Как работает магнитное поле – Характеристики и свойства магнитного пола. Проявления магнитного поля в жизни

Как работает магнитное поле Земли

У Йорика всегда возникал вопрос, как работает компас? И сегодня мы поговорим о такой вещи, как МАГНИТНОЕ ПОЛЕ ЗЕМЛИ. И так как, к сожалению, редактор ограничен во времени, а дать что-то интересное хочется, мы расскажем вам о “земном магнетизме” с помощью нескольких различных источников. 

Итак:

Магнитное поле Земли долгое время оставалось загадкой, ведь каменных магнитов не бывает, правда? Но как только вы открываете, что внутри Земли имеется колоссальное количество железа, все вроде бы становится на свои места. Железо не образует «постоянный» магнит вроде прикрепленных к пластиковым поросяткам и медвежаткам, которых мы, сами не зная зачем, покупаем, чтобы прицепить на холодильник. Земные недра больше походят на динамо. Кстати, это так и называется – геомагнитное динамо. Как мы уже упоминали, железо в ядре Земли находится по большей части в расплавленном состоянии, за исключением твердого плотного «шарика» в самом центре. Жидкая часть до сих пор продолжает нагреваться. Прежде это явление объясняли тем, что радиоактивные элементы, будучи плотнее всего остального в химическом составе планеты, погрузились в самый центр, оказавшись запертыми там, а тепло дает излучаемая ими радиоактивная энергия. Современная же теория предлагает совершенно иное объяснение: жидкая часть ядра нагревается, поскольку твердая – остывает. Расплавленное железо на контакте с твердым ядром само понемногу застывает, при этом высвобождается тепло. Это тепло должно куда-то деться, оно не может просто исчезнуть, словно дуновение теплого воздуха, – вокруг тысячи миль сплошной горной породы. Тепло передается расплавленному слою ядра, нагревая его.

Возможно, вас удивит факт, что та часть, которая вступает в контакт с твердым ядром, может охлаждаться и затвердевать и, одновременно с этим, нагреваться в процессе этого затвердевания. Объяснение простое: горячее расплавленное железо поднимается вверх по мере разогрева. Вспомните воздушный шар. Когда вы нагреваете воздух, он поднимается. Это происходит потому, что при нагревании воздух расширяется, становится менее плотным, а менее плотные вещества всплывают над более плотными. Воздушный шар удерживает воздух в огромном шелковом мешке, часто ярко окрашенном и разрисованном эмблемами банков или агентств недвижимости, и поднимается вместе с воздухом. Горячее железо ничем не разрисовано, но поднимается точно так же, как горячий воздух, удаляясь от твердого ядра. Оно медленно всплывает, остывая, а потом, когда становится слишком холодным, точнее

сравнительно холодным, начинает снова погружаться в глубину. В результате земное ядро находится в непрерывном движении, раскаляясь внутри и остывая снаружи. Оно не может подняться все разом, то есть одни области ядра всплывают, в то время как другие – заново погружаются. Такой вид циркулирующей теплопередачи называется конвекцией.

По мнению физиков, при соблюдении неких трех условий движущиеся жидкости могут создавать магнитное поле. Во?первых, жидкость должна проводить электрический ток, и железо прекрасно с этим справляется. Во?вторых, изначально должно присутствовать хотя бы небольшое магнитное поле, а есть веские основания полагать, что нашей Земле, тогда еще совсем юной, была присуща некая толика личного магнетизма. В?третьих, что-то должно вращать эту жидкость, искажая исходное магнитное поле, и у Земли такое вращение происходит за счет силы Кориолиса, похожей на центробежную силу, однако действующей более слабо и возникающей в результате вращения Земли вокруг своей оси. Грубо говоря, вращение искажает исходно слабое магнитное поле, закручивая его, как спагетти на вилку. Затем магнетизм поднимается наверх, пойманный всплывающими массами железного ядра. В результате всего этого коловращения магнитное поле становится намного сильнее.

(adsbygoogle = window.adsbygoogle || []).push({});

Да, в каком-то смысле можно сказать, что Земля ведет себя так, словно внутри у нее имеется огромный магнит, но на самом деле все гораздо сложнее. Чтобы немного конкретизировать нарисованную картину, напомним, что существуют по меньшей мере семь других факторов, обусловливающих наличие у Земли магнитного поля. Так, некоторые составляющие земной коры могут быть постоянными магнитами. Подобно стрелке компаса, указывающей на север, они постепенно выстроились вдоль более сильного геомагнитного динамо, дополнительно усиливая его. В верхних слоях атмосферы имеется слой заряженного ионизированного газа. До того как были изобретены спутники, ионосфера играла важнейшую роль в обеспечении радиосвязи: радиоволны отражались от заряженного газа, а не уходили в космос. Ионосфера находится в движении, а движущееся электричество создает магнитное поле. На высоте примерно 15 000 миль (24 000 км) течет кольцевой ток – слой ионизированных частиц низкой плотности, образующий огромный тор. Это немного ослабляет силу магнитного поля Земли.

Следующие два фактора – это так называемые магнитопауза и магнитный хвост, возникшие под влиянием солнечного ветра на магнитосферу Земли. Солнечный ветер – это постоянный поток частиц, испускаемых гиперактивным Солнцем. Магнитопауза – это головная волна земного магнитного поля, идущая против солнечного ветра, а магнитный хвост – след этой волны с противоположной стороны планеты, где собственное магнитное поле Земли «утекает» наружу, к тому же разрушаясь под воздействием солнечного ветра. Кроме того, солнечный ветер вызывает своеобразную тягу вдоль орбиты Земли, создавая дополнительное искажение линий магнитного поля, известное как продольный ток в магнитосфере. И, наконец, существуют авроральные потоки. Северное сияние, или aurora borealis, – это восхитительные, таинственные полотнища бледного света, переливающиеся в северном полярном небе. Аналогичный спектакль, aurora australis, можно наблюдать неподалеку от Южного полюса. Полярные сияния создаются двумя полосами электрического тока, текущими от магнитопаузы в магнитный хвост. Это, в свою очередь, создает новые магнитные поля и два электрических потока – западный и восточный.

(adsbygoogle = window.adsbygoogle || []).push({});

Значит, говорите, Земля – просто большой магнит? Ну да, а океан – это миска с водой.

Магнитные материалы, найденные в древних породах, свидетельствуют, что время от времени магнитное поле Земли меняет свою полярность, северный магнитный полюс становится южным и наоборот. Это происходит примерно один раз в полмиллиона лет, хотя строгую закономерность проследить так и не удалось. Никто точно не знает, почему это происходит, однако математические модели показывают, что магнитное поле Земли может быть ориентировано равновероятно и в том и в другом направлениях, причем ни одно из них не является устойчивым. Любое положение рано или поздно теряет устойчивость и передает эстафетную палочку противоположному. Переходы происходят быстро, в течение примерно 5 тысяч лет, тогда как периоды между ними в сто раз длиннее.

Магнитные поля имеются у большинства планет, и этот факт еще более сложнообъясним, чем земное поле. Нам с вами предстоит еще много узнать о планетарном магнетизме.

Альфред Вегенер

Одно из самых впечатляющих свойств нашей планеты было обнаружено в 1912 году, но не принималось во внимание до 60?х. Наиболее убедительным доказательством в ее пользу стала именно смена магнитных полюсов. Речь идет о том, что земные континенты не стоят на месте, но медленно дрейфуют по поверхности планеты. По мнению немецкого ученого

Альфреда Вегенера, первым опубликовавшего свою теорию, нынешние отдельные континенты раньше являлись одним суперматериком, который он назвал Пангея (то есть «Вся земля»). Он существовал около 300 миллионов лет назад.

Наверняка Вегенер не первым додумался до этого. Его идея, по крайней мере отчасти, возникла под влиянием удивительного сходства очертаний берегов Африки и Южной Америки. На карте это особенно бросается в глаза. Естественно, Вегенер опирался и на другие данные. Он был не геологом, а метеорологом, специалистом по древнему климату, и его удивляло то, что в регионах с холодным климатом обнаруживаются горные породы, явно возникшие в регионах с теплым, и наоборот. Например, в Сахаре до сих пор можно отыскать остатки древних ледников, возраст которых 420 миллионов лет, а в Антарктиде – окаменевшие папоротники. В те времена любой бы ему сказал, что просто поменялся климат. Однако Вегенер был убежден, что климат остался практически тем же, за исключением ледникового периода, а изменились, то есть переместились, сами континенты. Он предполагал, что они разделились в результате конвекции в земной мантии, но не был в этом уверен.

Эту идею посчитали безумной, тем более что предложена она была не геологом, и к тому же Вегенер игнорировал все факты, не влезающие в его теорию. И то, что сходство между Африкой и Южной Америкой не столь уж идеальное, и то, что дрейф материков невозможно было объяснить. Конвекция тут явно ни при чем, так как она слишком слаба.

Великий А’Туин (Йорик подозревает, что А’Туин – девочка), может, и несет на своей спине целый мир, но он – всего лишь выдумка, а в реальном мире, похоже, такие силы просто немыслимы.

Слово «немыслимы» мы употребили не случайно. Множество блестящих и уважаемых ученых частенько повторяют одну и ту же ошибку. Они путают выражение «Я не понимаю, как это может быть» с «Это совершенно невозможно». Одним из таких, как это ни стыдно признавать

одному из нас двоих, был математик, причем великолепный, но когда его расчеты показали, что земная мантия не может перемещать континенты, ему даже не пришло в голову, что теории, на которых строились расчеты, были ошибочны. Звали его сэр Гарольд Джеффрис, и его проблема была в том, что ему явно не хватало полета фантазии, потому что не только очертания материков по обе стороны Атлантики совпадали. С точки зрения геологии и палеонтологии тоже все сходилось. Возьмем, к примеру, окаменевшие останки бестии по имени мезозавр, жившей 270 миллионов лет назад одновременно в Южной Америке и Африке. Вряд ли мезозавр переплыл Атлантический океан, скорее он просто жил на Пангее, успев расселиться по обоим континентам, когда они еще не были разделены.

Однако в 60?х годах ХХ века идею Вегенера признали, и его теория «дрейфа материков» утвердилась в науке. На встрече ведущих геологов некий молодой человек по имени Эдвард Баллард, весьма напоминающий Думминга Тупса, и двое его коллег продемонстрировали возможности нового тогда устройства, называемого компьютером. Они поручили машине отыскать наилучшее соответствие не только между Африкой и Южной Америкой, но и Северной Америкой, а также Европой, учитывая возможные, но небольшие изменения. Вместо того чтобы взять нынешние очертания береговой линии, что с самого начала было не слишком блестящей идеей, позволяя противникам теории дрейфа утверждать, что материки не совпадают, молодые ученые использовали контур, соответствующий глубине 3200 футов (1000 м) ниже уровня моря, поскольку, по их мнению, он меньше подвергся эрозии. Контуры подошли хорошо, а геология так просто великолепно. И хотя люди на конференции все равно не пришли к единому мнению, теория континентального дрейфа получила наконец определенное признание.

Сегодня у нас имеется куда больше доказательств и четкое представление о механизме дрейфа. В центральной части Атлантического океана, на полпути между Южной Америкой и Африкой, с юга на север протянулся один из срединных океанических хребтов (такие, кстати, есть и во всех других океанах). Вулканические материалы поднимаются из недр вдоль всего хребта, а затем растекаются по его склонам. И так происходит уже в течение 200 миллионов лет. Можно даже отправить подводную лодку и просто понаблюдать за процессом. Конечно, всей человеческой жизни не хватит, чтобы это заметить, однако Америка удаляется от Африки со скоростью 3/4 дюйма (2 см) в год. Примерно с такой же скоростью растут наши ногти, тем не менее современная аппаратура способна регистрировать эти изменения.

Наиболее яркое доказательство континентального дрейфа получено благодаря магнитному полю Земли: горные породы по обе стороны хребтов имеют любопытный узор из магнитных полос, меняющих полярность с севера на юг и обратно, причем узор на обоих склонах симметричен. Это означает, что полоски застыли в магнитном поле по мере остывания. Когда время от времени земное динамо меняло свою полярность, горные породы хребта намагничивались в его поле. Затем, после разъединения намагниченных пород, одинаковые узоры оказались по разные стороны хребта.

Поверхность Земли – это не твердая сфера. И континенты, и океанское ложе плавают на огромных, особенно твердых плитах, которые могут разъехаться в стороны, когда между ними просачивается магма. (Причем чаще всего это происходит из-за конвекции в мантии. Просто Джеффрис не знал о движении мантии всего того, что знаем мы.) Существует около десятка плит, шириной от шестисот (1000 км) до шести тысяч (10 000 км) миль, и они все время поворачиваются. Там, где их границы соприкасаются, трутся и скользят, постоянно происходят землетрясения и извержения вулканов. Особенно в Тихоокеанском огненном поясе, протянувшемся по всему периметру Тихого океана и включающему в себя западное побережье Чили, Центральную Америку, США и дальше Японские острова и Новую Зеландию. Все они находятся на краю одной гигантской плиты. Там, где плиты сталкиваются, возникают горы: одна плита оказывается под другой и приподнимает ее, дробя и сминая ее край. Индия – это вовсе не часть Азиатского континента, она просто врезалась в него, сотворив высочайшие в мире горы – Гималаи. Она так разогналась, что до сих пор продолжает свое движение, и Гималаи растут.

(с) Наука Плоского мира, Терри Пратчетт, Джек Коэн, Айан Стюарт (Вообще, почитайте эту книжку, лучшего пособия в развлекательной форме не найти (но перед этим ознакомьтесь в принципе с серией “Плоского мира” Пратчетта в библиографическом НЕ КАК ПОПАЛЬНОМ порядке)).

Видео Магнитного поля от Роскосмоса:

 

Как работает компас

Кто не видел компас? Небольшая такая вещица, похожая на часы с одной стрелкой. Крутишь ее, вертишь, а стрелка упрямо разворачивается в одну сторону. Стрелка компаса представляет собой магнит, свободно вращающийся на игле. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные – отталкиваются. Наша планета также является таким магнитом. Сила его невелика, ее недостаточно, что бы проявиться на тяжелом магните. Однако легкая стрелка компаса, уравновешенная на игле поворачивается и под влиянием небольшого магнитного поля.

спортивный компас

Что бы стрелка компаса не болталась, а четко показывала направление вне зависимости от тряски, она должна быть достаточно сильно намагничена. В спортивных компасах колбу со стрелкой заливают жидкостью. Неагрессивной для пластмассовых и металлических частей, не замерзающей при зимних температурах. Пузырек воздуха, оставленный в колбе, несет в себе функции указателя уровня, для ориентации компаса в горизонтальной плоскости.

Первенство в изучении магнитного поля Земли принадлежит английскому ученому Уильяму Гильберту. В своей книге «О магните, магнитных телах и большом магните – Земле», изданной в 1600 году он представил Землю в виде гигантского постоянного магнита, ось которого не совпадает с осью вращения Земли. Угол между осью вращения и магнитной осью называют магнитным склонением.

В результате такого несовпадения, говорить, что стрелка компаса всегда указывает на север, не совсем верно. Она указывает на точку, находящуюся на расстоянии в 2100 км от северного полюса, на острове Соммерсет (его координаты 75°,6 с. ш., 101° з. д. – данные на 1965 г.) Магнитные полюса Земли медленно дрейфуют. Кроме такой ошибки в направлении стрелки (будем называть ее систематической), нельзя также забывать о других причинах неправильной работы компаса:

  • Металлические предметы или магниты, находящиеся вблизи компаса отклоняют его стрелку
  • Электронные приборы, являющиеся источниками электромагнитных полей
  • Залежи полезных ископаемых – металлических руд
  • Магнитные бури, происходящие в годы сильной активности солнца, искажают магнитное поле Земли.

А теперь, попробуйте ответить на вопросы для сообразительных:

  • Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?
  • Куда показывает стрелка, когда компас находится в районе магнитного полюса?
  • Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?

А пока Вы размышляете, приведу несколько интересных фактов о магнитном поле Земли.

Оказывается, оно ослабевает примерно на 0,5% каждые 10 лет. По различным подсчетам, оно исчезнет через 1-2 тысячи лет. Предполагается, что в этот момент будет происходить переполюсовка магнита – Земли. После чего поле снова начнет нарастать, но северный и южный магнитный полюса поменяются местами. Считается, что такое с нашей планетой происходило уже огромное количество раз.

Оказывается, что перелетные птицы также ориентируются “по компасу”, точнее, магнитное поле Земли служит им ориентиром. Недавно ученые узнали, что у птиц в области глаз располагается маленький магнитный “компас” — крохотное тканевое поле, в котором расположены кристаллы магнетита, обладающие способностью намагничиваться в магнитном поле.

Простейший компас можно изготовить самостоятельно. Для этого надо оставить рядом с магнитом швейную иглу на несколько дней. После этого игла намагнитится. Смочив ее жиром или маслом, аккуратно опустите иглу на поверхность налитой в чашку воды. Жир не даст ей утонуть, и игла развернется с севера на юг (ну или наоборот :).

Впечатлились? Вот теперь, можете проверить свои ответы на вопросы:

  • Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?
    – Северный конец стрелки будет показывать.. на юг, а южный – на север!
  • Куда показывает стрелка, когда компас находится в районе магнитного полюса?
    – оказывается, стрелка, подвешенная на нити в районе магнитного полюса стремится развернуться… вниз, вдоль магнитных линий Земли!
  • Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?
    – придешь на северный магнитный полюс! Попробуйте проследить свой путь на глобусе, очень интересный маршрут получается.

а так мог выглядеть морской компас на корабле Колумба

Надеемся, вам понравился этот материал. Если да, то будем делать больше таких разных!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Просмотры: 362

yorick.kz

Магнитные поля: опеределение, источники, СанПиН


Магнитное поле Земли

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Источниками макроскопического магнитного поля являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: магнитное поле возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента.

Переменное магнитное поле возникает также при изменении во времени электрического поля. В свою очередь, при изменении во времени магнитного поля возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения. Для характеристики магнитного поля часто вводят понятие силовых линий поля (линий магнитной индукции).

Для измерения характеристик магнитного поля и магнитных свойств веществ применяют различного типа магнитометры. Единицей индукции магнитного поля в системе единиц СГС является Гаусс (Гс), в Международной системе единиц (СИ) — Тесла (Тл), 1 Тл = 104 Гс. Напряжённость измеряется, соответственно, в эрстедах (Э) и амперах на метр (А/м, 1 А/м = 0,01256 Э; энергия магнитного поля — в Эрг/см2 или Дж/м2, 1 Дж/м2 = 10 эрг/см2.


Компас реагирует
на магнитное поле Земли

Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается до расстояния в 70—80 тысяч км в направлении к Солнцу и на многие миллионы км в противоположном направлении. У поверхности Земли магнитное поле равно в среднем 50 мкТл, на границе магнитосферы ~ 10-3 Гс. Геомагнитное поле экранирует поверхность Земли и биосферу от потока заряженных частиц солнечного ветра и частично космических лучей. Влияние самого геомагнитного поля на жизнедеятельность организмов изучает магнитобиология. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий — радиационный пояс Земли. Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение магнитного поля Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре.

Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела — Луна, планеты Венера и Марс не имеют собственного магнитного поля, подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными магнитными полями, достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены магнитные поля до 10 Гс и ряд характерных явлений (магнитные бури, синхротронное радиоизлучение и другие), указывающих на значительную роль магнитного поля в планетарных процессах.


© Фото: http://www.tesis.lebedev.ru
Фотография Солнца
в узком спектре

Межпланетное магнитное поле — это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле ~ 10-4—10-5 Гс. Регулярность межпланетного магнитного поля может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками.

Во всех процессах на Солнце — вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей магнитное поле играет важнейшую роль. Измерения, основанные на эффекте Зеемана, показали, что магнитное поле солнечных пятен достигает нескольких тысяч Гс, протуберанцы удерживаются полями ~ 10—100 Гс (при среднем значении общего магнитного поля Солнца ~ 1 Гс).

Магнитные бури

Магнитные бури — сильные возмущения магнитного поля Земли, резко нарушающие плавный суточный ход элементов земного магнетизма. Магнитные бури длятся от нескольких часов до нескольких суток и наблюдаются одновременно на всей Земле.

Как правило, магнитные бури состоят из предварительной, начальной и главной фаз, а также фазы восстановления. В предварительной фазе наблюдаются незначительные изменения геомагнитного поля (в основном в высоких широтах), а также возбуждение характерных короткопериодических колебаний поля. Начальная фаза характеризуется внезапным изменением отдельных составляющих поля на всей Земле, а главная — большими колебаниями поля и сильным уменьшением горизонтальной составляющей. В фазе восстановления магнитной бури поле возвращается к своему нормальному значению.


Влияние солнечного ветра
на магнитосферу Земли

Магнитные бури вызываются потоками солнечной плазмы из активных областей Солнца, накладывающимися на спокойный солнечный ветер. Поэтому магнитные бури чаще наблюдаются вблизи максимумов 11-летнего цикла солнечной активности. Достигая Земли, потоки солнечной плазмы увеличивают сжатие магнитосферы, вызывая начальную фазу магнитной бури, и частично проникают внутрь магнитосферы Земли. Попадание частиц высоких энергий в верхнюю атмосферу Земли и их воздействие на магнитосферу приводят к генерации и усилению в ней электрических токов, достигающих наибольшей интенсивности в полярных областях ионосферы, с чем связано наличие высокоширотной зоны магнитной активности. Изменения магнитосферно-ионосферных токовых систем проявляются на поверхности Земли в виде иррегулярных магнитных возмущений.

В явлениях микромира роль магнитного поля столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц — структурных элементов вещества (электронов, протонов, нейтронов), магнитного момента, а также действием магнитного поля на движущиеся электрические заряды.

Применение магнитных полей в науке и технике. Магнитные поля обычно подразделяют на слабые (до 500 Гс), средние (500 Гс — 40 кГс), сильные (40 кГс — 1 МГс) и сверхсильные (свыше 1 МГс). На использовании слабых и средних магнитных полей основана практически вся электротехника, радиотехника и электроника. Слабые и средние магнитные поля получают при помощи постоянных магнитов, электромагнитов, неохлаждаемых соленоидов, сверхпроводящих магнитов.

Источники магнитного поля

Все источники магнитных полей можно разделить на искусственные и естественные. Основными естественными источниками магнитного поля являются собственное магнитное поле планеты Земля и солнечный ветер. К искусственным источникам можно отнести все электромагнитные поля, которыми так изобилует наш современный мир, и наши дома в частности. Более подробно об электромагнитных полях, их влиянии на человека и способах оценки и экранинирования читайте на нашем сайте.

Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт — постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения — около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод — рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля — в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее — 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

Значения индукции магнитных полей, наиболее часто встречаемых нами в повседневной жизни приведены на диаграмме ниже. Глядя на эту диаграмму становится ясно, что мы подвергаемся воздействию магнитных полей постоянно и повсеместно. По мнению некоторых ученых, вредными считаются магнитные поля с индукцией свыше 0,2 мкТл. Ествественно, что следует предпринимать определенные меры предосторожности, чтобы обезопасить себя от пагубного воздействия окружающих нас полей. Просто выполняя несколько несложных правил Вы можете в значительной мере снизить воздействие магнитных полей на свой организм.

В действующих СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» сказано следующее: «Предельно допустимый уровень ослабления геомагнитного поля в помещениях жилых зданий устанавливается равным 1,5». Также установлены предельно допустимые значения интенсивности и напряжённости магнитного поля частотой 50 Гц:

  • в жилых помещениях — 5 мкТл или 4 А/м;
  • в нежилых помещениях жилых зданий, на селитебной территории, в том числе на территории садовых участков — 10 мкТл или 8 А/м.

Исходя из указанных нормативов каждый может рассчитать какое количество электрических приборов может находиться во включённом состоянии и в состоянии ожидания в каждом конкретном помещении или же заказать обследование помещений в нашей фирме, на основании которого будут выданы рекомендации по нормализации жилого пространства.


Видеоматериалы по теме



Небольшой научный фильм о магнитном поле Земли

Использованная литература

1. Большая Советская Энциклопедия.

www.avdspb.ru

Постоянное магнитное поле

Источниками этого поля являются постоянные электрические токи, движущиеся электрические заряды (телами и частицами), намагниченные тела, переменные электрические поля. Источниками постоянного магнитного поля являются постоянные токи.

Свойства магнитного поля

Во времена, когда изучение магнитных явлений только началось, исследователи особенное внимание уделяли тому, что существуют полюса в намагниченных брусках. В них магнитные свойства проявлялись особенно ярко. При этом четко было видно, что полюса магнита различны. Разноименные полюса притягивались, а одноименные отталкивались. Гильберт высказал идею о существовании «магнитных зарядов». Эти представление подержал и развил Кулон. На основе опытов Кулона силовой характеристикой магнитного поля стала сила, с которой магнитное поле действует на магнитный заряд, равный единице. Кулон же обратил внимание на существенные различия между явлениями в электричестве и магнетизме. Различие проявляется уже в том, что электрические заряды можно разделить и получить тела с избытком положительного или отрицательного заряда, тогда как невозможно разделить северный и южный полюса магнита и получить тело только с одним полюсом. Из невозможности деления магнита на исключительно «северный» или «южный» Кулон решил, что два эти вида зарядов неразрывны в каждой элементарной частице намагничивающего вещества. Так, было признано, что каждая частица вещества — атом, молекула или их группа — есть нечто вроде микро магнита с двумя полюсами. Намагничивание тела при этом — процесс ориентации его элементарных магнитов под влиянием внешнего магнитного поля (аналог поляризации диэлектриков).

Взаимодействие токов реализуется посредством магнитных полей. Эрстед обнаружил, что магнитное поле возбуждается током и оказывает ориентирующее действие на магнитную стрелку. У Эрстеда проводник с током был расположен над магнитной стрелкой, которая могла вращаться. Когда ток шел в проводнике, стрелка поворачивалась перпендикулярно проволоке. Смена направления тока вызывало переориентацию стрелки. Из опыта Эрстеда следовало, что магнитное поле имеет направление и должно характеризоваться векторной величиной. Эту величину назвали магнитной индукцией и обозначили: $\overrightarrow{B}.$ $\overrightarrow{B}$ аналогичен вектору напряженности для электрического поля ($\overrightarrow{E}$). Аналогом вектора смещения $\overrightarrow{D}\ $для магнитного поля стал вектор $\overrightarrow{H}$- называемый вектором напряжённости магнитного поля.

Магнитное поле воздействует только на движущийся электрический заряд. Магнитное поле рождается движущимися электрическими зарядами.

Магнитное поле движущегося заряда. Магнитное поле витка с током. Принцип суперпозиции

Магнитное поле электрического заряда, который движется с постоянной скоростью, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1\right),\]

где ${\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м}(в\ СИ)$ — магнитная постоянная, $\overrightarrow{v}$ — скорость движения заряда, $\overrightarrow{r}$ — радиус вектор, определяющий местоположение заряда, q — величина заряда, $\left[\overrightarrow{v}\overrightarrow{r}\right]$- векторное произведение.

Магнитная индукция элемента с током в системе СИ:

\[dB=\frac{{\mu }_0}{4\pi }\frac{Idlsin \vartheta}{r^2}\left(2\right),\]

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ — угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Направление вектора $\overrightarrow{dB}$ — перпендикулярно к плоскости, в которой лежат $\overrightarrow{dl}$ и $\overrightarrow{r}$. Определяется правилом правого винта.

Для магнитного поля выполняется принцип суперпозиции:

\[\overrightarrow{B}=\sum{{\overrightarrow{B}}_i\left(3\right),}\]

где ${\overrightarrow{B}}_i$ — отдельные поля, которые порождаются движущимися зарядами, $\overrightarrow{B}$ — суммарная индукция магнитного поля.

Пример 1

Задание: Найдите отношение сил магнитного и кулоновского взаимодействия двух электронов, которые движутся с одинаковыми скоростями $v$ параллельно. Расстояние между частицами постоянно.

Решение:

Будем считать, что один электрон поле создает (и магнитное и электрическое), а другой в нем движется. Тогда на электрон, который движется в поле, действует со стороны магнитного поля сила равная (система СИ):

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\left(1.1\right).\]

Поле, которое создает второй движущийся электрон равно:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1.2\right).\]

Пусть расстояние между электронами равно $a=r\ (постоянно)$. Используем алгебраическое свойство векторного произведения (тождество Лагража ($\left[\overrightarrow{a}\left[\overrightarrow{b}\overrightarrow{c}\right]\right]=\overrightarrow{b}\left(\overrightarrow{a}\overrightarrow{c}\right)-\overrightarrow{c}\left(\overrightarrow{a}\overrightarrow{b}\right)$))

\[{\overrightarrow{F}}_m=\frac{{\mu }_0}{4\pi }\frac{q^2}{a^3}\left[\overrightarrow{v}\left[\overrightarrow{v}\overrightarrow{a}\right]\right]=\left(\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)-\overrightarrow{a}\left(\overrightarrow{v}\overrightarrow{v}\right)\right)=-\frac{{\mu }_0}{4\pi }\frac{q^2\overrightarrow{a}v^2}{a^3}\ ,\]

$\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)=0$, так как $\overrightarrow{v\bot }\overrightarrow{a}$.

Модуль силы $F_m=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2},\ $где $q=q_e=1,6\cdot 10^{-19}Кл$.

Модуль силы Кулона, которая действует на электрон, в поле равна:

\[F_q=\frac{q^2}{{4\pi {\varepsilon }_0a}^2}.\]

Найдем отношение сил $\frac{F_m}{F_q}$:

\[\frac{F_m}{F_q}=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2}:\frac{q^2}{{4\pi {\varepsilon }_0a}^2}={\mu }_0{{\varepsilon }_0v}^2.\]

Ответ: $\frac{F_m}{F_q}={\mu }_0{{\varepsilon }_0v}^2.$

Пример 2

Задание: По витку с током в виде окружности радиуса R циркулирует постоянный ток силы I. Найдите магнитную индукцию в центре окружности.

Решение:

Рис. 1

Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу индукции элемента витка с током:

\[dB=\frac{{\mu }_0}{4\pi }\frac{Idlsin \vartheta}{r^2}\left(2.1\right),\]

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ — угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (2.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

\[dB=\frac{{\mu }_0}{4\pi }\frac{Idl}{R^2}\left(2.2\right).\]

От всех элементов тока будет образовываться магнитные поля, которые направлены по оси x. Это значит, что результирующий вектор индукции магнитного поля можно найти как сумму проекций отдельных векторов$\ \ \overrightarrow{dB}.$ Тогда по принципу суперпозиции полную индукцию магнитного поля можно получить, если перейти к интегралу:

\[B=\oint{dB\ \left(2.3\right).}\]

Подставим (2.2) в (2.3), получим:

\[B=\frac{{\mu }_0}{4\pi }\frac{I}{R^2}\oint{dl}=\frac{{\mu }_0}{4\pi }\frac{I}{R^2}2\pi R=\frac{{\mu }_0}{2}\frac{I}{R}.\]

Ответ: $B$=$\frac{{\mu }_0}{2}\frac{I}{R}.$

spravochnick.ru

магнитное поле

СРС

Тема: Магнитное поле

Подготовил: Байгарашев Д.М.

Проверила: Габдуллина А.Т.

Магнитное Поле

Если два параллельно расположенных проводника подсоединить к источнику тока так, чтобы по ним прошел электрический ток, то в зависимости от направления тока в них проводники либо отталкиваются, либо притягиваются.

Объяснение этого явления возможно с позиции возникновения вокруг проводников особого вида материи — магнитного поля.

Силы, с которыми взаимодействуют проводники с током, называются магнитными.

Магнитное поле — это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть «магнетиками». Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные — притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Магнитное поле в любой точке можно охарактеризовать вектором В, который называетсявектором магнитной индукции или магнитной индукцией в точке.

Магнитная индукция В — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь:

За направление вектора магнитной индукции В принимается направление положительной нормали к рамке, которое связано с током в рамке правилом правого винта, при механическом моменте, равном нулю.

Точно так же, как изображали линии напряженности электрического поля, изображают линии индукции магнитного поля. Линия индукции магнитного поля — воображаемая линия, касательная к которой совпадает с направлением В в точке.

Направления магнитного поля в данной точке можно определить еще как направление, которое указывает

северный полюс стрелки компаса, помещенный в эту точку. Считают, что линии индукции магнитного поля направлены от северного полюса к южному.

Направление линий магнитной индукции магнитного поля, созданного электрическим током, который течет по прямолинейному проводнику, определяется правилом буравчика или правого винта. За направление линий магнитной индукции принимается направление вращения головки винта, которое обеспечивало бы поступательное его движение по направлению электрического тока (рис. 59).

где n01= 4Пи• 10-7В • с/(А • м). — магнитная постоянная, R — расстояние, I — сила тока в проводнике.

В отличие от линий напряженности электростатического поля, которые начинаются на положительном заряде и оканчиваются на отрицательном, линии индукции магнитного поля всегда замкнуты. Магнитного заряда аналогично электрическому заряду не обнаружено.

За единицу индукции принимается одна тесла (1 Тл) — индукция такого однородного магнитного поля, в котором на рамку площадью 1 м2, по которой течет ток в 1 А, действует максимальный вращающий механический момент сил, равный 1 Н • м.

Индукцию магнитного поля можно определить и по силе, действующей на проводник с током в магнитном поле.

На проводник с током, помещенный в магнитное поле, действует сила Ампера, величина которой определяется следующим выражением:

где I — сила тока в проводнике, l —длина проводника, В — модуль вектора магнитной индукции, а — угол между вектором и направлением тока.

Направление силы Ампера можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца располагаем по направлению тока в проводнике, то отогнутый большой палец показывает направление силы Ампера.

Учитывая, что I = q0nSv, и подставляя это выражение в (3.21), получим F = q0nSh/B sin a. Число частиц (N) в заданном объеме проводника равно N = nSl, тогда F = q0NvB sin a.

Определим силу, действующую со стороны магнитного поля на отдельную заряженную частицу, движущуюся в магнитном поле:

Эту силу называют силой Лоренца (1853-1928). Направление силы Лоренца можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца показывали направление движения положительного заряда, большой отогнутый палец покажет направление силы Лоренца.

Сила взаимодействия между двумя параллельными проводниками, по которым текут токи I1 и I2 равна:

где l —часть проводника, находящаяся в магнитном поле. Если токи одного направления, то проводники притягиваются (рис. 60), если противоположного направления — отталкиваются. Силы, действующие на каждый проводник, равны по модулю, противоположны по направлению. Формула (3.22) является основной для определения единицы силы тока 1 ампер (1 А).

Магнитные свойства вещества характеризует скалярная физическая величина — магнитная проницаемость, показывающая во сколько раз индукция В магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции В0 магнитного поля в вакууме:

По своим магнитным свойствам все вещества делятся на диамагнитные, парамагнитные иферромагнитные.

Рассмотрим природу магнитных свойств веществ.

Электроны в оболочке атомов вещества движутся по различным орбитам. Для упрощения считаем эти орбиты круговыми, и каждый электрон, обращающийся вокруг атомного ядра, можно рассматривать как круговой электрический ток. Каждый электрон, как круговой ток, создает магнитное поле, которое назовем орбитальным. Кроме того, у электрона в атоме есть собственное магнитное поле, называемое спиновым.

Если при внесении во внешнее магнитное поле с индукцией В0 внутри вещества создается индукция В < В0, то такие вещества называются диамагнитными (n < 1).

В диамагнитных материалах при отсутствии внешнего магнитного поля магнитные поля электронов скомпенсированы, и при внесении их в магнитное поле индукция магнитного поля атома становится направленной против внешнего поля. Диамагнетик выталкивается из внешнего магнитного поля.

У парамагнитных материалов магнитная индукция электронов в атомах полностью не скомпенсирована, и атом в целом оказывается подобен маленькому постоянному магниту. Обычно в веществе все эти маленькие магниты ориентированы произвольно, и суммарная магнитная индукция всех их полей равна нулю. Если поместить парамагнетик во внешнее магнитное поле, то все маленькие магниты — атомы повернутся во внешнем магнитном поле подобно стрелкам компаса и магнитное поле в веществе усиливается (n >= 1).

Ферромагнитными называются такие материалы, в которых n » 1. В ферромагнитных материалах создаются так называемые домены, макроскопические области самопроизвольного намагничивания.

В разных доменах индукции магнитных полей имеют различные направления (рис. 61) и в большом кристалле

взаимно компенсируют друг друга. При внесении ферромагнитного образца во внешнее магнитное поле происходит смещение границ отдельных доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается.

С увеличением индукции внешнего поля В0 возрастает магнитная индукция намагниченного вещества. При некоторых значениях В0 индукция прекращает резкий рост. Это явление называется магнитным насыщением.

Характерная особенность ферромагнитных материалов — явление гистерезиса, которое заключается в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля при его изменении.

Петля магнитного гистерезиса — замкнутая кривая (cdc`d`c), выражающая зависимость индукции в материале от амплитуды индукции внешнего поля при периодическом достаточно медленном изменении последнего (рис. 62).

Петля гистерезиса характеризуется следующими величинами Bs, Br, Bc. Bs — максимальное значение индукции материала при В0s; Вr — остаточная индукция, равная значению индукции в материале при уменьшении индукции внешнего магнитного поля от B0s до нуля; -Вс и Вс — коэрцитивная сила — величина, равная индукции внешнего магнитного поля, необходимого для изменения индукции в материале от остаточной до нуля.

Для каждого ферромагнетика существует такая температура (точка Кюри (Ж. Кюри, 1859-1906), выше которой ферромагнетик утрачивает свои ферромагнитные свойства.

Существует два способа приведения намагниченного ферромагнетика в размагниченное состояние: а) нагреть выше точки Кюри и охладить; б) намагничивать материал переменным магнитным полем с медленно убывающей амплитудой.

Ферромагнетики, обладающие малой остаточной индукцией и коэрцитивной силой, называются магнитомягкими. Они находят применение в устройствах, где ферромагнетику приходится часто перемагничиваться (сердечники трансформаторов, генераторов и др.).

Магнитожесткие ферромагнетики, обладающие большой коэрцитивной силой, применяются для изготовления постоянных магнитов.

studfiles.net

Что есть магнитное поле — новое

 На просторах инетрнета есть масса тем, посвященных изучению магнитного поля. Необходимо отметить, что многие из них отличаются от того среднестатистического описания, которое существует в школьных учебниках. Моя задача состоит в том, чтобы собрать и систематизировать весь имеющийся в свободном доступе материал по магнитному полю для того, чтобы сфокусировать Новое Понимание магнитного поля. Изучение магнитного поля и его свойств можно с помощью разнообразных приемов. С помощью железных опилок, например грамотный анализ провел товарищ Фатьянов по адресуhttp://fatyf.narod.ru/Addition-list.htm  

С помощью кинескопа. Я не знаю фамилии этого человека, но знаю его ник. Он называет себя «Ветерок». При подносе магнита к кинескопу на экране образуется «сотовая картина». Можно подумать, что «сетка» есть продолжение кинескопной сетки. Это метод визуализации магнитного поля.

  

Я стал изучать магнитное поле с помощью ферромагнитной жидкости. Именно магнитная жидкость максимально визуализирует все тонкости магнитного поля магнита. 

Из статьи «что такое магнит» мы выяснили, что магнит это фрактализированная, т.е. уменьшенная в масштабе копия нашей планеты, магнитная геометрия которой максимально идентична простому магниту.  Планета земля, в свою очередь, является копией того, из недр чего она была образована — солнца. Мы выснили, что магнит это своего рода индукционная линза, которая фокусирует на своем объеме все свойства глобального магнита планеты земля. Есть необходимость введения новых терминов, с помощью которых мы будем описывать свойства магнитного поля.

 

Индукционный поток — это поток, который берет свое начало на полюсах планеты и проходит через нас в геометрии воронки. Северный полюс планеты это вход в воронку, южный полюс планеты это выход воронки. Некоторые ученые называют этот поток эфирным ветром, говоря, что он «имеет галактическое происхождение». Но это не «эфирный ветер» и накакой не эфир, это «индукционная река», которая течет с полюса до полюса. Электричество в молнии имеет ту же самую природу, что и электричество появляемое при взаимодействии катушки и магнита.

 

 Лучшее средство понять что есть магнитое поле — увидеть его. Размышлять и делать бесчисленные теории можно, но с позиции понимания физической сути явления — бесполезно. Думаю что все со мной согласятся, если я повторю слова не помню кого но суть такая что лучший критерий это опыт. Опыт и еще раз опыт.

  Дома у себя я делал простые опыты, но много мне позволившие понять. Простой магнит цилиндрической формы… И так его и сяк крутил. Налил на него магнитной жидкости. Стоит зараза, не шевелится. Тут я вспомнил, что на каком то форуме вычитал, что два магнита сдавленные одноименными полюсами в герметичной области — повышают температуру области, а противоположными полюсами наооборот понижают. Если температура следствие взаимодействия полей, то почему бы ей не побыть и причиной ? Я нагрел магнит используя «короткое замыкание» от 12 вт и резистор, просто прислонив нагретый резистор к магниту. Магнит нагрелся и магнитная жидкость начала сначало дергаться, а потом и вовсе стала подвижной. Магнитное поле возбуждается температурой. Но как же так, спросил я себя, ведь в букварях пишут о том, что температура ослабляет магнитные свойства магнита. И это правда, но это «ослабление» кагбы компенсируется возбуждением магнитного поля этого магнита. Иными словами магнитная сила не исчезает, но трансформируется в силу возбуждения этого поля. Отлично Все вращается и все кружится. Но почему вращающееся магнитное поле имеет именно такую геометрию вращения, а не какую то другую ? На первый взгляд движение хаотично, но если посмотреть через микроскоп, то можно заметить, что в этом движении присутствует система. Система никак не принадлежащая магниту Но только локализующая его. Иными словами, магнит можно рассмотреть как энергетическую линзу, которая фокусирует в своем объеме возмущения.

СО ТЫ

Магнитное поле возбуждается не только от повышения температуры, но и от ее понижения. Думаю что правильней будет сказать, что магнитное поле возбуждается градиентом температур, чем одним каким то конкретным ее знаком. В том то и дело, что нет видимой «перестройки» структуры магнитного поля. Есть визуализация возмущения, которое проходит через область этого магнитного поля. Представьте себе возмущение, которое движется по спирали от северного полюса до южного через весь объем планеты. Так вот магнитное поле магнита = локальная часть этого глобального потока. Понимаете ? Однако у меня нет уверенности в том, какого конкретно потока…Но факт в том, что потока. Причем потоков не один, а два. Первый внешний, а второй внутри него и вместе с первым движется, но в обратную сторону вращается. Магнитное поле возбуждается из-за градиента температуры. Но мы опять искажаем суть, когда говорим «магнитное поле возбуждается». Дело в том, что оно уже находится в возбужденном состоянии. Когда мы прикладываем градиент температур, мы искажаем это возбуждение до состояния повяления разбалансировки. Т.е. понимаем, что процесс возбуждения это постоянный процесс, в котором находится магнитное поле магнита. Градиент он искажает параметры этого процесса так, что мы оптически замечаем разницу между нормальным его возбуждением и тем возбуждением, которое вызвано градиентом.

Но почему в стационарном состоянии магнитное поле магнита неподвижно ? НЕТ, оно также подвижно, но относительно движущихся систем отсчета, например нас, оно неподвижно. Мы движемся в пространстве с этим возмущением Ра и оно нам кажется наподвижным. Температура, которую мы прикладываем к магниту, создает кагбы местную разбалансировку этой фокусируемой системы. Появлется некая нестабильность в пространственной решетке, коя есть сотовая структура. Ведь пчелы строят свои дома не на пустом месте, но они кагбы облепляют структуру пространства своим строительным материалом. Таким образом, исходя из чисто опытных наблюдений, делаю вывод, что магнитное поле простого магнита это потенциальная система локальной разбалансировки решетки пространства, в котором как Вы уже догадались нет места атомам и малекулам, которых никто никогда не видел Температура она как «ключ зажигания» в этой локальной системе, включает разбалансировку. В данный момент я тщательно изучаю методы и средства управления этой разбалансировки.

Что есть магнитное поле и чем оно отличается от электромагнитного поля ?

Что есть торсионное или энергоинформационное поле ?

Это все есть одно и тоже, но локализующееся иными методамим.

Сила тока — есть плюс и сила отталкивания,

напряжение есть минус и сила притяжения,

короткое замыкание, или скажем локальная разбалансировка решетки — есть сопротивление этому взаимопроникновению. Или же взаимопроникновение отца, сына и святого духа. Помним, что метафора «адама и евы» есть старое понимание икс и ыгрик хромосом. Ибо понимание нового, это новое понимание старого. «Сила тока» — вихрь, исходящий от постоянно вращающегося Ра, оставляя позади себя информационное переплетение себя. Напряжение есть еще один вихрь, но внутри основного вихря Ра и движущийся вместе с ним. Визуально это можно представить в виде РАковины, рост которой происходит в направлении двух спиралей. Первая внешняя, вторая внутренняя. Или один внутрь себя и по часовой, а второй из себя и против часовой.  Когда два вихря взамопроникают друг в друга, они образуют структуру, наподобии слоев Юпитера, которые движутся в разные стороны. Остается понять, механизм этого взаимопроникновения и система, которая образуется.

Примерные задачи на 2015 год

1. Найти методы и средства управления разбалансировкой.

2. Выявить материалы, наиболее влияющие на разбалансировку системы. Найти зависимость от состояния материала согласно таблицы 11 ребенка.

3. Если всякое живое существо, по своей сути, является такой же самой локализованной разбалансировкой, следовательно ее необходимо «увидеть». Иными словами необходимо найти метод фиксации человека в иных спектрах частот.

4. Главная задача в том, чтобы визуализировать не биологические спектры частот, в которых происходит непрерывный процесс творения человека. Например мы с помощью средства прогресса анализируем спектры частот, не входящие в биологический спектр чувств человека. Но мы их только регестрируем, но мы не можем их «осознать». Поэтому мы не видим дальше, чем могут осознать наши органы чувств. Вот моя главная задача на 2015 год. Найти методику технического осознания не биологического спектра частот с тем, чтобы увидеть информационную основу человека. Т.е. по сути его душу.

 

Особый вид изучения это магнитное поле в движении. Если мы нальем магнитную жидкость на магнит, она займет объем магнитного поля и будет стационарной. Однако нужно проверить опыт «Ветерка» где он подносил магнит к экрану монитора. Есть предположение что магнитное поле уже находится в возбужденном состоянии, однако объем жидкости его кагбы сдерживает в стационарном состоянии. Но я не прверял пока.

Магнитное поле может возбуждаться посредством приложения температуры к магниту, либо помещением магнита в индукционную катушку. Нужно заметить, что жидкость возбуждается только при определенном пространственном положении магнита внутри катушки, состовляя определенный угол к оси катушки, который можно найти опытным путем. 

Я провел десятки опытов с движущейся магнитной жидкостью и поставил себе цели:

1. Выявить геометрию движения жидкости.

2. Выявить параметры, которые влияют на геометрию этого движения.

3. Какое место занимает движение жидкости в глобальном движении планеты Земля.

4. Зависит ли пространственное положение магнита и приобритаемой ей геометрии движения.

5. Почему «ленты» ?

6. Почему ленты скручиваются

7. От чего зависит вектор скручивания лент

8. Почему конусы смещаются только посредством узлов, которые есть вершины соты, причем скручиваются всегда только три близ лежащие ленты.

9. Почему смещение конусов происходит резко, по достижении определенной «накрученности» в узлах ?

10. Почему размер конусов пропорционален объему и массе наливаемой на магнит жидкости

11. Почему конус разделен на два ярко выраженных сектора.

12. Какое место это «разделение» занимает в разрезе взаимодействия между полюсами планеты.

13. Как зависит геометрия движения жидкости от времени суток, времени года, солнечной активности, намерения эксперементатора, давления и дополнительных градиентов. Например резкое изменение «холодное горячее»

14. Почему геометрия конусов идентична с геометрией Варджи — специального вооружения возвращающихся богов ?

15. Имеются ли данные в архивах специальных служб 5 автоматов какие либо сведения о назначении, наличии или хранении образцов данного вида вооружений.

16. Что говорят выпотрошенные кладовые знания различных тайных организаций об этих конусах и связана ли геометрия конусов со звездой Давида, суть которая есть идентичность геометрии конусов. (масоны, иузеиты, ватиканы, и прочие несогласованные образования).

17. Почему среди конусов всегда есть лидер. Т.е. конус с «коронкой» на вершине, который «организует» движения 5,6,7 конусов вокруг себя.

18. 

конуса в момент смещения. Рывок. «…только двигаясь буквой «Г» я к нему дойду»….

немного ракуср перевернутый. Кружок — это вершина конуса. В правой части хорошо заметен «узел». Узел представляет собой три ленты блилежащих конусов. Узел скручивается, скручивая закрепленные за ним ленты. По достижении некоторого «насыщения» или же натяжения, происходит рывок — смещение всей структуры. Конуса как бы в хороводе смещаются. Можно сравнить узал с петлей, о которой говорил Крайон. Но пока логики я не вижу

Это конус лидер. У него всегда есть нечто наподобии короны. Мифологично, но факт мля. Такое ощущение что «лидер» ведет ГРУппу из 5,6 или 7 вокруг него находящихся конусов. Но нужны наблюдения, много наблюдений. (филерских кагбы)

Вверху и внизу два фото. Это узлы, на которые «наматываются» ленты. 

http://www61.jimdo.com/app/s629ce00ecc62daa6/p862693dcebd17306/?cmsEdit=1 http://www61.jimdo.com/app/s629ce00ecc62daa6/p5bb44c06c043aa97?cmsEdit=1

phoba.jimdo.com

Суть магнитного поля. Как и почему создается электромагнитное поле, его природа.

 

 

 

Тема: что собой представляет магнитное поле, его принцип действия.

 

Многие знают о существовании так называемого магнитного поля. Самым распространенным предметом, вокруг которого оно существует является обычный постоянный магнит. Что мы о нем знаем и как он себя обычно проявляет? Это кусок из твердого материала, притягивающий к себе железные предметы. Он может иметь любую форму, ее предают при изготовлении с учетом конкретного предназначения магнита. Магниты имеют полюса — южный и северный. Если взять два куска магнита и попытаться их соединить, то в одном случае они попытаются притянутся друг к другу, а в другом случае они будут стремится оттолкнуться. Одноименные полюса отталкиваются, а разноименные притягиваются.

 

Помимо этого если одни целый магнит разбить на два куска (не важно, будут ли он и равны или нет) мы получим уже два разных магнита, у которых будут свои магнитные полюса и своя интенсивность притягивания. В этом случае сила магнетизма будет зависеть от размеров этих самых магнитов. Почему же так происходит? В чем заключается суть этих интересных явлений, связанных с магнетизмом?

 

А суть магнитного поля заключается в следующем. Из школьной физики вы должны были помнить, что существуют так называемые электрические заряды (электроны и ионы). В твердых веществах носителями электрических зарядов являются электроны, а в жидких и газообразных — ионы. Магнитные поля, как и любые другие поля, являются особым видом материи, которая проявляет себя в виде некой силы, невидимой глазу. Хотя точнее будет, пожалуй, говорить электромагнитные поля так как именно в суммарной форме они себя проявляют (электрическое и магнитное поле).

 

 

 

 

Итак, магнитное поле существует вокруг движущегося электрического заряда. Именно движущегося. Вокруг электрических зарядов, что находятся в статическом состоянии существует только электрическое поле. Но поскольку заряды находятся в постоянном движении, то речь скорей идет о интенсивности этого движения. Одно дело когда электроны (частицы, имеющие отрицательный электрический заряд) просто сконцентрированы в металлическом шаре (максимальным будет именно электрическое поле вокруг шара) и в этом случае их динамическое движение будет гораздо меньше проявляться нежели в случае их непосредственного движения по проводнику (именно тут мы увидим максимальное магнитное поле) от одного полюса источника питания к другому.

 

Получается, что суть магнитного поля заключается в его образовании именно вокруг движущихся электрических зарядов. И чем быстрее будет двигаться заряд по проводнику, тем больше будет интенсивность магнитного поля вокруг этого самого заряда. Кроме этого магнитные поля могут суммироваться если они имеют одну и ту же направленность. После чего уже имеем — чем быстрее движется электрический заряд и чем больше количество этих зарядов, движение которых совпадает по направлению, тем сильнее будет электромагнитное поле вокруг этих зарядов (и вокруг этого электрического проводника, по которому они перемещаются).

 

Теперь можно понять, почему вокруг обычной медной катушки, по которой течет постоянный ток, появляется магнитное поле и от чего зависит его интенсивность. Просто само движение тока, электронов (заряженных частиц с отрицательным знаком) по катушки и порождает электромагнитные поля. И чем больше количество витков у  этой катушки, больше ток, проходящий по ней, тем больше и сила магнитного поля вокруг нее. А почему тогда лампочка, по которой бежит ток, не имеет такого магнитного поля (интенсивного) как у катушки? Просто электрическая энергия у лампочки больше расходуется именно на свет и тепло, и в меньшей степени на электромагнитное поле. В то время как у плотно намотанной, сконцентрированной катушки большая часть электрической энергии тратится именно на создание магнитного поля и совсем незначительная его часть на выделение тепла.

 

 

А как работают постоянные магниты? Ведь по ним же не течет ток. Токи есть, только это микротоки, порождаемые движением электронов внутри самого вещества. Тут все дело в однонаправленности этих токов и способности вещества удерживать постоянное состояние этой однонаправленности. Движение электронов присутствует во всех веществах, но вот магнитные свойства проявляются только у тех, которые обладают ферромагнитными свойствами. Ферромагнетики, это вещества, которые легко могут менять (при определенных условиях) и стабильно удерживать определенную внутреннюю структуру своих частиц, влияющую на магнитные свойства этого вещества.

 

Итак, мы берем вещество, с хорошими ферромагнитными свойствами, помещаем его в постоянное электромагнитное поле высокой интенсивности, после чего наблюдаем перестраивание внутренней структуры этого вещества. Появляется однонаправленность его магнитных частиц. В итоге, это вещество само становится магнитом. Все его внутреннии частички (атомы, молекулы) с одной стороны образовали южный магнитный полюс, а с другой стороны — северный. В результате мы получили обычный магнит. Если этот магнит поместить в переменное магнитное поле (большой интенсивности), сильно нагреть, подвергать сильным механическим ударам, то в итоге мы может размагнитить наше ферромагнитное вещество. Оно утратит свои магнитные свойства.

 

P.S. Электромагнитное поле существует повсюду, оно есть везде. Только вот его интенсивность везде разная и не во всех вещах имеется свойство стабильного поддержания этого магнитного поля. Магниты можно делать из вещей, которые до этого не были таковыми (их просто нужно намагнитить). Либо магнитное поле можно получить за счет пропускания постоянного тока через медную катушку. В этом случае мы уже получим электромагнит. Он будет работать только тогда, когда к нему подключено электрическое питание.

 

electrohobby.ru

Магнитное поле — Традиция

Картина силовых линий магнитного поля, создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

Магни́тное по́ле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции \(\vec{\mathbf{B}}\) (вектор индукции магнитного поля)[1]. В СИ магнитная индукция измеряется в теслах (Тл).

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитные волны.

Электрический ток(I) проходя через проводник — производит магнитное поле (B) вокруг проводника (соленоид).

Магнитное поле формируется изменяющимся во времени электрическим полем либо собственными магнитными моментами частиц. Кроме того, магнитное поле может создаваться током заряженных частиц.

Образование магнитного потока в соленоиде. В центре по длине на оси соленоида магнитное поле практически однородно.

Солено́ид — разновидность катушки индуктивности. Название происходит от гр. solen — канал, труба и eidos — подобный. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, причём длина такой обмотки многократно превышает её диаметр.

В простых случаях магнитное поле может быть найдено из закона Био — Савара — Лапласа или теоремы о циркуляции (она же — закон Ампера). В более сложных ситуациях ищется как решение уравнений Максвелла.

Магнитные свойства веществ[править]

  • Антиферромагнетики — магнитные моменты вещества направлены противоположно и равны по силе.
  • Диамагнетики — вещества, намагничивающиеся против направления внешнего магнитного поля.
  • Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.
  • Ферромагнетики — вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов
  • Ферримагнетики — материалы, у которых магнитные моменты вещества направлены противоположно но не равны по силе.

Проявление магнитного поля[править]

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к вектору \(\mathbf{v}\)[1]. Она пропорциональна заряду частицы \(q\!\), составляющей скорости \(\mathbf{v}\), перпендикулярной направлению вектора магнитного поля \(\mathbf{B}\), и величине индукции магнитного поля \(B\!\). В системе единиц СИ (система единиц) сила Лоренца выражается так: $$\mathbf{F}=q[\mathbf{v},\mathbf{B}]$$

В системе единиц СГС: $$\mathbf{F}=\frac{q}{c}[\mathbf{v},\mathbf{B}]$$

Также магнитное поле действует на проводник с током. Сила, действующая на проводник будет называться силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов[править]

Наиболее часто встречаемое проявление магнитного поля — взаимодействие двух магнитов: подобные полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами, как взаимодействие между двумя монополями, но эта идея не приводит к правильному описанию явления.

Правильнее будет сказать, что на магнитный диполь помещённый в неоднородное поле действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем.

Сила, действующая на магнитный диполь с магнитным моментом \(\mathbf{m}\) выражается по формуле: $$\mathbf{F}=\left( \mathbf{m}\cdot \nabla \right)\mathbf{B}.$$[2]

Сила, действующая на магнит со стороны неоднородного магнитного поля, может быть также определена суммированием всех сил, действующих на элементарные диполи, составляющие магнит.

Явление электромагнитной индукции[править]


Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции.

Математическое представление[править]

Термин магнитное поле применяется к двум различным векторным полям, обозначаемым как \(\mathbf{H}\) и \(\mathbf{B}\). Величина \(\mathbf{H}\) называется напряженностью магнитного поля. Термин «магнитное поле» исторически относится к \(\mathbf{H}\), в то время как \(\mathbf{B}\) называется магнитной индукцией. Магнитная индукция \(\mathbf{B}\) является основной[2][3][4] характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы \(\mathbf B\) и \(\mathbf E\) на самом деле являются компонентами единого тензора электромагнитного поля. Аналогично, в единый тензор объединяются величины \(\mathbf H\) и электрическая индукция \(\mathbf D\). В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора \(\mathbf B\) и \(\mathbf E\) должны рассматриваться совместно.

Единицы измерения[править]

Величина \(\mathbf{B}\) в системе единиц СИ измеряется в теслах, в системе СГС в гауссах.

Векторное поле \(\mathbf{H}\) измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС. Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.

Энергия магнитного поля[править]

Энергию магнитного поля можно найти по формуле: $$W = \frac{\Phi I}{2} = \frac{L I^2}{2}$$

где: $$\Phi$$— магнитный поток, $$I$$— ток, $$L$$— индуктивность катушки или витка с током.

  1. а б Яворский Б. М., Детлаф А. А. Справочник по физике: 2-е изд., перераб. — М.: Наука, Главная редакция физико-математической литературы, 1985, — 512 с.
  2. а б Сивухин Д. В. Общий курс физики. Т. III. Электричество. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — 656 с. — ISBN 5-9221-0227-3; 5-89155-086-5>Регулярное выражение «ISBN» классифицировало значение «5922102273;ISBN5891550865.» как недопустимое.
  3. ↑ При рассмотрении задач не на микроскопическом масштабе, а на т. н. физически бесконечно малом масштабе (ФЭ,Л-М.у.)
  4. ↑ [1]

an:Campo magnetico cy:Maes magnetig eo:Kampo (magneto) ext:Campu manéticu hu:Mágneses mező lt:Magnetinis laukas lv:Magnētiskais lauks nn:Magnetfelt scn:Campu magneticu (artìculu ‘n calabbrisi) su:Médan Magnétik ur:مقناطیسی میدان

traditio.wiki

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *