Стартеры для ламп дневного света
Человечество стремится экономить на всех видах энергоносителей, особой строкой идёт электричество. Количество приборов бытовых увеличивается, плата за их использование растёт. Поэтому в жизнь прочно входят и активно используются лампы дневного света. И схема подключения люминесцентных ламп проста, не требует никаких специальных знаний в электротехнике.
Стартер – основной элемент схемы включения люминесцентных ламп, который выполняет функции замыкание и размыкание цепи питания лампы. В настоящее время существует три основных вида по действию стартера: тепловой, электронный и тлеющего разряда.
Общие положения
Стартёры разных модификаций и видов конструктивно между собой очень похожи. Составными частями стартера являются малогабаритная газоразрядная лампа, колба, которая изготавливается из стекла, а внутрь ее помещается инертный газ.
Лампа располагается внутри корпуса, который изготавливается из металла или разновидностей пластика, и может иметь отверстие в верхней части прибора.
Также конденсатор служит для снижения радиопомех, подключается он параллельно к контактам стартера.
Конструкция и условия работы
В зависимости от особенностей конструкции электродов стартёры различают как симметричные и несимметричные.
В несимметричных стартерах один электрод крепится подвижный, а второй – неподвижный, в симметричной конструкции – оба электрода подвижные. В цепь питания лампы стартер включается параллельно к последней.
Время зажигания источника дневного света регламентировано ГОСТом и ограничено 10 секундами. Условия, при которых происходит успешное зажигания, зависят от подогрева катодов лампы и величины тока, проходящего через них, в момент размыкания электродов стартера. При малом токе источник дневного света может не загореться, поэтому стартер повторит процесс зажигания, до тех пор, пока процесс розжига не завершится.
Виды стартеров
Стартеры выпускают различных видов:
- Тепловые;
- Тлеющего ряда;
- Полупроводниковые.

Основные характеристики
Стартеры теплового вида имеют следующее отличие от аналогов – это продолжительное время запуска источника дневного освещения. Устройства данного вида при работе потребляют большое количество электроэнергии, что негативно влияет на их экономичность.
Другое название стартеров данного вида – термо-биметаллические, они, как правило, применяются при эксплуатации при низких температурах. Основным отличием от прочих видов является то, что при отсутствии напряжения контакты уже замкнуты, и при подаче напряжения на прибор, возникает более высокий импульс.
Стартеры, использующие в своей работе принцип тлеющего разряда, содержат биметаллические электроды, изготовленные из сплавов с различными коэффициентами термического расширения. Работа приборов данного вида осуществляется следующим образом: при включении светильника в электрическую сеть, напряжение подается на стартер, электроды которого в этот момент разомкнуты.
Под действием поданного напряжения между электродами возникает тлеющий разряд. В цепи проходит небольшой электрический ток и под его действием происходит нагревание биметаллических электродов стартера. Они нагреваются и изгибаются, что обусловлено реакциями, проходящими в биметаллах, под воздействием электрического тока, и именно это и приводит к замыканию цепи.
После замыкания цепи происходит прекращение тлеющего разряда в колбе стартера. Одновременно электрический ток нагревает катоды лампы, электроды стартера в это время замкнуты и остывают, после остывания контакты стартера размыкаются.
Размыкание данной цепи приводит к возникновению особого импульса, обладающего повышенным напряжением, который формируется в дросселе и позволяет произвести пробой газа в лампе, и соответственно ее разжигание.
В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются неуправляемыми. В тяжёлых условиях, таких как эксплуатация при пониженных температурах, скорость нагрева биметаллических контактов замедляется, соответственно лампа дневного света зажигается дольше или вообще выходит из строя. Однако, развитие полупроводниковой электроники позволило изготовить стартеры принципиально нового типа.
Полупроводниковые стартеры размещаются в обычном стандартном корпусе с полупроводниковыми компонентами. Они соответствуют всем требованиям предъявляемым к стартерам по мощности и напряжению питания подключаемой лампы. Работа стартеров данного вида, формирование импульса, происходит по принципу ключа – нагрева и размыкания цепи.
Наиболее оптимальными параметрами, данного вида стартеров, обладают приборы со ждущим режимом зажигания, при котором размыкание контактов происходит в необходимой фазе напряжения и достаточной температуре нагрева электродов.
Безусловно, использование электронных элементов позволяет увеличить срок эксплуатации лампы и срок работы самого стартера, в сравнении с тепловыми и биметаллическими аналогами. Основной недостаток данного вида – стоимость, они по цене значительно дороже.

Классификация стартеров
Стартеры классифицируются по следующим параметрам:
- Мощность;
- Напряжение.
Параметры, которые следует учесть при выборе стартера:
- Температурный режим работы;
- Тип конденсатора;
- Номинальное напряжение;
- Стоимость.
По способу подключения стартеры могут быть:
- Для одиночного подключения;
- Для последовательного подключения к сети напряжением 220/240 В или одиночного к сети напряжением 110/130 В.
Подключение к сети определяется способом подключения ламп, это одноламповый или двухламповый. При первом способе подключения, лампа и дроссель включаются последовательно, стартер – параллельно. При двухламповом подключении, последовательно подключаются две лампы и один дроссель, при этом к каждой лампе включается отдельный стартер.
Обозначение и маркировка
Маркировка отечественных и зарубежных производителей отличается друг от друга. По ГОСТу действующему в РФ цифры (буквы) маркировки соответствуют:
- 1-я – 60/90/120 – мощность подключаемой лампы;
- 2-я – «С» – информирует что это «стартер»;
- 3-я – 220/127 – напряжение питания лампы.
Для зарубежных аналогов для ламп мощностью от 4,0 до 80,0 Вт и напряжением 220 В применяются обозначения – S10, FS-U, ST111, а напряжением 127 В и мощностью до 22 Вт – S2, FS-2, ST151.
Особенности выбора
Достоинства и недостатки
Преимущества использования современных стартеров:
- Экологическая безопасность;
- Продление срока исправности ламп;
- Долговечность;
- Простота и удобство установки.
Важно помнить и о недостатках, а это:
- Низкая надежность;
- Зависимость от напряжения;
- Разброс времени срабатывания контактов электродов.
Технические требования
Все технические средства, оборудование и комплектующие должны соответствовать техническим условиям и правилам. Так в отношении стартеров действуют следующие регламентирующие документы:
- ГОСТ 8799-90 «Стартеры для трубчатых люминесцентных ламп. Технические условия»;
- ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».
Популярные производители и модели
Многие известные производители светотехнической техники являются и производителями стартеров, наиболее известные это: Philips, Osram, Sylvania и другие.
Компания «Philips» (Нидерланды) выпускает широкий ассортимент продукции, в том числе и стартеры. Наиболее современные и совершенные из них это серии: «Ecoclick Starters», «Safety & Comfort Starters», «Green Starters».
Фирмы «OSRAM» (Россия) выпускает большой ассортимент стартеров для разного типа и назначения ламп дневного света. Некоторые модификации имеют особые преимущества перед аналогами других производителей.
Такими приборами считаются:
- Стартеры предохранители – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173;
- Стартеры автоматы – DEOS® ST 172;
- Универсальные – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173.
Автоматические стартеры отключают перегоревшие или неисправные лампы, а также осуществляют повторное включение.
Отдельного внимания заслуживают стартеры, применяемые для специальных ламп, к таким можно отнести лампы для соляриев. Именно такое оборудование, лампы и комплектующие выпускает компания «Havels Sylvania» (Германия). В ассортименте компании электронные стартеры различной мощности, времени подогрева и температуры эксплуатации.
- PureBronze PBS-25, мощностью 4 – 65 Вт;
- PureBronze PBS-100, мощностью 80 – 100 Вт;
- PureBronze PBS-160, мощностью 80 – 160 Вт.
Ассортимент других фирм производителей также широк и разнообразен, что позволяет выбрать прибор по предъявляемым к нему требованиям, однако важно помнить, что не следует выбирать дешевые модели, т.к. в них, как правило, используются дешевые материалы, а это отрицательно скажется на сроке эксплуатации прибора.
Возможные неисправности
При использовании любого источника освещения всегда возникает вопрос о его ремонте, замене вышедших из строя элементов.
Одной из причин, не зажигания лампы дневного света, может стать неисправный стартер, неисправность которого может выразиться как:
- Лампа не зажигается;
- На концах лампы свечение есть, но лампа не зажигается.
Для замены стартера необходимо выполнить несложные операции:
- Выключить светильник;
- Снять плафон или иной защитный элемент светильника;
- Извлечь неисправный элемент – стартер;
- Вставить в цоколь новый прибор;
- Произвести сборку светильника в обратном порядке;
- Включить светильник.
Заменить стартер не составляет труда, когда есть запасной, если же такого нет, то необходимо убедиться, что извлеченный из светильника является именно тем элементом, из-за которого не горит лампа. Работоспособность его можно проверить простым способом.
Необходимо последовательно со стартером включить лампочку накаливания и подать на них напряжение. Если стартер рабочий, то лампочка будет гореть и периодически выключаться, при этом будет слышен характерный щелчок внутри стартера. Если, лампочка не горит, или горит и не моргает, значит, стартер неисправен, и точно подлежит замене.
Теоретически считается, что срок исправной работы стартера эквивалентен времени работы лампы, которую он зажигает. Однако необходимо учитывать, что с увеличением срока работы прибора, интенсивность напряжения тлеющего разряда, для стартеров данного вида, снижается, что сказывается на работе последнего. Тем не менее, все производители ламп дневного света рекомендуют производить замену стартеров одновременно с заменой ламп.
Блиц-советы
При необходимости выбрать замену вышедшему из строя стартеру нужно так:
- Обратить внимание на напряжение питания лампы;
- Определиться с необходимой мощностью прибора;
- Выбрать производителя, исходя из ценовой политики и требуемой надежности.
Технологии не стоят на месте. Стартёр теперь монтируют прямо в цоколь ламп дневного света со стандартным патроном, эти лампы называют «экономлампы». Они аналогичны по своим принципам работы лампам дневного света, только вид их сильно изменён.
housetronic.ru
Элементы потолочного светильника
Уважаемые посетители, уважаемые друзья!!!
После публикации темы «Принцип работы люминесцентной лампы. Устройство светильника» от 19.02.2015 г., мне были заданы вопросы, касающиеся диагностики отдельных элементов потолочного светильника. Для общей рассылки ответов на интересующие Вас вопросы, мною опубликована дополнительная данная тема — по потолочным светильникам. Тема затрагивает четыре основных вопроса, на которые мне нужно ответить, это диагностика:
- дросселя;
- стартера;
- конденсатора;
и люминесцентной лампы. Все перечисленные детали, состоящие в схемах лиминесцентных светильников, постепенно начинают выбывать из производства — как и сами светильники, так как в настоящее время встречаются люминесцентные светильники нового поколения — с электронным балластом или другими словами, с электронным блоком. Принцип работы усовершенствованных светильников остается неизменным и ремонт таких светильников, при их неисправности, сводится к замене электронного балласта \для отдельных рассматриваемых примеров\, но не к замене люминесцентного светильника целиком.
Как проверить люминесцентный светильник
В чем заключается сущность поставленного перед нами вопроса: «Как проверить люминесцентный светильник?»- Сущность заключается в правильном подходе, в правильном принятии своего решения перед поставленным вопросом, иначе своими действиями можно завести себя в тупиковое положение и ремонт светильника может занять значительное время.
Итак, для наглядности рассмотрим один из двух представленных вариантов электрических схем. К примеру, Вы демонтировали \сняли\ потолочный люминесцентный светильник и Вам необходимо установить причину его неисправности. Рассмотрим первый вариант электрической схемы \рис.1\, тоже самое касается и ко второму варианту.
рис.1
Как правильно проверить первый вариант электрической схемы на общее сопротивление? Каким прибором Вы будете проводить измерение, разницы абсолютно никакой нет, пусть это будет:
-
омметр \с установленной позицией измеряемого диапазона сопротивления\;
-
стрелочный тестер \с установленной позицией измеряемого диапазона сопротивления\
либо мультиметр, так же, с установленным диапазоном для замера сопротивления. Для удобства в разъяснении, будем пользоваться усовершенствованным, универсальным измерительным прибором — «мультиметр». Вся диагностика люминесцентного светильника должна проводиться только пассивным способом, то-есть, без подключения к внешнему источнику напряжения.
Итак, Вы положили люминесцентный светильник на свой рабочий стол и подсоединили два щупа прибора к выводам проводов светильника, — для того, чтобы измерить общее сопротивление. Можно ли таким образом выполнить замер сопротивления? — Нет, таким способом провести измерение сопротивления — невозможно. Связано это с тем, что в лампочке стартера будет разрыв электрической схемы. Следовательно, чтобы измерить сопротивление светильника, необходимо:
-
вынуть стартер из электрического патрона;
-
замкнуть накоротко контакты электрического патрона \стартера\
и лишь затем можно проверить светильник на общее сопротивление.
Как проверить дроссель-люминесцентного светильника
Продолжаем рассматривать первый вариант схемы люминесцентного светильника — с одной лампой. Для того, чтобы проверить дроссель в схеме люминесцентного светильника, необходимо:
- снять стартер;
- замкнуть накоротко электрический патрон стартера;
- снять люминесцентную лампу;
- замкнуть накоротко контакты двух электрических патронов \по отдельности\ люминесцентной лампы,
— после этого, можно выполнить замер сопротивления дросселя, — предварительно подсоединив два щупа прибора к выводам проводов светильника.
Как проверить стартер люминесцентного светильника
Проверить стартер люминесцентного светильника на сопротивление, как Вы понимаете, невозможно. Лампочка стартера состоит из двух впаяных электродов, находящихся внутри колбы и соответственно, между электродами имеется разрыв. Стартер проверяется непосредственно при установленном и подключенном светильнике, — путем его замены. Тип стартера подбирается с учетом мощности люминесцентной лампы. При замене стартера, необходимо одевать на руки диелектрические перчатки — во избежание соприкосновения с оголенными, контактными соединениями светильника.
Непригодность стартера проявляется в постепенном износе лампы тлеющего разряда, а именно, в износе биметаллической пластины, срабатывающей на включение и отключение \мерцание\ стартера.
Как проверить емкость конденсатора тестером
При замене конденсатора, учитывается его номинальные значения по:
- емкости;
- напряжению
и допуску, в отклонениях. К примеру, Вам необходимо заменить конденсатор, не имеет значения, где Вы собираетесь его заменить:
- в сетевом фильтре;
- в светильнике
и так далее. Вы подобрали конденсатор, который подходит по емкости и напряжению, но не соответствует по допуску. Такой вариант замены конденсатора — уже не подходит, так как отклонение в допуске имеет также большое значение — при замене конденсатора.
рис.2
Первоначально, необходимо изучить маркировку конденсаторов \рис.2\ и научиться читать обозначения, можно просто иметь необходимую подобную таблицу под рукой, которая как-бы будет для Вас не плохой подсказкой.
Допустим, нам нужно проверить емкость конденсатора измерительным прибором «мультиметр», конденсатор имеет емкость 47 нанофарад с отклонением в допуске 10% \рис.2, первый верхний ряд слева\. Для этого, нам необходимо установить прибор в диапазоне измерения емкости от 20 до 200 нанофарад \фото №1\.
фото №1
Чтобы не распаивать конденсатор от схемы \в зависимости от схемы, обычно распаивается одна ножка конденсатора\, я пользуюсь специальным, самодельным приспособлением \фото №2\. То-есть, это обыкновенные два тонких проводка, на одном конце проводов припаяны два разъема и на другом конце проводов — припаяны два металлических щупа.
фото №2
Два разъема вставляются непосредственно в гнездо прибора — для измерения емкости \фото №3\, далее, включаем прибор и подсоединяем два щупа прибора к ножкам конденсатора
фото №3
На фотоснимке №4 показано изображение такого приспособления, которым очень удобно пользоваться при измерении емкости конденсаторов, подпадающими под диапазон измерительного прибора.
фото №4
Как проверить люминесцентную лампу тестером
Если у Вас нет в наличии цифрового мультиметра, а имеется стрелочный тестер, — опять же здесь нет никакой проблемы в том, чтобы проверить люминесцентную лампу. Стрелочный тестер устанавливается в диапазон наименьшего измерения сопротивления, два щупа прибора \тестера\ подсоединяются сначала к двум штырькам одного конца лампы, затем, к двум штырькам другого конца лампы \рис.3\.
рис.3
В том случае, если спираль закрепленная на электродах будет не нарушеной \целой\, стрелка прибора будет показывать отклонение в соответствии с сопротивлением спирали.
При отсутствии измерительных приборов, для проверки лампы, можно воспользоваться пробником \на батарейках\.
Когда нам приходится проводить ремонт потолочных светильников, мы сталкиваемся с единственной проблемой — это отсутствие необходимых деталей в продаже. В этом примере, я обычно обращаюсь к так называемым в народе «железячникам». Это продавцы, торгующие на улице всевозможными деталями. Там действительно можно купить то, чего нет на прилавках специализированных магазинов — по продаже электроники.
На этом пока все. Следите за рубрикой.
zapiski-elektrika.ru
устройство, принцип работы и схемы подключения ламп дневного света
Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.
По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.
Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.
Как работает
Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.
Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.
Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.
Зажигание
Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:
- величина силы тока на катодах лампы в момент размыкания электродов;
- продолжительность нагрева катодов.
Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.
Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.
Конденсатор
Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:
- снижение помех в процессе замыкания и размыкание электродов стартера;
- увеличения длительности действия импульса при размыкании электродов;
- предотвращение спаивания электродов за счет высокого импульсного напряжения.
Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.
Как долго работает
Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.
Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.
Схема подключения люминесцентного светильника
Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:
Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):
При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).
Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.
onlineelektrik.ru
как работает? как их заменить?
Люминесцентные лампы — это самые распространенные на сегодняшний день лампы, которые выбирают в первую очередь за их экономию и долговечность. Принцип их работы крутится вокруг стартера, которые представляют собой небольшую стеклянную колбу с неоном (реже — гелий-водородом), двумя небольшими электродами с тлеющим разрядом.
Как работает стартер люминесцентной лампы?
Зажигание такого стартера происходит при помощи тлеющего заряда, который возникает вследствие подачи напряжения на два разомкнутых электрода. Они постепенно разогреваются за счет небольшого напряжения от 20 до 50 микроампер, разгибаются, замыкаются и прекращают тлеющий заряд. Цепь, возникшая вследствие замыкания стартера, начинает последовательное движение электричества внутри дросселя и катодов, тем самым повышая их температуру. Зажигание люминесцентной лампы происходит тогда, когда тлеющий заряд прекращается, размыкая тем самым цепь и создавая импульс с высоким напряжением. После этого процесса, напряжение в стартере падает и делает невозможным создание ещё одного замыкания тлеющего заряда, из-за чего электроды больше не могут сомкнуться и оставляют лампу в зажженном состоянии, освещая собою помещение.
Процесс зажигания стартера
В том случае, если напряжение слишком низко, то дроссель не получает достаточного количества силы тока и не способен зажечь лампу. Именно поэтому лампа часто моргает несколько раз перед тем, как включиться. Это объясняется тем, что стартер автоматически повторяет попытку разомкнуть электроды в том случае, если предыдущие попытки не удались. Он будет повторять одно и то же действие снова и снова до тех пор, пока не выйдет из строя или сработает цепь, влекущая за собой включение света. Стандартная электромагнитная система запуска люминесцентных ламп обеспечивает их зажигание в временном диапазоне до 10 секунд. Если за это время зажигание лампы не произошло – значит в ней нарушен тот или иной процесс, который повлёк за собой сбой работы.
Как конденсатор влияет на работу люминесцентных ламп?
Без конденсатора стабильная работа лампы практически невозможна. Чаще всего, к распространенным моделям люминесцентных ламп поставляются конденсаторы с диапазонами емкости 0.003 – 0.1 микрофарад. Помехи, которые возникают при срабатывании стартера и замыкании цепи, необходимо погашать, с эта деталь успешно справляется. Кроме того, импульсы тлеющих зарядов достаточно коротки, а конденсатор позволяет их существенно продлить, тем самым облегчая включение лампы.
Сколько может прослужить стартер и как его заменять?
С каждым циклом включения-выключения происходит очередной заряд, изнашивающий стартер. Чем дольше вы используете люминесцентную лампу, тем слабее с каждым включением тлеющий заряд, который рано или поздно полностью потеряет напряжение. Контакты начнут самовольно замыкаться и размыкаться, вызывая повторение импульса в цепи снова и снова. Снаружи это будет выглядеть как непрерывное мигание лампы, которое не только будет неприятно для созерцания людьми, но и в скором времени выведет из строя другие компоненты лампы, вынуждая нас производить замену не только стартера, но и всего механизма в целом. Каждый раз, когда обращаете внимание на то, что лампа зажигается не с первого раза, бейте тревогу. Возможно, ваш стартер потерял былую функциональность и нуждается в замене. В случае, если вовремя не заменить стартер, вы постоянно будете наблюдать мигание лампы, ожидать её включения дольше, чем обычно и, в результате, должны будете потратиться на новую лампу. Не экономьте время и деньги и уделяйте время стартеру люминесцентной лампы для того, чтобы сэкономить немало средств в будущем!
stroi-remontirui.ru
Как работают стартеры люминесцентных ламп

Общий рейтинг : 5/ 5оставило 8человек
Цена от 15.00 грн. до 33.00 грн.
Стартеры для люминесцентных ламп- типа S2 (4 – 22Вт) и S10 (4 – 65Вт) постоянно поддерживаются в наличии.
Цена на стартер указана Прайс гривна за штуку с учетом НДС. Купить можно со склада в Киеве. Отправка в города Украины производится службой Новая почта.Стартеры Philips для люминесцентных ламп – единственный стартер, который быстро и просто устанавливается без использования дополнительных инструментов.
Даже плотно закрепленные – легко изымаются. В каталоге представлен весь ассортимент высококачественных стартеров тлеющего разряда для запуска люминесцентных ламп с электромагнитными балластами. Изготовлены с соблюдением экологических норм (не содержат свинца и радиоактивных веществ).
Увеличивают срок службы лампы более чем на 25%; более низкая стоимость владения по сравнению с низкокачественными стартерами, не соответствующими Международным стандартам по электротехнике. Оптимальное удобство установки обеспечивается медными компонентами и устойчивыми к окислению медными штырьками. Огнеупорные компоненты и УФ-устойчивый корпус для дополнительной безопасности запуска (одобрено лабораторией UL по технике безопасности в США).На фото: стартер для люминесцентных ламп S2 4-22Вт PHILIPS
Стартер представляет собой небольшую газоразрядную лампу тлеющего разряда. Стеклянная колба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмассовый корпус, на верхней крышке которого имеется смотровое окно.Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.В некоторых конструкциях стартеров смотровое окно отсутствует.
Стартер имеет два электрода. Различают несимметричную и симметричную конструкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлениз биметалла.В настоящее время наибольшее распространение получила симметричная конструкция стартеров, у которых оба электрода изготовляются из биметалла.
Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего напряжения, устанавливающегося на люминесцентной лампе при ее горении.Схема подключения двух люминесцентных ламп через стартер.При включении схемы на напряжение сети оно полностью окажется приложенным к стартеру. Электроды стартера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА).
Этот ток нагревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, чтобы ток предварительного подогрева катодов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предварительного подогрева катодов определяется временем, в течение которого электроды стартера остаются замкнутыми.Когда электроды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды размыкаются.
Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стартера в дросселе возникает большой импульс напряжения, зажигающий лампу.После зажигания лампы в цепи установится ток, равный номинальному рабочему току лампы. Этот ток обусловит такое падение напряжения на дросселе, что напряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер включен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стартере, его электроды останутся разомкнутыми при горении лампы.Стартеры тлеющего заряда.Возможность зажигания лампы зависит от длительности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера.
Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с.
и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Согласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.Параллельно электродам стартера включен конденсатор емкостью 0,003-0,1 мкф.
Этот конденсатор обычно размещается в корпусе стартера. Конденсатор выполняет две функции: снижает уровень радиопомех, возникающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденсатор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряжения, образуемого в момент размыкания электродов стартера, и увеличивает его длительность.При отсутствии конденсатора напряжение на лампе очень быстро возрастает, достигая нескольких тысяч вольт, но продолжительность его действия очень небольшая.
В этих условиях резко снижается надежность зажигания ламп. Кроме того, включение конденсатора параллельно электродам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в результате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.Принципиальная схема включения люминесцентной лампы.Применение конденсаторов в стартёре не обеспечивает полного подавления радиопомех, создаваемых люминесцентной лампой.
Поэтому необходимо дополнительно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединенных последовательно, и среднюю точку заземлить.Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметрированной обмоткой где обмотка дросселя разделена на две совершенно одинаковые части, имеющие равное число витков, намотанных на один общий сердечник.Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дросселя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмотками.В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т.
е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного сопротивления дросселя и активного сопротивлениявсей сети.
Такие схемы называются отстающими.В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лампу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается конденсатор, емкость которого рассчитывается таким образом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.Устройство люминесцентной лампы.В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину.
Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возрастает, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера компенсирующая катушка отключается, и в рабочем режиме лампы она не участвует.
Индуктивность дополнительной катушки компенсирует емкость конденсатора, установленного в стартере. Поэтому в схему вводится дополнительный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.Один из недостатков рассмотренных схем – низкий коэффициент мощности. Он составляет величину 0,5-0,6.
Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании таких аппаратов согласно правилам устройства электроустановок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую компенсацию коэффициента мощности, обеспечивающую доведение его для всей осветительной установки до величины 0,9-0,95.При невозможности или экономической неэффективности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным.
Расчеты показывают, что для ламп мощностью 20 и 40 вт при напряжении 220 в емкость конденсатора составляет 3-5 мкф.Основной недостаток стартерных схем зажигания – их низкая надежность, которая обусловлена ненадежностью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со снижением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических электродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает контактирования электродов, и лампа не будет зажигаться.
Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.Схема запуска сгоревшей люминисцентной лампы.У люминесцентной лампы по мере старения наблюдается увеличение ее рабочего напряжения, а у стартера, наоборот, с ростом срока службы напряжение зажигания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.При размыкании электродов стартера лампа вновь загорается и наблюдается мигание лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лампы.
Подобные же явления могут иметь место при использовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.Стартеры имеют значительные разбросы времени контактирования электродов, и оно очень часто недостаточно для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после нескольких промежуточных попыток, что увеличивает длительность переходных процессов, снижающих срок службы ламп.Общий недостаток всех одноламповых схем – невозможность уменьшить создаваемую одной люминесцентной лампой пульсацию светового потока.Поэтому такие схемы можно применять в помещениях, где устанавливается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульсации светового потока лампы включать в различные фазы трехфазной цепи.
Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.Двухламповые схемы включения. Применение двухламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пульсации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. Поэтому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого среднего значения с частотой, меньшей, чем при одной лампе.
Кроме того, эти схемы обеспечивают высокий коэффициент мощности комплекта лампа – ПРА.Наибольшее распространение получила двухламповая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй – опережает на угол 60°.
Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.Эту схему можно отнести к группе компенсированных, и по сравнению с одноламповой некомпенсированной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повышения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.Поделитесь полезной статьей:
С каждым днем популярность ламп дневного света в качестве источника освещения только растет. Это обусловлено их высокой продолжительностью работы и качественным свечением.
Люминесцентные лампы работают не напрямую от сети с напряжением 220 Вольт.
Для их функционирования требуется специальный блок, называющийся пускорегулирующей аппаратурой (ПРА). Конструкция блока включает в себя три основных элемента, в которые входят: дроссель (катушка индуктивности с сердечником), сглаживающего конденсатора и стартера. Вот как рас о последнем устройстве мы сегодня и поговорим.
Содержание
- 1 Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.
- 2 Устройство стартера люминесцентных ламп
- 3 Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).
- 4 Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции: – борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы. Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.
- 5 За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.
- 6 Для чего нужен стартер в люминесцентных лампах
- 7 Как работает люминесцентный светильник
- 8 При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
- 9 Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
- 10 После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
- 11 Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
- 12 На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
- 13 Как проверить стартер люминесцентной лампы
- 14 Почему мигает люминесцентная лампа
- 15 Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена. При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель. Похожие материалы на сайте:
Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.
Устройство стартера люминесцентных ламп
Конструкция этого элемента достаточно проста.
Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ.
Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.
Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие.
Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).
Если вынуть конструкцию из корпуса видно саму колбу.

Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции:
– борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы.
Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.

За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.
Для чего нужен стартер в люминесцентных лампах
Этот элемент является основным в конструкции люминесцентных ламп.
Без него электромагнитная пускорегулирующая аппаратура не сможет функционировать. Главное назначение стартера – запускать механизма и разжигание инертного газа, находящегося в газоразрядной колбе. Стартерработает как выключатель – размыкает и замыкает электрическую цепь.
Установка стартера продиктована необходимость выполнения двух важных функций:
– замыкания цепи.
Позволяет нагреть электроды лампы, облегчая тем самым процесс зажигания;- разрыв цепи. Происходит сразу же после нагрева электродов. В результате размыкания образуется импульс повышенного напряжения, являющийся причиной пробоя газового промежутка колбы.
Дроссель играет роль стабилизатора и трансформатора. Он поддерживает необходимый ток нитей лампы, создает импульс напряжения, необходимый для пробоя лампы и стабилизирует процесс горения дуги.
Как работает люминесцентный светильник
В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп.
В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).
Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.
Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.
При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
Как проверить стартер люминесцентной лампы
Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.
Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой.
А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампыв домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.
Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.
Собрать такую схему не составит труда.Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов.
Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп.Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.
Почему мигает люминесцентная лампа
Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах.
В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе.
После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.
Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.
При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.
Похожие материалы на сайте:
Источники:
- elmar.com.ua
- fazaa.ru
- electricvdome.ru
blog-potolok.ru