объединяет в себе определение сопротивления проводника, анализ полученных данных и вывод результата с дополнительной подачей звукового сигнала.

Чтобы разобраться в принципе прозвонки, достаточно для начала знать закон Ома. Он гласит: «сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника». Исходя из данного правила, сопротивление R = U ⁄ I, где I – сил тока, U – напряжение в сети.

Зная, как определяется сопротивление, остается понять, откуда берется сила тока и напряжение при замерах (по технике безопасности проверяемая цепь должна быть предварительно обесточена). Все просто. В мультиметре имеется источник питания, с помощью которого создается напряжение и подается ток. Сопоставляя исходные данные с величиной потерь, вызванных подключением к измеряемому резистору, проводу или лампочке, вычисляется конечный результат (единица измерения — Ом).

Безопасная и правильная работа мультиметром

Работа с электрическими приборами и сетями должна быть безопасной. Это правило относиться и к процедуре прозвона проводников мультиметром. Выделим основные рекомендации, которых нужно придерживаться перед началом и в ходе работ:

  1. В первую очередь, цепь должна быть полностью обесточена посредством выключения автомата в распределительном щите, извлечения элементов питания (если рассматриваемый объект — электронный прибор).
  2. Имеющиеся в цепи конденсаторы должны быть разряжены закорачиванием. Иначе, при измерительных работах мультиметр может выйти из строя.
  3. Для удобства при прозвонке рекомендуется на концах измерительных проводов использовать специальные наконечники («крокодилы»). Данные приспособления создают надежный контакт с исследуемым проводником и, при этом, освобождают руки.
  4. Пытаясь зафиксировать щуп, не рекомендуется прикасаться пальцами рук к оголенным проводам и кончику щупа. В противном случае, полученные результаты могут быть некорректными.

Как прозвонить провода на конкретном примере

В качестве примера рассмотрим стандартную сеть проводки в квартире или частном доме. В идеале, все электро коммуникации должны быть выполнены в соответствии с нормативами, все потребители разделены (сгруппированы) и каждая цепь запитана в через определенный автомат.

Условие: в одной из комнат перестала работать розетка. Задача: выявить причину неисправности. Решение:

Первый шаг — проверка распределительного щита на предмет срабатывания автоматики. Если все автоматы находятся во включенном положении, то необходимо обесточить исследуемую линию (либо всю квартиру).
Теперь, для исключения банальной версии неисправности самой розетки, ее нужно извлечь из подрозетника, визуально осмотреть на наличие дефектов и плохого контакта. Обычные розетки имеют простую конструкцию. Более дорогие модели, имеющие в качестве зажимов клеммники, лучше дополнительно прозвонить.
Убедившись, что розетка рабочая, необходимо проверить в распределительной коробке. Если в комнате имеется несколько распределительных коробок, то нужная будет находиться над неисправной розеткой или в непосредственной близости.
В распределительной коробке основной кабель разрывается, соединяется с жилами розетки и далее отходит к следующему потребителю (распределительной коробке).
Как видно из примера, в распределительной коробке находиться три скрутки (фаза, ноль, земля). При прозвонке кончик одного щупа должен касаться оголенной скрутки. Вторым щупом поочередно проверяется контакты розетки. Либо, если удобно, один щуп фиксируется в контакте розетки, а вторым поочередно проверяются скрутки в распределительной коробке.

Рассмотрев основную последовательность действий, отметим важные моменты и особенности при измерениях:

  • На этапе проверки скруток в распределительной коробке, при отсутствии видимых дефектов, дополнительно можно проверить соединения под напряжением. Для этого подайте ток включив автоматы в щите. Если имеются сомнения в , то фазу можно определить с помощью индикаторной отвертки (при контакте с фазной жилой в отвертке загорается индикатор или подается звуковой сигнал). Для поиска рабочего и защитного зануления потребуется мультиметр. После того, как фазная жила (L) найдена, на мультиметре выставляется режим ACV (может обозначаться V~ измерение переменного напряжения) на отметке выше 220 В, фазный щуп красного цвета фиксируется на фазной жиле, а черным щупом определяется ноль и земля. При контакте с рабочим занулением (N) прибор будет отображать напряжение в пределах 220 Вольт. При касании щупом защитного зануления (PE) – показания будут ниже 220 Вольт. После проверки квартира (комната) опять должна быть обесточена.
  • Следующий момент. Не всегда можно быть точно уверенным, что провода от изучаемой розетки отходят в ближайшую распределительную коробку. Бывает, что розетки в обход распределительных коробок запитывают с ближайшими розетками. Также распространена связка, когда две розетки в смежных комнатах монтируют в одной точке общей стены. Все это нужно анализировать и учитывать.
  • Вопрос удобства измерений очень актуален. Ведь, как правило, розетка и распределительная коробка находятся на значительном удалении, а измерительные щупы мультиретра часто имеют длину 30 — 50 см. В этом случае, для удобства, в розетку можно вставить перемычку (соединить два контакта), а прозвонку выполнять непосредственно в распределительной коробке. Более точное измерение можно выполнить, если соединить розетку с исправным удлинителем.

Настройка мультиметра перед прозвонкой


Режим прозвонки

Перед началом замеров переключатель на мультиметре нужно выставить в режим прозвонки (->Ι- и значок зуммера).

Концы измерительных проводов с щупами нужно установить в соответствующие гнезда. Черный провод — в гнездо СОМ, а красный – в гнездоVΩmA. Данная комбинация позволит соблюдать полярность при проведении измерений, однако в случае проверки целостности проводов прозвонкой роли никакой не сыграет.

Далее, чтобы убедиться что мультиметр исправен, черный и красный щуп нужно замкнуть друг с другом. При этом должен прозвучать сигнал (если имеется зуммер), а на экране высветиться значение близкое или равное нулю.

Показания мультиметра при прозвонке

Проверяя целостность провода, в первую очередь нужно позаботиться, чтобы его концы были очищены от изоляции. Прикасаясь щупами мультиметра к оголенным концам, вы получите определенный результат:

  1. Провод целый . В этом случае прозвучит сигнал, а показание прибора будет равно нулю (0 ) или значению сопротивления проводника (оно должно стремиться к нулю, например 0,01).
  2. Провод поврежден . Об этом свидетельствует единица (1 ), отображенная на экране и отсутствие сигнала зуммера. Единица показывает, что уровень сопротивления между щупами выше, чем предел измерений.

Как проверить целостность провода в режиме определения сопротивления

В мультиметрах, где отсутствует функция прозвонки, проверку целостности провода можно осуществлять в режим измерения сопротивления.


Определение сопротивления мультиметром

В данном случае щупы подключаются также, как и при прозвонке, а прибор выставляется в режим определения сопротивления ().

Начинать измерения нужно на самом минимальном пороге шкалы прибора — например 200 Ом. Все действия такие же, как и при прозвонке. Нужно лишь следить за показаниями прибора. Если провод цел, то на дисплее отобразиться величина его сопротивления. Если есть обрыв, то сопротивление не отобразиться (OL — состояние перегрузки).

Видео по теме

Как видно, мультиметр, являясь специализированным прибором, очень востребован в быту. Рассмотренный режим прозвонки и определения сопротивления позволяет с легкостью диагностировать обрыв или замыкание в электропроводке (электрооборудовании).

Для ремонта домашней электропроводки или бортовой сети автомобиля всегда требуется знать, как прозвонить провода мультиметром. Этот прибор тестирует целостность, исправность кабеля, им можно изоляции и действующее напряжение в домашней электросети. Это незаменимый измеритель для монтажа проводки и практической реализации электротехнических проектов.

Настройка и подготовка мультиметра

Для правильной работы с мультиметром нужно его настроить. Это значит, что нужно выбрать величину, предполагаемую к измерению, и предел ее функционирования, то есть то значение, за которое она не будет выходить.

Символы на лицевой панели измерителя

Мультиметром можно производить проверку различных электротехнических величин: силы тока, напряжения, сопротивления, частоты. Также с его помощью производится тестирование работоспособности различных радиоэлементов: резисторов, конденсаторов, диодов и транзисторов. Сама часть слова «мульти» подразумевает наличие нескольких типов измерений. Для выбора этих типов на передней панели тестера предусмотрена ручка, поворотом которой можно выбрать необходимую величину.

Существует тип мультиметров более высокого класса, например, Agilent, выбор величин измерения в котором производится не поворотной ручкой, а кнопками. Для выбора величины достаточно нажать на соответствующую этой величине кнопку.

В большинстве случаев символы, изображенные на корпусе мультиметра, изображают принятые в физике обозначения электротехнических величин либо условно-графические обозначения радиоэлементов, предполагаемых к тесту. На лицевой панели можно встретить такие символы:

  • U — символ напряжения;
  • В — обозначает вольты, это тоже мера напряжения;
  • I — это ток, при установке ручки на это обозначение будет измерена сила тока;
  • А — амперы, мера силы тока;
  • Ω, R — символ сопротивления;
  • Ом — мера сопротивления, Омы;
  • -| |- — таким значком указывается конденсатор, мультиметр измерит его емкость;
  • Диоды и транзисторы тоже маркируются на корпусе тестера своими условно-графическими обозначениями.

Но не только измеряемые величины обозначены на лицевой панели тестера: отверстия для подключения щупов тоже имеют свои обозначения. Одно из гнезд измерителя будет всегда занято черным щупом. Это общее отверстие, оно обычно промаркировано надписью COM, что значит «общий». Кроме него, у мультиметра есть два или три рабочих отверстия, предназначенные соответственно для измерения напряжения, малого тока и большого тока.

Гнездо, отмеченное знаком U, Ω, Hz предназначено для замеров сопротивления, напряжения и частоты, а также для теста различных радиоэлементов. Сюда же нужно устанавливать щуп для прозвонки проводов и кабелей на обрыв.

Отверстие с надписью мА (mA) используется для проверки малых токов (до 1 ампера), а с надписью А (10 А) нужно для измерения высокого ампеража.

Также возле значков напряжения и тока находятся символы ~ или -. Это обозначает характер измеряемой величины: постоянный или переменный ток или напряжение.

Пределы измеряемых величин

Кроме обозначений величин проверяемых параметров, на лицевую панель мультиметра нанесены обозначения пределов измерений. В более совершенной аппаратуре этих надписей нет, так как электроника тестера сама выбирает предел, исходя из подаваемого ей на вход сигнала. Однако большинство мультиметров предполагает ручную настройку пределов измерений.

Обычно пределы заданы числами, кратными 2: 2, 20, 200… Таким образом, при выборе предела следует руководствоваться правилом: выбирать ограничение выше измеряемого, но одного порядка. Например, для измерения напряжения в домашней электросети (в розетке) нужно выбрать режим измерения переменного напряжения и предел измерения 2000 вольт. А для прозвонки проводов мультиметром нужно выбрать режим сопротивления и минимальный предел измерений 2 Ом. Однако для длинных кабелей требуется больший предел измерений — 20 Ом. Дополнительно можно включить кнопкой звуковой сигнал, который подается при возникновении короткого замыкания (наличия цепи).

Подключение тестера

Для проверки параметров электроцепей и прозвонки мультиметром проводов и кабелей необходимо правильно подключить измеритель в тестируемую цепь. При проверке на целостность цепи проверяется необходимый участок, заключенный между выводами измерителя. Поэтому тестер подключается к выводам цепи. Если измеряется напряжение, мультиметр нужно подключить параллельно участку, на котором проверяется напряжение.

При измерении тока мультиметр нужно подключить последовательно в разрыв тестируемой цепи, например, между выводом источника питания и клеммой нагрузки.

Проверка параметров электроцепи

При проверке электрических цепей можно тестировать многие их параметры. Это и ток, и напряжение в сети, и частота сигнала. Но для определения исправности требуется только прозвонить цепь на целостность и проверить сопротивление изоляции. И то, и другое можно выполнить мультиметром.

Для того чтобы знать, как прозванивать мультиметром электрическую проводку, нужно правильно настроить измерительный прибор и верно выполнить действия по измерению. Для проверки целостности провода нужно:

Таким же образом тестируются провода в автомашине и шлейфа различных электронных приборов.

Кроме проверки целостности, провода тестируются на сопротивление изоляции. Это тоже можно сделать мультиметром:

  1. Щупы остаются в тех же отверстиях, как и при проверке целостности;
  2. Режим измерения выбирается тот же — проверка сопротивления;
  3. Предел измерения нужно выбрать наибольший — 20 или 200 мегаом;
  4. Прикоснуться щупами к разноименным жилам кабеля: к фазному и нулю или к фазному и экрану. В автомобиле это масса и сигнальная жила;
  5. На экране должно оставаться показание бесконечности, если вместо этого какое-либо значение, значит, где-то есть замыкание. Изменяющиеся значения говорят о помехах в сети.

Кроме обычных проводов, существуют высоковольтные провода, выдерживающие большие нагрузки по току и напряжению. К ним относятся свечные провода в машинах. По ним протекает ток, который требуется при запуске двигателя, такой ток достигает 80−150 ампер. Знать, как проверить высоковольтные провода мультиметром, требуется при диагностике электроники автомобиля. Прозвон этих проводов происходит по указанной схеме , с тем отличием, что необходимо установить больший предел измерения сопротивления. Обычно этот предел нужно установить на уровне 20 килоом.

После этого нужно найти концы провода и подключить к ним щупы мультиметра. На экране прибора будет отображено сопротивление этого провода. Оно должно быть в пределах от 1 до 10 кОм.

В грузовых машинах, а также в сетях, расположенных в местах, подвергающихся постоянному механическому воздействию, размещают проводники с экраном — бронью или бронепровода. В бронепроводе особенностью является только экран, выполненный из прочного металла. Проверить целостность и изоляцию бронепровода можно так же, как и у обычного, необходимо только иметь доступ к его концам и выводу экрана.

Требования безопасности

При любых проверках электрических сетей, находящихся под напряжением, необходимо выполнять требования техники безопасности. Нельзя работать без защитной изолированной обуви, а также лучше надевать резиновые перчатки. При проверках целостности и сопротивления изоляции электрических цепей нужно обязательно обесточивать сеть путем отключения автоматов, поэтому следует проводить все проверки в светлое время суток, так как при аварийном освещении и при свете фонарей можно работать только при возникновении чрезвычайной ситуации.

Иногда случается так, что хотя все лампочки в помещении целы, внезапно гаснет свет в одной из комнат, или перестает работать какой-нибудь исправный с виду бытовой электроприбор, или начинает сбоить один из выключателей и т.д. Здесь то и приходится прибегать к процедуре так называемой «прозвонки», то есть необходимо как-то проверить целостность некоторых проводников.

Проводник мог повредиться во время ремонтных работ, место соединения могло перегореть от перегрузки в условиях некачественного монтажа, да мало ли по какой причине мог произойти обрыв жилы… Нередко в подобных случаях мы сталкиваемся с ситуацией, когда внутри распаячной коробки на стене обнаруживаем перепутанные не маркированные провода и скрутки, наотмашь замотанные изолентой.

Как быть, ведь необходимо проверить все жилы, выявить обрыв, устранить неисправность, а провода перепутаны? После — конечно промаркируем провода, чтобы путаницы впредь не возникло. Ответ есть: необходимо уметь определять, какой провод и куда идет. Итак, давайте заострим внимание непосредственно на прозвонке в самых обычных непрофессиональных обстоятельствах.

Некоторые электрики для выявления того, какой провод — куда идет, прибегают к хитростям, вроде батарейки и лампочки. Если проверяемых проводов всего два, и они идут к единственной розетке, то надобности в премудростях нет. А если розеток и проводов десяток? Здесь то и нужна умная прозвонка, которая поможет понять, какой провод — к какому выключателю или к какой розетке присоединен.

Процедура выполняется с предварительным отключением подачи электроэнергии на всю проводку помещения. Схема самодельного тестера целостности проводки состоит из последовательно соединенных: лампочки на 12 вольт, батареи (небольшого аккумулятора на 12 вольт) и соединительных проводов с зажимами «крокодилами» на концах.

Принцип работы импровизированного тестера показан на рисунке. Относительно номиналов батареи и лампочки возможны вариации, здесь мастера изобретают кто во что горазд. Делается все очень просто: первый крокодил присоединяют к одному концу прозваниваемого провода, другой — к другому его концу.

Цепь получается следующая: источник тока, присоединительный провод с крокодилом, проверяемый провод, присоединительный провод с крокодилом, лампочка, источник тока. Если лампочка загорелась — цепь цела, провод целый. Провода, целостность которых подтвердила прозвонка, маркируют.

Мультиметр

Менее хитрая и более технологичная . Прибор переводится в режим измерения сопротивления на наименьший из диапазонов на шкале, после чего щупами проверяют величину сопротивления у попавшего под подозрение проводника.

Предварительно щупы замыкают друг о друга, при этом прибор должен показать нулевое сопротивление — контакт есть, при разведении щупов — сопротивление бесконечное — единица без нулей слева на дисплее.

Так и при проверке проводника: если сопротивление зашкаливает в область мегаомов (единица без нулей), значит в данном проводнике имеется разрыв. Если сопротивление стремится к нулю, или по крайней мере к величине, адекватной устройству проверяемой цепи, — значит проводник цел. Удобно когда мультиметр имеет звуковую индикацию (режим проверки диодов).

Проверка многожильных проводов, кабелей и различных обмоток

Если вы имеете дело с многожильным проводом или кабелем, и вам необходимо выявить, какой же проводник поврежден, то с одной стороны провода все его жилы разом присоедините к одному из щупов мультиметра, а с другой стороны — проверяйте по очереди сопротивление на каждом. Где сопротивление устремится в бесконечность (или окажется сильно больше остальных), — там и есть обрыв (или повреждение жилы).

Если вы проверяете длинный участок проводки, то во избежание использования удлиняющих проводов, опять же достаточно замкнуть с одной стороны два провода на проверяемом участке. Так вы с другой стороны прозвоните сразу два проводника (например, если проверяете двухжильный провод).

Если сопротивление устремится в бесконечность или окажется сильно больше нормального — значит в одном из проводов имеется повреждение. Обычно в таком случае приходится заменять весь двухжильный проводник. Аналогичным образом прозванивают обмотки трансформаторов и двигателей, а также тэны и прочее — где сопротивление зашкаливает (или сильно больше, чем у подобных цепей, расположенных рядом) — там обрыв или повреждение.

Особенности прозвонки провода приборами: мультиметр, тестер, мегаомметр


Принцип работы прозвонки

Для лучшего понимания, как именно мультиметр узнаёт есть ли обрыв в цепи или нет, я, общих чертах, опишу принцип работает этого режима.

Здесь всё предельно просто, принцип действия прозвонки, основан на всем известном законе Ома, главном правиле электрики и электротехники:

I = U / R , где I – Сил тока, U – Напряжение в сети, R — сопротивление

В каждом мультиметре имеется источник питания – батарейка или аккумулятор, с помощью них создаётся напряжение на проверяемом участке сети – подаётся ток и зная его характеристики – высчитывается результат.

Прозваниваем проводку в квартире мультиметром

Рассмотрим в качестве примера современную квартиру, в которой проводка выполнена в соответствии с действующими требованиями и нормами. Это значит, что при прокладке линии освещения и питания розеток были разведены, и в каждую из комнат для них проложены отдельные провода. Каждая из таких цепей питается от квартирного щитка через отдельный автоматический выключатель.

Если в одной из комнат исчез свет, для начала стоит проверить исправность светильника. Перед началом работ необходимо обесточить комнату/квартиру в зависимости от схемы питания. При использовании в светильнике непрозрачной лампы накаливания, целостность нити визуально определить сложно, поэтому потребуется мультиметр и его функция прозвонки. Давайте поэтапно разберёмся, как правильно это сделать.

Вначале нужно проверить щиток на наличие сработавших автоматов. В первом случае они будут находиться во включенном положении (тогда неисправность может скрываться в комнатном выключателе, лампе или патроне). Вероятность повреждения проводки в такой ситуации мала. Если же аппарат сработал, нужно будет проверять всё кроме комнатного выключателя, включая сам щитовой автомат.

Если автоматы не сработали

  1. Убедиться в наличии напряжения на входе и выходе автомата. Если оно есть, можно переходить к дальнейшей проверке.
  2. Подготовить прибор к работе и проверить его исправность закорачиванием измерительных концов.
  3. Выкрутить из патрона лампу.
  4. Одним из измерительных щупов коснуться цоколя (металлической части лампы с резьбой), а вторым – центрального контакта лампы (изолированного центра торцевой части цоколя).
  5. Звуковой сигнал и показания прибора, которые отличны от 0 или 1, означают, что лампа исправна. Если неисправна, нужно её заменить, что и станет решением проблемы.
  6. Проверяем на исправность патрон. Для этого нужно разобрать светильник, убедиться в целостности подведенных проводов, контактов. Если всё в порядке, то причина поломки не в патроне. При обнаружении неисправностей их нужно устранить. Лампу пока вкручивать нельзя.
  7. Проверяем исправность комнатного выключателя. Для этого снимаем пластиковую накладку, откручиваем винты и достаём его из монтажной коробки. Осматриваем оборудование на предмет появления нагара, проверяем затяжку креплений. Если всё исправно, нужно измерительные концы тестера установить на контакты выключателя. Появление звукового сигнала при прозвонке во включенном положении будет свидетельствовать о том, что оборудование исправно. Провода при этом можно не отсоединять.

В ходе такой проверки, как правило, выявляется неисправность, которая и становится причиной всех неприятностей. Её устранение позволяет быстро решить проблему.

Если автомат сработал

Для обеспечения электробезопасности при проведении работ в этом случае напряжение отключается при помощи общеквартирного автомата. Далее определяется исправность патрона и подведенных к светильнику проводов по алгоритму, описанному выше. При отсутствии неисправностей, нужно проверить саму проводку, используя мультиметр и функцию прозвонки. Такие неисправности случаются достаточно редко, но всё же бывают, к примеру, при установке подвесных потолков или декоративных элементов интерьера.

Прозвонка проводки в этом случае выполняется следующим образом.

  1. С помощью отвёртки отключаем подведенный проводник (при правильно выполненном монтаже он находится снизу) и отводим его в сторону. «Ноль» этой группы находится, как правило, на нулевом зажиме под автоматами.
  2. Выкручиваем из патрона лампу накаливания. При помощи готового к работе тестера проверяем линию, подключаясь одним из измерительных щупов к «нулю», а другим – к отсоединённому проводнику. Если прибор подаёт звуковой сигнал, значит, проводка закорочена.
  3. В этом случае в комнате под потолком вверху над выключателем находим и вскрываем соединительную коробку. Рассоединяем провода.
  4. Проверяем все группы проводов на наличие в них короткого замыкания. Для определения участка цепи, в котором имеется короткое замыкание, снова проверяем мультиметром цепи на квартирном щитке. Если сигнал прозвучит, значит, ремонту подлежит именно провод, проложенный от щита до коробки в комнате. В противном случае, поиски нужно будет продолжить до получения результата.

Что показывает мультиметр при прозвонке

Мультиметр, при прозвонке, показывает вычисленную им величину падения напряжения в милливольтах в этой цепи.

Создаваемый же тестером ток, на проверяемом участке, величиной около 1 миллиампера, выбран так не случайно, так как падение напряжения в милливольтах в таком случае соответствует сопротивлению в Омах.

Другими словами, при прозвонке электрических цепей или электроматериалов нам показывается величина падения напряжения, которая равна сопротивлению этого участка в Омах.

Измерения

Пользование электронным тестером удобно тем, что не надо искать нужную шкалу, считать деления, определяя показания. Они высветятся на экране с точностью до двух знаков после запятой. Если измеряемая величина имеет полярность, то отобразится и знак «минус». Если минуса нет, значение измерения положительное.

Как измерить сопротивление мультиметром

Для измерения сопротивления переводим переключатель в зону обозначенную буквой Ω. Выбираем любой из диапазонов. Один щуп прикладываем к одному входу, второй — к другому. Те цифры, которые высветятся на дисплее и есть сопротивление измеряемого вами элемента.

Как пользоваться мультиметром для измерения сопротивления

Иногда на экране отображаются не цифры. Если «выскочил» 0, значит надо изменить диапазон измерений на меньший. Если высветились слова «ol» или «over», стоит «1», диапазон слишком мал и его надо увеличить. Вот и все хитрости измерения сопротивления мультиметром.

Как измерить силу тока

Чтобы выбрать режим измерения необходимо сначала определиться ток постоянный или переменный. С измерением параметров переменного тока могут быть проблемы — этот режим есть далеко не на всех моделях. Но порядок действий вне зависимости от типа тока одинаков — меняется только положение переключателя.

Читать также: Как снять прикипевшую клемму с аккумулятора

Постоянный ток

Итак, определившись с типом тока, выставляем переключатель. Далее надо решить, в какое гнездо подключать красный щуп. Если даже приблизительно не знаете какие значения стоит ожидать, чтобы случайно не спалить прибор, лучше сначала установить щуп в верхнее (крайнее левое в других моделях) гнездо, которое подписано «10 А». Если показания будут небольшими — менее 200 мА, переставите щуп в среднее положение.

Точно также дело обстоит и с выбором диапазона измерений: сначала выставляете самый максимальный диапазон, если он оказывается слишком большим, переключаете на следующий меньший. Так до тех пор, пока не увидите показания.

Как подключать мультиметр для измерения постоянного тока

Для измерения силы тока прибор должен включаться в разрыв цепи. Схема подключения дана на рисунке. В данном случае важно красный щуп устанавливать на «+» источника питания и черным касаться следующего элемента цепи. Не забывайте при измерении, что питание в есть, работайте аккуратно. Не касайтесь руками неизолированных концов щупа или элементов цепи.

Переменный ток

Испробовать режим измерения переменного тока можно на любой нагрузке, подключенной к бытовой электросети и определить таким образом потребляемый ток. Так как и в данном режиме прибор необходимо включать в разрыв цепи, с этим могут возникнуть сложности. Можно, как на фото ниже сделать специальный шнур для измерений. На одном конце шнура вилка, на другом — розетка, один из проводов разрезать, на концы прикрепить два разъема WAGO. Они хороши тем, что позволяют также зажать щупы. После того, как измерительная схема собрана, приступаем к измерениям.

Измерение переменного тока электронным мультиметром

Переводите переключатель в положение «переменный ток», выбирайте предел измерения. Учтите, что превышение пределов может вывести прибор из строя. В лучшем случае сгорит плавкий предохранитель, в худшем — повредится «начинка». Потому действуем по предложенной выше схеме: сначала ставим максимальный предел, потом постепенно уменьшаем. (не забываем про перестановку щупов в гнездах).

Схема измерения переменного тока

Теперь все готово. Сначала к розетке подключаем нагрузку. Можно настольную лампу. Вилку вставляем в сеть. На экране появляются цифры. Это и будет потребляемый лампой ток. Таким же образом можно измерить потребляемый ток для любого устройства.

Измерение напряжения

Напряжение также бывает переменным или постоянным, соответственно, выбираем требуемое положение. Подход к выбору диапазона тут такой же: если не знаете чего надо ожидать, ставите максимальный, постепенно переключая на меньшую шкалу. Не забывайте проверять правильно ли подключены щупы, в те ли гнезда.

В данном случае измерительный прибор подключается параллельно. Для примера можно измерить напряжение аккумулятора или обычной батарейки. Выставляем переключатель в положение режим измерения постоянного напряжения, так как ожидаемое значение знаем, выбираем подходящую шкалу. Далее щупами касаемся батарейки с двух сторон. Цифры на экране и будут тем напряжением, которое выдает этот элемент питания.

Как пользоваться мультиметром для измерения напряжения

Как пользоваться мультиметром для измерения переменного напряжения? Да точно также. Только правильно выбрать предел измерений.

Прозвонка проводов с помощью мультиметра

Эта операция позволяет проверить целостность проводов. На шкале находим знак прозвонки — схематическое изображение звука (смотрите на фото, но там режим двойной, а может быть только знак прозвонки). Такое изображение выбрано потому, что если провод целый, прибор издает звук.

Режим прозвонки на шкале измерений мультиметра

Ставим переключатель в нужное положение, щупы подключены как обычно — в нижнее и среднее гнездо. Прикасаемся одним щупом к одному краю проводника, другим — к другому. Если слышим звук, провод целый. В общем, как видите, пользоваться мультиметром несложно. Все легко запомнить.

Если стоит задача проверить электрическую цепь на отсутствие разрывов (утечек), то необходимо ознакомиться с тем, как прозвонить провода мультиметром. Специализированный измерительный прибор незаменим при тестировании проводки. И даже если вы не профессиональный электрик, разобравшись с основными правилами безопасного использования мультиметра, вы сможете без труда определить проблемные участки в домашней электросети.

Прозвонка мультиметром провода

1. Устанавливаем щупы в разъемы мультиметра:

— Красный щуп в гнездо VΩmA

— Черный щуп в гнездо COM

2. Переводим колесо управления в режим прозвонки, который промаркирован соответствующим образом (значок диода и зуммера) На экране, при этом, должна высветится единица.

3. Проверяем правильность работы мультиметра, соединяя контакты щупов, закоротив их.

Если прибор работает правильно, вы услышите звук зуммера, а на экране высветится значение близкое к нулю.

4. Прозваниваем провод. Прикладывая щупы мультиметра к его жилам с двух сторон, как показано на изображении ниже. Если проводник целый, то вы сразу же услышите звуковой сигнал зуммера, а показания на экране будут близкие к «0», например 0,001.

Если же жила провода повреждена и один из её концов не имеет электрической связи со вторым, то показания мультиметра не изменятся, будет высвечиваться «1» и звукового сигнала не будет.

Как видите, всё довольно просто, и вы, если у вас есть под рукой мультиметр, можете сами попробывать прозвонить, что-нибудь. Только я еще раз напомню – не прозванивайте под напряжением, даже под небольшим.

Один из наглядных, часто встречающихся в быту, примеров проверки мультиметром проводки описан в следующей нашей статье — КАК ПРОЗВОНИТЬ РОЗЕТКУ. Это подробная, пошаговая инструкция диагностики неработающей розетки, обязательно изучите её, чтобы понять, как прозванивать электропроводку.

Как прозванивать провода

Перед измерениями важно зачистить концы проводов от изоляции и снять окись с жил кабеля. Окись на проводах может иметь высокое сопротивление, которое будет выше предела величины выбранного режима сопротивления прибора, что даст неверные показания.

До прозвонки нужно снять с электропроводки напряжение сети, в автомобиле снять клеммы с аккумулятора. Если в цепи прозвонки проводов имеются конденсаторы, тогда их нужно разрядить, накоротко закоротив вывода. Все эти предостережения помогут избежать поломки мультиметра и дадут более достоверные результаты.

Для удобства при прозвонке используют специальные зажимы для проводов — «крокодилы». «Крокодил» одевается на щуп и зажимается на участке провода. Использование таких зажимов увеличивает удобство при работе с проводами, так как освобождаются руки.

Короткие кабели и провода можно прозванивать с одного конца, а длинные провода нужно хорошо очищать от окислов и скручивать между собой с одной стороны. Тогда процесс прозвонки осуществляется только на одной стороне. Прозвонить провода можно и без мультиметра. Для таких целей электрики используют специально сделанную «прозвонку», состоящую из батарейки и лампочки. Также для проверки кабелей и проводов используют звуковой генератор и наушники.

Прозвонка на батарейке с лампочкой

Магнитное поле, связанное с током | Электромагнетизм

10.2 Магнитное поле, связанное с током (ESBPS)

Если вы держите компас рядом с проводом, через который проходит ток течет, стрелка компаса отклоняется.

Поскольку компасы работают, указывая вдоль силовых линий магнитного поля, это означает, что рядом с проводом, по которому течет ток, должно быть магнитное поле.

Магнитное поле, создаваемое электрическим током, всегда ориентированы перпендикулярно направлению тока.Ниже приведен эскиз того, как выглядит магнитное поле вокруг провода, когда в нем течет ток. Мы используем \ (\ vec {B} \) для обозначения магнитного поля и стрелки на силовых линиях, чтобы показать направление магнитного поля. Обратите внимание на , что если нет тока, то не будет магнитного поля.

Направление тока в проводе (проводе) показано центральной стрелкой. Кружки являются линиями поля, и они также имеют направление, указанное стрелками на линиях.Как и в случае с силовыми линиями электрического поля, чем больше количество линий (или чем они ближе друг к другу) в области, тем сильнее магнитное поле.

Важно: Все наши обсуждения направлений поля предполагают, что мы имеем дело с условным током .

Чтобы визуализировать эту ситуацию, поставьте ручку или карандаш прямо на стол. Круги центрируются вокруг карандаша или ручки и должны быть нарисованы параллельно поверхности стола.Кончик ручки или карандаша должен указывать в направлении тока.

Вы можете посмотреть на карандаш или ручку сверху, и карандаш или ручка будут точкой в ​​центре кругов. Направление силовых линий магнитного поля в этой ситуации — против часовой стрелки.

Чтобы было легче увидеть, что происходит, мы будем рисовать только один набор круговых линий полей, но обратите внимание, что это только для иллюстрации.

Если вы положите лист бумаги за карандаш и посмотрите на него сбоку, то увидите, что круговые линии поля расположены сбоку, и трудно понять, что они круглые.Они проходят через бумагу. Помните, что линии поля имеют направление, поэтому когда вы смотрите на лист бумаги сбоку, это означает, что круги входят в бумагу с одной стороны карандаша и выходят из бумаги с другой стороны.

Когда рисуем направления магнитных полей и токов, используем символы \ (\ odot \) и \ (\ otimes \). Символ \ (\ odot \) представляет собой стрелка, выходящая со страницы, и символ \ (\ время \) представляет собой стрелку, ведущую на страницу.

Значения символов легко запомнить, если вспомнить стрела с острым концом на голове и хвост с перьями в форме креста.

Датский физик Ганс Кристиан Эрстед однажды в 1820 году читал лекцию о возможности связи электричества и магнетизма друг с другом и в процессе убедительно продемонстрировал это с помощью эксперимента перед всем своим классом. Пропуская электрический ток через металлический провод, подвешенный над магнитным компасом, Эрстед смог вызвать определенное движение стрелки компаса в ответ на ток.То, что начиналось как предположение в начале урока, в конце подтвердилось как факт. Излишне говорить, что Эрстеду пришлось пересматривать свои конспекты лекций для будущих занятий. Его открытие открыло путь для совершенно новой отрасли науки — электромагнетизма.

Теперь мы рассмотрим три примера токоведущих проводов. Для каждого примера мы определим магнитное поле и проведем силовые линии магнитного поля вокруг проводника.

Магнитное поле вокруг прямого провода (ESBPT)

Направление магнитного поля вокруг токоведущей проводник показан на рисунке 10.1.

Рисунок 10.1: Магнитное поле вокруг проводника, когда вы смотрите на проводник с одного конца. (а) Ток течет со страницы и магнитное поле против часовой стрелки. (б) Ток течет в страницы и магнитное поле по часовой стрелке. Рисунок 10. 2: Магнитные поля вокруг проводника, смотрящего на проводник. (а) Ток течет по часовой стрелке. (б) ток течет против часовой стрелки.

Направление магнитного поля

Используя направления, приведенные на Рисунке 10.1 и 10.2 попытаемся найти правило, которое легко скажет вам направление магнитного поля.

Подсказка: используйте пальцы. Возьмите проволоку в руки и попытайтесь найти связь между направлением большого пальца и направлением, в котором они сгибаются.

Существует простой метод нахождения взаимосвязи между направлением тока, протекающего в проводнике, и направлением магнитного поля вокруг того же проводника. Метод называется Правило правой руки .Проще говоря, Правило правой руки гласит, что силовые линии магнитного поля, создаваемые токоведущим проводом, будут ориентированы в том же направлении, что и скрученные пальцы правой руки человека (в положении «автостоп»), при этом большой палец должен указывать внутрь. направление тока.

Ваша правая и левая рука уникальны в том смысле, что вы не можете повернуть одну из них, чтобы она находилась в том же положении, что и другая. Это означает, что правая часть правила важна. Вы всегда получите неправильный ответ, если воспользуетесь не той рукой.

Правило правой руки

Используйте Правило правой руки, чтобы нарисовать направления магнитных полей для следующих проводников, при этом токи текут в направлениях, показанных стрелками. Первая задача выполнена за вас.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Магнитное поле вокруг токоведущего проводника

Аппарат

  1. один \ (\ text {9} \) \ (\ text {V} \) аккумулятор с держателем

  2. два соединительных провода с зажимами типа «крокодил»

  3. компас

  4. секундомер

Метод

  1. Подключите провода к батарее, оставив один конец каждого провода неподключенным, чтобы цепь не замкнулась.

  2. Обязательно ограничивайте ток до \ (\ text {10} \) \ (\ text {seconds} \) за раз (вы можете спросить, у провода очень маленькое сопротивление, поэтому батарея разряжается квартира очень быстро). Это сделано для продления срока службы батареи, а также для предотвращения перегрева проводов и контактов батареи.

  3. Поднесите компас к проводу.

  4. Замкните цепь и посмотрите, что происходит с компасом.

  5. Поменяйте полярность батареи и замкните цепь. Понаблюдайте, что происходит с компасом.

Выводы

Используйте свои наблюдения, чтобы ответить на следующие вопросы:

  1. Создает ли ток, протекающий по проводу, магнитное поле?

  2. Присутствует ли магнитное поле, когда ток не течет?

  3. Зависит ли направление магнитного поля, создаваемого током в проводе, от направления тока?

  4. Как направление тока влияет на магнитное поле?

Магнитное поле вокруг токоведущей петли (ESBPV)

До сих пор мы рассматривали только прямые провода, по которым проходит ток, и магнитные поля вокруг них. Мы собираемся изучить магнитное поле, создаваемое кольцевыми витками провода, по которому проходит ток, потому что это поле имеет очень полезные свойства. Например, вы увидите, что мы можем создать однородное магнитное поле.

Магнитное поле вокруг петли проводника

Представьте себе две петли из проволоки, по которым течет ток (в противоположных направлениях) и которые параллельны странице вашей книги. Используя правило правой руки, нарисуйте то, что, по вашему мнению, будет выглядеть магнитное поле в разных точках вокруг каждой из двух петель.В петле 1 ток течет против часовой стрелки, а в петле 2 ток течет по часовой стрелке.

Если вы сделаете петлю из токонесущего проводника, то направление магнитного поля определяется применением правила правой руки к различным точкам петли.

Обратите внимание, что существует разновидность правила правой руки. Если вы заставите пальцы правой руки следовать за направлением тока в петле, ваш большой палец будет указывать в том направлении, где выходят силовые линии. Это похоже на северный полюс (где силовые линии выходят из стержневого магнита) и показывает, какая сторона петли будет притягивать северный полюс стержневого магнита.

Магнитное поле вокруг соленоида (ESBPW)

Если мы теперь добавим еще одну петлю с током в том же направлении, то магнитное поле вокруг каждой петли можно будет сложить вместе, чтобы создать более сильное магнитное поле. Катушка из многих таких петель называется соленоидом . Соленоид — это цилиндрическая катушка с проволокой, действующая как магнит, когда электрический ток течет по проволоке.Картина магнитного поля вокруг соленоида аналогична картине магнитного поля вокруг стержневого магнита, который вы изучали в 10-м классе, у которого были определенные северный и южный полюсы, как показано на рисунке 10.3.

Рисунок 10.3: Магнитное поле вокруг соленоида.

Реальные приложения (ESBPX)

Электромагниты

Электромагнит представляет собой кусок проволоки, предназначенный для создания магнитного поля при прохождении через него электрического тока. Хотя все проводники с током создают магнитные поля, электромагнит обычно сконструирован таким образом, чтобы максимизировать силу магнитного поля, которое он создает для специальной цели.Электромагниты обычно используются в исследованиях, промышленности, медицине и потребительских товарах. Примером обычно используемого электромагнита являются защитные двери, например на двери магазина, которые открываются автоматически.

Как электрически управляемый магнит, электромагниты являются частью широкого спектра «электромеханических» устройств: машин, которые создают механическую силу или движение за счет электроэнергии. Возможно, наиболее очевидным примером такой машины является электродвигатель , который будет подробно описан в Grade 12.Другими примерами использования электромагнитов являются электрические звонки, реле, громкоговорители и краны для свалок.

Электромагниты

Цель

Магнитное поле создается, когда электрический ток течет по проводу. Одиночный провод не создает сильного магнитного поля, в отличие от провода, намотанного на железный сердечник. Мы исследуем это поведение.

Аппарат

  1. аккумулятор и держатель

  2. длина провода

  3. компас

  4. несколько гвоздей

Метод

  1. Если вы не проводили предыдущий эксперимент в этой главе, сделайте это сейчас.

  2. Согните провод в несколько катушек перед тем, как прикрепить его к батарее. Посмотрите, что происходит с отклонением стрелки компаса. Прогиб компаса стал сильнее?

  3. Повторите эксперимент, изменив количество и размер витков в проводе. Посмотрите, что происходит с отклонением по компасу.

  4. Намотайте проволоку на железный гвоздь, а затем прикрепите катушку к батарее.Посмотрите, что происходит с отклонением стрелки компаса.

Выводы

  1. Влияет ли количество катушек на силу магнитного поля?

  2. Железный гвоздь увеличивает или уменьшает силу магнитного поля?

Воздушные линии электропередачи и окружающая среда

Физическое воздействие

Линии электропередач — обычное явление для всей страны.По этим линиям электричество от электростанций подается в наши дома и офисы. Но эти линии электропередач могут иметь негативное воздействие на окружающую среду. Одна из опасностей, которые они представляют, — это летающие на них птицы. Защитник природы Джессика Шоу провела последние несколько лет, изучая эту угрозу. Фактически, линии электропередач представляют собой основную угрозу для синего журавля, национальной птицы Южной Африки, в Кару.

«Нам повезло, что в Южной Африке обитает широкий спектр видов птиц, в том числе много крупных птиц, таких как журавли, аисты и дрофы.К сожалению, существует множество линий электропередач, которые могут воздействовать на птиц двояко. Они могут быть поражены электрическим током, когда садятся на некоторые типы пилонов, а также могут быть убиты, столкнувшись с линией, если они влетят в нее, либо от удара о веревку, либо после удара о землю. Эти столкновения часто происходят с крупными птицами, которые слишком тяжелы, чтобы избежать линии электропередачи, если они видят ее только в последнюю минуту. Другие причины, по которым птицы могут столкнуться, включают плохую погоду, полет стаями и отсутствие опыта у молодых птиц.

В течение последних нескольких лет мы изучали серьезное влияние столкновений линий электропередач на «Голубых журавлей» и «Дроф Людвига». Это два наших эндемичных вида, что означает, что они встречаются только в южной части Африки. Это большие птицы, которые живут долго и медленно размножаются, поэтому популяции могут не восстановиться после высокой смертности. Мы прошли и проехали под линиями электропередач через Оверберг и Кару, чтобы подсчитать мертвых птиц. Данные показывают, что ежегодно тысячи этих птиц гибнут в результате столкновений, а дрофа Людвига теперь занесена в список исчезающих видов из-за такого высокого уровня неестественной смертности.Мы также ищем способы уменьшить эту проблему и работаем с Eskom над тестированием различных устройств для маркировки линий. Когда на линиях электропередач вешают маркеры, птицы могут видеть линию электропередач с большого расстояния, что дает им достаточно времени, чтобы избежать столкновения ».

Воздействие полей

Тот факт, что вокруг линий электропередачи создается поле, означает, что они потенциально могут иметь воздействие на расстоянии. Это было изучено и продолжает оставаться предметом серьезных дискуссий.На момент написания Руководства Всемирной организации здравоохранения по воздействию на человека электрических и магнитных полей указывается, что нет четкой связи между воздействием магнитных и электрических полей, с которыми население сталкивается от линий электропередач, поскольку это поля чрезвычайно низкой частоты. .

Шум в линии электропередач может мешать радиосвязи и радиовещанию. По сути, линии электропередач или связанное с ними оборудование неправильно генерируют нежелательные радиосигналы, которые перекрывают полезные радиосигналы или конкурируют с ними.Шум линии электропередачи может повлиять на качество приема радио и телевидения. Также может произойти нарушение радиосвязи, например, любительского радио. Потеря критически важной связи, такой как полиция, пожарная охрана, военные и другие подобные пользователи радиочастотного спектра, может привести к еще более серьезным последствиям.

Групповое обсуждение:

Когда молния поражает корабль или самолет, она может повредить или иным образом изменить его магнитный компас. Были зарегистрированы случаи удара молнии, меняющего полярность компаса, так что стрелка указывала на юг, а не на север.

Зарегистрируйтесь, чтобы получить стипендию и возможности карьерного роста. Используйте практику Сиявулы, чтобы получить наилучшие возможные оценки.

Зарегистрируйтесь, чтобы разблокировать свое будущее

Магнитные поля

Упражнение 10.1

Привести доказательства существования магнитного поля возле токоведущего провода.

Если вы поднесете компас к проводу, по которому течет ток, стрелка на компасе отклонится. Поскольку компасы работают, указывая вдоль силовых линий магнитного поля, это означает, что рядом с проводом, по которому течет ток, должно быть магнитное поле.Если ток перестает течь, компас возвращается в исходное направление. Если ток снова начнет течь, отклонение произойдет снова.

Опишите, как вы могли бы использовать свою правую руку, чтобы определять направление магнитного поля вокруг проводника с током.

Мы используем правило правой руки, которое гласит, что силовые линии магнитного поля, создаваемые токоведущим проводом, будут ориентированы в том же направлении, что и согнутые пальцы правой руки человека (в положении «автостоп»), при этом большой палец указывает по направлению тока:

Со страницы

на страницу

Используйте Правило правой руки, чтобы найти направление магнитных полей в каждой из точек, обозначенных A — H на следующих диаграммах.

  • A: против часовой стрелки
  • B: против часовой стрелки
  • C: против часовой стрелки
  • D: против часовой стрелки
  • E: по часовой стрелке
  • F: по часовой стрелке
  • G: по часовой стрелке
  • H: по часовой стрелке

Путь ударного тока | Электробезопасность

Как мы уже узнали, электричество требует непрерывного протекания полного пути (цепи). Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами.Подобные самоограниченные шоки редко бывают опасными.

Без двух точек контакта на корпусе для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередач, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.

Для того, чтобы ток протекал по проводнику, необходимо наличие напряжения, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек .Не существует такого понятия, как напряжение «на» или «в» одной точке цепи, поэтому птица, контактирующая с одной точкой в ​​вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.

Да, даже если они опираются на двух футов, обе ноги касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе лапки птицы касаются одной и той же точки, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как и птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так. В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле.

Часто одна сторона энергосистемы будет намеренно подключена к заземлению, и поэтому человек, касающийся одного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):

Символ земли — это набор из трех горизонтальных полос уменьшающейся ширины, расположенный в нижнем левом углу показанной схемы, а также у ступни человека, которого ударили током.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для максимального контакта с землей.

Этот провод электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.

В этот момент в уме студента обычно возникает несколько вопросов:

  • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить удар током, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
  • Человек, которого шокирует, вероятно, не ходит босиком. Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
  • Насколько хорошим проводником может быть грязь ? Если вы можете получить ток, проходящий через землю, почему бы не использовать землю в качестве проводника в наших цепях питания?

В ответ на первый вопрос, наличие намеренной точки «заземления» в электрической цепи должно гарантировать, что одна сторона безопасна для контакта.Обратите внимание: если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще касались земли:

Поскольку нижняя сторона схемы надежно соединена с землей через точку заземления в нижнем левом углу схемы, нижний проводник схемы выполнен электрически общим с заземлением. Поскольку между электрически общими точками не может быть напряжения, к человеку, контактирующему с нижним проводом, не будет подаваться напряжение, и они не получат удара током.

По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно оставляют оголенным (без изоляции), так что любой металлический объект, о котором он задевает, также будет электрически общим с землей.

Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, касающегося только одного провода, таким же безопасным, как птица, сидящая только на одном? В идеале да.Практически нет. Посмотрите, что происходит без заземления:

Несмотря на то, что ступни человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), проходящего через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека.

Однако все это может измениться из-за случайного заземления, например, если ветка дерева касается линии электропередачи и обеспечивает соединение с землей:

Такое случайное соединение проводника энергосистемы с землей (землей) называется замыканием на землю .

Замыкания на землю

Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле, когда идет дождь), проникновением грунтовых вод в подземные проводники линии электропередач. , и птицы, приземляющиеся на линии электропередачи, перемыкая линию к полюсу своими крыльями.

Учитывая множество причин замыканий на землю, они имеют тенденцию быть непредсказуемыми. В случае с деревьями никто не может гарантировать , какой провод может касаться их веток.Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным — как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:

Если ветка дерева соприкасается с верхним проводом, этот провод становится заземленным проводом в цепи, электрически общим с заземлением. Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей.

Как упоминалось ранее, ветви деревьев являются только одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми, касающимися отдельных проводов:

Когда каждый человек стоит на земле и соприкасается с разными точками цепи, путь электрического тока проходит через одного человека, через землю и через другого человека. Хотя каждый человек думает, что он в безопасности, только коснувшись одной точки в цепи, их совместные действия создают смертельный сценарий.Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека.

Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой в ​​цепи и землей (землей) непредсказуемо, поскольку замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, — это птица, которая вообще не связана с землей!

Надежно подключив обозначенную точку в цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.

Отвечая на второй вопрос, обувь с резиновой подошвой или действительно обеспечивает некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала.

Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности или через подошвы обуви могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали оборудования должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными.

Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.

Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):

  • Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
  • Контакт ступни через кожаную подошву обуви (сухую): от 100 кОм до 500 кОм
  • Контакт ступни через кожаную подошву обуви (мокрая): от 5 кОм до 20 кОм

Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.

Отвечая на третий вопрос, грязь — не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки. Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.

Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).

ОБЗОР:

  • Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда напряжение подается на тело жертвы.
  • Цепи питания
  • обычно имеют обозначенную точку, которая «заземлена»: прочно подключена к металлическим стержням или пластинам, погруженным в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
  • Замыкание на землю — это случайное соединение между проводником цепи и землей (землей).
  • Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточно хороша для защиты от ударов, изолируя ее владельца от земли.
  • Хотя грязь — плохой проводник, она может проводить достаточно тока, чтобы ранить или убить человека.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Что происходит с токоведущим проводом в магнитном поле? | Научный проект

  • Сильный подковообразный магнит
  • Длинный изолированный провод
  • Инструмент для зачистки проводов
  • D аккумулятор
  • Изолента
  1. Зачистите 1 дюйм изоляции с каждой стороны провода.
  2. Положите подковообразный магнит набок на плоскую поверхность.
  3. Используйте небольшой кусок изоленты, чтобы прикрепить металлическую часть одного конца провода к отрицательной клемме аккумулятора.
  4. Проденьте провод между ножками подковообразного магнита.
  5. Удерживая изолированную часть провода, коснитесь открытым концом провода положительной клеммы аккумулятора. В каком направлении течет электрический ток? Зачем держать изоляцию провода вместо металла? Запишите свои наблюдения.
  1. Переверните магнит и повторите эксперимент. Что изменится, если что? Запишите свои наблюдения.

Проволока отогнется от полюсов магнита.

Электрические токи всегда создают собственные магнитные поля. Поведение и ток всегда можно описать правилом правой руки . Если вы показываете рукой «большой палец вверх» вот так:

Ток будет течь в направлении, указанном большим пальцем, и направление магнитного поля будет описываться направлением пальцев.

Это означает, что когда вы меняете направление тока, вы также меняете направление магнитного поля. Ток течет от отрицательного полюса батареи через провод к положительному полюсу батареи. Это может помочь вам определить направление магнитного поля.

Магниты, как и подковообразный магнит, используемый в этом упражнении, имеют два полюса : , юг и север. Фраза «противоположности притягиваются» применима к магнитам; поэтому взаимодействия север-юг держатся вместе, а взаимодействия север-север и юг-юг отталкивают или отталкивают друг от друга.Поскольку магнитное поле, создаваемое электрическим током в проводе, меняет направление вокруг провода, оно отталкивает оба полюса магнита, отклоняясь от провода. В зависимости от того, какой полюс находится вверху (отметка на вашем магните может сказать вам, где север или юг), провод будет отклоняться от магнита или дальше в сторону буквы «U».

Заявление об отказе от ответственности и меры предосторожности

Education. com предоставляет идеи проекта Science Fair для информационных только для целей.Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают в связи с этим Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Политика конфиденциальности Education.com и Условия использования сайта, которые включают ограничения по образованию.ком ответственность.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор. Прочтите и соблюдайте правила техники безопасности всех Материалы, используемые в проекте, являются исключительной ответственностью каждого человека. Для Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Электричество и магнетизм

ЭЛЕКТРИЧЕСТВО И МАГНИТИЗМ

После прочтения этого раздела вы сможете сделать следующее:

  • Обсудите, что происходит с компасом, когда рядом проходит провод с электрическим током.
  • Опишите взаимосвязь между электричеством и магнетизмом.

Вопросы

  1. Что происходит со стрелкой компаса, когда компас перемещается по проводу, по которому проходит электрический ток?
  2. Как вы думаете, почему это происходит?

Почему компас реагирует, когда он находится рядом с электрическим проводом, по которому протекает ток?

Из этого эксперимента можно сделать вывод, что электрический ток вызывает магнитное поле вокруг себя так же, как магнит вызывает магнитное поле. Когда вы перемещали компас возле стержневого магнита, стрелка указывала на магнитное поле магнита, а не на север. Когда вы помещаете компас рядом с электрическим проводом, по которому течет ток, компас не указывает на север; вместо этого стрелка компаса указывала в направлении магнитного поля тока.

Что произойдет, если мы поместим ферромагнитный объект в магнитное поле?

Итак, мы установили, что токопроводящий провод, по которому протекает ток, имеет магнитное поле.Если мы поместим ферромагнитный объект в это магнитное поле, объект будет концентрировать силу поля и заставит объект стать магнитным. Как только ток в линии прекращается, магнитное поле исчезает, и объект перестает действовать как магнит. Однако магнитное поле одного провода невелико и не имеет большой силы, поэтому из небольших предметов можно создавать только временные магниты. Но, допустим, мы берем провод и наматываем его несколько раз, чтобы сформировать длинный свернутый в спираль кусок электрического провода, а затем включаем ток.У нас было бы магнитное поле намного больше и сильнее, чем без скрученного куска провода, и мы могли бы намагничивать даже более крупные объекты.

Железный стержень, помещенный через центр свернутого в спираль провода, станет временным магнитом, называемым электромагнитом , пока электрический ток течет через провод.


Предупреждение: возможно, потребуется ограничить ток, чтобы предотвратить перегрев провода и предотвратить повреждение аккумулятора.

Вы также можете сделать электромагнит, пропуская электрический ток непосредственно через ферромагнитный объект.


▷ Как работают бесконтактные тестеры переменного напряжения?

Бесконтактный тест напряжения обеспечивает простой и безопасный способ убедиться, что электрические проводники не имеют питания, не касаясь их.

Тестер работает, обнаруживая электрические поля, связанные с переменным напряжением. Эти поля обычно присутствуют возле токоведущих проводов, поэтому нет необходимости в прямом контакте с проводниками.

Тестер может использоваться как профессионалами, так и потребителями, которые могут использовать гаджет дома.

Рисунок 1: Проверка силового кабеля на напряжение | изображение: o-digital.com

Для проверки токоведущего проводника наконечник тестера вставляют в розетку или помещают рядом с любым другим проводником, который проверяется. Рекомендуется проверить все проводники, включая нейтраль, на случай неисправности или неправильного подключения. Когда тестер помещается рядом с токоведущим проводом, электростатические или магнитные поля индуцируют ток, протекающий через тестер. Это заставляет устройство указывать на наличие напряжения, загораясь, издавая звук или и то и другое.

Бесконтактное испытание работает почти со всеми токоведущими проводниками, в том числе с изоляцией. Однако тестер не может проводить испытания через металлический экран или кабелепровод.

Принцип работы бесконтактного тестера напряжения

Есть два обычно используемых типа датчиков; тестеры с емкостной и индуктивной связью.

Измерители магнитной индукции

Тестер с индуктивной связью состоит из сенсорной обмотки на конце. Когда эта обмотка находится в электромагнитном поле, в обмотке индуцируется напряжение, которое используется для включения или подачи сигнала тревоги через цепь в тестере.

Ток создает электромагнитное поле, только если оно течет. И поскольку этот тестер работает, обнаруживая магнитное поле вокруг проводников, он будет работать только в том случае, если проводник является частью комплекта, в котором протекает ток. Таким образом, он ничего не будет указывать, когда есть провод под напряжением, но цепь не является полной.

Емкостный чувствительный элемент

Рисунок 2: Тестирование сокета под напряжением | изображение: ECVV.com

Тестер использует конденсаторную связь для обнаружения электрического поля и способен обнаруживать находящиеся под напряжением проводники как в полной цепи, так и без нее.

Для работы тестера человек должен прикоснуться к металлической части тестера, чтобы обеспечить заземление и позволить паразитной емкости от токоведущего проводника течь на землю. Размещение тестера рядом с токоведущим проводом образует сеть емкостного делителя напряжения. Он состоит из паразитной емкости между наконечником датчика и токоведущим проводом и емкости между датчиком и землей через тело пользователя.

Когда ток течет на землю, тестер покажет наличие напряжения светом или звуком.

Ограничения для бесконтактных тестеров напряжения

  1. Тестеры не могут работать с постоянным напряжением, так как конденсаторы и трансформаторы не работают с постоянным током.
  2. Бесконтактные тестеры напряжения имеют ограничения и фактически не измеряют величину присутствующего напряжения. Вместо этого они указывают только на наличие проводника под напряжением, что может потребовать дальнейшего исследования и мер предосторожности.
Заключение

Бесконтактный тестер напряжения гарантирует отключение питания и отсутствие необходимости прикасаться к проводам.Это самый безопасный способ сделать это. Это важно, чтобы убедиться, что питание оборудования отключено, прежде чем открывать его для обслуживания или ремонта.

Однако тестеры не могут измерить величину напряжения и будут показывать только наличие переменного напряжения.

Спасибо за чтение,
Стивен Милл.

вопросов и ответов — Что такое электромагнит?

Что такое электромагнит?

Электромагнит — это магнит, работающий на электричестве. В отличие от постоянного магнита, силу электромагнита можно легко изменить, изменив количество электрического тока, протекающего через него.Полюса электромагнита можно даже поменять местами, изменив направление электрического тока.

Электромагнит работает, потому что электрический ток создает магнитное поле. Магнитное поле, создаваемое электрическим током, образует круги вокруг электрического тока, как показано на схеме ниже:

Если провод, по которому проходит электрический ток, сформирован в серию петель, магнитное поле может быть сконцентрировано внутри петель. . Магнитное поле можно еще больше усилить, намотав провод на сердечник.Атомы некоторых материалов, таких как железо, никель и кобальт, ведут себя как крошечные магниты. Обычно атомы в чем-то вроде куска железа указывают в случайных направлениях, а отдельные магнитные поля стремятся нейтрализовать друг друга. Однако магнитное поле, создаваемое проволокой, намотанной вокруг сердечника, может заставить некоторые атомы внутри сердечника указывать в одном направлении. Все их маленькие магнитные поля складываются, создавая более сильное магнитное поле.

По мере увеличения тока, протекающего вокруг сердечника, количество выровненных атомов увеличивается и тем сильнее становится магнитное поле.По крайней мере, до определенного момента. Рано или поздно все атомы, которые можно выровнять, будут выровнены. В этот момент считается, что магнит насыщен, и увеличение электрического тока, протекающего вокруг сердечника, больше не влияет на намагниченность самого сердечника.

Связанные страницы:

Вы знаете, что такое электромагнит?

На каких работах используются электромагниты?

Как сделать электромагнит?

BEAMS Activity — Магниты и электромагниты

Наука в домашних условиях — Электромагниты (видеоэксперимент)

Workbench Projects — Electromanget Experiment Stand

Current Measurements: Практическое руководство — National Instruments

1.Текущий обзор

Электрический ток — это поток электрического заряда. Единицей измерения электрического тока в системе СИ является ампер (А), который равен одному кулону заряда в секунду.

Хотя существует несколько методов измерения тока, наиболее распространенным методом является выполнение косвенного измерения путем измерения напряжения на прецизионном резисторе и с использованием закона Ома для измерения тока на резисторе.


Текущие основы

В твердом проводящем металле большая популяция электронов либо подвижна, либо свободна.Когда металлический провод подключается к двум клеммам источника постоянного напряжения, такого как батарея, источник создает электрическое поле через проводник. Моментный контакт создается, свободные электроны проводника под действием этого поля вынуждены дрейфовать к положительному выводу.

Таким образом, свободный электрон является носителем тока в типичном твердом проводнике. Для электрического тока силой 1 ампер 1 кулон электрического заряда (который состоит из примерно 6,242 × 10 18 электронов) каждую секунду дрейфует через воображаемую плоскость, через которую проходит проводник.


Рис. 1. Иллюстрация потока тока

Обычный ток был определен в начале истории электротехники как поток положительного заряда. В твердых металлах, таких как провода, положительные носители заряда неподвижны, и текут только отрицательно заряженные электроны. Поскольку электрон несет отрицательный заряд, ток электрона течет в направлении, противоположном обычному (или электрическому току ).

При решении электрических схем фактическое направление тока через конкретный элемент схемы обычно неизвестно.Следовательно, каждому элементу схемы назначается переменная тока с произвольно выбранным опорным направлением . Когда схема решена, токи элементов схемы могут иметь положительные или отрицательные значения. Отрицательное значение означает, что фактическое направление тока через этот элемент схемы противоположено выбранное опорное направление.

Вернуться к началу

2. Как произвести измерение тока

Методы измерения тока

Существует два основных способа измерения тока: один основан на электромагнетизме и связан с первым измерителем с подвижной катушкой (d’Arsonval), а другой основан на основной теории электричества, законе Ома.

Измеритель / гальванометр Д’Арсонваля

Измеритель д’Арсонваля — это амперметр, который представляет собой прибор для обнаружения и измерения электрического тока. Это аналоговый электромеханический преобразователь, который производит поворотное отклонение через ограниченную дугу в ответ на электрический ток, протекающий через его катушку.

Форма д’Арсонваля, используемая сегодня, состоит из небольшой вращающейся катушки проволоки в поле постоянного магнита. Катушка прикреплена к тонкой стрелке, пересекающей калиброванную шкалу.Крошечная торсионная пружина переводит катушку и указатель в нулевое положение.

Когда через катушку протекает постоянный ток (DC), катушка создает магнитное поле. Это поле действует против постоянного магнита. Катушка вращается, нажимая на пружину, и перемещает указатель. Стрелка указывает на шкалу, показывающую электрический ток. Тщательная конструкция полюсных наконечников гарантирует, что магнитное поле является однородным, так что угловое отклонение стрелки пропорционально току.

Другие амперметры

По сути, большинство современных амперметров основаны на фундаментальной теории электричества, законе Ома. Современные амперметры — это, по сути, вольтметры с прецизионным резистором, и, используя закон Ома, можно провести точное, но экономичное измерение.

Закон Ома — Закон Ома гласит, что в электрической цепи ток, проходящий через проводник между двумя точками, прямо пропорционален разности потенциалов (другими словами, падению напряжения) в двух точках и обратно пропорционален к сопротивлению между ними.

Математическое уравнение, описывающее эту связь:

I = V / R

, где I — ток в амперах, V — разность потенциалов между двумя интересующими точками в вольтах, а R — параметр цепи, измеряемый в омах (что эквивалентно вольтам на ампер), называемый сопротивлением.

Амперметр Эксплуатация — Современные амперметры имеют внутреннее сопротивление для измерения тока через определенный сигнал. Однако, когда внутреннего сопротивления недостаточно для измерения больших токов, необходима внешняя конфигурация.

Для измерения больших токов вы можете установить прецизионный резистор, называемый шунтом, параллельно измерителю. Большая часть тока проходит через шунт, и лишь небольшая его часть проходит через счетчик. Это позволяет измерителю измерять большие токи.

Допускается любой резистор, если максимальный ожидаемый ток, умноженный на сопротивление, не превышает входной диапазон амперметра или устройства сбора данных.

При измерении тока таким способом следует использовать резистор наименьшего номинала, поскольку это создает наименьшие помехи для существующей цепи.Однако меньшие сопротивления создают меньшие падения напряжения, поэтому вы должны найти компромисс между разрешением и помехами в цепи.

На рис. 2 показана общая схема измерения тока через шунтирующий резистор.


Рис. 2. Подключение шунтирующего резистора к измерительному устройству

При таком подходе ток фактически направляется не на плату амперметра / сбора данных, а через внешний шунтирующий резистор. Максимальный ток, который вы можете измерить, теоретически безграничен при условии, что падение напряжения на шунтирующем резисторе не превышает рабочий диапазон напряжения платы амперметра / сбора данных.

Текущие условные обозначения

Обычные токи

Обычные токи — это измерения тока, обычно используемые в современной электронике, электрических схемах, линиях передачи и т. Д. Они не соответствуют стандарту передачи и могут варьироваться от нуля до больших значений силы тока.

Токовые петли / 4-20 мА Условные обозначения

Аналоговые токовые петли используются для любых целей, когда устройство необходимо контролировать или управлять удаленно по паре проводов.В любое время может присутствовать только один текущий уровень.

«Токовая петля от 4 до 20 мА» или 4–20 мА — это стандарт аналоговой передачи электроэнергии для промышленных измерительных приборов и средств связи. Сигнал представляет собой токовую петлю, где 4 мА представляет сигнал нулевого процента, а 20 мА представляет собой сигнал 100 процентов. [1] «МА» означает миллиампер или 1/1000 ампера.

«Живой ноль» при 4 мА позволяет приемному оборудованию различать нулевой сигнал и обрыв провода или неисправный прибор.[1] Разработанный в 1950-х годах, этот стандарт до сих пор широко используется в промышленности. Преимущества условного обозначения 4–20 мА включают широкое использование производителями, относительно низкую стоимость внедрения и его способность подавлять многие формы электрического шума. Кроме того, с живым нулем вы можете напрямую запитывать маломощные инструменты от контура, экономя на дополнительных проводах.

Соображения по точности

Размещение шунтирующего резистора в цепи важно. Если внешняя цепь имеет общее заземление с компьютером, на котором установлена ​​плата амперметра / сбора данных, вам следует разместить шунтирующий резистор как можно ближе к заземляющей ветви цепи.В противном случае синфазное напряжение, создаваемое шунтирующим резистором, может выходить за пределы спецификации для платы амперметра / сбора данных, что может привести к неточным показаниям или даже к повреждению платы. На рисунке 3 показано правильное и неправильное размещение шунтирующего резистора.


Рис. 3. Размещение шунтирующего резистора

Измерения устройства сбора данных

Существует три различных метода измерения аналоговых входов.Пожалуйста, обратитесь к статье «Как произвести измерение напряжения» для получения дополнительной информации по каждой конфигурации.

В качестве примера рассмотрим систему сбора данных NI CompactDAQ USB. На рисунке 4 показано шасси NI cDAQ-9178 и модуль аналогового ввода тока NI 9203. NI 9203 не требует внешнего шунтирующего резистора из-за наличия внутреннего прецизионного резистора.


Рисунок 4. Шасси NI cDAQ-9178 и модуль аналогового ввода тока NI 9203

На рис. 5 показана схема подключения для измерения эталонного несимметричного тока (RSE) с использованием шасси NI cDAQ-9178 с NI 9203, а также расположение выводов модуля.На рисунке контакт 0 соответствует каналу «Аналоговый вход 0», а контакт 9 соответствует общей земле.


Рисунок 5. Измерение тока в конфигурации RSE

В дополнение к NI 9203, модули аналогового ввода общего назначения, такие как NI 9205, могут обеспечивать функциональность токового входа с использованием внешнего шунтирующего резистора.

Как увидеть свои измерения: NI LabVIEW

После подключения датчика к измерительному прибору вы можете использовать программное обеспечение для графического программирования LabVIEW для визуализации и анализа данных по мере необходимости.


Рис. 6. LabVIEW Current Measurement

Список литературы

Болтон, Уильям (2004). КИПиА. Эльзевир. ISBN 0750664320.

В начало

3. Рекомендуемое оборудование и программное обеспечение

Пример системы измерения тока

Узнайте больше о NI CompactDAQ

Узнайте и протестируйте программное обеспечение LabVIEW бесплатно

В начало

4. Текущие Интернет-трансляции, учебные пособия и другие практические ресурсы

Основы измерений цифрового мультиметра

Технологии изоляции для надежных промышленных измерений

Узнайте о соответствующих вариантах обучения: сбор данных и обработка сигнала

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *