Как рассчитать емкость аккумулятора: Расчет емкости аккумуляторной батареи — Новые Системы и Альтернативы

Содержание

Расчет емкости аккумуляторной батареи — Новые Системы и Альтернативы

Емкость аккумулятора – важный параметр для расчета мощностей автономной солнечной системы. Его значение высчитывают перед покупкой оборудования.

Выбор аккумулятора напрямую зависит не только от суточной нормы потребления энергии, но и от того, с какой интенсивностью предполагается их использовать. Это может быть постоянный режим эксплуатации (цикличный, когда происходит регулярный заряд/разряд батареи) или буферный режим (резервный), который подает энергию в домашнюю сеть, если внешняя сеть отключена.

Если работа аккумулятора будет продолжаться постоянно, лучше всего использовать гелевые батареи и батареи с жидкими электролитами. Для резервного питания подходят кислотные аккумуляторы.

Не важно, купили вы аккумулятор или еще стоите перед выбором, в любом случае, обратите внимание, что герметичные необслуживаемые батареи (те, в которые не нужно периодически доливать воду и электролиты для восполнения ресурса) рекомендуется разряжать не более чем на 40%, стартерные батареи подразумевают использование не более 50% от всей накопленной энергии.

Срок службы каждого аккумулятора рассчитан на выполнение определенных циклов «заряд/разряд». К примеру, разрядка аккумулятора на 30% обеспечивает производительность батареи, равную 1000 циклам. При разрядке на 70% аккумулятор выполняет 700 циклов. Разрядка на 100% способна и вовсе выбить аккумулятор из строя после выполнения незначительного количества циклов.

Расчет запаса энергии аккумулятора

Рассчитать необходимый запас энергии от аккумуляторной батареи, требуемый для обеспечения работы определенных или всех приборов в доме, можно самостоятельно по следующей формуле:

P (Втч) = R (Ач) x U (В)

где P – необходимый запас энергии, R – номинальная емкость аккумулятора, U – напряжение.

Поскольку батарею не желательно разряжать полностью, нужно учесть это в расчетах. Для этого определяют количество энергии, которую можно использовать от полного запаса, в процентах и выводят коэффициент со значением от 0,9 до 0,1. Если взять средне-оптимальный вариант разряда до 30%, тогда следует умножить результат из расчета по формуле на коэффициент глубины разряда 0,7.

Но аккумуляторная батарея может состоять из нескольких соединенных между собой аккумуляторов. Чтобы узнать емкость всей аккумуляторной цепи, нужно умножить результат на количество подсоединенных друг к другу аккумуляторов. Если в одну цепь последовательно подсоединены устройства с разной емкостью, такой аккумулятор может плохо работать и, в конце концов, выйдет из строя. Поэтому такой момент в расчет брать не стоит.

Впрочем, алгоритм расчета зависит от того, каким способом соединены аккумуляторы – параллельно или последовательно. При параллельном соединении суммируются значения мощности каждого устройства, при последовательном (цепном) соединении – значения напряжений.

Расчет количества аккумуляторов для батареи

С помощью формулы, приведенной в параграфе выше, можно вычислить не только общую емкость, но и количество аккумуляторов, необходимое для выработки нужного объема электроэнергии. Такие расчеты выполняют последовательно. Сначала высчитывают емкость, затем количество.

Допустим, что запас требуемой энергии и напряжение нам известно. Неизвестной переменной становится R – емкость аккумуляторной батареи, способная обеспечить необходимое количество электричества.

Соответственно, вычислить емкость батареи можно, зная требуемый запас энергии и необходимое входное напряжение, можно по следующей формуле:

R = P/(U x k)

Приведем пример. Предположим, что нам необходим запас энергии 5000 Втч, 12 В напряжения, и мы можем себе позволить потребление 70% от общего заряда аккумулятора.

R = 5000/(12 x 0,7) = 595 Ач

Значит, для выработки энергии 5000 Втч необходимо 6 аккумуляторов с емкостью 100 Ач или, например, 10 аккумуляторов с емкостью 50 Ач. Это может быть 3 аккумулятора с емкостью 200 Ач и так далее.

Влияние рабочих условий на разряд аккумулятора

Нужно понимать, что на разряд аккумулятора мало влияет напряжение тока. То есть, если показатель напряжения низкий, к примеру, около 9В, и разрядка происходит медленно под воздействием слабого тока, это не означает, что батарея не может разрядиться на 100%.

Помимо прочего необходимо учитывать и температуру среды, в которой содержится аккумулятор. У разных моделей есть свои особенности. Стартерные аккумуляторы и батареи типа AGM сильнее подвержены воздействию низких температур. При падении до 0 градусов емкость таких моделей может быть сокращена вдвое.

Повышение температуры более +25 градусов также неблагоприятно влияет на работу аккумуляторов и сокращает срок их службы. В случае с высокими температурами помогает естественный обдув аккумуляторов.

Вычисление емкости аккумулятора и необходимого запаса энергии без ущерба сроку службы батареи – задача не из простых. Однако необходимо произвести расчеты грамотно, чтобы получать от солнечной системы удовлетворение и экономию, а не проблемы.

Если вы затрудняетесь выполнить расчеты самостоятельно или просто не хотите заниматься этим трудоемким делом, обратитесь в компанию «НСиА». Мы не только вычислим емкость батареи, но и посоветуем, какой аккумулятор купить в Краснодаре. И даже предложим выгодные варианты из нашего магазина. Мы продаем только качественное оборудование от производителя, востребованное на рынке ввиду больших преимуществ и положительных отзывов покупателей.

Расчет автономной работы потребителя от аккумуляторов. Калькуляторы

Как правильно и корректно рассчитать время автономии, которое необходимо получить для вашего потребителя?

Для простоты мы сделали калькуляторы расчета:

А теперь представим алгоритм расчета:

1) Определяем совокупную мощность нагрузки и постоянный ток разряда.

2) Вычисляем необходимую емкость аккумулятора для заданной автономии.

3) Определяем тип аккумулятора

Пример

Дано: две светодиодные ленты мощностью по 10Вт и работающие от 12В. Необходимая автономия: 10ч. Срок службы: год при ежедневной эксплуатации. Условия эксплуатации: постоянная комнатная температура 20 градусов.

Найти: минимально допустимые и оптимальные аккумуляторы для решения задачи.

Решение

1) Совокупная мощность W=10Вт*2=20Вт. Постоянный ток разряда: I=20/12=1.67A. Для точных расчетов желательно померить ток потребления при помощи мультимера.

2) Для определения необходимой емкости следует пройти по пунктам:

а) Для того, чтобы продержать нагрузку на таком токе разряда необходимо определить минимальную расчетную емкость АКБ: 1,67*10=16,7Ач.

б) Нужно иметь ввиду, что емкость аккумуляторных батарей указывается производителями исходя из определенного времени разряда. Обычно это 10 часов. Но некоторые производители указывают 20 часов. Тут нам поможет спецификация по АКБ, которую можно взять на нашем сайте. Посмотрим спецификацию Delta DTM 1226:

Разрядные характеристики ближайшего планируемого АКБ

В нашем случае, время работы от АКБ 10 часов, значит мы можем считать емкость равной номинальной. Однако, если в задаче стоит 5 часов, то нужно делать поправку на то, что при таком времени разряда емкость АКБ будет ниже (умножаем ток разряда на часы – 4,8А*5ч=24Ач вместо 28).

в) Далее, нужно учитывать кол-во циклов заряда-разряда, на который мы проектируем систему (из спецификации):

Расчётное количество циклов

В задаче мы можем видеть, что планируемое кол-во циклов у нас 365. Ориентировочная предельная глубина разряда в нашем случае – около 57%. Желательно взять с запасом, будем рассчитывать на 50% разряд (реальные условия эксплуатации отличны от идеальных лабораторных условий).

Таким образом, вводим поправку 0,5: 16,7/0,8=33,4Ач.

г) В случае, если мы имеем дело с отличной от оптимальной температурой эксплуатации (25градусов), необходимо водить поправочный коэффициент, который тоже можем взять из спецификации:

Влияние температуры на емкость аккумулятора

Так при температуре 10 градусов следует ввести коэффициент 0.9, т.е. ещё +10% к расчётной емкости.

3) В случае, если нам необходимы долгие режимы разряда – следует обратить внимание на серии AGM аккумуляторов популярных на российском рынке производителей:

  • У АКБ Delta – серия DTM
  • У CSB – GP
  • У BB Battery  – BC

В случае, если разряд производится высокими токами, но короткое время:

Это АКБ оптимизированы на высокую энергоотдачу, хотя и для долгих разрядов они подходят не хуже (они просто дороже). Аккумуляторы по технологии GEL не совсем оптимальны для данной задачи, т.к. заметно дороже, а глубокий разряд хоть и допустим, но резко снижает срок службы.

Ответ: минимально: Delta DTM 1233 (33Ач), оптимально: Delta DTM 1240 (40Ач), либо аналоги.

Похожая статья про способы расчета в нашем блоге: https://tok-shop.ru/tok-blog/time-ups-akb/

Как определить оставшийся срок службы (остаточный ресурс) аккумуляторной батареи (АКБ)?

Чтобы система бесперебойного питания не подвела в самый неподходящий момент, необходимо, чтобы все аккумуляторные батареи были в рабочем состоянии. Но как их проверить? Как убедиться, что установленные АКБ ещё не исчерпали свой остаточный ресурс? Как правильно оценить их оставшийся срок службы?

Строго говоря, самый правильный ответ вопрос, поставленный в такой форме – «никак». Ни один из приборов и методов не позволяет дать точный прогноз того, сколько еще проработает батарея и в какой именно момент она выйдет из строя.

Причем касается это как обслуживаемых батарей (хотя в их отношении диапазон принимаемых мер несколько шире), так и необслуживаемых. При этом по всему миру обслуживаемые батареи используются все меньше, в то время как популярность необслуживаемых АКБ растет практически во всех областях применения.

Методом полного заряда/разряда батареи можно определить остаточную емкость аккумулятора в ампер-часах. Это достоверный метод, но даже он при однократном проведении не даст информации о том, сколько еще проработает батарея. Составить прогноз «времени дожития» можно только в том случае, если измерения проводятся на регулярной основе, их результаты сопоставляются между собой – т. е. оценивается

динамика изменений. Однако полный заряд/разряд – процедура весьма продолжительная, и проводить ее регулярно (особенно при значительном количестве батарей) вряд ли возможно.

Однократный краткосрочный тест тем более не дает достоверной информации об остаточном ресурсе. Говорить о точном определении остаточной емкости в этом случае вообще не приходится – слишком разные существуют варианты аккумуляторов, чтобы существовала единая методика определения этого параметра. Можно измерить напряжение, но как сделать выводы на основе этих показаний, если уже частично деградировавший элемент выдает такое же напряжение, что и соседние? Возникает вопрос, можно ли вообще что-либо сказать о текущем состоянии АКБ при помощи быстрых измерений, или остается примириться с тем, что со временем, неизвестно в какой момент батарея выйдет из строя и ее придется менять? А ведь последствия такого события могут оказаться очень тяжелыми. Для ряда объектов: ЦОДов, подстанций, аэропортов, предприятий нефтегазовой отрасли, энергетики, медицинских учреждений и других, работа которых должна быть бесперебойной – подобные аварии просто неприемлемы, их необходимо предотвращать, а не устранять последствия.

Существует несколько базовых стратегий в работе с АКБ:

  1. Менять батарею только тогда, когда она выйдет из строя или полностью утратит емкость. Средства на проверку состояния батарей не затрачиваются, однако весь риск неблагоприятных последствий в случае сбоя ложится на владельца объекта или предприятия. Потери от одного сбоя могут многократно превысить всю «экономию» на тестировании батарей.

  2. Менять батареи по истечении определенного времени эксплуатации, независимо от их состояния. Средства на проверочные мероприятия также не затрачиваются, однако остается риск сбоя, если батарея утратит рабочие свойства раньше ожидаемого срока. Кроме того, качественные батареи часто могут работать продолжительное время и после того, как заявленный производителем срок службы (гарантийный период) истек. При таком подходе даже исправные батареи будут изыматься из эксплуатации, вызывая неоправданный рост расходов.

  3. Проводить регулярное тестирование АКБ, идентифицируя батареи, которые демонстрируют начало деградации. Им заблаговременно заказывается замена, она производится тогда, когда скорость деградации увеличится, но до наступления сбоя дело не доходит.

Наиболее экономически целесообразный подход, используемый сегодня в Европе и США состоит в том, чтобы при помощи тестов, не занимающих много времени и не требующих больших затрат, регулярно (раз в квартал, полгода, год) измерять доступные параметры, документировать результаты, сопоставлять их и отслеживать ситуацию в динамике – каждый блок, каждую батарею. В этом случае по любой из батарей можно заметить момент, когда началась деградация. Пока процесс развивается медленно, за ним можно просто следить, продолжая эксплуатацию, и заменить АКБ тогда, когда свой основной ресурс она выработала, но еще не пришла в полную негодность. Фактически, это скорее организационные меры, чем технические – комплекс мероприятий, нацеленный на максимально полное использование ресурса батарей, при том, что риск аварий и, соответственно, негативных последствий минимизируется.

Как определить оставшийся срок службы АКБ исходя из внутреннего сопротивления?

Деградации подвержены любые батареи. Причины могут быть разными (повышенные температуры, истечение электролита, сульфатация в результате многократных перезарядок, понижение нагрузки и сеточная коррозия – в зависимости от типа и модели АКБ), но в любом случае это отражается на внутреннем сопротивлении элементов батареи. У штатно работающих батарей со временем из-за естественного износа внутреннее сопротивление начинает расти. Когда отклонение от базового уровня превышает 25%, батарею пора заменить (у некоторых батарей пороговый уровень выше – отклонение порядка 50% – но лучше проверить это значение по спецификациям производителя батареи). Существенное отклонение об нормы в меньшую сторону свидетельствует о явной неисправности, такую батарею необходимо заменить независимо от срока ее использования.

Строго говоря, полный импеданс включает в себя внутреннее сопротивление, индуктивную и реактивную составляющую. Однако с технологической точки зрения для оценки АКБ достаточно измерять только активную составляющую – внутреннее сопротивление адекватно отражает рабочее состояние батареи. Это вполне надежный индикатор деградации, к тому же на его измерение требуется всего несколько секунд. Подобные тесты не требуют лабораторной точности, но важно проводить их регулярно и сопоставлять результаты, полученные в разное время. По этому критерию можно быстро определить, годна батарея к дальнейшему использованию или нет. Для подобных измерений существует не так много приборов. Одни из самых популярных – семейство тестеров аккумуляторных батарей Fluke BT500 (модели BT510, BT520 и BT521).

Чтобы измерить внутреннее сопротивление тут используется 2 щупа. Приборы подают малый переменный ток, имеющий частоту 1000 Гц. Сила тока настолько мала, а частота подобрана таким образом, что измерение можно проводить прямо в ходе нагрузки, на запитываемое оборудование это никак не повлияет. Можно проводить тесты и без нагрузки. Прибор проводит измерение напряжения, производит расчет сопротивления и выводит результат на экран.

Поскольку внутреннее сопротивление исчисляется в миллиомах, для измерения используется 4-проводное подключение Кельвина, в отечественной электротехнической литературе более известное под названием двойного измерительного моста Томсона. 4 точки подключения обеспечиваются за счет конструкции щупов: каждый из них имеет двухконтактный наконечник, центральный контакт подпружинен и при надавливании утапливается внутрь. В результате каждый щуп соприкасается с поверхностью двумя контактами, реализуя 4-проводную схему подключения и обеспечивая более точное измерение внутреннего сопротивления батареи.

В зависимости от модели прибора и доступных аксессуаров возможно одновременное определение температуры на отрицательной клемме аккумуляторной батареи – для этого используется выносной щуп BTL21 со встроенным ИК-датчиком (см. таблицу «Функции и аксессуары», комплектация зависит от модели прибора). Все измерение занимает 4 секунды. Результаты выводятся на ЖК-дисплей тестера, сохраняются в памяти для последующей загрузки на ПК через порт USB и подготовки отчета при помощи входящего в комплект программного обеспечения.

Тесты проводятся быстро не только за счет скорости измерения самого прибора, но и благодаря наличию удобных щупов, к которым предусмотрены удлинители различного размера. Результаты можно не просто сохранять (в том числе автоматически), но и подразделять на группы в соответствии с количеством блоков и батарей в них, чтобы информация была представлена в четко структурированном виде. Скриншот показывает экран прибора при последовательном измерении: три батареи из 32 уже протестированы, их результаты сохранены, по четвертой выполняются измерения (результаты на экране) и будут сохранены по нажатию кнопки Save, остальные ячейки пусты для последующих измерений.

Затраты времени на измерительные процедуры для всех 100% аккумуляторных батарей на объекте не выходят за рамки разумного, в результате сопоставление полученных в разное время данных позволит определить, в каких батареях деградация только началась, а в каких достигла уровня, когда их необходимо заменить, не дожидаясь фатального сбоя.

При массовых измерениях наконечники щупов изнашиваются, но все компоненты и измерительные провода могут быть своевременно заменены на аналогичные. Можно заменять только наконечники с подпружиненными контактами. При замене тестового щупа необходимо провести калибровку нуля прибора, для этого в комплекте предусмотрена калибровочная пластина (кассета сопротивлений). Операция выполняется самим пользователем (в отличие от поверки, которая выполняется в сертифицированной организации. Приборы Fluke BT500 внесены в Государственный реестр средств измерений, на них есть методика поверки и сертификаты установленного образца. Межповерочный интервал – 1 год).
 

Можно изначально держать в запасе дополнительный комплект щупов, а также измерительные провода для режима мультиметра и (в зависимости от модели) токовые клещи. Эти аксессуары позволят дополнить измерения внутреннего сопротивления другими тестовыми функциями. Возможна оценка тока пульсации (присутствие переменной составляющей в постоянном напряжении более 5% может служить симптомом – высокое значение пульсации приводит к перегреву и потере энергии). Можно отслеживать падение напряжения при разряде (измерения проводятся многократно в ходе процесса разрядки).

Сравнительные возможности тестеров АКБ серии Fluke BT 500

 

Функции и аксессуары

Fluke BT510

Fluke BT520

Fluke BT521

Измерение внутреннего сопротивления (активной составляющей, мОм)

Измерение напряжения батареи

Многократное измерение напряжения в ходе разрядки

Измерение пульсирующего напряжения (переменная составляющая в постоянном напряжении)

Температура отрицательного полюса АКБ

 

 

Режим мультиметра

Режим однократных и последовательных измерений

Задание пороговых значений

Функция автоматического сохранения измерений

Просмотр памяти

Беспроводная связь

 

 

Интерактивный тестовый зонд BTL20 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, без датчика температуры

 

 

Интерактивный тестовый зонд BTL21 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, ИК-датчик температуры

 

 

Токовые клещи i420 переменного и постоянного тока

 

 

Калибровочная пластина (кассета сопротивлений)

Необходимо подчеркнуть – приборы Fluke BT500 не дают информацию об остаточной емкости батарей, в результатах не фигурируют ампер-часы. Принципиальная позиция производителя состоит в том, что точно определить емкость можно только при полном заряде/разряде АКБ, а при быстром измерении точно сделать это нельзя в принципе, поскольку конструкции батарей и проходящие в них физико-химические процессы неодинаковы. Внутреннее сопротивление напрямую от остаточной емкости не зависит. Однако оно служит надежным критерием, позволяющим отличить батареи, годные к дальнейшему использованию, от тех, которые необходимо заменить. При регулярном тестировании риск сбоя сводится к минимуму, а на объекте обеспечивается бесперебойное функционирование систем, в которых используются АКБ.

Стандарты проверки аккумуляторных батарей

Существует несколько стандартов, регламентирующих процедуры проверки АКБ в зависимости от их типа (IEEE 450 и IEEE 1188 для стационарных свинцово-кислотных батарей, IEEE 1106 для никель-кадмиевых, есть и другие), но в основных положениях они сходятся:

  1. При первоначальной установке батарей необходимо произвести испытания на разряд (проверка емкости батарей). Их может выполнять изготовитель на производственной площадке, предоставляя затем заказчику документацию, либо приемочные испытания проводятся на объекте. Чем детальнее предоставит информацию по батареям производитель, тем лучше – с этими данными можно будет сопоставлять результаты измерений, проведенных на различных этапах эксплуатации.

  2. В тот же период первоначальной установки проводится тестирование внутреннего сопротивления батарей, чтобы определить их базовые параметры. Данные фиксируются для каждой батареи, в каждом блоке, и хранятся в виде сводных отчетов для будущего сопоставления.

  3. Процедуры 1 и 2 необходимо повторять не реже 1 раза в 2 года для большинства систем, охватываемых гарантией – как правило, это одно из условий для продолжения действия гарантии.

  4. Для большинства АКБ тестирование внутреннего сопротивления следует проводить не реже, чем раз в квартал. В некоторых случаях, если так предусмотрено производителем, батареи проверяются по годичному циклу, но для большинства моделей и типов проверка имеет квартальный график. На объектах, работа которых особо критична, может быть принят свой внутренний регламент, предусматривающий тестирование чаще, каждые 1-2 месяца.

  5. В графике проверок учитывается заявленный производителем полный срок службы батарей: измерения должны проводиться как минимум по истечении каждых 25% срока службы АКБ.

  1. Если батарея выработала 85% от ожидаемого срока службы, необходимо не реже раза в год подвергать ее испытанию на остаточную емкость. С такой же периодичностью тест необходимо проводить, если емкость упала ниже 90% от заявленного производителем уровня (или разница в показаниях между предыдущими измерениями составила более 10%).

  2. Если проверка внутреннего сопротивления продемонстрировала большое расхождение с предыдущими результатами измерений, рекомендуется провести проверку остаточной емкости. При резком падении внутреннего сопротивления или превышении базового значения более чем на 25% батарею следует заменить.

  3. Результаты измерений необходимо сохранять в четком, упорядоченном виде. По отчетам отслеживается состояние каждой батареи, и если на протяжении последних измерений она демонстрирует признаки ускоряющейся деградации, АКБ подлежит замене. Грамотное ведение отчетов позволяет заранее заказать нужные наименования в нужном количестве, чтобы произвести замену вовремя.

Выводы

За состоянием аккумуляторных батарей необходимо следить. Делать это быстро и при этом получать содержательную информацию об остаточном ресурсе АКБ помогут специальные приборы, способные измерять внутреннее сопротивление, такие как семейство тестеров Fluke BT500.

См. также:

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

Расчет реальной емкости аккумулятора в зависимости от нагрузки

Для указания номинальной емкости производители используют расчет выдаваемого аккумулятором тока в течении стандартного времени (если не указано значение этого времени в спецификациях, то оно обычно равно 20 часам для больших аккумуляторов). То есть, если в маркировке аккумулятора указано, что его емкость равна 100А*ч, то это означает, что он может питать нагрузку током 5А в течение 20 часов.

Все бы было хорошо, но имеется одна не очень приятная закономерность: чем больше нагрузка на аккумулятор, тем меньше процент отдаваемой емкости (аккумулятор 100А*ч может выдавать ток 100А не в течении 1 часа, а в течение намного меньшего времени – очень может быть, и 30 минут).

Причина этого явления связана с тем, что внутри аккумулятора ток течет благодаря ионной проводимости. Если ионная проводимость электролита достаточно высока и не несет особого значения, то процесс переноса ионов внутри пластин аккумулятора и преодоление ими фазового раздела поверхность электрода/электролит происходит достаточно медленно. То есть при быстром разряде какая-то часть ионов не успевает выйти из электрода в электролит (или войти из электролита в электрод) за время разряда, что ограничивает выдаваемую аккумулятором емкость.

Математическая модель этого процесса была описана в 1897 году Пекертом (Peukert). Он эмпирически установил, что отношение между разрядным током I и временем разряда аккумулятора T (от полностью заряженного к полностью разряженному) представляет собой константное отношение, и может быть описано формулой:

Cp = In * T

где Cp – емкость Пекерта (константное отношение для данного аккумулятора), а n – экспонента Пекерта. Экспонента Пекерта всегда больше единицы, чем больше n, тем меньше способность аккумулятора отдавать полную емкость при повышенной нагрузке. Наименьшее значение экспоненты Пекерта имеют литий-железные, литий-марганцевые, литий-полимерные и свинцово-кислотные аккумуляторы с электродами рулонного типа. Одно из самых больших значений n у недорогих тяговых свинцово-кислотных батарей.

Экспонента Пекерта обычно расчитывается на основании измерения времени полного разряда (T1 и T2) для двух разных токов(I1 и I2). Для приблизительных расчетов можно использовать таблицы или графики разрядки, предоставляемые производителем аккумулятора. Так как Cp – константа, мы можем записать такое уравнение:

Cp = I1n * T1 = I2n * T2

преобразуя выражение, получаем формулу расчета экспоненты Пекерта:

n = log(T2/T1)/log(I1/I2)

Основываясь на знании значений экспоненты Пекерта и емкости Пекерта можно рассчитывать время работы аккумулятора при определенной нагрузке:

T = Cp/In

Существующие продвинутые мониторы состояния батарей (в составе системы управления батареей, BMS) в своих расчетах, скорее всего, используют данные уравнения. Однако, все не так просто: обычно потребляемый ток меняется во времени, бывают длительные перерывы в работе аккумулятора, а также константные значения емкости и экспоненты Пекерта меняются в процессе работы аккумулятора (и их приходится время от времени пересчитывать для получения реальных показаний монитора). Это особенно ярко видно на примере «цифрового эффекта памяти» в литий-ионных батареях для ноутбуков – при эксплуатации в условиях частичного заряда/разряда отмечается постепенное уменьшение времени работы от аккумуляторной батареи, из-за несоответствия оставшейся емкости, рассчитанной системой управления батареей, реальной. Эффект «цифровой памяти» нивелируется полным зарядом с последующим полным разрядом аккумулятора раз в 30-50 циклов (ноутбуки необходимо разряжать при входе в настройки BIOS, после отключения из-за разряда аккумулятора сразу же зарядить).

Описанная выше система мониторинга достаточно сложна, и многие производители BMS, возможно, довольствуются измерением скорости падения вольтажа на аккумуляторе в процессе разряда. Для систем с примерно постоянной во времени нагрузкой эти BMS должны давать достаточно точные результаты, и, в то же время, могут усиливать эффект «цифровой памяти» при неравномерном потреблении тока.

Я так много описывал феномен уменьшения емкости батареи при разряде большими токами, что чуть было не упустил вопрос, который задал бы мне пытливый читатель: «А куда девается та емкость, которая не была отдана аккумулятором?» Ответ простой: «Остается в аккумуляторе. ..» То есть, если батарея 100А*ч полностью разрядилась под нагрузкой 50А за час, то и при заряде она потребит около 50А*ч. Если батарея 100А*ч, полностью разряженная током 50А за час, постоит несколько часов, то постепенно восстановится утраченная емкость (за счет диффузии ионов в электродах аккумулятора), и из нее можно будет извлечь еще немного ампер-часов.

Этот эффект обычно используют владельцы электромобилей с недорогими тяговыми свинцово-кислотными аккумуляторами – когда аккумулятор сильно разряжен, а надо проехать еще приличное расстояние, электромобиль останавливают на обочине и ждут какое-то количество времени, пока не восстановится емкость батареи (время достаточно приличное, чтобы на практике усвоить основы философии дзен-буддизма). После совмещения приятного с полезным, можно двигаться дальше до следующей вынужденной стоянки, пока не исчерпается реальная емкость батареи. Эта же причина стоит во главе того факта, что гольф-кары, с их низкой скоростью, могут проехать намного большее расстояние, чем электромобиль с аккумулятором подобной емкости, но едущий с большей скоростью (при езде в реальных условиях также сильно влияет возрастание сопротивления воздуха движению при больших скоростях). То есть, если хочется осваивать дзен-буддизм во время езды в электромобиле на дальние расстояния, то ехать придеться тихо, чтобы дальше быть.

Надеюсь, эта информация была полезной читателю, и будет полезной в будущем. Знание закономерности зависимости емкости аккумулятора от тока разряда позволяет планировать необходимую емкость и тип аккумуляторов на борту электромобиля (или другого автономного мощного потребителя электричества). В настоящее время штудитую JavaScript, и, надеюсь, скоро на нашем горячо любимом сайте появится калькулятор батарей, благо в программировании я не новичок… Да, пора прощаться… Заходите еще!!!

Copyright © Дмитрий Спицын, 2007.

Величина нужной ёмкости аккумуляторной батареи для ИБП, формула

Расчет ёмкости аккумуляторной батареи для ИБП

Аккумуляторные батареи для ИПБ — это аккумулятор, обеспечивающий постоянное питание и подачу напряжения, когда отключается питающая сеть. Емкость аккумуляторной батареи — это одна из ее самых важных технических особенностей. То есть возможное число электроэнергии, которое скапливается АКБ за цикл подзарядки. Далее рассмотрим способ расчета нужной емкости.

Как все знают, потребленная мощность рассчитывается в Вт, а аккумуляторная батарея для ибп с емкостью в А•ч. Чтобы выяснить емкость аккумуляторов для питания оборудования нужно осуществить определенный расчет. Нагрузка в 500 Вт нуждается в резервировании примерно за 3 ч. Для обыкновенного 12В аккумулятора, величина нужной емкости батареи рассчитывается по следующей формуле:

  • Q= (P• t) / V• k
  • Тут Q – это нужная емкость аккумулятора;
  • P – нынешняя нагрузка;
  • V – напряжение любой из аккумуляторных батарей;
  • t – период резервирования.
  • k – коэффициент применения емкости аккумулятора.

Коэффициент k вводится, потому что АКБ не полностью заряжается. Кроме того, сильное понижение заряда устройства, который следует после нескольких рабочих циклов зарядки и разрядки, становится причиной быстрой порчи батареи. Например, если только приобретенный аккумулятор разряжается на 30% от его всей емкости, затем сразу же осуществлять его зарядку, он может выдержать приблизительно 1000 таких циклов. В случаи уменьшения разряди до 70%, то число этих циклов понизится приблизительно в 200. В результате, выходит, что для питания этой нагрузки за указанный период необходимо:

Q= 500•3/ 12•0,7 = 178,6 А•ч.

Данное значение считается минимальной емкостью аккумулятора для конкретного варианта. В идеальном состоянии рекомендуется взять источник энергии с маленьким запасом. Это необходимо для того, чтобы из раза в раз не разряжать его. Таким образом, удастся сохранить рабочие данные батареи за более длительный промежуток времени.

Q= 178,6•1,2 = 214,3 А•ч.

То есть для того, чтобы решить поставленную задачу нужно купить аккумулятор емкостью не меньше 215 А•ч. Если использовать ИБП и вместе с ним генератор, то размер этого коэффициента лучше понизить до 0,4, так как в подобной связке батареи в основном используются для того, чтобы поддержать питание электроэнергии без перебоя, пока не заработает электростанция.

как рассчитать емкость аккумуляторной батареи

Любой современный аккумулятор (хоть от мобильного телефона, хоть от автомобиля) обладает двумя важнейшими характеристиками: это номинальное напряжение источника питания и его электрическая емкость. Совокупностью двух этих показателей определяется полная энергия аккумулятора, то есть та максимальная энергия, которую только возможно накопить при его полной зарядке.

Аккумуляторы

Что такое емкость аккумулятора

От этого параметра зависит количество времени, в течение которого аккумулятор способен отдавать предварительно накопленную в результате зарядки электроэнергию. Этот показатель одинаково важен как для аккумуляторной батареи автомобиля, так и для «пальчикового» аккумулятора от плеера или фотоаппарата. То же самое относится и к источникам питания сотовых телефонов.

Особенно большие неприятности могут случиться, если взять не ту емкость для АКБ автомобиля. Во-первых, емкости может не хватить для питания бортовой сети при неработающем двигателе, самое страшное – могут возникнуть проблемы с запуском в зимнее время. О том, как рассчитать емкость аккумулятора, должен иметь представление каждый автомобилист.

Исчерпывающую информацию об этом параметре современного источника питания можно получить, взглянув на его маркировку. Например, 1200 mAh (1200 миллиампер-часов), 60 Ah (60 ампер-часов). В отличие от емкости конденсатора, которая измеряется в фарадах, для аккумулятора используется внесистемная единица измерения – Ah (Ampere hour, «ампер-час»). Часы в этой единице измерения присутствуют по той причине, что, в отличие от конденсатора, который разряжается мгновенно, аккумулятор призван обеспечить питание в течение достаточно продолжительного времени.

Емкость данного аккумулятора составляет 60 ампер-часов

Емкость, выраженная в ампер-часах, показывает на то, в течение какого времени данный аккумулятор способен питать нагрузку с указанным током потребления.

Обратите внимание! О чем говорит такая аббревиатура, как, например, 30 Ah? Полностью заряженный аккумулятор с емкостью в 30 ампер-час может работать в течение одного часа, поддерживая нагрузку в сети в 30 А с номинальным напряжением в 12,7 V.

30 А – это довольно большое значение силы тока, при напряжении 12,7 V мощность аккумулятора будет составлять: I*V=30*12,7=0,381 kW. Этой мощности достаточно для освещения всего дома в течение суток, если там стоят светодиодные лампы, которые потребляют от 3 до 5 W за один час эксплуатации. Время работы находится в обратной зависимости от тока нагрузки: чем он меньше, тем дольше аккумулятор способен поддерживать работу сети. Если ток нагрузки составляет 10 А, он будет работать 3 часа, если 5 А, то 6 часов.

Аккумулятор сотового телефона

Емкость АКБ сотового телефона колеблется в пределах от 500 до 2000 mAh. Такая батарея позволит телефону или смартфону работать в активном режиме в течение недели. При этом надо учитывать активность самого пользователя: если человек разговаривает по телефону более часа каждый день, пользуется будильником, различными играми, тогда самой большой емкости хватит на день-два.

Дополнительная информация. Расчет полной емкости аккумулятора возможен только эмпирическим путем. Когда он отрабатывает указанные на маркировке положенные ампер-часы, это отнюдь не значит, что после этого он больше не способен выдавать электричество. Без подзарядки аккумулятор еще достаточно продолжительное время способен вырабатывать электрическую энергию. Однако силы тока при этом будет недостаточно для той цели, с которой он используется.

Аккумулятор и аккумуляторная батарея

Как добиться увеличения емкости источника питания? Самый простой и очевидный способ – это увеличение вещества, участвующего в химической реакции. При этом произойдет увеличение силы тока, и процесс выработки электроэнергии будет протекать дольше, то есть число ампер-часов станет больше. Однако этот метод далеко не всегда можно применить на практике. Получить рассчитанную емкость путем увеличения или уменьшения количества реактивов не всегда представляется возможным.

Дело в том, что будь аккумулятор самых больших размеров, и на его изготовление потрачено огромное количество лития, напряжение вырабатываемого электричества нисколько не увеличится. Этот показатель заложен в самой основе химической реакции. Для кислотного аккумулятора он составляет 2 V, для литий-ионного – 3,7 V.

Так как же получить напряжение 12 V, необходимое для запуска автомобильного двигателя? Для этого нужно аккумуляторы объединить в батарею. Например, 6 свинцово-кислотных аккумуляторов с напряжением 2 V соединить последовательно между собой.

Существует два способа соединения аккумуляторов:

  • последовательное, при котором возрастает напряжение, при неизменной емкости;
  • параллельное, когда количество ампер-часов увеличивается, напряжение остается постоянным.

Емкость аккумуляторной батареи, как и ее напряжение, посчитать нетрудно, для этого может не понадобится даже обычного калькулятора. Если, например, два кислотных аккумулятора емкостью 1 Ah соединить между собой параллельно, то фактически произойдет удвоение емкости при неизменном напряжении. При их последовательном соединении получится наоборот: напряжение увеличится в 2 раза, емкость останется прежней. При этом в обоих случаях количество электроэнергии от двух источников питания увеличится вдвое.

Моноблок

Собрать батарею из отдельных аккумуляторов можно с помощью медного провода или шины с клеммами. Этот процесс, хотя и несложный, все же довольно трудоемкий, поэтому на заводах изготавливают готовые моноблоки. Они представляют из себя несколько элементов, собранных в одном корпусе из прочной пластмассы. Моноблок свинцово-кислотных аккумуляторов, как правило, состоит из 6 или 12 отдельных элементов. Напряжение составляет, соответственно, 12 V или 24 V.

Моноблок

Все элементы моноблока ничем не отличаются друг от друга, и их старение  протекает одновременно, поэтому срок эксплуатации моноблока больше, чем у каждого отдельного аккумулятора. В процессе сборки моноблока возможно использование как параллельного, так и последовательного соединения его отдельных элементов.

Обратите внимание! Срок службы АКБ измеряется не в годах или месяцах, а количеством зарядных циклов. Чтобы батарея могла служить как можно дольше, повторную зарядку желательно производить после использования лишь малой части ее номинальной емкости.

Видео

Расчет емкости батареи электровелосипеда для необходимых скорости и дальности пробега

Возможно, вы уже где-то слышали или читали, что на батарее 48В 10 Ач можно проехать 40 км, в другом месте говорят про 100 км, а в третьем что и вовсе в кругосветку можно отправиться =) Megavel честен со своими покупателями и заявляет общепринятые средние показатели пробега на одной зарядке.

Ниже мы составили таблицу соотношения скорости к емкости батареи. Конечно же, скорость не единственный фактор, влияющий на пройденное расстояние. Поэтому рассмотрим вариант более-менее равнинной местности с безветренной погодой, батарея полностью заряжена, пилот весом 80 кг и ростом 175 см, вес байка порядка 35 кг, спокойный режим езды без использования педалирования. Кстати, езда накатом, использование тормозов по-минимуму, помощь мотору педалями позволяет существенно увеличить дистанцию! Так как большая часть энергии идет на преодоление сопротивления воздуха, затраты энергии растут не линейно со скоростью, поэтому поговорка «Тише едешь — дальше будешь» в случае электробайков очень кстати =)

Вольтаж и емкость батареи (В, Ач)

Дальность пробега на одной зарядке (км)

при 20 км/ч

при 30 км/ч

при 40 км/ч

при 50 км/ч

при 60 км/ч

48В 10Ач

62 км

38 км

26 км

только кратковр. ускорения

48В 15Ач

93 км

57 км

39 км

24 км

только кратковр. ускорения

48В 20Ач

124 км

76 км

52 км

32 км

27 км

48В 35Ач

217 км

133 км

91 км

56 км

47 км

60В 30Ач (Extreme Plus)

226 км

138 км

95 км

58 км

49 км

85В 30Ач (Extreme TURBO)

320 км

195 км

133 км

82 км

67 км

Также отметим, что для долгой службы батареи ее комфортный (длительный) ток должен соответствовать потребляемой мощности. Простыми словами, если вы хотите ездить длительно на максимальных режимах (высокая скорость, частые ускорения), следует рассмотреть увеличение емкости батареи. Ниже представлена таблица рекомендуемой емкости для батареи в зависимости от крейсерской (длительной) скорости. Условия местности, параметры пилота аналогичны тем, что указаны выше. Если местность горная, рекомендуется установка тягового мотора вместо скоростного, и если подъем затяжной, то ехать необходимо в небыстром режиме, чтобы не перегреть электронику.

Рекомендуемая емкость для батареи (Ач)

при длительной скорости 20 км/ч

при длительной скорости 30 км/ч

при длительной скорости 40 км/ч

при длительной скорости 50 км/ч

при длительной скорости 60 км/ч

10 Ач

10 Ач

16 Ач

30 Ач

не менее 30 Ач
(Extreme TURBO)

Общие рекомендации для долгой жизни батареи:

  • Сначала зарядное устройство подключается к розетке 220В, и только потом к батарее. Отключение в обратном порядке.
  • Нельзя заряжать батарею при температуре ниже +5. Если батарея была на морозе, то она должна полежать несколько часов в тепле. Кстати, кататься на электровелосипеде при разумной отрицательной температуе можно, при условии что отключена рекуперация.
  • Стараться заряжать батарею сразу после использования. Вообще, оптимальное использование батареи — от 20% до 80% заряда — в этом случае она будет служить реально долго.
  • При длительном хранении батарею необходимо периодически подзаряжать.

В следующих статьях можно найти ответы на вопросы: Какую мощность мотора выбрать для электровелосипеда? (ссылка), Критерии выбора электровелосипеда (ссылка).

Электрочопперы Megavel:

Емкость батареи — обзор

20.2.3 Емкость батареи

Емкость батареи соответствует количеству электрического заряда, который может быть накоплен во время заряда, сохранен во время пребывания в разомкнутой цепи и высвобожден во время разрядки обратимым образом . Он получается путем интегрирования тока разряда, начиная с полностью заряженной батареи и заканчивая процесс разряда при определенном пороге напряжения, часто обозначаемом как напряжение отсечки или U cut_off , достигнутом в момент t cut_off .В этом случае она обозначается как разрядная емкость или C d , а в случае электрохимии свинцово-кислотных аккумуляторов она может быть выражена как

(20,5) Cd = ∫0tcut_offIdt = −2FMPbO2 (mPbO2initial − mPbO2cut_off ) = — 2FMPb (mPbinitial − mPbcut_off)

Уравнение (20.5) показывает, что емкость батареи пропорциональна количеству активных материалов, которые могут быть преобразованы электрохимически, пока напряжение батареи не достигнет порогового значения U cut_off .Знак разрядной емкости отрицательный; однако на практике его значение рассматривается как модуль. Когда аккумулятор разряжается постоянным током, его емкость определяется по формуле C d = I · t d , где t d — продолжительность разряда. Когда последнее выражается в часах, типичной единицей измерения емкости аккумулятора является ампер-час.

Разрядная емкость новой батареи (т.е. до заметного начала деградации батареи) зависит от температуры и профиля тока разряда.Основным этапом разработки каждого алгоритма управления батареями является оценка зависимости разрядной емкости от тока и температуры. Обычно это делается путем подвергания одной или нескольких идентичных батарей или элементов нескольким циклам заряда / разряда при постоянной температуре с использованием гальваностатического разряда с разными токами разряда и фиксированным режимом полной зарядки. Процедура повторяется при нескольких разных температурах. При разработке такого плана экспериментов следует учитывать типичную скорость разрушения батареи при циклическом включении.Для аккумуляторов, скорость старения которых в режиме глубокого цикла высока (например, свинцово-кислотные аккумуляторы с тонкими пластинами и решетками, не содержащими сурьмы), количество таких глубоких циклов характеризации должно быть меньше, а количество экспериментальных точек на батарею должно быть ограничено. может быть компенсировано тестированием большего количества батарей.

Зависимость разрядной емкости от тока разряда часто соответствует уравнению Пейкерта [2]:

(20.6a) Cd = K · I1 − n

, где K и n — эмпирические константы.Коэффициент n сильно зависит от конструкции электродов. Например, свинцово-кислотные батареи с толстыми пластинами имеют значение n в диапазоне 1,4 [3], тогда как для конструкций с более тонкими пластинами n находится в диапазоне 1,20–1,25 [4]. Для таких технологий, как литий-ионные батареи, где пластины очень тонкие (в диапазоне 0,2–0,3 мм), значение n близко к 1 [5]. В этом случае уравнение Пойкерта и соответствующие экспериментальные данные могут быть представлены с использованием продолжительности разряда t d вместо емкости:

(20.6b) td = K · I − n

Когда экспериментальные данные t d (I) построены в двойных логарифмических координатах, уравнение (20. 6b) преобразуется в прямую линию с наклоном, равным к коэффициенту n . Уравнение Пейкерта демонстрирует одну и ту же тенденцию почти для всех типов первичных и аккумуляторных батарей — чем выше ток разряда, тем меньше емкость. Последнее с электрохимической точки зрения соответствует меньшему количеству активных материалов, превращающихся в продукты разряда.В аккумуляторной технологии степень этого преобразования обозначается как «использование активных материалов». Снижение использования активных материалов при высоких токах разряда очень часто может быть приписано эффектам диффузии. Например, в случае разряда свинцово-кислотной батареи (уравнения (20.1a) и (20.1b)) серная кислота, необходимая для преобразования PbO 2 и Pb в PbSO 4 , должна диффундировать из объема электролита. к геометрической поверхности электрода, а затем внутрь его пористого объема.При высоких токах разряда электролит из объема элемента, расположенного между пластинами батареи, не успевает диффундировать внутри объема пластин, где он быстро истощается из-за электрохимических реакций. Это приводит к развитию локальных градиентов концентрации и появлению диффузной поляризации [6]. Последнее вызывает быстрое снижение напряжения разряда ячейки. По логике вещей, мы можем достичь более высокой емкости при более высоких токах только в аккумуляторных технологиях, использующих конструкции ячеек с более тонкими пластинами, где диффузия происходит быстрее.

Уравнение Пейкерта имеет различный диапазон применимости для каждой аккумуляторной технологии — для очень высокого и очень низкого тока разряда оно больше не действует. Следует отметить, что точный алгоритм BMS должен также полагаться на набор параметров n и K , измеренных для конкретного типа батареи, используемой в энергетической системе, т. Е. Пара «батарея плюс BMS» ведет себя как ключ и замочная скважина.

Уравнение (20.6b) можно использовать для объяснения терминов «номинальная емкость» и «номинальный ток», которые часто используются в аккумуляторной практике.Здесь «номинальный» соответствует выбору тока, соответствующего заданной продолжительности разряда (или желаемой автономности), или наоборот — как долго мы будем работать от батареи при приложенном токе разряда. Таким образом, ток, соответствующий 20-часовому разряду, обозначается как 20-часовой номинальный ток или I 20 (или I 20h ). Когда последнее умножается на 20 часов, произведение обозначается как 20-часовая номинальная производительность C 20 (C 20h ).

Другой термин, связанный с емкостью батареи, — это «номинальная емкость» (или емкость, указанная на паспортной табличке), обозначенная как C n . Определение C n часто связано с определенным приложением или стандартом тестирования батарей. Например, номинальная емкость пусковой, осветительной и зажигательной свинцово-кислотной аккумуляторной батареи обычно совпадает с номинальной емкостью 20 часов C 20h . Номинальная емкость может использоваться для выражения плотности тока заряда и разряда в виде рейтинга C, представленного как отношение между номинальной емкостью и « целевой » длительностью разряда или заряда (последняя отличается от реальной продолжительности заряда или увольнять). Таким образом, для тока, предназначенного для зарядки или разрядки аккумулятора в течение 10 часов, плотность тока выражается как C n /10 час. Более высокие токи, такие как C n /1 ч, обозначаются как 1 C, C n 900 10/30 мин как 2 C, C n 900 10/15 мин как 4 C и т. Д. Когда ток выражается таким образом, позволяет применять одинаковые условия тестирования к батареям разного размера и надежно сравнивать полученные результаты. Удобство такого подхода связано с большой разницей между возможностями тестирования аккумуляторов лаборатории, на которую возложена задача разработки BMS, и фактическими размерами установки аккумулирования энергии.Обычно стенды для проверки аккумуляторных батарей предназначены для проверки ячеек в диапазоне напряжений 0–5 В и тока ± 5–50 А (чем выше ток, тем дороже оборудование). Во многих реальных аккумуляторных установках для хранения возобновляемой энергии и поддержки сети типичный диапазон постоянного напряжения составляет 400 В, а токи могут достигать 500–1000 А в случае использования огромных аккумуляторных элементов, что свидетельствует о том, что BMS фактически экстраполирует лабораторные характеристики ячеек и батарей меньшего размера, чтобы контролировать и прогнозировать работу крупногабаритной электростанции.

Как рассчитать время работы от аккумулятора

Есть слишком много вопросов, которые вы зададите при разработке устройства с батареей внутри.

Начальнику просто нужна дешевая и маленькая батарея с ней, но без дополнительной информации о том, сколько времени нужно конечному покупателю, насколько она может быть маленькой.

в этой статье мы покажем вам:

1 Как рассчитать время работы конкретной батареи?
2 Как рассчитать емкость аккумулятора?
3 Калькулятор емкости аккумулятора (инструмент мгновенного расчета)
4 Калькулятор времени работы от аккумулятора
5 Как преобразовать ватты в амперы или амперы в ватты или из вольт в ватты

Готовы к вашему дизайну батареи?
Поехали.

В идеальном / теоретическом случае время было бы Время (Ч) = Емкость (Ач) / Ток (А).

Если емкость указана в ампер-часах, а сила тока — в амперах, время будет в часах (зарядка или разрядка).

Смущаетесь?

Итак, как рассчитать, на сколько хватит заряда батареи?

Отбросьте, на сколько хватит заряда батареи калькулятора, и давайте посмотрим на реальный случай, батарея 10 Ач с током 1 А проработает 10 часов. Или при доставке 10А этого хватило бы всего на 1 час, а при доставке 5А — всего на 2 часа.

Другими словами, вы можете иметь «любое время», если, умножив его на ток, вы получите 10 Ач (емкость батареи).

Это так просто.

, так что больше нет проблем с расчетом времени автономной работы.

Для аккумулятора 18650 2500 мАч (2,5 Ач) с устройством, потребляющим 500 мА (0,5 А), у вас есть:

2,5 Ач / 0,5 А = 5 часов

Обратите внимание, что большинство батарей, особенно с цепями, не будут работать до 0 В в качестве источника питания (если оно упадет до нуля, срок службы батареи сократится или даже разрядится, если не зарядить вовремя), То есть ваша схема перестанет работать при установленном напряжении до того, как батарея полностью разрядится.

см. Ниже схему разгрузки

не пойдет в ноль (полностью пустой)

Следовательно, для расчета нам потребуется умножить на 0,8-0,9:

, то есть 2,5 Ач / 0,5 А * 0,9 = 4,5 часа

Что, если вы знаете только ватты, вы заметите, что каждое устройство использует ватт для определения своих основных характеристик.

Лампа 5 Вт,

Ноутбук 20 Вт,

Двигатель 100 Вт,

Солнечный уличный фонарь 200 Вт

Назовите несколько.

В теории это:

Время разряда = Емкость аккумулятора * Вольт аккумулятора / Ватт устройства.

Скажем, 5 Ач * 3,7 В / 10 Вт = 1,85 часа

С энергоэффективностью 90% для литий-ионных / LiPo аккумуляторов. Тогда
Время разряда = Емкость аккумулятора * Напряжение аккумулятора * 0,9 / Ватт устройства

5 Ач * 3,7 В * 0,9 / 10 Вт = 1,66 часа

Поясним на других примерах:

для аккумулятора 1800 мАч 3,7 В 18650 для питания цифрового устройства 3,7 В 10 Вт, как рассчитать время работы?

для 3. Устройство 7 В 10 Вт , рабочий ток будет 10 ÷ 3,7 = 2,7027 А = 2702,7 мА
Теоретически это: 1800 мАч ÷ 2702,7 мА = 0,666 ч = 40 мин
На самом деле это: 1800 мАч ÷ 2702,7 мА * 0,9 = 0,599 ч = 36 мин

Краткие примечания: 1A = 1000 мА (мА — ток, мАч — емкость)

Или вы можете использовать 3,7 В * 1,8 Ач (1800 мАч) * 0,9 / 10 Вт = 0,599 ч = 36 минут

Другой пример: Аккумулятор 12 В 60 Ач для питания 220 В 100 Вт света
Время работы: 12 В * 60 Ач * 0,9 / 100 Вт = 6,48 ч

Как рассчитать количество ампер-часов батареи

Часто нас спрашивают, как рассчитать, сколько ампер-часов необходимо клиенту для работы одного или нескольких устройств.
Итак, мы подготовили несколько заметок по различным темам, например, «Как рассчитать ампер-час батареи» и другим.

Вт = умножение вольт на ампер

Шаг 1. Не торопитесь, и это будет иметь смысл. Следующая информация была скопирована с PowerStream.com

Итак, у вас есть прибор или устройство, например, помпа, и вы хотите знать, какой размер батареи вам нужен?
Хорошо, если потребляемый ток составляет x ампер, время составляет T часов, тогда емкость C в ампер-часах составляет

C = xT

Например, если ваша помпа потребляет 120 мА, а вы хотите, чтобы он работал в течение 24 часов

C (ампер-часы) = 0. 12 ампер * 24 часа = 2,88 ампер-часов (продолжайте, вычисления еще не закончены)

Шаг 2. Рекомендации по сроку службы батареи

Нехорошо разряжать батарею до нуля во время каждого цикла зарядки. Например, если вы хотите использовать свинцово-кислотную батарею в течение многих циклов, не следует разряжать ее после 80% заряда, оставив 20% заряда в батарее. Это не только увеличивает количество получаемых циклов, но и позволяет разряжать батарею на 20%, прежде чем вы начнете получать меньшее время работы, чем предусмотрено в конструкции

C ’= C / 0.8 (80% глубина разряда или DOD)

Для примера выше

C ‘= 2,88 Ач / 0,8 = 3,6 Ач аккумулятор (продолжайте работу)

Шаг 3: Скорость разряда

Некоторые химические составы аккумуляторов дают гораздо меньше ампер-часов, если вы их быстро разрядите. Это называется эффектом Пейкарта. Это большой эффект для щелочных, углеродно-цинковых, воздушно-цинковых и свинцово-кислотных батарей. Например, если вы используете свинцово-кислотную батарею при 1С, вы получите только половину емкости, которая была бы у вас, если бы вы использовали 0.05C. Это небольшой эффект для никель-кадмиевых, литий-ионных, литий-полимерных и никель-металлгидридных аккумуляторов.

Для свинцово-кислотных аккумуляторов номинальная емкость (т. Е. Количество AH, выбитое на боковой стороне аккумулятора) обычно дается для 20-часовой разрядки. Если вы разряжаетесь с медленной скоростью, вы получите расчетное количество ампер-часов из них. Однако при высоких скоростях разряда емкость резко падает. Практическое правило заключается в том, что при скорости разряда в течение 1 часа (т.е. при потреблении 10 ампер от батареи на 10 ампер-час или 1С) вы получите только половину номинальной емкости (или 5 ампер-часов от батареи на 10 ампер-час). .Для большей точности можно использовать диаграммы, подробно описывающие этот эффект для разной скорости разряда. Например, таблицы данных, перечисленные на http://www. powerstream.com/BB.htm

Например, если ваш портативный гитарный усилитель потребляет стабильно 20 ампер, и вы хотите, чтобы он работал в течение 1 часа, вы должны начать с Step 1:

C = 20 ампер * 1 час = 20 AH

Затем перейдите к этапу 2

C ‘= 20 AH / 0,8 = 25 AH

Затем примите во внимание высокую скорость

C’ ‘= 25 / .5 = 50 AH

Таким образом, вам понадобится герметичная свинцово-кислотная батарея на 50 ампер-час для работы усилителя в течение 1 часа при среднем потреблении 20 ампер.

Шаг 4. Что делать, если у вас нет постоянной нагрузки? Очевидно, что нужно сделать, это то, что нужно сделать. Определите среднюю потребляемую мощность. Рассмотрим повторяющийся цикл, каждый из которых длится 1 час. Он состоит из 20 ампер в течение 1 секунды, а затем 0,1 ампер в течение оставшейся части часа. Средний ток будет рассчитан следующим образом.

20 * 1/3600 + 0,1 (3599) / 3600 = 0.Средний ток 1044 ампер.

(3600 — количество секунд в часе).
Другими словами, выясните, сколько ампер потребляется в среднем, и используйте шаги 1 и 2. Шаг 3 очень трудно предсказать в случае, когда у вас есть небольшие периоды высокого тока. Это хорошая новость, постоянное потребление 1С снижает емкость намного больше, чем короткие импульсы 1С, за которыми следует период отдыха. Таким образом, если средний потребляемый ток составляет около 20 часов, то вы приблизитесь к мощности, прогнозируемой при 20-часовом темпе, даже если вы потребляете его импульсами сильного тока.Фактические данные тестирования трудно получить, не проведя тест самостоятельно.
Если вам известны ватты, а не амперы, выполните следующую процедуру.

Шаг A: Преобразуйте ватты в амперы.

Фактически, ватты — это основная единица мощности, а ватт-часы — это запасенная энергия. Ключ в том, чтобы использовать известные вам ватты для расчета ампер при напряжении батареи.

Например, вы хотите проработать лампочку мощностью 250 Вт 110 В переменного тока от инвертора в течение 5 часов.
Ватт-часов = ватт * часы = 250 Вт * 5 часов = 1250 ватт-часов

Учитывайте эффективность инвертора, скажем, 85%

Ватт-часов = ватт * часы / эффективность = 1250/0.85 = 1470 ватт-часов

Так как ватт = амперы * вольт, разделите ватт-часы на напряжение батареи, чтобы получить ампер-часы емкости аккумулятора

ампер-часов (при 12 вольт) = ватт-часы / 12 вольт = 1470/12 = 122,5 ампер-часов.
Если вы используете батарею с другим напряжением, ампер-часы будут изменяться путем деления на напряжение батареи, которое вы используете.

Теперь вернитесь к шагам 2–4 выше, чтобы уточнить расчет.

Как рассчитать емкость аккумулятора

Емкость батареи — это количество энергии, хранящейся в батарее.Он сообщает вам, сколько энергии может обеспечить вам аккумулятор и в течение какого времени. Звучит расплывчато? Позвольте мне пояснить дальше.

Каждая батарея имеет предел максимальной мощности, который может быть получен от нее в любой момент времени. Он предоставляется производителем как часть спецификации аккумулятора. Емкость аккумулятора говорит нам, как долго он может отдавать энергию при максимальном пределе мощности. Математически это можно определить так:

Емкость = Мощность X Продолжительность

Это означает, что если мы потребляем меньше энергии, батарея прослужит дольше.Теперь мы знаем из предыдущего поста, что мощность рассчитывается в киловаттах (кВт). Итак, мощность измеряется в кВтч (киловатт-час).

Само определение батареи говорит о том, что она преобразует химическую энергию в электрическую. Емкость аккумулятора также измеряется количеством электроэнергии, израсходованной им за определенный период времени. Вы знаете, что электричество измеряется в амперах. Таким образом, емкость аккумулятора также измеряется в ампер-часах (Ач). Здесь

Мощность = Электричество X Продолжительность

ампер-час — это более часто используемая единица измерения емкости аккумулятора.

Для обеспечения единообразия для всех производителей емкость аккумулятора, указанная производителями, является номинальной емкостью аккумулятора. По сути, емкость показывает, сколько ампер электроэнергии может вырабатывать аккумулятор за 20 часов. Итак, если у вас есть аккумулятор на 100 Ач, он обеспечит вас электроэнергией на 5 А в течение 20 часов.

Емкость аккумулятора не остается постоянной. Он меняется со временем из-за таких факторов, как саморазряд, цикл заряда / перезарядки (в случае аккумуляторных батарей), температура, коррозия, хранение и т. Д.

Статьи по теме:

Закон Пойкерта: на сколько прослужит моя батарея

5 причин отказа батареи

Резервная мощность

Определение ампер, вольт, ватт и омов

Как измерить емкость — Battery University

Узнайте о различных методах тестирования и о том, почему ни один из них не является полностью удовлетворительным.

Емкость — главный индикатор работоспособности аккумулятора, но оценить ее на лету сложно.Традиционный цикл зарядки / разрядки / зарядки по-прежнему является наиболее надежным методом измерения емкости аккумулятора. В то время как портативные аккумуляторы можно перезарядить относительно быстро, полный цикл больших свинцово-кислотных аккумуляторов нецелесообразен для измерения емкости.

SAE (Общество автомобильных инженеров) определяет емкость стартерной батареи по резервной емкости (RC). RC отражает время работы в минутах при стабильном разряде 25А. DIN (Deutsches Institut für Normung) и IEC (Международная электрохимическая комиссия) маркируют аккумулятор в Ач при типичном разряде 0.Скорость 2C (5ч съела) для стартерных батарей. Батарея на 60 Ач разряжается при 12 А. Точного преобразования RC в Ah не существует, но наиболее распространенная формула — это RC, деленное на 2 плюс 16. Короткий метод — это деление RC на 1,9.

Метод разряда

Можно было бы предположить, что измерение емкости разрядом является наиболее точным методом, но это не всегда так, особенно со свинцово-кислотными аккумуляторами. Даже при использовании высокоточного оборудования в среде с контролируемой температурой и в соответствии с установленными стандартами заряда и разряда между идентичными испытаниями возникают различия. Это не совсем понятно, кроме как понять, что батареи — это электрохимические устройства, которые обладают качествами, подобными человеческим. Наш уровень IQ также варьируется в зависимости от времени суток и других условий. Химические составы на основе лития и никеля обеспечивают более стабильные результаты разряда, чем свинцово-кислотные.

Лаборатории Cadex проверили 91 стартерную батарею с различными уровнями производительности, и результаты представлены на Рисунке 1. По горизонтальной оси X представлены батареи от слабой до сильной, а по вертикальной оси Y — емкость.Испытания проводились в соответствии со стандартами SAE J537 с применением полной зарядки и 24-часового перерыва с последующим регулируемым разрядом 25 А до 10,50 В (1,75 В / элемент). Результаты, отмеченные ромбами, представляют Тест 1. Тест был повторен в идентичных условиях, и емкости, показанные в квадратах, характеризуют Тест 2. Только выполненные с разницей в несколько дней, Тесты 1 и 2 различаются в среднем на +/- 15 процентов по производительности. Другие лаборатории наблюдают аналогичные расхождения.


Рисунок 1: Колебания емкости при двух идентичных испытаниях заряда / разряда 91 стартерной батареи. Производительность различается на +/– 15% между тестом 1 и тестом 2. Тесты проводились в соответствии с SAE J537
Предоставлено Cadex (2005)


При оценке результатов теста батареи задается вопрос: «С каким стандартом сравниваются показания?» Если это делается с классическим циклом заряда / разряда, который имеет большие неточности, тогда современные технологии тестирования не имеют эталонных показателей, и ученые могут спросить: «Какой метод более точен, метод разряда / заряда или другие развивающиеся технологии?» Это актуальный вопрос, поскольку появляются ненавязчивые технологии, которые позволяют протестировать батарею всего за несколько секунд.

Неинвазивный метод

Spectro ™ (от Cadex) использует многомодельную спектроскопию электрохимического импеданса (EIS), которая проверяет состояние батареи за секунды с помощью процесса сканирования. Неинвазивная технология сочетает EIS со сложным моделированием для оценки емкости, CCA и SoC с помощью матриц, также известных как справочные таблицы. Вот как это работает:

Синусоидальный сигнал нескольких частот вводится в батарею с напряжением в несколько милливольт.После цифровой фильтрации извлеченный сигнал формирует график Найквиста, на который накладываются различные электрохимические модели. Spectro ™ выбирает наиболее подходящие модели; неподходящие реплики отклоняются. Затем слияние данных сопоставляет значения ключевых параметров для получения оценок мощности и CCA. Рисунок 2 упрощенно иллюстрирует запатентованный процесс.

Рис. 2 Spectro ™ объединяет EIS со сложным моделированием для оценки емкости батареи и улучшения измерений CCA. Синусоидальный сигнал создает график Найквиста; Объединение данных коррелирует значения ключевых параметров для оценки емкости и CCA.
патент США 7,072,871; Предоставлено Cadex


Сюжет Найквиста был изобретен Гарри Найквистом (1889–1976), когда он работал в Bell Laboratories. Он представляет частотную характеристику линейной системы, отображающую как амплитуду, так и фазовый угол на одном графике с использованием частоты в качестве параметра. Горизонтальная ось X графика Найквиста показывает реальный импеданс в омах, а вертикальная ось Y представляет воображаемый импеданс.(См. BU-907: Проверка литиевых батарей, рис. 3.)

Емкость по сравнению с CCA

Стартерные батареи имеют два различных значения: CCA и емкость. Эти два прочтения разные; одно не может предсказать другое, и корреляция между ними почти отсутствует, за исключением, возможно, конца срока службы батареи. (См. BU-806, Отслеживание емкости и сопротивления батареи как часть старения)

Большинство экспресс-тестеров смотрят на внутреннее сопротивление и делают приближение CCA.Считывание сопротивления батареи относительно просто, но одно это не может предсказать емкость, а также не может сказать, когда заменить батарею, поскольку характеристика окончания срока службы в первую очередь связана с емкостью. Большинство стартерных батарей запускают двигатель с очень малой мощностью; внезапный отказ может произойти, когда емкость упадет ниже 30 процентов.

Некоторые тестеры аккумуляторов, в том числе Spectro ™, показывают «высокое сопротивление» при повышении омических значений, что обычно связано с тепловым повреждением.В исправной стартерной батарее отображается однозначное значение в МОм, которое в модели Randles справа обозначено R1. (См. BU-902: Как измерить внутреннее сопротивление) Батареи, развивающие высокое сопротивление, имеют двузначные показания, и это может быть вызвано следующими условиями:
Randles Модель
  1. Низкий уровень электролита (см. BU-804c: потеря воды, кислотное расслоение и поверхностный заряд)
  2. Расслоение электролита (см. BU-804c: потеря воды, расслоение кислоты и поверхностный заряд)
  3. Сульфатирование электродов (см. BU-804b: Сульфатирование и способы его предотвращения)
  4. Плохие или изношенные сварные соединения пластин коллектора и столбов
  5. Растрескивание пластины коллектора корродировано (см. BU-804a: Коррозия, выпадение и внутреннее короткое замыкание)
  6. Плохое соединение аккумулятора на зажимах или внутри аккумулятора


R1 представляет собой сопротивление электролита, на которое влияют пункты 1 и 2 выше.Пункты с 3 по 6 относятся к R1, характеризующему сопротивление электролита, создаваемое низким расслоением электролита и / или кислоты, что отражено в пунктах 1 и 2 перечисленных выше условий. Пункты с 3 по 6 относятся к сульфатированию, коррозии и контактному сопротивлению от полюсов батареи к электродам, а также электродов к электролиту.

Параллельная цепь R2 / C представляет сопротивление передачи заряда и скорость. Он означает энергию, необходимую для преодоления потенциального барьера на границе раздела электрод-электролит, который активирует ион внутри электролита, что приводит к перемещению электронов от электрода к контактам.У плохой батареи сопротивление барьера выше, чем у хорошей батареи с большой емкостью. Ветвь R2 / C содержит секрет оценки мощности и отличается от более механических условий, зафиксированных в R1.

Возможность разделения отдельных компонентов в модели Randles, как это делает Spectro ™, позволяет улучшить оценку батареи, что сокращает необходимость замены батареи, особенно в течение гарантийного периода. «Высокое сопротивление» отличает аккумулятор с низким уровнем заряда от аккумулятора с настоящим дефектом.Тест можно провести с частичной зарядкой.

«Насколько точны показания?» автомеханики спрашивают. Это зависит от аккумулятора. Неисправность можно уверенно диагностировать только при наличии явных симптомов. Новая батарея или батарея, которая хранилась на складе, могут оказаться нестандартными при оценке емкости. Наилучшие результаты достигаются с «исправной» батареей, выведенной из эксплуатации. Точность также зависит от качества матрицы. (См. BU-905: Тестирование свинцово-кислотных батарей, матрица).

Хотя емкость и показания CCA четко обозначены на батарее, эти значения не всегда верны.CCA некоторых стартерных батарей оказывается выше или ниже указанного; знает только производитель. Из-за высокой стоимости тесты CCA после продажи батареи проводятся редко. Кроме того, новые батареи глубокого разряда показывают низкую емкость, что может привести к возврату по гарантии. Значения будут увеличиваться по мере форматирования батареи. (См. BU-701: Как заправить батареи.)

Последнее обновление 2017-06-09

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University следит за комментариями и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «Свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Предыдущий урок Следующий урок

Или перейти к другой артикуле

Батареи как источник питания

Как рассчитать емкость аккумулятора в ампер-часах (Ач) при разных значениях «C»?

Как рассчитать емкость аккумулятора в ампер-часах (Ач) при различных значениях «C»?

Как рассчитать емкость аккумулятора в ампер-часах (Ач) при различных значениях «C»?

Например, я знаю, что батарея емкостью 200 Ач при C / 20 имеет другую емкость при C / 100.

Когда вы определяете фотоэлектрическую систему с аккумулятором, скажем, 800 Ач, как вы определяете, какой C-рейтинг использует аккумуляторный блок?

C-ставки также называются «почасовой оплатой» и основываются на продолжительности времени выписки. Показатель C / 20 означает, что емкость аккумулятора рассчитывается исходя из его полной разрядки в течение 20 часов. Таким образом, если у вас есть аккумуляторная батарея на 1000 ампер-часов, зарядка или разрядка на 50 ампер будет соответствовать скорости C / 20 (1000 Ач ÷ 50 А = 20 часов).

Неформальный Стандарт солнечной энергетики для сравнения емкости аккумуляторов глубокого цикла составляет показатель C / 20, потому что он приблизительно соответствует 24-часовому периоду разряда большинства автономных систем.В таблицах данных многих производителей аккумуляторов также содержится информация о емкости для коэффициентов C / 5 и C / 100, которые могут быть полезны в других отраслях промышленности.

Если вам известен показатель Пойкерта для батареи, можно рассчитать емкость батареи при любой заданной скорости C. Пойкерт был немецким ученым, который вывел формулу зависимости между емкостью батареи и скоростью разряда. Производители аккумуляторов обычно не предоставляют данные Peukert в своих спецификациях, но их можно получить, связавшись с ними.

It = C × [C ÷ (I × H)] k — 1; где
H = номинальное время разряда в часах;
C = номинальная емкость при такой скорости разряда;
I = фактический ток разряда в амперах;
k = показатель Пойкерта
It = эффективная емкость при скорости разряда «I»

Большинство свинцово-кислотных аккумуляторов имеют показатель Пейкерта от 1,2 до 1,4, в то время как у большинства аккумуляторов со стекловолокном (AGM) от 1,05 до 1,2 — но имейте в виду, что эти цифры будут увеличиваться с возрастом аккумуляторов.Показатель Пейкерта для данной батареи также можно рассчитать, если производитель предоставит вам номинальную емкость при двух разных скоростях разряда. Эта математика сложна, но есть полезная таблица (и подробная информация о применении закона Пойкерта) по адресу www. smartgauge.co.uk/peukert_depth.html Типичный Система возобновляемых источников энергии будет заряжаться или разряжаться с разной скоростью заряда в течение любых 24 часов. С помощью системы мониторинга батареи, которая записывает данные в электронную таблицу компьютера, можно рассчитать C-rate в любой момент времени.И хотя это может показаться странным, емкость используемого аккумулятора постоянно меняется.

К счастью для типичного владельца домашней системы RE, уровень выбросов C в среднем довольно низкий. Рассмотрим аккумуляторную батарею на 48 В на 1000 Ач в системе, которая обеспечивает 10 кВтч резервной энергии в день. Эти 10 кВтч равны 208 Ач. Это деленное на 24 часа равняется 8,7 А. Это среднесуточная скорость C / 115 (1000 ÷ 8,7), что намного ниже, чем скорость C / 20, используемая для сравнения при выборе батарей.Это правда, что большие нагрузки, которые используются в течение этих 24 часов, увеличивают эффекты Пойкерта и уменьшают полезную емкость батареи, но этот пример также показан без солнечной энергии. В солнечные дни скорость выделения C будет еще меньше.

Люди, работающие с электромобилями, должны уделять больше внимания закону Пойкерта. Типичный аккумуляторный блок электромобиля имеет гораздо меньшую емкость, чем аккумулятор в типичном доме на солнечных батареях, поскольку в транспортных средствах необходимо минимизировать как вес, так и габариты аккумулятора. Также, Электродвигатели используют энергию батареи с очень высокой скоростью — при некоторых условиях батарея может быть полностью разряжена менее чем за час.

В случае применения солнечной энергии простое использование соответствующих рекомендаций по определению размеров системы, таких как электронные таблицы или консультации с вашим местным дилером RE, позволит сохранить приемлемую скорость заряда батарей, обычно намного лучше, чем C / 20. Экспонент Пойкерта поднимет свою уродливую голову только в том случае, если вы резко уменьшите размер своей аккумуляторной батареи для своих нагрузок или специализированных приложений, таких как электромобили.

Размер батареи ИБП и расчет времени работы

Как определить размер системы резервного питания от батареи!

Измерения мощности переменного тока связаны следующим образом:

ВА = Вольт x Ампер , только если PF = 1. Если коэффициент мощности меньше 1, тогда Вольт x Ампер = Ватты и Ватты ÷ PF = VA

Вольт = 230 (стандартно), Амперы = ток нагрузки и коэффициент мощности = от 0 до 1

Коэффициент мощности — это число от 0 до 1, которое представляет долю тока нагрузки, которая обеспечивает полезную энергию (Вт) для нагрузки. Только в электронагревателе или лампе накаливания коэффициент мощности равен 1; для всего остального оборудования часть тока нагрузки протекает в нагрузку, а затем обратно, без передачи ватт.Этот ток, состоящий из токов искажения или реактивных токов, является результатом природы электронной нагрузки. Важно понимать, что это искажение или реактивный ток, который вынужден существовать из-за нагрузки, приводит к тому, что номинальная мощность нагрузки V-A превышает номинальную мощность нагрузки в ваттах. Систему оценки ватт можно рассматривать как частный случай системы измерения V-A, а именно случай, когда коэффициент мощности равен 1.

Как рассчитать время работы от аккумулятора

Обладая более чем 25-летним опытом работы в отрасли резервного питания, директора PHD Powerhouse уже многое видели.Однако единственное, что потребители постоянно не понимают, — это размер батарей для систем резервного питания. Очень часто потребители выбирают более низкую стоимость системы резервного копирования, не обращая внимания на более мелкие детали. Пытаясь получить заказы, недобросовестные продавцы часто экономят на батареях, делая смехотворные заявления о времени автономной работы. Предлагая меньшую емкость аккумуляторов, можно получить огромную экономию, но требования по времени работы часто недостижимы. Вот как PHD Powerhouse рекомендует рассчитать требования к батареям, чтобы убедиться, что вы получаете то, о чем просите.На выбор батареи влияет ряд факторов:

1. Нагрузка

Само собой разумеется, что чем большую нагрузку нужно поддерживать, тем большей должна быть емкость батарей. В нашем примере мы будем использовать нагрузку 1000 Вт.

2. Требуемая продолжительность работы

Как и в пункте 1 выше, чем больше требуемое время работы, тем больше должна быть емкость аккумулятора. В нашем примере мы будем использовать необходимое время работы в 1 час.

3. Тип зарядного устройства

ИБП

не поддерживает аккумулятор бесконечной емкости. Поэтому емкость аккумулятора ограничена размером зарядного устройства. Обычно емкость аккумулятора не должна превышать 12-кратный максимальный ток заряда, т.е. Зарядное устройство на 5 А вмещает только 60 Ач аккумуляторов (5 x 12 = 60). однако, если предполагается, что разряды будут происходить реже, чем раз в 10 дней, в крайних случаях можно увеличить ток заряда в 20 раз. Предположим, что в нашем ИБП есть зарядное устройство на 10А.

4. Шина постоянного тока

Шина постоянного тока — это напряжение, необходимое инвертору для работы, и определяет количество последовательно подключенных батарей, необходимых для работы инвертора. Эту информацию можно получить у поставщика ИБП, и она должна быть четко указана в их спецификациях. Шины постоянного тока варьируются от 12 В (1 батарея) до 480 В (40 батарей). Предположим, шина постоянного тока на 36 В (3 батареи).

5. КПД ИБП (инвертор)

Инверторы

используют часть энергии, вырабатываемой батареями, для работы внутренней электроники, поэтому не вся емкость батареи доступна для работы нагрузки.Кроме того, часть энергии теряется из-за прокладки кабелей и соединений, особенно при наличии длинных кабелей постоянного тока. В нашем примере мы предположим, что КПД инвертора составляет 70%.

6. Тип батареи

Сегодня на рынке доступно множество типов батарей, и, поскольку PHD не является специалистом по батареям, мы не будем давать здесь рекомендаций. Однако, как правило, мы используем полностью герметичные необслуживаемые свинцово-кислотные аккумуляторы глубокого разряда, которые широко используются в отрасли. Важно помнить, что батареи разряжаются экспоненциально быстрее при более высоких нагрузках, чем при более низких нагрузках, поэтому, если батарея обеспечивает время работы в течение 1 часа при 5 А, она обеспечит значительно меньше 30 минут при 10 А — обычно на 10-15% меньше.Для полной точности важно обращаться к кривым разряда конкретного производителя батареи, однако PHD использует несколько практических правил для повышения точности времени работы.

1. Для времени работы менее 2 часов к окончательному требуемому току батареи применяется коэффициент 1,5.
2. Для времени работы более 2 часов к окончательному требуемому току батареи применяется коэффициент 1,3.

Расчет

Из приведенной выше информации получаем следующее:
Нагрузка = 1000 Вт
Шина постоянного тока = 36 В (3 батареи по 12 В)
Требуемое время работы = 60 минут
КПД инвертора = 70%
Зарядное устройство = 10 А

Сначала нам нужно рассчитать ток, необходимый для работы нагрузки и инвертора:
I = Нагрузка / (70%) / (DC Bus)
I = 1000/0. 7/36
I = 39,68A
Из вышеизложенного видно, что для питания нашей нагрузки и инвертора в течение 1 часа аккумулятор должен обеспечивать 39,68 А в течение 1 часа = 39,68 Ач. Однако, используя наше практическое правило для экспоненциального характера кривых разряда батареи, нам необходимо увеличить требуемый ток в 1,5 раза
I = 39,68 x 1,5
I = 59,52

Следовательно, потребуется батарея емкостью 59,52 Ач для обеспечения 1 часа работы нагрузки 1000 Вт. Однако производители не выпускают батареи 59.52AH, поэтому следует выбрать следующий по величине стандартный размер. В данном случае аккумулятор на 65 Ач. Наконец, поскольку для шины постоянного тока требуется вход 36 В, 3 x 12 В, для завершения системы потребуются батареи емкостью 65 Ач, подключенные последовательно. Приведенные выше расчеты могут показаться немного пугающими
, и многие потребители могут посчитать ненужным изучать что-то, что им может понадобиться раз в жизни. Итак, вот основное правило, гарантирующее, что при сравнении цитат можно сравнивать яблоки с яблоками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *