Как рассчитать обмотки трансформатора: Как рассчитать количество витков и сечение провода трансформатора?

Содержание

Как рассчитать количество витков и сечение провода трансформатора?


Как рассчитать количество витков и диаметр провода обмоткок трнасформатора? FAQ Часть 3

В статье Вы найдёте формулы для самого простого расчёта габаритной мощности, количества витков и диаметра провода силового трансформатора. Каждый расчёт дополнен наглядным примером.


Самые интересные ролики на Youtube

Близкие темы.

Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.

Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Оглавление статьи.

  1. Как определить необходимую мощность силового трансформатора для питания УНЧ?
  2. Какую схему питания УНЧ выбрать?
  3. Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.
  4. Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.
  5. Типы магнитопроводов силовых трансформаторов.
  6. Как определить габаритную мощность трансформатора?
  7. Где взять исходный трансформатор?
  8. Как подключить неизвестный трансформатор к сети?
  9. Как сфазировать обмотки трансформатора?
  10. Как определить количество витков вторичной обмотки?
  11. Как рассчитать диаметр провода для любой обмотки?
  12. Как измерить диаметр провода?
  13. Как рассчитать количество витков первичной обмотки?
  14. Как разобрать и собрать трансформатор?
  15. Как намотать трансформатор?
  16. Как закрепить выводы обмоток трансформатора?
  17. Как изменить напряжение на вторичной обмотке не разбирая трансформатор?
  18. Программы для расчёта силовых трансформаторов.
  19. Дополнительные материалы к статье.

Страницы 1 2 3 4


Как определить количество витков вторичной обмотки?

Для расчёта количества витков вторичной обмотки необходимо знать, сколько витков приходится на один Вольт.

Если количество витков первичной обмотки неизвестно, то это значение можно получить одним из предложенных ниже способов.

Первый способ.

Перед удалением вторичных обмоток с каркаса трансформатора, нужно замерить на холостом ходу (без нагрузки) напряжение сети и напряжение на одной из самых длинных вторичных обмоток. При размотке вторичных обмоток, нужно посчитать количество витков той обмотки, на которой был произведён замер.

Имея эти данные, можно легко рассчитать, сколько витков провода приходится на один Вольт напряжения.


Второй способ.

Этот способ можно применить, когда вторичная обмотка уже удалена, а количество витков не посчитано. Тогда можно намотать в качестве вторичной обмотки 50 -100 витков любого провода и сделать необходимые замеры. То же самое можно сделать, если используется трансформатор, имеющий всего несколько витков во вторичной обмотке, например, трансформатор для точечной сварки. Тогда временная измерительная обмотка позволит значительно увеличить точность расчётов.

Когда данные получены, можно воспользоваться простой формулой:

ω1 / U1 = ω 2 / U2

ω 1 – количество витков в первичной обмотке,

ω 2 – количество витков во вторичной обмотке,

U1 – напряжение на первичной обмотке,

U2 – напряжение на вторичной обмотке.

Пример:

Я раздобыл вот такой трансформатор без вторичной обмотки и опознавательных знаков.

Намотал в качестве временной вторичной обмотки – 100 витков.

Намотал я эту обмотку тонким проводом, который не жалко и которого у меня больше всего. Намотал «в навал», что значит, как попало.

Результаты теста.

Напряжение сети во время замера – 216 Вольт.

Напряжение на вторичной обмотке – 20,19 Вольт.

Определяем количество витков на вольт при 216V:

100 / 20,19 = 4,953 вит./Вольт

Здесь на точности не стоит экономить, так как погрешность набегает при замерах. Благо, считаем-то не на бумажке.

Рассчитываем число витков первичной обмотки:

4,953 * 216 = 1070 вит.

Теперь можно определить количество витков на вольт при 220V.

1070 / 220 = 4,864 вит./Вольт

Рассчитываем количество витков во вторичных обмотках.

Для моего трансформатора нужно рассчитать три обмотки. Две одинаковые «III» и «IV» по 12,8 Вольт и одну «II» на 14,3 Вольта.

4,864 * 12,8 = 62 вит.

4,864 * 14,3 = 70 вит.

Вернуться наверх к меню


Как рассчитать диаметр провода для любой обмотки?

Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.

Рассчитать ток катушки можно по формуле:

I = P / U

I – ток обмотки,

P – мощность потребляемая от данной обмотки,

U – действующее напряжение данной обмотки.

Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».

31 / (12,8+12,8) = 1,2 Ампер

Диаметр провода можно вычислить по формуле:

D = 1,13 √(I / j)

D – диаметр провода в мм,

I – ток обмотки в Амперах,

j – плотность тока в Ампер/мм².


При этом плотность тока можно выбрать по таблице.
Конструкция трансформатора
Плотность тока (а/мм2) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
Двухкаркасная
3,5-4,0
2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0

Пример:

Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².

1,13√ (1,2 / 2,5) = 0,78 мм

У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

На картинке два варианта конструкции каркаса: А – обычная, В– секционная.


  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего несекционированного каркаса 40мм.

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

124 * 1,08 * 1,1 : 40 3,68 слоя

1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

Определяем толщину обмотки:

1,08 * 4 4,5 мм

У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

Ток катушки «II» вряд ли будет больше чем – 100мА.

1,13√ (0,1 / 2,5) = 0,23 мм

Диметр провода катушки «II» – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

Длина проводов будет равна:

L = p * ω * 1,2

L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.


* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.

Вернуться наверх к меню


Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.


Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.


Таблица данных обмоточных проводов.
Диаметр без изоляции, мм Сечение меди, мм² Сопротив-ление 1м при 20ºС, Ом Допустимая нагрузка при плотности тока 2А/мм² Диаметр с изоляцией, мм Вес 100м с изоляцией, гр
0,03 0,0007 24,704 0,0014 0,045 0,8
0,04 0,0013 13,92 0,0026 0,055 1,3
0,05 0,002 9,29 0,004 0,065 1,9
0,06 0,0028 6,44 0,0057 0,075 2,7
0,07 0,0039 4,73 0,0077 0,085 3,6
0,08 0,005 3,63 0,0101 0,095 4,7
0,09 0,0064 2,86 0,0127 0,105 5,9
0,1 0,0079 2,23 0,0157 0,12 7,3
0,11 0,0095 1,85 0,019 0,13 8,8
0,12 0,0113 1,55 0,0226 0,14 10,4
0,13 0,0133 1,32 0,0266 0,15 12,2
0,14 0,0154 1,14 0,0308 0,16 14,1
0,15 0,0177 0,99 0,0354 0,17 16,2
0,16 0,0201 0,873 0,0402 0,18 18,4
0,17 0,0227 0,773 0,0454 0,19 20,8
0,18 0,0255 0,688 0,051 0,2 23,3
0,19 0,0284 0,618 0,0568 0,21 25,9
0,2 0,0314 0,558 0,0628 0,225 28,7
0,21 0,0346 0,507 0,0692 0,235 31,6
0,23 0,0416 0,423 0,0832 0,255 37,8
0,25 0,0491 0,357 0,0982 0,275 44,6
0,27 0,0573 0,306 0,115 0,31 52,2
0,29 0,0661 0,2бб 0,132 0,33 60,1
0,31 0,0755 0,233 0,151 0,35 68,9
0,33 0,0855 0,205 0,171 0,37 78
0,35 0,0962 0,182 0,192 0,39 87,6
0,38 0,1134 0,155 0,226 0,42 103
0,41 0,132 0,133 0,264 0,45 120
0,44 0,1521 0,115 0,304 0,49 138
0,47 0,1735 0,101 0,346 0,52 157
0,49 0,1885 0,0931 0,378 0,54 171
0,51 0,2043 0,0859 0,408 0,56 185
0,53 0,2206 0,0795 0,441 0,58 200
0,55 0,2376 0,0737 0,476 0,6 216
0,57 0,2552 0,0687 0,51 0,62 230
0,59 0,2734 0,0641 0,547 0,64 248
0,62 0,3019 0,058 0,604 0,67 273
0,64 0,3217 0,0545 0,644 0,69 291
0,67 0,3526 0,0497 0,705 0,72 319
0,69 0,3739 0,0469 0,748 0,74 338
0,72 0,4072 0,043 0,814 0,78 367
0,74 0,4301 0,0407 0,86 0,8 390
0,77 0,4657 0,0376 0,93 0,83 421
0,8 0,5027 0,0348 1,005 0,86 455
0,83 0,5411 0,0324 1,082 0,89 489
0. 86 0,5809 0,0301 1,16 0,92 525
0,9 0,6362 0,0275 1,27 0,96 574
0,93 0,6793 0,0258 1,36 0,99 613
0,96 0,7238 0,0242 1,45 1,02 653
1 0,7854 0,0224 1,57 1,07 710
1,04 0,8495 0,0206 1,7 1,12 764
1,08 0,9161 0,0191 1,83 1,16 827
1,12 0,9852 0,0178 1,97 1,2 886
1,16 1,057 0,0166 2,114 1,24 953
1,2 1,131 0,0155 2,26 1,28 1020
1,25 1,227 0,0143 2,45 1,33 1110
1,3 1,327 0,0132 2,654 1,38 1190
1,35 1,431 0,0123 2,86 1,43 1290
1,4 1,539 0,0113 3,078 1,48 1390
1,45 1,651 0,0106 3,3 1,53 1490
1,5 1,767 0,0098 3,534 1,58 1590
1,56 1,911 0,0092 3,822 1,64 1720
1,62 2,061 0,0085 4,122 1,71 1850
1,68 2,217 0,0079 4,433 1,77 1990
1,74 2,378 0,0074 4,756 1,83 2140
1,81 2,573 0,0068 5,146 1,9 2310
1,88 2,777 0,0063 5,555 1,97 2490
1,95 2,987 0,0059 5,98 2,04 2680
2,02 3,205 0,0055 6,409 2,12 2890
2,1 3,464 0,0051 6,92 2,2 3110
2,26 4,012 0,0044 8,023 2,36 3620
2,44 4,676 0,0037 9,352 2,54 4220

Вернуться наверх к меню


Как рассчитать количество витков первичной обмотки?

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом.

Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пор, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то можно рассчитать количество витков по приведённой формуле. Эта формула валидна для частоты 50 Герц.

ω = 44 / (T * S)

ω – число витков на один вольт,

44 – постоянный коэффициент,

T – величина индукции в Тесла,

S – сечение магнитопровода в квадратных сантиметрах.

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / (1,5 * 6,25) = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.


Величину индукции можно определить по таблице.
Тип магнитопровода Магнитная индукция max (Тл) при мощности трансформатора (Вт)
5-15 15-50 50-150 150-300 300-1000
Броневой штампованный 1,1-1,3 1,3 1,3-1,35 1,35 1,35-1,2
Броневой витой 1,55 1,65 1,65 1,65 1,65
Тороидальный витой 1,7 1,7 1,7 1,65 1,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Вернуться наверх к меню


Страницы 1 2 3 4


Иногда, чтобы решить поставленную задачу, самодельщику приходится искать нетривиальные решения. Может быть, они Вас ожидают здесь. Ну вот и всё, главное красиво и ненавязчиво закончить мысль. Всем удачи!

Как рассчитать количество витков первичной обмотки трансформатора

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом. Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пот, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то рассчитать количество витков первичной обмотки трансформатора можно по приведённой формуле. Эта формула подходит для частоты сети равной 50 Герц.

ω = 44 / T * S

  • ω – число витков на один вольт,
  • 44 – постоянный коэффициент,
  • T – величина индукции в Тесла,
  • S – сечение магнитопровода в квадратных сантиметрах.

 

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / 1,5 * 6,25 = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице

Тип магнитопроводаМагнитная индукция max (Тл) при мощности трансформатора (Вт)
5-1515-5050-150150-300300-1000
Броневой штампованный1,1-1,31,31,3-1,351,351,35-1,2
Броневой витой1,551,651,651,651,65
Тороидальный витой1,71,71,71,651,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Видео: Расчет трансформатора питания. Простая электроника

Поделиться ссылкой:

правила расчета для разных типов

Автор otransformatore На чтение 5 мин Опубликовано

При необходимости самостоятельно изготовить устройство питания электронной аппаратуры вопрос, как самостоятельно рассчитать количество витков трансформатора и как определить данные для проводов первичной и вторичных обмоток, стоит наиболее часто.

Правильный расчет возможен при наличии исходных данных по характеристикам мощности потребителей, напряжений входа и выхода. показатели массы и габаритов устройства, также могут накладывать ограничения.

На что влияет количество витков в трансформаторе

Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка  оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.

И стоит заметить, что лучше не размыкать вторичную обмотку ТТ.

Методика расчета

Полный расчет трансформатора довольно сложен и учитывает такие параметры:

  • напряжение и частоту питающей сети;
  • число вторичных обмоток;
  • ток потребления каждой вторичной обмотки;
  • тип материала сердечника;
  • массогабаритные показатели.

На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.

Методика не требует особенных знаний сложности, и при наличии опыта занимает немного времени.

Для расчета требуются следующие данные:

  1. Количество выходов.
  2. Напряжение и потребляемый ток каждой обмотки.

В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:

Pс=I1∙U1+ I2∙U2+… In∙Un

Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная  формула:

P=1.25∙ Pс

Зная мощность, можно определить сечение сердечника:

S=√P

Полученное значение сечения будет выражено в квадратных сантиметрах!

Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:

  • броневые;
  • стержневые;
  • О-образные.

Также различаются и способы изготовления магнитопроводов:

  • наборные – из отдельных пластин;
  • витые, разрезные или сплошные.

Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.

Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:

W=K/S,

где К – коэффициент, который зависит от материала и типа сердечника.

Для упрощения вычислений приняты следующие значения коэффициента:

  1. Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
  2. Для разрезных магнитопроводов К=50.
  3. Для О-образных сердечников К=40.

Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.

Зная параметр W, легко определить количество витков для каждой из обмоток:

n=U∙W

Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.

Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к  насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.

На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:

d=0.7√I

Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.

Полученные значения округляют до ближайшего большего значения из стандартных диаметров проводов.

Альтернативный метод по габаритам

Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.

Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:

PГ=S2

Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:

P=0. 8 PГ

Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.

Использование мультиметра

Используя мультиметр, можно найти данные для пересчета обмоток имеющегося трансформатора. Для этого необходимо выполнить дополнительную катушку из любого имеющегося в наличии провода. После подключения устройства в сеть необходимо измерить напряжение на дополнительной катушке. Теперь можно легко подсчитать необходимое число витков на вольт и выполнить перерасчет трансформатора под нужные требования.

Таблица количества вольт на виток

Для того, чтобы постоянно не выполнять расчеты, можно воспользоваться таблицей, в которой приведены усредненные данные обмоток в зависимости от мощности:

Мощность, PСечение в см2, SКоличество вит. /В, WМощность, PСечение в см2, SКоличество вит. /В, W
11.432509.05.0
22.121609.84.6
53.6137010.34.3
104.69.88011.04.1
155.58.49011.73.9
206.27.310012.33.7
256.66.712013.43.4
307.36.215015.03.0
408.35.420017.32.6

Примеры реальных расчетов

В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:

  • напряжение сети – 220В;
  • выходное напряжение – 14В;
  • ток вторичной обмотки – 10А;

Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт

Габаритная мощность: P=1. 25∙ 140=175 Вт.

Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см2

Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см2.

Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт

Для обмоток общее количество витков равняется:

  • первичная обмотка n1=220∙3.6= 792 витка;
  • вторичная обмотка n2=14∙3.6=50 витков.

Поскольку трансформатор мощный, то падение напряжения на первичной обмотке можно не учитывать.

Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.

Ближайшее стандартное значение – 2.4 мм.

Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.

Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.

Ближайшее стандартное значение имеет как раз такое значение.

Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.

Силовые трансформаторы, простой расчет — Радиомастер инфо

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Простой расчет силового трансформатора | hardware

На этой страничке приведен простой метод расчета параметров трансформатора для сетей питания промышленной частоты (для России это 220V 50 Гц). Это может понадобиться для радиолюбительского творчества, ремонта и модификации трансформаторов. Обратите внимание, что даже если приведенный метод расчета и некоторые уравнения могли быть обобщены, здесь для упрощения вычислений принимались во внимание только классические сердечники трансформаторов с закрытым магнитным потоком, составленные из стальных пластин.

[Шаг 1. Определение размеров магнитопровода]

Когда разрабатывается трансформатор, первый шаг в разработке состоит в выборе подходящего сердечника, чтобы трансформатор мог передать необходимую мощность. Обычно чем больше мощность, тем больше должны быть размеры трансформатора. В действительности нет теоретических или физических ограничений на то, чтобы трансформатор меньшего размера мог передавать большую мощность. Но по практическим соображениям на сердечнике малого размера недостаточно места для размещения всех обмоток, поэтому можно выбрать только лишь сердечник не меньше определенного размера. Хороший базовый выбор может дать следующая эмпирическая формула (для рабочей частоты трансформатора 50 Гц):

P = η * S2 / 14000

Это выражение связывает (допустимую) мощность P трансформатора с площадью поверхности поперечного сечения S, с учетом эффективности сердечника η (греческая буква «eta»). При измерении поверхности поперечного сечения следует удалить 5%, чтобы учесть толщину лака на ферромагнитных пластинах, составляющих сердечник трансформатора. Площадь поперечного сечения S соответствует минимальному сечению магнитного потока в трансформаторе, и S можно определить по размерам участка магнитопровода, на котором расположены обмотки, как показано на рисунке ниже:

S=a*b

Рисунок выше показывает сердечник с двумя петлями магнитного потока, который применяется чаще всего из-за незначительного магнитного поля рассеивания, небольшого размера и технологичности в изготовлении трансформатора. Это так называемый Ш-образный сердечник. Две петли магнитного потока получаются потому, что обмотки в таком трансформаторе находятся в середине трансформатора, и их магнитное поле разветвляется на 2 половины справа и слева от обмотки. Если в Вашем трансформаторе одна петля магнитного потока (это трансформатор наподобие тороидального), то тогда не имеет значения, в каком месте сердечника определять площадь его поперечного сечения.

Эффективность η зависит от материала сердечника, и если Вы не знаете значение этого параметра, то следующая таблица даст грубую подсказку:

Таблица 1. Значение эффективности η и плотности магнитного потока φ для некоторых типов сердечника.

Материал сердечника η (коэффициент) φ (единицы Wb/m2)
Холоднокатаная текстурированная сталь, легированная кремнием (grain-oriented silicon steel), M5 0.88 1.3
То же самое, толщина пластин 0.35 мм, M6 0.84 1.2
Обычная сталь, легированная кремнием, толщина пластин 0.5 мм, M7 0.82 1.1
Обычная кремниевая сталь (или сталь для повышенной прочности) 0.80 1.0
Мягкая низкоуглеродистая сталь (mild steel) 0.70 0.8

Чтобы упростить расчет трансформатора, ниже вставлен онлайн-калькулятор:

В этом калькуляторе уже учтены 5% для уменьшения площади сечения сердечника из-за их лакового покрытия.

[Шаг 2. Определение плотности магнитного потока в сердечнике]

После того, как были определены размеры сердечника, нужно определить плотность магнитного потока φ (греческая буква «phi»). Она тоже зависит от типа материала сердечника, и если Вы не знаете этот параметр, то можно снова воспользоваться таблицей 1. Если предполагается, что трансформатор будет непрерывно работать долгое время, или условия его работы подразумевают плохой теплообмен (плохую вентиляцию), то следует немного снизить плотность магнитного потока (например на 10%). Это снизит потери и трансформатор будет меньше нагреваться, но повысятся затраты на железо сердечника и медь для обмоток, хотя учет подобных затрат может быть важен только для промышленного производства, но не для радиолюбительской практики. Противоположное решение (без снижения плотности магнитного потока) может быть принято если важны затраты на материалы трансформатора, и только если трансформатор не предназначен для работы длительное время на полной мощности.

Как только плотность магнитного потока была определена, по следующей формуле можно вычислить константу трансформатора γ, выражающую количество витков на 1 вольт:

γ = 106 * sqrt(2) / (2 * pi * f * φ * S)

Множитель 106 учитывает, что площадь поперечного сечения сердечника S выражена в мм2. Следует сделать еще несколько замечаний по этой формуле: например, низкие частоты требуют больше витков, и поэтому трансформаторы на 60 Гц обычно получаются меньшего размера, чем трансформаторы на 50 Гц. Таким образом, сниженная плотность магнитного потока (и сниженные потери в сердечнике) потребует больше витков, даже если это кажется парадоксальным. И конечно, чем больше размер сердечника, тем меньше требуется витков: если Вы когда-нибудь видели большие, мощные высоковольтные трансформаторы, используемые энергетическими компаниями для своих высоковольтных линий, то у них имеется всего лишь несколько сотен витков для преобразования многих киловольт, в то время как маленький трансформатор на 230V в Вашем маленьком будильнике содержит тысячи витков.

[Шаг 3. Вычисление числа витков]

Теперь мы знает константу трансформатора γ, и по ней можно очень просто вычислить количество витков N для каждой обмотки трансформатора в зависимости от напряжения обмотки U:

N = γ * U

Обратите внимание, что все напряжения и токи учитываются в СКЗ (эта аббревиатура соответствует английской RMS), в то время как плотность магнитного потока выражена в своем пиковом значении, чтобы избежать насыщения. Этот факт объясняет наличие корня из 2 в формуле вычисления константы трансформатора γ.

Для вторичной обмотки хорошей практикой будет увеличить количество витков примерно на 5%, что скомпенсирует потери энергии в трансформаторе.

Чтобы упростить все расчеты, можно использовать следующий онлайн-калькулятор:

В этом калькуляторе уже учтена поправка 5% для количества витков вторичной обмотки.

Как уже отмечалось, количество витков в трансформаторе зависит от размеров сердечника и плотности магнитного потока в нем, но не от мощности трансформатора. Таким образом, если Ваш трансформатор требует больше одной вторичной обмотки, просто повторите описанное вычисление количества витков для каждой обмотки. Однако в этом случае может потребоваться выбор сердечника большего размера, чтобы на нем поместились все обмотки, или другими словами, следует выбирать размер сердечника по общей мощности, снимаемой со всех вторичных обмоток. Также используйте площадь сечения сердечника достаточно большую, чтобы трансформатор мог передавать требуемую мощность.

[Шаг 4. Как правильно выбрать провода для обмоток трансформатора]

На последнем шаге следует вычислить диаметр провода для каждой обмотки. Чтобы сделать это, для провода выбирается плотность тока c. Хорошим компромиссом будет выбор 2.5 A/мм2. Если выбрать значение c меньше, то для обмоток понадобится больше меди, но в трансформаторе будет меньше потерь: этот вариант подойдет для мощных трансформаторов. Выбор значения c больше приведет к меньшим затратам на провод и удешевит трансформатор, но он будет больше нагреваться, и это может быть допустимо только когда трансформатор используется недолго на своей полной мощности, или на полной мощности понадобится дополнительное охлаждение. Обычно выбирают значение в диапазоне 2..3 A/мм2. Как только была определена плотность тока в проводе, то диаметр провода может быть вычислен по следующей формуле:

d = 2 * sqrt( I / (pi * c) )

Или для c = 2.5 A/мм2:

d = 0.72 * sqrt(I)

Чтобы упростить расчет диаметра провода, используйте следующий онлайн-калькулятор:

[Практика в изготовлении трансформатора]

Теперь, когда все вычисления завершены, начинаются сложности: поместятся ли вычисленные витки обмоток на выбранном сердечнике трансформатора? Ответ непростой, и зависит от множества факторов: сечения и вида провода, качества намотки (виток к витку или «внавал»), наличия и толщины изоляции между слоями обмотки и отдельными обмотками, и так далее. Другими словами, тут некоторый опыт окажется полезнее, чем множество уравнений.

Обычно сложно купить пустой сердечник трансформатора, и поэтому домашние проекты часто начинаются с перемотки старого трансформатора. Не все трансформаторы можно разобрать: некоторые сердечники проклеены смолой, которая слишком прочна, чтобы её удалить, не изгибая пластины сердечника. К счастью, многие трансформаторы можно разобрать, если снять с них верхний кожух, который скрепляет пластины. Кожух обычно снимается, если отогнуть или зашлифовать ушки крепления. Иногда сердечники имеют специальные не залитые краской винты, стягивающие сердечник, такой трансформатор разобрать проще всего. Каждая пластина сердечника должна быть аккуратно удалена, чтобы получить доступ к обмоткам трансформатора. Изогнутые или поцарапанные пластины сердечника следует выбросить, потому что они будут производить лишние потери и дополнительный шум в работе трансформатора.

Если получится, то можно использовать готовую первичную обмотку трансформатора, перемотав только вторичные обмотки. Это возможно, когда первичная обмотка намотана первой, и не закрывает собой вторичные обмотки трансформатора. В принятии решения, стоит ли перематывать или снимать конкретную обмотку, или она должна быть сохранена, полезно узнать количество витков этой обмотки, однако это невозможно, не разматывая её, если обмотка намотана в несколько слоев или «внавал». К счастью, есть трюк для определения количества витков обмоток: перед разборкой сердечника нужно намотать временную обмотку из малого количества витков изолированного провода (например, 10 витков), подключить трансформатор к сети, и измерить напряжение на полученной тестовой обмотке. По измеренному напряжению можно просто рассчитать количество витков на 1 вольт, и по нему достаточно точно вычислить количество витков каждой обмотки по её напряжению, без необходимости разматывать обмотки и считать их витки.

После того, как новые обмотки намотаны, время снова собрать трансформатор, поместив пластины сердечника на свое место. Бывает сложно без дополнительных усилий вернуть все пластины обратно на место, однако даже если одна или две пластины не будут вставлены, то все равно трансформатор будет нормально работать. Но по этой причине при выборе сердечника по площади поперечного сечения следует немного повысить требования к его размерам. Когда на трансформатор подано напряжение сети, важно, чтобы все пластины были при этом плотно сжаты или склеены друг с другом, иначе сердечник трансформатора будет вибрировать и издавать неприятный шум.

Многие трансформаторы имеют пластины сердечника в форме букв E и I (в России их называют Ш-образными сердечниками), наподобие таких, как показаны на картинке выше. Когда собираете трансформатор, такие пластины следует вставлять друг в друга с чередованием E-I на одном слое и I-E на следующем, и так далее. Это минимизирует воздушный зазор в магнитном потоке и повышает взаимосвязь обмоток.

Для обмоток всегда используйте эмалированный провод. Использовать провод в изоляции ПВХ (PVC, это обычные электрические провода) очень плохая идея, потому что слой изоляции у них слишком толстый, будет потеряно слишком много пространства под обмотки. Также ПВХ-изоляция очень плохо проводит тепло и может даже оплавиться, что приведет к замыканиям. Ваш трансформатор быстро перегреется и может выйти из строя.

Всегда размещайте слой изоляции между первичной и вторичной обмотками, чтобы снизить риск удара током при касании вторичных электрических цепей. Для изоляции используйте тонкие материалы, желательно негорючие, которые служат хорошим изолятором и проводником тепла. Часто для межвитковой изоляции используют лакоткань, слюду и пропитанную воском бумагу. Я использую ленту Каптона, и иногда обычную матерчатую изоленту.

Изоляция эмалированного провода хорошо выдерживает напряжение до 1000V (пиковое значение. Когда это возможно, обращайтесь к спецификации производителя. Если напряжение обмоток превышает это значение, то лучше поделить обмотку на несколько слоев, проложив изоляцию между ними.

[Общие выводы]

Самостоятельная намотка или перемотка трансформаторов требуется в специальных случаях ремонта, или когда требуется получить напряжения, которых нет в готовом трансформаторе. Но перед тем, как разбирать трансформатор, делать на нем новые обмотки и собирать его обратно, лучше всего провести некоторые расчеты, чтобы получить нужные результаты с первой попытки и не тратить лишнее время.

[Используемые символы]

Символ Описание Единица измерения
S Площадь поперечного сечения мм2
d Диаметр провода мм
f Рабочая частота трансформатора Гц
I СКЗ тока обмотки A
N Количество витков обмотки количество
P Передаваемая трансформатором мощность VA (Вт)
U СКЗ напряжения обмотки V
γ Количество витков на 1 вольт витков/V
η Эффективность сердечника коэффициент
φ Плотность магнитного потока в сердечнике Wb/m2

Примечание: 1 Wb/m2 = 1 T = 10000 Gauss

[Ссылки]

1. Calculating mains frequency power transformers site:giangrandi.ch.
2. Coil and transformer calculator site:dicks-website.eu.
3. РАСЧЕТ СЕТЕВОГО ТРАНСФОРМАТОРА site:rcl-radio.ru.

Расчет основных электрических величин и главной изоляции обмоток трансформатора

Расчет трансформатора начинается с определения основных электрических величин: мощности на одну фазу и стержень; номинальных токов на стороне ВН и НН; фазных токов и напряжений.

¨ Мощность одной фазы трансформатора, кВ*А,

=  ,
где S – мощность трансформатора; m – число фаз.

¨ Мощность на одном стержне, кВ*А,

S` =  ,
где C– число активных (несущих обмотки) стержней.
Обычно для 3-фазных трансформаторов число фаз равно числу стержней.

¨ Номинальный (линейный) ток, А,

на стороне НН I1 = ;
на стороне ВН I2 = ,
где S – мощность трансформатора, кВ*А; U1и U2 – соответствующие значения напряжений обмоток, кВ.
Для однофазного трансформатора номинальный ток, А, определяется по формуле
I = .
При определении токов мощность подставляется в киловатт-амперах (кВ*А), а напряжение в киловольтах (кВ).

¨ Фазные токи, А, трехфазных трансформаторов

при соединении в звезду или зигзаг:
Iф = Iл;
при соединении обмотки в треугольник
Iф = ,
где IЛ – номинальный линейный ток трансформатора.
Схема соединения и группа обмоток обычно задается.


¨ Фазные напряжения, В, трансформатора

при соединении обмотки в звезду или зигзаг:
=,
при соединении обмотки в треугольник:
Uф = Uл,
где Uл – номинальное линейное напряжение соответствующих обмоток.

¨ Испытательное напряжение трансформатора

Необходимо для определения основных изоляционных промежутков, между обмотками и другими токоведущими деталями.
Это напряжение, при котором проводится испытание трансформатора, а именно электрическая прочность изоляции.
Испытательное напряжение для каждой обмотки трансформатора определяется по табл. 1 или 2 в зависимости от класса напряжения соответствующей обмотки.

Таблица 1

Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)
          


Класс
напряжения, кВ

3

6

10

15

20

35

110

150

220

330

500

Наибольшее
рабочее
напряжение, кВ

3,6

7,2

12,0

17,5

24

40,5

126

172

252

363

525

Испытательное
напряжение Uисп, кВ

18

25

35

45

55

85

200

230

325

460

630

Примечание. Обмотки масляных и сухих трансформаторов с рабочим напряжением до 1 кВ имеет Uисп = 5 кВ.

Таблица  2

Испытательные напряжения промышленной частоты (50 Гц) для сухих силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения, кВ

До 1,0

3

6

10

15

Испытательное напряжение, кВ

3

10

16

24

37

Таким образом, испытательные напряжения обмоток являются критерием определения всех изоляционных промежутков в силовом трансформаторе.
Ниже приводятся основные таблицы, по которым определяются изоляционные промежутки главной изоляции, геометрические размеры охлаждающих каналов (табл. 3, 4). В табл. 5 – нормальная витковая изоляция проводов различных марок.

Таблица 3

Главная изоляция. Минимальные изолированные
расстояния обмоток НН с учетом конструктивных требований
(для масляных трансформаторов)
   


Мощность трансформатора S, кВ*А

Uисп для
НН, кВ

НН от ярма
L01, кВ

НН от стержня, мм

d01

aц1

a01

Lц1

25–250

400–630*
1000–2500
630–1600
2500–6300
630 и выше
630 и выше
Все мощности

5

5*
5
18; 25 и 35
18; 25 и 35
45
55
85

15

 

Принимается равным найденному по испытательному напряжению обмотки ВН

Картон 2×0,5

То же

4
4
4
5
5
6


6
6
8
10
13
19

4

5
15
15
17,5
20
23
30


18
25
25
30
45
70

* Для винтовой обмотки с испытательным напряжением Uисп = 5кВ размеры взять из следующей строки для мощностей 1000–2500 кВ*А.

Таблица  4

Главная изоляция. Минимальные изолированные расстояния
обмоток ВН (НН) с учетом конструктивных требований

Мощность трансформатора S, кВ*А

Uисп для ВН (НН), кВ

ВН от ярма, мм

Между ВН (СН) и НН, мм

Выступ цилиндра Lц2, мм

Между ВН (СН) и НН, мм

L02

a12

d12

a22

d22

25–100
160–630
1000–6300
630 и выше
630 и выше
160–630
1000–6300
10000 и выше

18; 25 и 35
18; 25 и 35
18; 25 и 35
45
55
85 (прим. 1)
85 (прим. 1)
85

20
30
50
50
50
75
75
80




2
2
2
2
3

9
9
20
20
20
27
27
30

2,5
3
4
4
5
5
5
6

10
15
20
20
30
50
50
50

8
10
18
18
20
20
30
30




2
3
3
3
3

Примечания: 1. Для цилиндрических обмоток минимальное изоляционное расстояние a12 = 27 мм, электростатический экран с изоляцией – 3 мм. 2. При наличии прессующих колец расстояние от верхнего ярма  L”o  принимать увеличенным против данных табл. 4. для трансформаторов 1000–6300 кВ*А на 45 мм; для двухобмоточных трансформаторов 10000–63000 кВ*А на 60 мм и для трехобмоточных трансформаторов этих мощностей на 100 мм. Расстояние от нижнего ярма L’o  и в этих случаях принимать по табл. 4.


Таблица  5
Выбор нормальной витковой изоляции

Испытательное напряжение обмотки, кВ

Марка
провода

Толщина изоляции на две стороны, мм

Название

5–24

ПСД, АПСД,               ПСДК и АПСДК

Круглый провод 0,29–0,38
(0,30 и 0,40), прямоугольный
провод 0,27–0,48 (0,30 и 0,50)

Для сухих пожаробезопасных трансформаторов

5–85

ПЭЛБО, ПБ                          и АПБ

 

Круглый провод 0,17–0,21 (0,27–0,31) 0,30 (0,40)

Для масляных и сухих  трансформаторов

ПБ и АПБ

Прямоугольный провод 0,45(0,50)

200

ПБ и АПБ

 

1,20(1,35)

Для масляных   трансформаторов

325

ПБ

 

1,35(1,50)

Для обычных обмоток

325

ПБУ

 

2,00(2,20)

Для переплетенных обмоток

Примечание. В скобках указаны расчетные размеры с учетом допусков.

Межвитковая изоляция цилиндрических многослойных обмоток и многослойных катушечных обмотках приведены соответственно в табл. 6. и 7.

 

Таблица 6
Нормальная междуслойная изоляция
в многослойных цилиндрических обмотках

Суммарное рабочее напряжение двух слоев обмотки, В

Число слоев кабельной бумаги на толщину листов, мм

Выступ междуслойной изоляции на торцах обмотки (на одну сторону), мм

До 1000
От 1001 до 2000
От 2001 до 3000
От 3001 до 3500
От 3501 до 4000
От 4001 до 4500
От 4501 до 5000
От 5001 до 5500

2 × 0,12
3 × 0,12
4 × 0,12
5 × 0,12
6 × 0,12
7 × 0,12
8 × 0,12
9 × 0,12

10
16
16
16
22
22
22
22

 
Примечание. Данные таблицы приведены для трансформаторов мощностью до 630 кВ*А включительно.
При мощности от 1000 кВ*А  и выше междуслойную изоляцию следует принимать по таблице, но не менее 4×0,12 мм, выступ изоляции – не менее 20 мм.
Таблица 7
Нормальная междуслойная изоляция
в многослойных цилиндрических катушках обмотки

Рабочее напряжение двух слоев обмотки, В

Толщина
изоляции, мм

Материал изоляции

До 150
От 151 до 200
От 201 до 300

2×0,05
1×0,2
2×0,2 или 1×0,5

Телефонная бумага
Кабельная бумага или электроизоляционный картон

Геометрические размеры каналов в обмотках для различных отводов от регулировочных витков  приведены в табл. 8.

Таблица  8
Минимальные размеры канала  hкр в месте расположения
регулировочных  витков обмотки ВН

Класс напряжения ВН, кВ

Схема
регулирования

Изоляция в месте разрыва

Размер
канала, мм

Способ изоляции

По
рис. 1

6

10

 

35

 

110

а
б
а
б
а
б
в и г
а
а
а
г

Масляный канал

То же
» »
» »
Угловые и простые шайбы
То же

Масляный канал

То же
Угловые и простые шайбы
То же

Масляный канал с барьером из шайб

а

а
а
а
б
в
а
а
б
в
г

8
12
10
18
6
18
12
25
20
25
30
(в том числе шайба 5 мм)

Примечания: 1. В многослойной цилиндрической обмотке с регулированием в
последнем слое разрыв не выполняется. 2. Минимальный выступ шайбы за габарит обмотки а = 6 мм.  Ширина обмотки шайбы b = 6–8 мм. 4. Толщина угловой шайбы 0,5–1 мм.

 

Конструкция изоляции в листе разрыва обмотки ВН показана на рис. 1.
Главная изоляция обмоток сухих силовых трансформаторов должна выбираться в соответствии с табл. 9. и 10.

 


Рис. 1. Конструкция изоляции в месте разрыва обмотки ВН

Таблица 9

 Изоляция обмоток ВН сухих трансформаторов, мм

Uисп для ВН, кВ

ВН от ярма L01

Между ВН и НН

Между ВН и ВН

a01

d12

Lц2

a22

d22

3
10
16
24

15
20
45
80

10
15
22
40

Картон 2×0,5 мм

10
10
25
45


2
3
3

2,5
4
5

10
25
40

Примечание. Размер каналов a01 и a12 является минимальными с точки зрения изоляции обмоток. Эти размеры должны быть также проверены по условиям отвода тепла по табл. 13.

Таблица 10

Изоляция обмоток НН сухих трансформаторов, мм

Uисп для НН, кВ

НН от ярма L01

НН от стержня

 

a01

d01

Lц1

3
10
16
24

15
30
55
90

10
14
27
40

Картон 2×0,5

2,5
5
6

15
30
40

Примечания. 1. См. примечание к табл. 9. 2. Для винтовой обмотки при Uисп для НН 3 Кв ставить цилиндр d01 = 2,5–5 мм и принимать a01 не менее 20 мм.

Для иллюстрации основных изоляционных промежутков представлены рис. 2, 3, и 4.

Рис. 2. Главная изоляция обмотки ВН для испытательных напряжений от 5 до 85 кВ. Штриховыми линиями показаны возможные пути разряда, определяющие размеры lц

Причем главная изоляция для трансформаторов с обмоткой ВН на 110 кВ (испытательное напряжение 200 кВ) выбирается по рис. 3.
Главная изоляция сухих трансформаторов поясняется рис. 4.
Для определения минимальных допустимых изоляционных промежутков между отводами от обмоток к проходящим изоляторам соответственно от заземленных частей трансформаторов и обмотками представлены в табл. 11 и 12.
Для пояснения величин, приведенных в табл. 11, 12, представлен рис. 5.
Для цилиндрических обмоток из круглого или прямоугольного провода очень часто требуется выбирать продольные (осевые) охлаждающие каналы. Размеры таких каналов выбираются согласно табл. 13. и 14 соответственно для масляных и сухих  трансформаторов.

 


Рис. 3. Главная изоляция обмотки класса напряжения 110 кВ с вводом на верхнем конце обмотки (испытательное напряжение 200 кВ)


Рис. 4. Главная изоляция обмоток сухих трансформаторов

Таблица 11

Минимальные допустимые изоляционные расстояния
от отводов до заземленных частей

Испытательное напряжение отвода, кВ

Толщина изоляции
на одну сторону, мм

Диаметр стержня, мм

Расстояние от гладкой стенки бака или собственной обмотки, мм

Расстояние от заземленной части острой формы, мм

s

s

До 25

0
0
2

<6
>6

15
12
10

10
10
10

25
22
20

15
12
10

5
5
5

20
17
15

35

0
0
2

<6
>6

23
18
10

10
10
10

33
28
20

20
17
12

5
5
5

25
22
17

45

0
0
2

<6
>6

32
27
15

10
10
10

42
37
25

28
25
18

5
5
5

33
30
23

55

0
0
2

<6
>6

40
35
22

10
10
10

50
45
32

33
32
25

5
5
5

38
37
30

85

2
4
6



40
30
25

10
10
10

50
40
32

45
37
35

5
5
5

50
42
40

100

5

40

10

50

45

10

55

200

20
20

12
12

75
75

20
20

95
95

160
105

10
10

170*
115**

*  Заземленная часть не изолирована.
** Заземленная часть изолирована щитом из электроизоляцонного картона толщиной 3 мм.
Таблица 12

Минимальные допустимые изоляционные расстояния
от отводов до обмотки

 

Испытательное
напряжение, кВ

Толщина  изо-ляции на одну сторону, мм

Изоляционное расстояние отвода sи, мм

Суммарный
допуск sк, мм

Минимальное расчетное расстояние s, мм

до вход-
ных
катушек

до основных катушек

до входных катушек

до основных катушек

обмотки

отвода

До 25

35

55

85

200

 

200

До 25

До 35

До 35

До 35

До 100

 

200

Нет
2
Нет
2
Нет
2
Нет
2
3
6
8
20









205
150
125
80

15
10
23
10
40
20
80
40
230
170
140
90

10
10
10
10
10
10
10
10
20
20
20
15









225
170
145
95

25
20
33
20
50
30
90
50
250
190
160
105

Рис. 5. Отвод между обмоткой и стенкой бака

 

Таблица 13

Минимальная ширина охлаждающих каналов в обмотках, см.
Масляные трансформаторы

Вертикальные каналы

Горизонтальные
каналы

Длина
канала, см

Обмотка-обмотка

Обмотка-цилиндр

Обмотка-стержень

Длина канала, см

Обмотка-обмотка

До 30

0,4–0,5

0,4

0,4–0,5

до 4,0

0,4

30–50

0,5–0,6

0,5

0,5–0,6

4–6,0

0,5

50–100

0,6–0,8

0,5–0,6

0,6–0,8

6–7,0

0,6

100–150

0,8–1,0

0,6–0,8

0,8–1,0

7–8,0

0,7

Таблица 14

 

Сухие трансформаторы, вертикальные каналы. Выбор ширины
канала по допустимому превышению температуры и плотности
теплового потока на поверхности обмотки q, Вт/м2

Класс
изоляции

Допустимое превышение температуры, С°

Плотность теплового потока, Вт/м2,
при ширине канала

0,7 см

1,0 см

1,5 см

А

60

160

300

380

Е-В

75–80

230

450

550

F

100

300

600

720

H

125

380

800

950

Горизонтальные охлаждающие каналы для сухих трансформаторов в зависимости от класса изоляции и плотности теплового потока принимаются по табл. 15.
Горизонтальные охлаждающие каналы в масляных трансформаторах  в пределах от 4 до 15 мм.


Таблица 15

Сухие трансформаторы, горизонтальные каналы. Выбор ширины
канала по допустимому превышению температуры и плотности
теплового потока на поверхности обмотки q, Вт/м2

Класс
изоляции

Допустимое
превышение температуры, С°

Плотность теплового потока, Вт/м2,
при ширине канала

0,8 см

1,2 см

1,6 см

А

60

280

380

450

Е–В

75–80

320

420

540

F

100

420

540

720

H

125

580

720

1000

Как выполнить расчет трансформатора в полном объеме

Простейший расчет силового трансформатора позволяет
найти сечение сердечника, число витков в обмотках и диаметр
провода. Переменное напряжение в сети бывает 220 В, реже 127 В и
совсем редко 110 В.

Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в
некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных
ламп чаще всего используют постоянное напряжение 150 — 300 В, для
питания накальных цепей ламп переменное
напряжение 6,3 В.

Все напряжения, необходимые для какого-либо
устройства, получают от одного трансформатора, который называют
силовым.

Силовой трансформатор выполняется на разборном
стальном сердечнике из изолированных друг от друга тонких
Ш-образных, реже П-образных пластин, а так же вытыми ленточными
сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части
сердечника выбираются с учетом общей мощности, которую
трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость:
сечение сердечника S в см², возведенное в квадрат, дает общую
мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим
стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то
есть с площадью сечения сердечника 6 см², может потреблять от сети
и «перерабатывать» мощность 36 Вт.

Это упрощенный расчет дает
вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна
мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что
сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при
толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм,
или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для
того, чтобы сталь сердечника не попадала в область магнитного
насыщения. А отсюда вывод: сечение всегда можно брать с избытком,
скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см².

Хуже от этого не будет. А вот взять сердечник с сечением меньше
расчетного уже нельзя т. к.

сердечник попадет в область насыщения,
а индуктивность его обмоток уменьшится, упадет их индуктивное
сопротивление, увеличатся токи, трансформатор перегреется и выйдет
из строя.

В силовом трансформаторе несколько обмоток.
Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же
первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может
быть несколько вторичных, каждая на свое напряжение. В
трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и
повышающая для анодного выпрямителя.

В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает
один выпрямитель.

Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то
его получают от того же выпрямителя с помощью гасящего резистора
или делителя напряжения.

Число витков в обмотках определяется по важной
характеристике трансформатора, которая называется «число витков на
вольт», и зависит от сечения сердечника, его материала, от сорта
стали. Для распространенных типов стали можно найти «число витков
на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него
получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по
формуле:

Это значит, что первичная обмотка на напряжение 220 В
будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240
витков.

Теперь выбираем намоточный провод. Для
трансформаторов используют медный провод с тонкой эмалевой
изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из
соображений малых потерь энергии в самом трансформаторе и хорошего
отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых,
будет обладать большим сопротивлением и выделять значительную
тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод
нужно взять 0,29 мм.

Источник: https://www.radiolub.ru/page/prostejshij-raschet-silovogo-transformatora

Проектирование трансформатора – как рассчитать мощность трансформатора


При проектировании трансформатора, основной параметр устройства представлен показателями его мощности.

Зная, как рассчитать мощность трансформатора, можно самостоятельно выбрать и приобрести качественный прибор, позволяющий преобразовывать напряжение в большие или меньшие значения.

Как рассчитать мощность трансформатора

Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.

Расчет обмотки преобразователя напряжения и его мощности

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

  • Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.
  • Расчетная формула такой взаимосвязи:
  • Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где
  • Sо — показатели площади окна сердечника;
  • Sс — площадь поперечного сечения сердечника;
  • Рг — габаритная мощность;
  • Bс — магнитная индукция внутри сердечника;
  • А — токовая плотность в проводниках на обмотках;
  • F — показатели частоты переменного тока;
  • Ко — коэффициент наполненности окна;
  • Кс — коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

Самые распространенные разновидности трансформаторов производятся с применением Ш —образного и П — образного сердечников.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

Варианты трансформаторов

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

В системах электрического снабжения показатели трансформаторной мощности приборов должны позволить обеспечивать стабильное питание всех потребителей электроэнергии.

Определение габаритной мощности трансформатора

Показатели габаритной мощности трансформатора могут быть приблизительно определены в соответствии с сечением магнитопровода. В этом случае уровень погрешности часто составляет порядка 50%, что обусловлено несколькими факторами.

Трансформаторная габаритная мощность находится в прямой зависимости от конструкционных характеристик магнитопровода, а также качественных показателей материала и толщины стали. Немаловажное значение придаётся размерам окна, индукционной величине, сечению проводов на обмотке, а также изоляционному материалу, который располагается между пластинами.

Схема трансформатора

Безусловно, вполне допустимо экспериментальным и стандартным расчётным способом выполнить самостоятельное определение максимальной трансформаторной мощности с высоким уровнем точности. Однако, в приборах заводского производства такие данные учтены, и отражаются количеством витков, располагающихся на первичной обмотке.

Таким образом, удобным способом определения этого показателя является оценка размеров площади сечения пластин: Р = В х S² / 1,69

В данной формуле:

  • параметром P определяется уровень мощности в Вт;
  • B — индукционные показатели в Тесла;
  • S — размеры сечения, измеряемого в см²;
  • 1,69 — стандартные показатели коэффициента.

Индукционная величина — табличные показатели, которые не могут быть максимальными, что обусловлено риском значительного отличия магнитопроводов с разным уровнем качественных характеристик.

При выборе прибора, преобразующего показатели напряжения, следует помнить, что более дешевые трансформаторы обладают невысокой относительной габаритной мощностью.

Расчет понижающего трансформатора

Выполнить самостоятельно расчет показателей мощности для однофазного трансформатора понижающего типа – достаточно легко. Поэтапное определение:

  • показателей мощности на вторичной трансформаторной обмотке;
  • уровня мощности на первичной трансформаторной обмотке;
  • показателей поперечного сечения трансформаторного сердечника;
  • фактического значения сечения трансформаторного сердечника;
  • токовых величин на первичной обмотке;
  • показателей сечения проводов на первичной и вторичной трансформаторных обмотках;
  • количества витков на первичной и вторичной обмотках;
  • общего числа витков на вторичных обмотках с учетом компенсационных потерь напряжения в кабеле.

На заключительном этапе определяются показатели площади окна сердечника и коэффициента его обмоточного заполнения. Определение сечения сердечника, как правило, выражается посредством его размеров, в соответствии с формулой: d1=А х В, где «А» — это ширина, а «В» — толщина.

Следует отметить, что при самостоятельном расчете, необходимо увеличивать количество витков на вторичной обмотке примерно на 5-10%.

Упрощенный расчет 220/36 В

Стандартный трансформатор с 220/36 В, представлен тремя основными компонентами в виде первичной и вторичной обмотки, а также магнитопровода.

Упрощенный расчет силового трансформатора включает в себя определение сечения сердечника, количества обмоточных витков и диаметра кабеля.

Исходные данные для простейшего расчета представлены напряжением на первичной U1 и на вторичной обмотке – U2, а также током на вторичной обмотке или I2.

В результате упрощенного расчета устанавливается зависимость между сечением сердечника Sсм², возведенным в квадрат и общей трансформаторной мощностью, измеряемой в Вт. Например, прибором с сердечником, имеющим сечение 6,0 см², легко «перерабатывается» мощность в 36 Вт.

Понижающий трансформатор

При расчете используются заведомо известные параметры в виде мощности и напряжения на вторичной цепи, что позволяет вычислить токовые показатели первичной цепи. Одним из важных параметров является КПД, не превышающий у стандартных трансформаторов 0,8 единиц или 80%.

Показатели полной или полезной мощности многообмоточных трансформаторов, являются суммой мощностей на всех вторичных обмотках прибора. Знание достаточно простых формул позволяет не только легко произвести расчёт мощности прибора, но также самостоятельно изготовить надежный и долговечный трансформатор, функционирующий в оптимальном режиме.

Видео на тему

Источник: https://proprovoda.ru/elektrooborudovanie/transformatory/kak-rasschitat-moshhnost.html

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

  • Их создают из других материалов сердечника и рассчитывают иными способами.
  • Шаг №4. Коэффициент полезного действия
  • У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
  • Но, вы можете откорректировать его значение вручную.
  • Шаг №5. Магнитная индуктивность
  • Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

ŋ = S1 / S2

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

n = W1 / W2

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

ω’=45/Qc (виток/вольт)

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

  1. Сборка магнитопровода
  2. Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.
  3. Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.
  4. Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток.

В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

  • Расчет провода по плотности тока
  • Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.
  • Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.
  • Способы намотки витков
  • Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.
  • Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

  1. Замер тока на холостом ходу трансформатора
  2. Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.
  3. Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в х. Обязательно обсудим.

Источник: https://ElectrikBlog.ru/raschet-transformatora-onlajn-kalkulyator/

Способы расчёта различных конфигураций трансформаторов

Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся. Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток. Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:

  1. замкнутого магнитопровода;
  2. двух и более обмоток.

Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.

Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.

Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:

  • Определение напряжений и токов, протекающих по обмоткам;
  • Определение коэффициента трансформации.

К конструктивным относятся:

  • Размеры сердечника и тип устройства;
  • Выбор материала сердечника трансформатора;
  • Возможные варианты закрывающего корпуса и вентиляции.

Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.

После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно.

Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания.

Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.

Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке.

Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.

Расчет силового трансформатора

Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность.

Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях.

Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:

  1. вихревые токи;
  2. намагничивание.

Расчет однофазного трансформатора

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему.

Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Ррасч= P*КПД

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

Далее, по этой формуле определяем сечение

S (см2) = (1,0 ÷1,3) √Р

Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.

  • После чего определяется количество витков, на один вольт напряжения.
  • N = (50 ÷70)/S (см2)
  • Берем среднюю величину коэффициента 60.

Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток.

Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции.

Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.

  1. Ток в обмотке равен
  2. I=P/U
  3. Диаметр сечения проводника для обмотки определяется по формуле:
  4. D= (0,7÷0,9)√I

где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.

Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.

Расчёт трехфазного трансформатора

Различные способы подключения одной, двух и более ламп

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом.

Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В.

Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Расчет тороидального трансформатора

Коротит проводка — причины и способы устранения проблемы

Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.

Простой расчет тороидального трансформатора состоит из 5 пунктов:

  • Определение мощность вторичной обмотки P=Uн*Iн;
  • Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
  • Площадь сечения сердечника и его размеры
  • Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.
  • Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.

Расчет трансформатора для сварочного полуавтомата

Сварочный полуавтомат предназначен для сварки с механической подачей специальной сварочной проволоки вместо электрода. Источник питания такого устройства также имеет в своей основе мощный трансформатор.

Расчёт основан на принципе его работы, на выходе которого должно быть 60 Вольт при холостом ходу. Работает он в короткозамкнутом режиме поэтому и нагрев его обмоток явление нормальное.

Расчёт в принципе тоже аналогичен, только в этом случае ещё стоит учесть мощность при продолжительной сварке

Pдл = U2I2 (ПР/100)0.5 *0.001.

Напряжение и силу одного витка измеряют в вольтах и оно будет равно E=Pдл0.095+0.55. Зная эти величины можно приступить и к полному расчёту.

Расчет импульсного трансформатора двухтактного преобразователя

Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности.

В правильно сконструированном двухтактном преобразователе через обмотку проходит неизменный ток, поэтому сильное подмагничивание сердечника отсутствует. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность.

Так как он выполняется на ферритовом сердечнике то и расчет выходного напряжения трансформатора аналогичен обычному тороидальному.

Упростить варианты расчета трансформатора можно применяя специальные калькуляторы расчета, которые предлагают некоторые интернет-ресурсы. Стоит только внести желаемые данные, и автомат выдаст нужные параметры планируемого электромагнитного устройства.

Видео с расчетом трансформатора

Источник: https://amperof.ru/elektropribory/sposoby-raschyota-razlichnyh-konfiguratsij-transformatorov.html

Расчет трансформатора: формулы для расчета

Содержание:

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц.

Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения.

Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки.

Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее.

Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2).

Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:  . С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1. Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника.

Необходимо воспользоваться формулой: Sм = 4 x (d12n1 + d22n2 +d32n3 + d42n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках.

В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством.

Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников.

В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Как рассчитать мощность трансформатора

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора.

КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока.

Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью.

Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc).

Здесь Sо иSс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Выбор трансформаторов тока

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Источник: https://electric-220.ru/news/raschet_transformatora/2016-09-26-1071

Расчет сетевого трансформатора

  • Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.
  • Первым делом необходимо рассчитать  площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).
  • Для тороидального трансформатора:
  • Sc = H * (D – d)/2
  • S0 =  π * d2 / 4

Для Ш и П — образного сердечника:

Определим габаритную мощность нашего сердечника на частоте 50 Гц:

  • η — КПД трансформатора,
  • Sc — площадь поперечного сечения сердечника, см2,
  • So — площадь поперечного сечения окна, см2,
  • f — рабочая частота трансформатора, Гц,
  • B — магнитная индукция, T,
  • j — плотность тока в проводе обмоток, A/мм2,
  • Km — коэффициент заполнения окна сердечника медью,
  • Kc — коэффициент заполнения сечения сердечника сталью.

При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.

Исходными начальными данными для упрощенного расчета являются:

  • напряжение первичной обмотки U1
  • напряжение вторичной обмотки U2
  • ток вторичной обмотки l2
  • мощность вторичной обмотки Р2 =I2 * U2 = Рвых
  • площадь поперечного сечения сердечника Sc
  • площадь поперечного сечения окна So
  • рабочая частота трансформатора f = 50 Гц

КПД (η) трансформатора можно взять из таблицы, при условии что Рвых = I2 * U2 (где I2 ток во вторичной обмотке, U2 напряжение вторичной обмотки), если в трансформаторе несколько вторичных обмоток, что считают Pвых каждой и затем их складывают.

B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.

j — плотность тока в проводе обмоток , так же выбирается в зависимости от конструкции магнитопровода и Pвых.

Km — коэффициент заполнения окна сердечника медью

Kc — коэффициент заполнения сечения сердечника сталью

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой.

При первоначальном расчете необходимо соблюдать условие — Pгаб ≥ Pвых, если это условие не выполняется то при расчете уменьшите ток или напряжение вторичной обмотки.

После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:

  1. где Sc — площадь поперечного сечения сердечника, f — рабочая частота (50 Гц), B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.
  2. Теперь определяем число витков первичной обмотки:
  3. w1=U1/u1
  4. где U1 напряжение первичной обмотки, u1 — напряжение одного витка.
  5. Число витков каждой из вторичных обмоток находим из простой пропорции:
  • где w1 — кол-во витков первичной обмотки, U1 напряжение первичной обмотки, U2 напряжение вторичной обмотки.
  • Определим мощность потребляемую трансформатором  от сети с учетом потерь:
  • Р1 = Рвых /  η
  • где η — КПД трансформатора.
  • Определяем величину тока в первичной обмотке трансформатора:
  • I1 = P1/U1
  • Определяем диаметры проводов обмоток трансформатора:
  • d = 0,632*√ I
  • где d — диаметр провода, мм, I — ток обмотки, А (для первичной и вторичной обмотки).

Для упрощения расчета можно воспользоваться онлайн-калькулятором — https://rcl-radio.ru/?p=20670

Пример расчета

Расчет сетевого трансформатора на сайте rcl-radio.ru

Источник: https://zen.yandex.ru/media/id/59b2c48550c9e5772776874a/5ce7ae18dd00af00b25acd83

Как рассчитать обмотку трансформатора

Обновлено 28 декабря 2020 г.

Автор С. Хуссейн Атер

Если вы когда-нибудь задумывались, как дома и здания используют электроэнергию от электростанций, вы должны узнать о трансформаторах в силовых установках. распределительные сети, которые преобразуют токи высокого напряжения в те, которые вы используете в бытовых приборах. Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от конструкции.

Формула обмотки трансформатора

Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой используется катушка, намотанная вокруг магнитного сердечника в различных областях.

Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом поворота трансформатора , который равен

\ frac {N_P} {N_S} = \ frac {V_P} {V_S}

для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p и V s соответственно.

Эта формула обмотки трансформатора сообщает вам долю, на которую трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.

Имейте в виду, что, хотя эта формула называется «соотношением», на самом деле это дробь, а не соотношение. Например, если у вас есть одна обмотка в первичной обмотке и четыре обмотки во вторичной обмотке трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на значение 1/4.Но соотношение 1: 4 означает, что для одного из чего-то есть четыре из чего-то другого, что не всегда означает то же самое, что и дробь.

Трансформаторы могут повышать или понижать напряжение и известны как повышающие трансформаторы , или понижающие трансформаторы , , в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может быть больше единицы для повышающих трансформаторов или меньше единицы для понижающих трансформаторов.

Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток в первичной и вторичной обмотках синхронизируется друг с другом во время этого динамического процесса.

Могут быть трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.

Калькулятор конструкции трансформатора

Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать как метод определения того, как сконструировать трансформаторы.

Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках с помощью метода индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.

Формула обмотки трансформатора и магнетизм

Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой промежуток времени.

Поток — это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.

Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от величины тока и количества обмоток. Это может дать нам калькулятор расчета трансформатора , который учитывает эти свойства.

Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует

либо для первичной обмотки, либо для вторичной обмотки. Обычно это называется наведенной электродвижущей силой (ЭДС , ЭДС ).

Если бы вы измерили изменение магнитного потока за небольшой период времени, вы могли бы получить значение dΦ / dt и использовать его для расчета ЭДС . Общая формула для магнитного потока:

\ Phi = BA | cos {\ theta}

для магнитного поля B , площади поверхности плоскости в поле A, и угла между магнитным полем линии и направление, перпендикулярное площади θ .

Вы можете учесть геометрию обмоток вокруг магнитного сердечника трансформатора, чтобы измерить поток. ) и Φ max — максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение силы тока на количество витков обмоток как « ампер-витков », что является мерой силы намагничивания катушки.

Примеры калькулятора обмоток трансформатора

Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.

Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам изготавливать провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет вам индивидуальное напряжение на каждом витке обмотки.

Другие калькуляторы, такие как калькулятор от компании-производителя Flex-Core, позволяют рассчитать размер провода для различных практических применений, если вы вводите номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.

Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка — это сопротивление самого измерительного прибора пропускаемому через него току.

Hyperphysics предлагает онлайн-интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора.Чтобы использовать его, вам необходимо ввести частоту напряжения питания, индуктивность первичной обмотки, индуктивность вторичной обмотки, количество катушек первичной обмотки, количество катушек вторичной обмотки, вторичное напряжение, сопротивление первичной обмотки, сопротивление вторичной обмотки, сопротивление нагрузки вторичной обмотки и взаимная индуктивность.

Взаимная индуктивность M учитывает влияние изменения нагрузки на вторичную обмотку на ток через первичную обмотку с ЭДС:

ЭДС = -M \ frac {\ Delta I_1} {\ Delta t }

для изменения тока через первичную обмотку ΔI 1 и изменения во времени Δt .

Любой онлайн-калькулятор обмотки трансформатора делает предположения о самом трансформаторе. Убедитесь, что вы знаете, как каждый веб-сайт рассчитывает заявленные ценности, чтобы вы могли понять теорию и принципы, лежащие в основе трансформаторов в целом. Насколько они близки к формуле обмотки трансформатора, вытекающей из физики трансформатора, зависит от этих свойств.

Как построить понижающие трансформаторы с помощью расчетов

Понижающий трансформатор — это устройство, которое снижает более высокий потенциал переменного тока до более низкого потенциала переменного тока в соответствии с коэффициентом намотки и спецификациями.

В этой статье мы собираемся обсудить, как спроектировать и построить базовый понижающий трансформатор, который обычно применяется в источниках питания от сети.

Введение

Это, вероятно, поможет любителям электроники разработать и построить свои собственные трансформаторы, основанные на их конкретных требованиях. На следующих страницах представлен упрощенный метод компоновки, позволяющий получить удовлетворительно разработанные трансформаторы. С другой стороны, процесс проектирования может стать предметом экспериментов.

Таблицы, представленные в этой статье, сокращают расчеты обрезки, которые помогают проектировщику найти подходящий размер проволоки или даже ламинирования сердечника. Здесь представлены исключительно относящиеся к делу данные и расчеты, чтобы проектировщик не был сбит с толку нежелательными деталями.

Здесь мы конкретно обсудим трансформаторы, которые имеют 2 или более обмоток изолированного медного провода вокруг железного сердечника. Это: одна первичная обмотка и одна или несколько вторичных обмоток.

Каждая обмотка электрически изолирована от другой, однако магнитно соединена с помощью ламинированного железного сердечника. Небольшие трансформаторы имеют корпусную структуру, т. Е. Обмотки окружены сердечником, как показано на рис. 1. Мощность, подаваемая вторичной обмоткой, фактически передается от первичной, хотя на уровне напряжения, зависящем от передаточного отношения обмотки a. пара обмоток.

Видеоинтерпретация

Базовая конструкция трансформатора

На начальном этапе проектирования трансформатора необходимо четко выразить оценки первичного и вторичного напряжения и номинальный ток вторичной обмотки.

После этого определите содержание сердечника, которое будет использоваться: штамповка из обычной стали или холоднокатаная штамповка с ориентированным зерном (CRGO). CRGO отличается большей допустимой плотностью потока и меньшими потерями.

Наилучшее возможное поперечное сечение жилы примерно определяется по:

Площадь жилы: 1,152 x √ (выходное напряжение x выходной ток) кв. См.

Что касается трансформаторов, имеющих несколько вторичных обмоток, необходимо учитывать сумму произведения выходного напряжения на ампер каждой обмотки.

Количество витков на первичной и вторичной обмотках определяется по формуле для отношения витков на вольт как:

Оборотов на вольт = 1 / (4,44 x 10 -4 частота x площадь сердечника x плотность потока)

Здесь частота обычно составляет 50 Гц для домашнего источника питания в Индии. Плотность потока можно рассматривать как приблизительно 1,0 Вебер / кв. М. предназначен для штамповки обычной стали и примерно 1,3 Вебера / кв.м. для штамповки CRGO.

Расчет первичной обмотки

Ток в первичной обмотке представлен по формуле:

Первичный ток = сумма вольт и ампер, разделенных на первичные вольт x КПД

КПД малого трансформаторы могут отклоняться от 0.От 8 до 0. §6. Значение 0,87 отлично подходит для обычных трансформаторов.

Необходимо определить подходящий размер провода для обмотки. Диаметр провода зависит от номинального тока обмотки, а также от допустимой плотности тока провода.

Плотность тока может достигать 233 ампер / кв. См. в небольших трансформаторах и минимум 155 ампер / кв. см. в больших.

Данные обмотки

Обычно значение 200 ампер / кв. См. можно считать, согласно которому создается Таблица №1.Количество витков в первичной обмотке выражается формулой:

Первичная Оборотов = Число витков на вольт x Первичное напряжение

Площадь, потребляемая обмоткой, определяется плотностью изоляции, техникой намотки и проводом. диаметр.

В таблице №1 приведены расчетные значения витков на квадратный см. через которое мы можем рассчитать площадь окна, потребляемую первичной обмоткой.

Площадь первичной обмотки = Число витков первичной обмотки / Число витков на кв.см из Таблицы № 1

Расчет вторичной обмотки

Учитывая, что у нас есть предполагаемый номинальный вторичный ток, мы можем определить размер провода для вторичной обмотки, просто просматривая Таблицу № 1 напрямую.

Количество витков на вторичной обмотке рассчитывается идентичным методом, когда дело касается первичной обмотки, но необходимо добавить около 3% лишних витков, чтобы компенсировать внутреннее падение напряжения вторичной обмотки трансформатора при нагрузке.Следовательно,

Число витков вторичной обмотки = 1,03 (витков на вольт x вторичное вольт)

Площадь окна, необходимая для вторичной обмотки, определена в Таблице № 2 как

Площадь вторичного окна = Число витков вторичной обмотки / число витков на квадратный см. (из Таблицы № 2 ниже)

Расчет размера сердечника

Основным критерием выбора сердечника может быть общая площадь окна доступного пространства обмотки.

Общая площадь окна = площадь основного окна + сумма площадей второстепенных окон + пространство для первого окна и изоляция.

Необходимо немного больше места для поддержки первого и изоляции между обмотками. Конкретное количество дополнительной области может отличаться, даже если для начала можно было бы рассмотреть 30%, хотя это может потребоваться настроить позже.

Таблица размеров штамповки трансформатора

Идеальные размеры сердечников, обладающих более значительным оконным пространством, обычно определяются из Таблицы # 2 с учетом зазора между слоями при их укладке (элемент укладки сердечника может быть принят равным 0.9), теперь у нас есть

Общая площадь ядра = Площадь ядра / 0,9 кв. См. Как правило, предпочтительна квадратная центральная конечность.

Для этого ширина язычка ламинирования составляет

Ширина язычка = √ Общая площадь сердцевины (кв. См)

Теперь еще раз обратитесь к Таблице № 2 и в качестве последнего пункта найдите подходящий размер сердцевины. , имеющей достаточную площадь окна и близкое значение ширины язычка, как рассчитано. При необходимости измените высоту штабеля, чтобы получить желаемую секцию сердечника.

Высота штабеля = Общая площадь сердечника / Фактическая ширина язычка

Стопка не должна быть намного ниже ширины язычка, а должна быть больше. Однако он не должен превышать ширину шпунта более чем в 1 1/2 раза.

Схема сборки сердечника

Как собрать трансформатор

Обмотка выполняется поверх изолирующего каркаса или бобины, которая устанавливается на среднюю стойку ламинированного сердечника. Обычно сначала наматывают первичную обмотку, а затем вторичную, сохраняя изоляцию между двумя слоями обмотки.

Последний изолирующий слой наносится поверх обмотки для защиты всех от механических повреждений и вибрации. Когда используются тонкие провода, их отдельные концы необходимо припаять к более тяжелым проводам, чтобы вывести клеммы за пределы первого.

Ламинирование, как правило, накладывается на основу альтернативным ламинированием в обратном порядке. Ламинирование должно быть плотно связано с помощью подходящей зажимной рамы или с помощью гаек и болтов (в случае, если в ламинирующем узле имеются сквозные отверстия).

Как применять экранирование

Это может быть разумной идеей использовать электростатический экран между первичной и вторичной обмотками, чтобы избежать электрических помех, передаваемых через вторичную обмотку от первичной обмотки.

Экран для понижающих трансформаторов может быть изготовлен из медной фольги, которую можно намотать между двумя обмотками на несколько большее расстояние. Изоляция должна быть покрыта всей фольгой, и должны быть приняты соответствующие меры, чтобы два конца фольги никогда не соприкасались друг с другом.Кроме того, с этим экранирующим полем можно припаять провод и соединить его с линией заземления схемы или с пластиной трансформатора, которая может быть зажата с линией заземления схемы.

Для проектирования тороидального трансформатора вы можете обратиться к следующему PDF-документу:

https://www.homemade-circuits.com/wp-content/uploads/2021/04/torroidal-transformer_compressed.pdf

Обмотка трансформатора — рассчитать медный калибр и номинальные токи —

Обмотка трансформатора — намотайте собственный трансформатор дома, используя простую математику, а также известно, какой размер меди я хочу использовать при намотке трансформатора.

хочу к какой трансформатор?

Трансформатор рабочий

Трансформатор определяется как электрическое устройство, которое работает по принципу электромагнитной силы. Трансформатор содержит медный провод и металлические листы. на рынке доступны трансформаторы другого типа. В основном трансформаторы используются для преобразования высокого напряжения в низкое или для преобразования низкого напряжения в высокое.

Это широко известно как повышающий трансформатор и понижающий трансформатор.Повышающий трансформатор выполняет работу по преобразованию низкого напряжения в высокий уровень напряжения. И понижающий трансформатор, который преобразует высокое напряжение в низкое.

Трансформатор содержит первичную и вторичную обмотки катушки. В понижающем трансформаторе первичная обмотка содержит меньше витков, а вторичная обмотка имеет меньше витков, чем первичная. В повышающем трансформаторе первичная обмотка представляет собой толстый медный провод с меньшим количеством витков.А вторичная обмотка имеет большее количество витков.

Типы трансформаторов, в которых обычно используются электронные устройства

Используются разные типы трансформаторов. Обычно используются трансформаторы

  • Повышающие трансформаторы
  • Понижающие трансформаторы
  • Трансформаторы с воздушным сердечником
  • Трансформаторы с железным сердечником
  • Тороидальные трансформаторы

В этой статье я просто расскажу, как рассчитать обмотку трансформатора и какой размер меди провод нам нужно выбрать при намотке трансформатора.

Расчет витков катушки обмотки трансформатора

Обмотка трансформатора основана на уравнении

NS / NP = VS / VP

NS = Количество витков вторичной обмотки

NP = количество витков в первичной обмотке.

VS = напряжение вторичной обмотки.

VP = напряжение в первичной обмотке.

Специально для демонстрации я собираюсь сконструировать 12-вольтовый трансформатор, работающий от 230 вольт.Теперь нам нужно рассчитать количество витков в первичной и вторичной обмотке лучшего трансформатора.

Я не говорю о размере сердечника, он будет меняться в зависимости от мощности трансформатора. Это уравнение предназначено только для расчета количества витков в обмотке трансформатора.

VS = 230 вольт. ВП = 12 вольт.

NS =? НП = 80 витков.

Как мы хотим рассчитать вторичные витки этого трансформатора.

NS / Np = VS / VP

NS = (VS * NP) / VP

= (230/1500) * 12

= 1533.33 витка

То есть 1540 витков , необходимых для выработки 12 вольт на первичной обмотке.

Калибр медного провода и ампер

Вы не понимаете, когда наматываете трансформатор, какой калибр медного провода я использовал для обмотки трансформатора. И

сколько ампер мы можем получить? Или вы решили сделать трансформатор 5 и не знаете, какую медь я использую?

Вот решение этой путаницы. Выберите размер меди в соответствии с нужным вам усилителем.

Номинальный ток по медному манометру

9038 9038 9038 9038 9038 9

9038
Манометр (awg) Ампер
7 44,2 А
8 33,3 А
9
11 16,6 А
12 13,5 А
13 10,5 А
14 8.3 ампер
15 6,6 ампер
16 5,2 ампер
17 4,1 ампер
18 3,2 ампер
20 2,0 ампер
21 1,6 ампер
22 1,2 ампер
23 1,0 ампер
24 0.8 ампер
25 0,6 ампер
26 0,5 ампер
27 0,4 ампер
28 0,3 ампер
30 0,22 ампер

Чтобы сделать трансформатор на 5 ампер, используйте медный провод 16 калибра на трансформаторе при намотке.

Также проверьте , цепь включения / выключения реле датчика движения Pir

Автоматическая свинцово-кислотная автоматическая цепь зарядного устройства с печатной платой

::: SKM Power * Tools ::: ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ЭЛЕКТРОТЕХНИКИ

Затем задаются импедансы

3 обмоточных трансформатора

Информация, представленная в этом руководстве по применению, предназначена для просмотра, утверждения, интерпретации и применения только зарегистрированным профессиональным инженером.SKM не несет никакой ответственности, связанной с использованием и интерпретацией этой информации.

Воспроизведение этого материала разрешено при условии получения надлежащей ссылки на SKM Systems Analysis Inc.

Введение

В начале проекта у инженеров есть много вариантов выбора при разработке проекта системы распределения электроэнергии. Например, рассмотрим случай новой электростанции, состоящей из 2 генераторов.Для подключения генераторов к энергосистеме обычно рассматриваются три подхода к преобразованию. Самый простой подход — обслуживать оба генератора от одного двухобмоточного трансформатора, рис. 1а. Эта конструкция обычно характеризуется наименьшими затратами на преобразование, но наивысшими возможными неисправностями на шине генератора. Второй подход заключается в поставке одного трансформатора на каждый генератор, рис. 1б. Эта конструкция решает проблему тока короткого замыкания, однако затраты на преобразование резко возрастают.Часто, чтобы уравновесить стоимость и проблемы тока короткого замыкания, инженеры выбирают трехобмоточные трансформаторы, рис. 1c.

Термин «трехобмоточный трансформатор» может вводить в заблуждение, поскольку трехобмоточный трансформатор может иметь три или более обмоток внутри бака трансформатора. Фактически термин «3-обмотка» означает трансформатор с 3 наборами вводов, обозначенных H для первичной обмотки, X для вторичной и Y для третичной, см. Рис.2.
от выводов H-X, H-Y и X-Y в процентах на выбранной обмотке (обычно обмотки X), кВА. Инженер-проектировщик отвечает за определение полного сопротивления, необходимого для приложения. Допуск по сопротивлению ANSI для трехобмоточных трансформаторов составляет ± 10%, а не ± 7½% для двухобмоточных трансформаторов.

Конфигурации обмоток трансформатора

В промышленности используется несколько конфигураций обмоток, каждая из которых имеет характеристики внутреннего импеданса, о которых инженеры должны знать. Конструкция Слабо-связанной многослойной вторичной обмотки (LCSS) показана на рис. 3. Обратите внимание, что в этой конструкции на самом деле имеется четыре обмотки вокруг сердечника. Физически обмотка H разделена на две части, чтобы соответствовать высоте обмоток X и Y. Электрически обмотки h2 и h3 расположены параллельно внутри резервуара.Такой подход к проектированию используется для уравновешивания полей в обмотках H, когда вторичные поля неуравновешены из-за дисбаланса нагрузки или неисправности. Эта конструкция предназначена для равномерного и непрерывного обслуживания нагрузки через вторичные обмотки. Это не лучший выбор конструкции, если вторичные обмотки будут обслуживать несбалансированную нагрузку в течение длительного периода времени, например, один вторичный выключатель разомкнут.

В этом случае при одинаковых мощностях обмоток X и Y и импедансах, выраженных на одной базе, выполняются следующие соотношения.
Другой конфигурацией обмотки является конструкция Tightly-Coupled Stacked Secondary (TCSS), см. Рис. 4. В этом случае вторичная и третичная обмотки попеременно наматываются на сердечник. Полные сопротивления H-X и H-Y определены ранее. Импеданс X-Y имеет следующее соотношение.
Это не лучший выбор для приложений, в которых возникают проблемы с высокими токами повреждения вторичной и третичной обмоток.Эта конструкция чаще используется в приложениях для тяговых устройств и выпрямителей.
Третий вариант — конструкция «низкий-высокий-низкий» (LHL), показанная на рис. 5. Опять же, импедансы H-X и H-Y такие, как определено ранее. Диапазон импеданса, доступный для обмоток X-Y, будет немного больше, чем у конструкции LCSS.
Пример 1

Рассмотрим новую распределительную систему 480 В, которая включает 3000 кВА нагрузки двигателя и 600 кВА другой немоторной нагрузки.
Предположим, что все двигатели имеют Xd «0,15 Ом о.е. Коммунальные услуги рассчитаны на 13,8 кВ с мощностью короткого замыкания 600 МВА.
Изучите следующие конфигурации конструкции.

• Одинарный двухобмоточный трансформатор
• Два двухобмоточных трансформатора
• 3-обмоточный трансформатор с конструкцией LCSS
• 3-обмоточный трансформатор конструкции TCSS
• 3-обмоточный трансформатор конструкции LHL
В данном случае подходит общая мощность обмотки трансформатора 4000 кВА.Исходя из номинального первичного напряжения 13,8 кВ и стандартного BIL 110 кВ, для данного приложения предполагается типичное полное сопротивление 6%. В таблице 1 приведены номинальные параметры трансформатора, выбранные для каждой конфигурации.
Результаты приведены в Таблице 2. Первоначальное обоснование выбора трехобмоточного трансформатора подтверждено. Одиночный корпус с двумя трансформаторами имеет самые высокие нагрузки на отказ при минимальных затратах на трансформацию.Корпус трансформатора с двумя 2 обмотками имеет самую высокую стоимость трансформации. Один трехобмоточный трансформатор уравновешивает как ток короткого замыкания, так и затраты. Однако для поддержания низкого уровня неисправностей следует использовать трансформаторы конструкции LCSS или LHL.
Результаты действительно указывают на своеобразное поведение по отношению к трехобмоточным трансформаторам.Обратите внимание на разницу между случаями 3 и 5. Полное сопротивление между вторичными и третичными цепями возрастает с 12% в случае 3 до 15% в случае 5, но характеристики неисправности отслеживаются наоборот. Чтобы понять эти результаты, необходимо более пристальное рассмотрение модели схемы.
Модель схемы трехобмоточного трансформатора состоит из трех импедансов, соединенных звездой, см. Рис. 6. Уравнения 8, 9 и 10 необходимы для преобразования импедансов Z H-X, Z H-Y и Z X-Y в их эквиваленты Z H, Z X и Z Y.
Эквивалентная схема, показанная на рис.6 точно представляет трансформатор с точки зрения полного сопротивления утечки, взаимных эффектов между обмотками и потерь нагрузки [1]. Возбуждающие токи и потери холостого хода не учитываются. Также обратите внимание, что нередки случаи, когда один из импедансов может быть отрицательным или нулевым!
Пример 2

Рассчитайте полное сопротивление обмотки для случаев 3 и 5, перечисленных в таблице 1, а затем проиллюстрируйте расчет доступного тока короткого замыкания на третичной шине, см. Рис.7. Для упрощения расчетов предположим все реактивное сопротивление.

Решение

Во-первых, преобразуйте системные импедансы в базу 2MVA, 480V.

Z s-t ПРЕДЕЛЫ ИМПЕДАНСА

Конструкция TCSS устанавливает нижний предел импеданса вторичной-третичной обмотки, а конструкция LHL устанавливает верхний предел.Теоретический верхний предел может быть рассчитан, если предположить, что в первичной обмотке трансформатора имеется бесконечная шина, при этом закорачивая вторичные и третичные клеммы (12).

Z Thévenin = Z H + Z X II Z Y (12)

Опять же, это предполагает равные мощности на обмотках X и Y со всеми импедансами, выраженными на одной базе. Пределы импеданса приведены в таблице 3.Результаты показывают максимальный верхний предел для Z X-Y примерно в 4 раза больше Z H-X. В этот момент импеданс Тевенина на закороченных вторичных и третичных клеммах приближается к нулю.

Обратите внимание, когда Z X-Y > 4 Z H-X , результатом является общий отрицательный импеданс Тевенина, видимый за пределами бака трансформатора. Это невозможно.

Пример 3

Примените результаты, перечисленные в этом руководстве, к случаю трехобмоточного трансформатора из примера 1, но в этом случае предположите, что Z H-Y = Z H-X = 6.50% при одинаковой мощности на обмотках X и Y.

• для Z X-Y = 0,65% (TCSS) соответствует SC кА на клеммах низкого напряжения 57,5 ​​кА
• для Z X-Y = 13,0% (LCSS) соответствует SC кА на клеммах низкого напряжения 47,0 кА
• для Z X-Y = 16,25% (LHL) соответствует SC кА на клеммах низкого напряжения 47,3 кА
• для Z X-Y = 26.0% соответствует КЗ кА на выводах НН 56,2 кОм
Эти результаты показывают, что нет никакого практического преимущества в увеличении импеданса между вторичной обмоткой и третью, более чем в 2 раза превышающего импеданс между первичной обмоткой и вторичной обмоткой. Поскольку более высокие импедансы приведут только к более высоким нагрузкам на неисправности и потерям.
Список литературы
• Справочник по передаче и распределению электроэнергии, ABB Power T&D Company, Роли, Северная Каролина, 1997.
• Харлоу, Дж. Х., Electric Power Transformer Engineering, CRC Press, New York, 2004.
назад к руководствам по приложениям

Основные операции трансформатора

  • Изучив этот раздел, вы сможете описать:
  • • Принцип работы трансформатора.
  • • Передаточное число.
  • • Коэффициент мощности.
  • • Коэффициент трансформации.
  • • Потери в трансформаторе: медь, гистерезис и вихревые токи.
  • • КПД трансформатора и ток холостого хода.

Трансформаторы.

Трансформатор использует принципы электромагнетизма для переключения одного уровня переменного напряжения на другой. Работа Фарадея в 19 веке показала, что изменяющийся ток в проводнике (например,грамм. первичная обмотка трансформатора) создает изменяющееся магнитное поле вокруг проводника. Если другой проводник (вторичная обмотка) поместить в это изменяющееся магнитное поле, в этой обмотке будет индуцироваться напряжение.

Передаточное число.

Фарадей также рассчитал, что напряжение, индуцированное во вторичной обмотке, будет иметь величину, которая зависит от ОТНОШЕНИЯ ОБОРОТОВ трансформатора. т.е. если вторичная обмотка имеет половину числа витков первичной обмотки, то вторичное напряжение будет вдвое меньше напряжения на первичной обмотке.Аналогичным образом, если вторичная обмотка имеет в два раза больше витков первичной обмотки, вторичное напряжение будет в два раза больше первичного напряжения.

Коэффициент мощности.

Поскольку трансформатор является пассивным компонентом (у него нет внешнего источника питания), он не может выдавать больше мощности из вторичной обмотки, чем подается на первичную обмотку. Следовательно, если вторичное напряжение больше первичного напряжения на определенную величину, вторичный ток будет меньше первичного тока на аналогичную величину, т.е.е. Если напряжение увеличится вдвое, ток уменьшится вдвое.

Рис. 11.1.1 Основные операции трансформатора.

Коэффициент трансформации.

Функционирование базового трансформатора

можно описать двумя формулами, связывающими коэффициент трансформации с числом витков обмоток трансформатора.

  • В P = первичное напряжение.
  • I P = первичный ток.
  • В S = вторичное напряжение.
  • I S = вторичный ток.
  • N P = количество витков в первичной обмотке.
  • N S = количество витков вторичной обмотки.

Потери трансформатора.

Формулы на рис. 11.1.1 относятся к идеальному трансформатору, то есть трансформатору без потерь мощности, в котором первичный вольт-ампер = вторичный вольт-ампер.

Хотя практические трансформаторы могут быть чрезвычайно эффективными, некоторые потери будут возникать, потому что не весь магнитный поток, создаваемый первичной обмоткой, будет связываться со вторичной обмоткой.Потери мощности, возникающие в трансформаторе, бывают трех типов;

1. Потери меди.

Эти потери также можно назвать потерями в обмотке или потерями I2R, поскольку они могут возникать в обмотках, сделанных не из меди, а из других металлов. Потери проявляются в виде тепла, выделяемого в обмотках (медных) проводов, поскольку они рассеивают мощность из-за сопротивления провода.

Потери мощности в обмотке трансформатора можно рассчитать, используя ток в обмотке и ее сопротивление в формуле для мощности P = I 2 R.Эта формула является причиной того, что потери в меди иногда называют потерями I 2 R. Чтобы свести к минимуму потери, сопротивление обмотки должно быть низким с использованием провода подходящей площади сечения и низкого удельного сопротивления.

2. Гистерезисные потери.

Каждый раз, когда переменный ток меняет направление на противоположное (один раз в каждом цикле), крошечные «магнитные домены» в материале сердечника меняются местами. Это физические изменения в основном материале, отнимающие некоторую энергию. Количество используемой энергии зависит от «сопротивления» материала сердечника; в больших сердечниках силовых трансформаторов, где потери на гистерезис могут быть проблемой, они в значительной степени решаются за счет использования специальной стали с низким сопротивлением «ориентированной зернистостью» в качестве материала сердечника.

3. Вихретоковые потери.

Поскольку железный или стальной сердечник является электрическим проводником, а также магнитной цепью, изменяющийся ток в первичной обмотке будет иметь тенденцию создавать ЭДС внутри сердечника, а также во вторичной обмотке. Токи, индуцируемые в сердечнике, будут противодействовать изменениям магнитного поля, происходящим в сердечнике. По этой причине эти вихревые токи должны быть как можно меньше. Это достигается разделением металлического сердечника на тонкие листы или «пластинки», каждый из которых изолирован друг от друга изолирующим слоем лака или оксида.Ламинированные сердечники значительно уменьшают образование вихревых токов, не влияя на магнитные свойства сердечника.

Ферритовые сердечники.

В высокочастотных трансформаторах потери на вихревые токи уменьшаются за счет использования сердечника из керамического материала, содержащего большую долю мельчайших металлических частиц, железной пыли или марганцево-цинкового сплава. Керамика изолирует металлические частицы друг от друга, давая эффект ламината и лучше работая на высоких частотах.

Благодаря способам уменьшения потерь, описанным выше, практические трансформаторы по своим характеристикам почти полностью приближаются к идеальным.В мощных силовых трансформаторах может быть достигнут КПД около 98%. Поэтому для большинства практических расчетов можно предположить, что трансформатор является «идеальным», если не указаны его потери. Фактические вторичные напряжения в практическом трансформаторе будут лишь немного меньше, чем рассчитанные с использованием теоретического коэффициента трансформации.

Ток выключения.

Поскольку трансформатор работает почти идеально, мощность как в первичной, так и во вторичной обмотках одинакова, поэтому, когда на вторичную обмотку не подается нагрузка, вторичный ток не течет, а мощность во вторичной обмотке равна нулю (V x I = 0).Следовательно, несмотря на то, что к первичной обмотке приложено напряжение, ток не будет течь, поскольку мощность в первичной обмотке также должна быть равна нулю. В практических трансформаторах «ток холостого хода» в первичной обмотке на самом деле очень низкий.

Вольт на оборот.

Трансформатор с первичной обмоткой на 1000 витков и вторичной обмоткой на 100 витков имеет соотношение витков 1000: 100 или 10: 1. Следовательно, 100 вольт, приложенное к первичной обмотке, создаст вторичное напряжение 10 вольт.

Другой способ измерения напряжения трансформатора — вольт / виток; если 100 В, приложенные к 1000 витков первичной обмотки, дают 100/1000 = 0.1 вольт на виток, тогда каждый отдельный виток 100-витковой вторичной обмотки будет производить 0,1 В, поэтому общее вторичное напряжение будет 100 × 0,1 В = 10 В.

Тот же метод можно использовать для определения значений напряжения, возникающего на отдельных ответвлениях автотрансформатора, когда известно количество витков на ответвления.

Просто разделите общее напряжение всей обмотки на общее количество витков и умножьте этот результат на количество витков в конкретном ответвлении.

Operation (Как, черт возьми, они работают?) — Руководство электрика по однофазным трансформаторам

Пора узнать правду

  • Сторона входа всегда является первичной обмоткой. Это сторона, которая всегда подключена к источнику напряжения.

  • Выходной стороной всегда является вторичная обмотка. Это та сторона, которая всегда подключается к грузу.

Рисунок 3. Первичная и вторичная обмотки

Напряжение

Когда первичная обмотка запитана от источника переменного тока без нагрузки на вторичной обмотке, она действует как индуктор.

Самоиндукция создает CEMF для ограничения тока до 2% –5% от первичного тока полной нагрузки. Этот небольшой ток называется возбуждающим током (также известным как ток намагничивания).

Напряжение вторичной обмотки зависит от напряжения первичной обмотки и витков, а также от витков вторичной обмотки. Соотношение между первичным и вторичным напряжением такое же, как соотношение между первичным и вторичным витками.

Что означает:

Первичное напряжение на виток = вторичное напряжение на виток

Сколько вольт на виток трансформатора с номинальным напряжением
600 В – 20 В, если обмотка высокого напряжения содержит 240 витков?

=

= 2.5 вольт на виток

Сколько витков будет в низковольтной обмотке трансформатора, рассматриваемого в вопросе 1?

N S = 48 витков

Когда дело доходит до использования вольт / виток, хорошо помнить, что вольт / включение первичной обмотки равно вольт / повороту вторичной обмотки, но иногда это может сбивать с толку при использовании этого в расчетах. Более простой метод — использовать метод коэффициента трансформации.

Если вы возьмете большее количество витков и разделите его на меньшее количество витков, вы получите коэффициент. Например:

Трансформатор со 100 витками первичной обмотки и 50 витками вторичной обмотки будет иметь коэффициент трансформации 2: 1. Следовательно, если на первичной обмотке будет 120 вольт, то на вторичной будет подаваться 60 вольт.

Видео оповещение!

В этом видео рассказывается, как использовать коэффициент трансформации для расчета напряжения на первичной или вторичной обмотке.

Текущий

Самый простой способ рассчитать ток — это также использовать коэффициент поворотов.

Единственное отличие состоит в том, что более высокие витки означают меньший ток, поэтому вы будете использовать обратное соотношение витков.

Трансформатор имеет 600 витков на первичной обмотке и 120 витков на вторичной. На первичной обмотке подается 300 вольт, а на вторичной обмотке циркулирует ток в 40 ампер. Вычислить:

  1. Передаточное число
  2. Вторичное напряжение
  3. Первичный ток

600/120 = передаточное число витков 5: 1

300 В / 5 (соотношение) = 60 В на вторичной обмотке

4 ампера / 5 (коэффициент) = 8 ампер на первичной

Видео оповещение!

В этом видео показано, как использовать коэффициент трансформации для расчета тока.Он также показывает другой метод, который многим кажется более легким. В трансформаторе потребляемая мощность всегда равна выходной мощности.

Расчетные и фактические Обмотки трансформатора

рассчитаны на то, чтобы выдерживать определенное напряжение и определенный ток.

Отсюда и его рейтинг VA.

Трансформатор рассчитан на 1000 ВА, 100 В / 10 В и подключен для понижающего режима. Следовательно:

Номинальное значение Ip = 10 A

Номинальное значение Is = 100 A

Номинальное В P = 100 В

Номинальное В S = 10 В

Это то, на что рассчитан трансформатор — это его максимум.Все, что будет сверх этого, приведет к сгоранию обмоток.

Если мы добавим резисторную нагрузку 5 Ом ко вторичной обмотке, мы сможем вычислить Ip и Is.

Фактическое значение Ip = 0,2 A

Фактическое значение Is = 2 A

Этот трансформатор выдает 20 ВА, а не 1000 ВА.

То же самое и с напряжением.

Если мы подадим 50 В на первичную обмотку, мы получим вторичное напряжение 5 В.

Помните, что номинальные значения — это максимальные значения, которые могут видеть обмотки.Нам даны VA и V, и мы используем эти значения для определения максимального тока.

Пока эти значения не превышаются, мы можем использовать трансформатор для наших целей.

Атрибуции

Видео «Как использовать коэффициент трансформации для расчета напряжения» от The Electric Academy находится под лицензией Creative Commons Attribution License.

Как рассчитать ток обмотки трансформатора, используя видео о соотношении витков от The Electric Academy, находится под лицензией Creative Commons Attribution License.

Вычислитель трансформатора — ток полной нагрузки и коэффициент трансформации

Калькулятор трансформатора рассчитывает первичный и вторичный ток полной нагрузки, а также коэффициент трансформации одно- или трехфазного трансформатора.

Параметры

  • Фаза: Укажите расположение фаз. 1 фаза переменного тока или 3 фазы переменного тока.
  • Мощность трансформатора (S): Мощность трансформатора в ВА, кВА или МВА.
  • Первичное напряжение (В p ): Номинальное напряжение первичной обмотки.В понижающем трансформаторе это будет более высокое напряжение.
  • Напряжение вторичной обмотки (В с ): Номинальное напряжение вторичной обмотки. В понижающем трансформаторе это будет более низкое напряжение.

Как рассчитать ток полной нагрузки первичной обмотки трансформатора?

Ток полной нагрузки первичной обмотки I p рассчитывается как:

\ (I_ {p} = \ dfrac {S} {\ sqrt {3} V_ {p}} \)

Где,

  • S — номинал трансформатора.
  • В p — напряжение первичной обмотки.

Как рассчитать ток полной нагрузки вторичной обмотки трансформатора?

Ток полной нагрузки вторичной обмотки I с рассчитывается как:

\ (I_ {s} = \ dfrac {S} {\ sqrt {3} V_ {s}} \)

Где,
  • S — номинал трансформатора.
  • В с — напряжение вторичной обмотки.

Как рассчитать коэффициент трансформации трансформатора?

Коэффициент трансформации трансформатора n рассчитывается как:

\ (n = \ dfrac {V_ {p}} {V_ {s}} \), Где,

  • В p — напряжение первичной обмотки.
  • В с — напряжение вторичной обмотки.

Пример 1: Расчет тока полной нагрузки трансформатора

Рассчитайте вторичный ток полной нагрузки понижающего трансформатора на 200 кВА, от 11 кВ до 420 В.

\ (I_ {s} = \ dfrac {200000} {\ sqrt {3} \ cdot 420} \)

\ (I_ {s} = 275 \ textrm {A} \)

Пример 2: Расчет коэффициента трансформации трансформатора

Рассчитайте вторичный ток полной нагрузки понижающего трансформатора на 200 кВА, от 11 кВ до 420 В.

\ (n = \ dfrac {11000} {420} \)

\ (n = 26,2 \)

Спасибо за использование моего калькулятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *