Как разбираться в электронике: Как научиться разбираться в электронике

Содержание

Как научиться разбираться в электронике

Первый шаг — он самый сложный.

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.

Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.

Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.

Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме.

В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Простой апгрейд мультиметра DT — 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя — это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.

Собираем радиоуправляемое реле на базе готового радиомодуля.

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.

Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.

Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.

Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

Когда человек начинает интересоваться электроникой и радиотехникой впервые, его глаза разбегаются от огромного количества практических и теоретических знаний. Перед новичком всплывают сотни схем, которые он не понимает, а также множество непонятных формул теории.

Чтобы правильно и качественно научиться понимать электронные схемы и электронику в целом, надо последовательно погружаться в теорию, изучая общие термины и базисные формулы, а затем применять эти данные в простейших практических экспериментах. Для такого погружения были разработаны специальные книги, которые последовательно знакомят с общим курсом предмета, постепенно углубляясь дальше.

В этом материале будет рассмотрена книга «Электроника для чайников», некоторые теоретические моменты и другие книги для изучения.

Азы электроники для чайников

Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.

Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств.

Книга содержит следующие разделы:

  • «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
  • «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
  • «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
  • «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
  • «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Напряжение и ток – понятия

Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.

Помимо проводника, для течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в вольтах. Сила тока же обозначается «I» и измеряется в амперах.

Важно! По общей договоренности считают, что ток течет от плюса к минусу, но на самом деле это условность. Все дело в том, что отрицательные электроны были открыты уже после этой договоренности. В схемах и на практике никто не вспоминает, откуда и куда течет ток.

Источники напряжения и тока

Под источниками часто понимают элементы, которые питают цепь электромагнитной энергией. Эту энергию потребляют пассивные элементы, запасают накопительные и расходуют в активном сопротивлении. Пример источника такой энергии – генератор постоянных, синусоидальных или импульсных сигналов различных форм. Для анализа электронных цепей удобно вводить идеализированные источники тока и напряжения, учитывающие основные свойства реальных источников.

Под источником напряжения понимается элемент цепи, обладающий двумя полюсами. Между этими полюсами образуется напряжение, которое задается некоторыми функциями от времени и не зависит тока в цепи. Этот источник в идеальном состоянии способен отдавать неограниченную мощность. Реальные же источники имеют внутреннее сопротивление, поэтому к ним сопротивление подключается последовательно.

Идеальный источник тока – это элемент цепи, через полюса которого протекает ток с заданной закономерностью изменения во времени. Он не зависит от напряжения между его выводами. Эта независимость означает, что внутренняя проводимость источника равно нулю, а внутреннее сопротивление бесконечно.

Электроника на практике

ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.

Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.

Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей.

Какие еще есть книги для изучения электроники

Помимо двух материалов, которые были рассмотрены в этой статье, есть также множество других. Они, возможно, более придутся по душе читателю. Среди них:

  • Борисов В. Г. «Юный радиолюбитель».
  • Ревич Ю. В. « Занимательная электроника».
  • Хоровиц П., Хилл У. «Искусство схемотехники в трех томах».

Таким образом, практическая электроника не сложна даже для начинающих. Подготовив себя теорией из книг и реализовав все примеры на практике, можно стать настоящим электронщиком.

Как быстро научиться электронике!? “А не сбрендил ли автор?” – подумаете вы. Кто-то может за пару лет научиться программировать микроконтроллеры, а кто-то до сих пор будет собирать пищалки и фонарики. Это уже зависит, конечно, от самого человека. Но давайте вернемся к вопросу… Реально ли можно быстро научиться понимать схемы, собирать по ним электронные безделушки и научиться программировать микроконтроллеры?

Итак, начнем издалека… Жил да был один итальянец. Звали его Вильфредо Парето. И был он очень наблюдательный, любил за всем наблюдать. Вот как-то наблюдал он за всем и всея и понял одну важную вещь во всей Вселенной. А звучит эта вещь как-то так: 20% усилий дают 80% результата, а остальные 80% лишь 20% результата. Хм, звучит неплохо, но так ли это? И соблюдается ли этот закон во всей нашей Вселенной? А давайте проверим! Вот некоторые статистические данные:

20 процентов стран, в которых проживает меньше 20 процентов населения земного шара, потребляют 70 процентов мировых запасов энергии, 75 процентов металла и 85 процентов древесины.

• Менее 20 процентов общей площади Земли дают 80 процентов всех минеральных ресурсов.

• Менее 20 процентов войн приносят более 80 процентов человеческих потерь.

• Где бы вы ни жили, 20 процентов облаков производят 80 процентов дождя.

• Меньше 20 процентов записанной музыки исполняется более 80 процентов времени.

• В большинстве художественных музеев 20 процентов сокровищ демонстрируются 80 процентов времени.

• Менее 20 процентов изобретений оказывают более 80 процентов влияния на нашу жизнь. В двадцатом веке атомная энергия и компьютеры обладали большим влиянием, чем, вероятно, сотни тысяч прочих изобретений и новых технологий.

20 процентов земли дают более 80 процентов продуктов питания.

20 процентов статей “Практической электроники” просматриваются 80 процентами читателей :-).

В действительности весь жизненный цикл, от желудя до гигантского дуба, от маленького зернышка до обширных пшеничных полей, является отражением принципа 80/20, взятом в самом масштабном значении. Незначительные причины — колоссальные результаты. Вскоре это принцип был назван 80/20 или принципом Парето, в честь наблюдательного итальянца.

Чтобы научиться электронике я ходил на радиокружок, читал книжки по электронике, закончил вуз по специальности “Радиотехника”, но про себя я не могу сказать, что я супер-пупер электронщик… Пять лет вуза – сплошная теория, которая вообще нахрен никому не нужна. Зачем надо было заучивать все эти трехэтажные формулы и теоремы? После окончания вуза они все равно выветрились, как семена одуванчика при легком дуновении ветерка, но все таки я благодарен вузу за то, что там меня научили быстро понимать материал и быстро соображать.

Где-то случайно на страницах Рунета я прочитал про принцип Парето и про себя подумал: “Где же зарыты эти 20% в изучении электроники?” Проанализировав время, в течение которого я изучал эту сферу, я все так понял: 20% – это

– сидение по вечерам с паяльником и паяние схем

– радиофорумы и сайты без копипаста с учебников и энциклопедий

– общение с такими же чайниками в электронике

– практика, практика и еще раз ПРАКТИКА!

Ох, а сколько сейчас в Рунете книжек по электронике… “Радиоэлектроника для чайников”, “Занимательная электроника”, “Электроника от А до Я”.

Сколько я их только не перечитал. Да, согласен, есть хорошие книжки, но в основном книжки по электронике написаны каким-нибудь профессором с пятиэтажными формулами и с логарифмическими графиками. Читать книги по электронике? Думаю, это на любителя. Опять же напрашивается принцип 80/20. 20% книг дают 80% знаний. Но эти книги еще надо найти. От себя добавлю, не тратьте зря время, если книжка по электронике вас ну никак не устраивает. Начните читать другую. И все таки, я больше склоняюсь к практической части электроники. Электроника на практике как раз и относится к тем 20%. Вы все еще сидите? А ну-ка бегом паяльник в руки!

Стоит ли начинать изучать электронику в 40 лет? Починил свой первый ноутбук

Постоянные читатели блога наверняка заметили, что у меня стали появляться статьи о электронике и компонентном ремонте. Мне всегда было интересно научиться понимать эту магию, а не просто пялиться в радиодетали на плате. Спешу поделиться своим первым успешным опытом ремонта материнской платы ноутбука Asus X551C.

— Ты паять умеешь?
— Нет.
— Xpеново.
— Xpеново — умею!

Наверное не ошибусь, если скажу, что ремонт современной бытовой электроники сейчас — это скорее не про деньги, а больше про удовольствие. Я уже писал что техника становится одноразовой и порой проще купить новое устройство, чем чинить вышедшее из строя, особенное бюджетные модели.

Впрочем, мне был интересен сам процесс, потому и взялся вернуть с того света ноутбук Asus X551C, у которого приговорили к замене материнскую плату. В лучших традициях бюджетных решений, память и процессор тут распаяны непосредственно на самой плате. То есть, при выходе из строя любой детали, ноут уверенным шагом направляется в помойку, если он не на гарантии (посвящается любителям рассуждать, что только Apple делает одноразовую технику).

Порог входа в этот микромир очень высокий и с каждым годом войти в профессию становится всё сложнее. Ситуация осложняется ещё и тем, что новичков тут не сильно жалуют. Сейчас вообще как-то не принято безвозмездно делиться информацией, прошли времена альтруистов и по-настоящему увлечённых людей. Теперь с грустью вспоминаю времена первых персональных компьютеров типа ZX Spectrum и того сообщества, что появилось вокруг них.

И всё-таки нашёл для себя парочку интересных каналов на ютубе, где пытаются не просто рассказать как что-то починить, а объясняют на конкретном примере принципы поиска неисправностей и как работает данное устройство.

Таким образом мне удалось научиться самостоятельно ремонтировать импульсные блоки питания компьютеров. Не передать словами те ощущение, когда у тебя что-то получается в первый раз. А вот с ноутбуками всё оказалось гораздо сложнее…

Нормальных обучающих видео, где была бы теория, найти не удалось и информацию приходится собирать по крупицам. К счастью, наконец в голове начала складываться примерная картинка, как это работает, но в начале был тихий ужас… на тебя одномоментно обрушивается просто нереальный поток информации и новых терминов — не знаешь с какого края подступиться.

В то же время, мне было странно видеть на тематических форумах откровенно безграмотные комментарии людей, дающих технические советы. В моей голове не укладывалось как можно одновременно разбираться в электронике и настолько плохо знать русский язык.

И чем больше я начинал понимать принципы поиска неисправностей и находить в этом некую упорядоченность действий, тем очевиднее становилось, кто сидит на форумах. Эти люди весьма далеки не только от профессии радиоинженера, но и просто от высшего образования. Многие сервисы осуществляют ремонт лишь типовых неисправностей, а стоит копнуть чуть глубже и «мастер» поплыл.

Подобный «обезьяний» подход, тупо повторяющий только то, что кто-то уже проделал ранее, даёт только практические навыки. Мне же более интересен сам процесс получение новых знаний. Считаю, что можно начинать заниматься электроникой в любом возрасте, тут всё зависит от желания.

Решил начать рассказывать про интересные моменты при тестировании плат, которые будут возникать в моей практике. И следующая статья будет про ремонт Asus X551C (X551CA Rev: 2.2). В ближайшие дни опубликую в блоге парочку материалов других авторов о принципах диагностики материнских плат ноутбуков (сам пока там не всё понимаю, но это задел на будущее, чтобы не потерялось).

Подписывайтесь на канал, кто ещё этого не сделал, надеюсь будет интересно.

Подписывайтесь на канал Яндекс.Дзен и узнавайте первыми о новых материалах, опубликованных на сайте.

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Инженер производства приборов квантовой электроники и фотоники

Инженер производства приборов квантовой электроники и фотоники занимается технологическим обеспечением производства приборов, для которых характерно стремление к миниатюризации и интеграции элементов на основе современных технологий, а также приборов для решения задач информатики, связанных с созданием высокопроизводительных оптических систем передачи, обработки, хранения и отображения информации. Этот специалист должен хорошо разбираться в фотонике и квантовой электронике, его профессия стоит на стыке нескольких профессий. Он должен понимать современную физику, быть и нанотехнологом, и электроинженером, и оптиком одновременно, и еще быть немного математиком и химиком, обладать пониманием квантовой механики. Он обеспечивает сопровождение полного цикла производства приборов квантовой электроники и фотоники, разработку и освоение новых технологических процессов и материалов, используемых при производстве наноразмерных интегральных схем, приборов гражданского применения и схем специального назначения для различных областей техники.

Инженер производства приборов квантовой электроники и фотоники выполняет следующие основные трудовые функции:

— обеспечивает реализацию технологических процессов и контролирует параметры экспериментальных образцов приборов квантовой электроники и фотоники на основе наноструктурных материалов

— подготавливает рецептуры для проведения технологических процессов;

— разрабатывает варианты спецификации для производства приборов квантовой электроники и фотоники;

— разрабатывает и обосновывает технические требования к модернизации технологических линий;

— разрабатывает концепции технологии производства приборов квантовой электроники и фотоники;

— разрабатывает технические задания на экспериментальную проверку технологических процессов и испытаний выбранных материалов в рамках разработанной концепции;

— утверждает экспериментальные методики;

— руководит разработкой и оптимизацией технологии производства приборов квантовой электроники и фотоники на основе наноструктурных материалов.

Кто создает киборгов: как стать разработчиком киберпротезов

Раньше протезы заменяли недостающую часть тела, были простой опорой, теперь — это функциональный гаджет. Разбираемся, кто создает протезы конечностей и органов и когда киборгизация начнется в России

Время на чтение: 3–5 минут

Кто такой разработчик киберпротезов

Это человек, который разрабатывает протезы конечностей и органы, совместимые с живыми тканями. Он работает на стыке медицины, нейрофизиологии, инженерии и программирования. Разрабатывает протезы вместе с дизайнерами, инженерами-робототехниками и пилотами-тестировщиками.

Разработчик киберпротезов — профессия будущего

По словам основателя компании «Моторика» Ильи Чеха, миллионы людей в мире живут без рук и только 20% из них пользуются протезами. Разработчики киберпротезов создают искусственные руки, которые по возможностям почти не уступают настоящим. Человек с протезом может взять даже мелкие предметы, например, чайную ложку.

Посмотрите, как живет человек с киберпротезом

Чем занимается разработчик киберпротезов

Сначала такой специалист создает проект бионического протеза или органа. Он изучает биоэлектрические импульсы, связывающие нервную и мышечную системы человека, и придумывает, как их соединить с протезом. Например, чтобы на протезе руки двигались пальцы, в него встраивают специальные мио-датчики. Они считывают электрический потенциал сохранившихся мышечных тканей и посылают сигнал в протез — тут и происходит движение. Затем специалист создает 3D-модель для принтера. Он моделирует устройство по индивидуальным параметрам и готовит к покраске.

Дальше разработчик подбирает подходящие материалы: биологически совместимые, с симбиотическим потенциалом, которые не отвергнет организм. Важно максимально «сроднить» человека и его протез, чтобы конструкция из пластика и металла стала полноценной частью тела.

Если человек будет плавно помахивать рукой, а потом резко захочет ее опустить, протез должен считать это желание так же быстро, как живая рука.

Ключевые навыки

Как объяснил РБК Трендам Илья Чех, разработчику киберпротезов следует разбираться в электронике, программировании, материаловедении, конструировании, биофизике и нейрофизиологии. А вот несколько его основных навыков:

  • написание и отладка кода;
  • управление проектами и проектирование механизмов, прототипов, макетов, чертежей;
  • работа с 3D-принтерами и программами 3D-моделирования;
  • установка и контроль протеза;
  • межкультурная коммуникация;
  • экологическое и системное мышление;
  • наблюдение за пациентом.

Тренды и направления профессии

Киборгизация — это объединение технологий и органики, создание гибрида биологического существа и машины. По мнению Чеха, новое направление активно развивается и скоро станет одним из ключевых в медицине.

«Реабилитология — улучшение и восстановление способностей и качества жизни людей — становится междисциплинарной областью знаний, объединяющей в себе медицину, психологию, педагогику и физическую культуру. Вокруг нее формируется экосистема из инженеров и врачей, работающих с конкретным пациентом», — говорит Илья Чех.

Следующий шаг в развитии протезирования — создание вживляемых интерфейсов, которые будут считывать сигналы мозга нашему телу. Например, американские ученые разработали нейроинтерфейс, помогающий парализованным людям пользоваться планшетом. Он передает сигнал от вживленных в кору головного мозга электродов к планшету через Bluetooth. Люди с таким интерфейсом уже смогли сделать покупки, пообщаться в мессенджере и посчитать на калькуляторе.

Чтобы разрабатывать долгосрочные интерфейсы и выпускать их на рынок, текущих технологий и материалов пока не хватает. По словам Чеха, это серьезный технологический вызов, история недалекого будущего.

Откуда придет профессия

По словам Ильи Чеха, разработчиков киберпротезов в нашей стране очень мало, всего пару сотен на всю Россию. Обычно они приходят из смежных отраслей — медицины или инженерии. Доучивать такого работника нужно несколько месяцев, а готовить с нуля — три-пять лет. Чем быстрее вырастет рынок, тем больше вузов станут готовить таких специалистов.

Как стать разработчиком киберпротезов

Будущему специалисту лучше определить для себя приоритетную область знаний, но обязательно следует интересоваться смежными областями.

Илья Чех рекомендует поступать на общее направление робототехники и мехатроники, которое есть почти во всех ведущих технических вузах: Московском институте электроники и математики им. А. Н. Тихонова, Национальном исследовательском ядерном университете «МИФИ», МГТУ им. Баумана, МФТИ, Университете ИТМО, московском «Политехе».

Техническое образование поможет сформировать общее понимание робототехники и всех ее компонентов: программирования, электроники и конструирования. А уже после можно начать разбираться в медицине — пройти курсы или поступить на медицинские факультеты «медицинская кибернетика», «биотехнические системы и технологии».

Как научиться ремонтировать электронику

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Чиним технику самостоятельно

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.

Чтобы найти причину неполадки, следует проверить, какие из микросхем греются. Это делают с помощью специального щупа, или на ощупь. К перегреву плат может привести множество пыли, плохое охлаждение и отсутствие термопасты.

Смотрите также:

Как подключить камеру наружного наблюдения к компьютеру http://euroelectrica.ru/kak-podklyuchit-kameru-naruzhnogo-nablyudeniya-k-kompyuteru/.

Интересное по теме: Как работает солнечная электростанция

Советы в статье «Как выбрать паяльник для пайки проводов» здесь.

С чего начать ремонт электроники смотрим в видео:


По материалам: http://cab-t.ru/

«Ростех» и АФК «Система» ищут партнера для создания предприятия в электронике

Осенью прошлого года стало известно, что «Ростех» и АФК «Система» обсуждают объединение активов в микроэлектронике и производстве электронного оборудования. В этом совместном предприятии (СП) может появиться третий партнер, причем не государственный, а частный, сообщил сегодня на экономическом форуме в Давосе основной акционер АФК «Система» Владимир Евтушенков (его слова передает «Интерфакс»). Поэтому в совместном предприятии, вероятно, не будет контроля в классическом понимании этого термина (50% плюс 1 акция), добавил Евтушенков. Важнее решить, кто будет управлять этим активом, сказал он, выразив желание, чтобы эта роль досталась АФК «Система».

Первые официальные комментарии обсуждающегося СП появились в конце декабря прошлого года. Гендиректор «Ростеха» Сергей Чемезов заявил, что «Ростех» не возражает против того, чтобы контроль в этом предприятии достался «Системе».

Третий партнер может войти в СП как деньгами, так и активами, «окончательного решения пока нет, сказал в Давосе Евтушенков. По словам человека, близкого к одной из сторон потенциальной сделки, поиск третьего партнера только начался. Но вероятнее всего речь пойдет о каком-то финансовом институте. Почему никто из сторон не хочет брать на себя контроль в компании, он не объясняет.

Речь идет о слиянии Объединенной приборостроительной корпорации (ОПК) «Ростеха» и концерна РТИ, принадлежащего «Системе», а также ростеховской «Росэлектроники» с «Микроном», рассказывал ранее человек, участвующий в переговорах. В конечном же итоге планируется переход всех предприятий на одну акцию, говорил он. Концерн РТИ и «Микрон» входят в холдинг РТИ, принадлежащий «Системе» на 74,7% (еще 15,3% владеет банк ВТБ, 10% – у Совкомбанка).

«В свое время при построении компаний много технологических цепочек было разорвано. Часть технологий у нас, часть — у «Ростеха». Объединение активов позволяет сделать единую сквозную технологию от разработки до реализации продукции, а это означает — снижение себестоимости, снижение затрат, повышение эффективности. Когда разрывали цепочки, об этом не задумывались, а когда начали глубже разбираться в этом вопросе, стали понимать, что возник параллелизм технологии, ненужная конкуренция», — объяснил логику сделки Евтушенков (цитата по «Интерфаксу»).

Предполагалось, что активом будет управлять «Ростех», говорил ранее один из участников переговоров. А собеседник, близкий к одной из сторон потенциальной сделки, утверждал, что «Системе» не интересен контроль над предприятием.

На момент публикации заметки представитель АФК «Система» не пояснил, о каком третьем партнере идет речь. А представитель «Ростеха» напомнил, что перед электронным кластером госкорпорации стоит задача по среднегодовому увеличению выручки на 21% и развиваться он может в том числе и с помощью слияний и поглощений. Впрчем, конкретных решений пока не принято, уточнил представитель госкорпорации.

15 секретов опытных покупателей — Ferra.ru

Обращайте внимание на этикетку энергоэффективности

Лучше сразу подумать о «стоимости владения» техникой и обратить внимание на специальную этикетку с цветными полосками. Она расскажет про класс энергоэффективности (лучше от А+), расход электричества и воды, уровень шума и соответствия принятым стандартам для определенного вида техники (класс стрики и отжима для стиральной машины, класс мойки и сушки для посудомоечной машины и т. п).

Этикетка энергоэффективности удобна тем, что на ней не только прописаны цифры и параметры конкретного прибора, но и наглядно в виде цветных диаграмм отображены нормы других классов энергоэффективности, стирки, мойки, сушки и т. п., чтобы можно было быстро всё понять и сопоставить данные. Этикетка выдается товару после прохождения независимых испытаний, она совершенно беспристрастна и объективна — в отличие от продавца и людей, пишущих отзывы.

Не кидайтесь на «новинки этого сезона»

Мода и тренды в бытовой технике, конечно, существуют, но усовершенствования в большинстве своем не глобальны и не делают модели, вышедшие на рынок год или два назад, морально устаревшими. Крупные компании стараются выводить с рынка старый ассортимент, а на новые модели устанавливают новые и более высокие цены, но есть много приборов, которые на рынке давно, по которым много отзывов и за которые не придется переплачивать.

Проверяйте цены в интернете

Не кидайтесь на желтые и красные ценники. Большинство «акций» являются не больше чем акциями по привлечению внимания. Липовые скидки — это уже традиция, даже в «Черную пятницу» и «Киберпонедельник». Но есть и неплохие «акции», например, скидка за утилизацию старой техники и её вывоз: продавец не может заранее знать, есть ли у вас старая техника, поэтому этот вид скидок как раз работает.

Наклоняйтесь

Искусство расставлять товар на полках и вообще размещать его в торговом зале опирается на целый свод маркетинговых приемов и уловок, манипулирующих сознанием покупателя. Так, товары, стоящие на полках на уровне глаз, как правило, дороже, чем те, которые стоят ниже, хотя могут мало чем отличаться по функциональности: бренд может платить магазину за «премиальное» размещение. Кроме того, новинки, которые стоят дороже, тоже размещают так, что они бросаются в глаза. 

Научитесь говорить продавцу «нет, спасибо» и не чувствовать вины

Техника продаж предусматривает установление личного контакта между продавцом и покупателем, чтобы размыть границы личного пространства клиента и вовлечь его в некое общее пространство, сделаться ближе. Знакомому, да еще такому дружелюбному, тратящему на вас время (да ведь это его работа!) и опытному в том, в чем вы ничего не понимаете, труднее сказать «нет». Покупателю часто кажется, что он уже чем-то обязан продавцу, который уделил ему столько внимания.

Продавец может расспросить о каких-то персональных предпочтениях, делах семейных, рассказать о себе. И вот он уже не «Петр, стажер», как написано на его бейдже, а ваш знакомый Петр, мама которого обожает готовить в мультиварке, сестра пользуется эпилятором, а сам он взял две таких микроволновки: одну домой, другую на дачу — и страшно доволен. «Спасибо, Петр, очень приятно было с вами поговорить, мне надо подумать».

Электроника для начинающих: простое введение

Криса Вудфорда. Последнее обновление: 27 марта 2021 г.

Они хранят ваши деньги. Они следят ваше сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения — они даже стреляют подушки безопасности, если у нас возникнут проблемы. Удивительно подумать, сколько вещи, которые на самом деле делают «они». «Они» — электроны: крошечные частицы внутри атомов, которые движутся по определенным путям, известным как цепи, несущие электрическую энергию.Одна из величайших вещей людей научились делать в 20-м веке, было использовать электроны для управления машины и информацию о процессах. Революция электроники, как это как известно, разгонял компьютер революции, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие? видеть, достигать таких грандиозных и драматичных вещей? Возьмем присмотритесь и узнайте!

Фото: Компактная электронная плата веб-камеры.Эта плата содержит несколько десятков отдельных электронных компонентов, в основном небольших резисторов и конденсаторов, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия — очень разносторонний вид энергии, который мы можем производить и использовать всевозможными способами во многих других. Электричество — это создание электромагнитной энергии обтекать цепь так, чтобы она приводила в движение что-то вроде электродвигателя или нагревательного элемента, электропитание таких устройств, как электромобили, чайники, тостеры и лампы.Как правило, электрические приборы нуждаются в большом количестве энергии, чтобы производить они работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 ватт внутри электрочайника работает на токе около 10 ампер. Напротив, электронные компоненты используют токи скорее всего, будет измеряться в долях миллиампер (что составляет тысячные доли ампера). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника — это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, по идее, отдельные электроны) тщательно направлен на гораздо более сложные схемы для обработки сигналов (например, те, которые носят радио и телепрограммы) или хранить и обрабатывать Информация. Подумайте о чем-то вроде микроволновки духовка и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает мощность, генерирующая высокоэнергетические волны для приготовления пищи; электроника контролирует электрическую цепь, которая выполняет приготовление пищи.

Изображение: микроволновые печи питаются от электрических кабелей (серых), которые подключаются к стене. По кабелям подается электричество, питающее сильноточные электрические цепи и слаботочные электронные цепи. Сильноточные электрические цепи питают магнетрон (синий), устройство, которое создает волны, которые готовят вашу еду, и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как цифровой дисплей.

Аналоговая и цифровая электроника

Есть два очень разных способа хранения информации, известные как аналоговый и цифровой.Это звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы сделали старомодный снимок кто-то с пленочной камерой. Камера фиксирует поток света в через заслонку спереди в виде светового узора и темные участки на химически обработанном пластике. Сцена, в которой ты фотографирование превращается в своего рода мгновенную химическую живопись — «аналогия» того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если сфотографировать именно та же сцена с цифровой камерой, камера хранит совсем другую запись.Вместо того, чтобы сохранять узнаваемый узор из светлого и темного, он преобразует светлое и темное области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-то известна как цифровая.

Фото: Цифровые технологии: такие большие цифровые часы, как эти, легко и быстро читают бегуны. Фото Джи Л. Скотта любезно предоставлено ВМС США.

Электронное оборудование обычно работает с информацией в любом аналоговом формате. или в цифровом формате. В старомодном транзисторном радиоприемнике широковещательные сигналы поступают в схему радиоприемника через торчащую антенну вне корпуса.Это аналоговые сигналы: это радиоволны, путешествовать по воздуху от дальнего радиопередатчика, который вибрировать вверх и вниз по шаблону, который точно соответствует словам и музыку они несут. Так громкая рок-музыка означает больше сигналов, чем тихая классическая музыка. Радиоприемник сохраняет сигналы в аналоговой форме, так как принимает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио все происходит по-другому. Во-первых, сигналы передаются в цифровом формате. формат — в виде кодированных чисел.Когда они приходят к вашему радио, числа преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые фотоаппараты, цифровые радиоприемники, слуховые аппараты и телевизоры) использовать цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы восхищались всеми крошечными зданиями под вами и улицы, соединяющие их воедино множеством замысловатых способов.Каждый здание имеет функцию и улицы, по которым люди могут путешествовать из одной части города в другую или посещать разные здания в повернись, заставь все здания работать вместе. Коллекция здания, их расположение и множество связей между это то, что делает динамичный город намного больше, чем сумма его отдельные части.

Цепи внутри электронного оборудования немного похожи на города тоже: они забиты компонентами (похожий на здания), которые выполняют разные работы, и компоненты связаны между собой вместе кабелями или печатными металлическими соединениями (похожий на улицы).В отличие от города, где практически каждое здание уникально. и даже два предположительно идентичных дома или офисных блока могут быть тонко разные, электронные схемы состоят из небольшого количества стандартные компоненты. Но, как и LEGO®, эти компоненты вместе в бесконечном количестве разных мест, поэтому они выполнять бесконечное количество разных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты в любой схеме.Их задача — ограничить поток электронов и уменьшить ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковый регулятор, поэтому они измените количество сопротивления, когда вы их поворачиваете. Регуляторы громкости в в аудиооборудовании используются такие переменные резисторы.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типовой резистор на печатной плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды, пропускающие электрический ток. через них только в одном направлении. Их также называют выпрямителями. Диоды могут использоваться для изменения переменного тока (обратного тока). и далее по кругу, постоянно меняя направление) на прямое токи (те, которые всегда текут в одном направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды похожи на резисторы, но работают по-другому. и делать совершенно другую работу.В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствует стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных перемычкой. непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве таймеров, но они могут преобразовывать электрические токи и другими способами. На радио одна из самых важных должностей, настройка на станцию, которую вы хотите слушать, осуществляется конденсатором.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Маленький конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы — самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать небольшие электрические токи в гораздо большие). Транзисторы, которые работают поскольку переключатели действуют как память в компьютерах, в то время как транзисторы работают поскольку усилители увеличивают громкость звуков в слуховых аппаратах.Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фотография: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот.Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи «волшебного глаза» в различных типах измерительного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистемы. оборудование. Жидкокристаллические дисплеи (ЖК-дисплеи), например, используемые в ЖК-телевизоры с плоским экраном и ноутбук компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, установленный в электронной схеме. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное. Какую бы работу они ни выполняли, они работают, управляя потоком электронов. через их структуру очень точным образом. Большинство этих компонентов сделаны из цельных частей частично проводящих, частично изолирующих материалы, называемые полупроводниками (описаны подробнее в нашем статья о транзисторах).Потому что электроника предполагает понимание точные механизмы того, как твердые тела пропускают электроны через себя, это иногда называют физикой твердого тела. Вот почему вы часто будете видеть части электронного оборудования, описанные как «твердотельные».

Электронные схемы и платы

Ключ к электронному устройству — это не только его компоненты. содержит, но то, как они расположены в цепях. Простейший Возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например на одно колье крепятся две бусины.Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор радио может состоять из нескольких десятков различных компонентов и печатной платы вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то как компьютер, в котором используются цифровые технологии, схемы намного больше плотные и сложные и включают сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты здесь видишь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные детали, которые описаны ниже).

Если вы экспериментировали с простой электроникой, вы знаете, что Самый простой способ построить схему — просто соединить компоненты вместе с короткими отрезками медного кабеля. Но чем больше компонентов вам нужно подключать, тем сложнее становится.Вот почему дизайнеры электроники обычно выбирают более систематический способ размещения компонентов на том, что называется монтажная плата. Базовая схема доска просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и участками просверленных отверстий. Вы можете легко соединить компоненты вместе просунув их в отверстия и используя медь, чтобы связать их вместе, удаляя при необходимости кусочки меди и добавляя дополнительные провода сделать дополнительные подключения. Этот тип печатной платы часто называется «макетной платой».

Электронное оборудование, которое вы покупаете в магазинах, развивает эту идею в дальнейшем с использованием печатных плат, которые производятся автоматически на заводах. Точная компоновка схемы нанесена химическим способом на пластиковый плате, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверлил отверстия и закрепил на месте своего рода электрически проводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Пайка компонентов в электронный схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, на который я припаиваю здесь, представляет собой типичную печатную плату, и вы видите, как из нее торчат различные компоненты, в том числе связка резисторов спереди и большая интегральная схема наверху.

Хотя печатные платы — большой шаг вперед по сравнению с печатными платами с ручной разводкой, их все еще довольно сложно использовать, когда вам нужно подключить сотни, тысячи или даже миллионы компонентов вместе.Причина рано компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вручную в этом по старинке. Однако в конце 1950-х инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных Компоненты в миниатюрной форме на поверхности кусочков кремния. С использованием эти интегральные схемы, это быстро стало можно выжать сотни, тысячи, миллионы, а затем и сотни миллионов миниатюрные компоненты на микросхемах кремния размером с ноготь пальца.Так компьютеры стали меньше, дешевле и намного более надежный с 1960-х годов.

Фото: Миниатюризация. Больше вычислительной мощности в микросхеме обработки, которая лежит на моем пальце здесь, чем вы могли бы найти в комнате размером с комнату компьютер 1940-х годов!

Для чего используется электроника?

Электроника сейчас настолько распространена, что о ней почти легче думать. вещи, которые не используют, чем вещи, которые используют.

Развлечения были одной из первых областей, которые извлекли выгоду из радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты.Хотя телефон был изобретен до того, как электроника была должным образом развита, современные телефонные системы, сети сотовой связи, и компьютерные сети в сердце Интернета извлекает выгоду из сложная цифровая электроника.

Попробуйте придумать что-нибудь, что вы делаете, не связанное с электроникой и вы можете бороться. Ваш автомобильный двигатель вероятно, есть электронные схемы в нем — а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в твоей рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нашу жизнь и другими способами. Больницы упакованы всевозможными электронными гаджетами, от пульса от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских машины. Слуховые аппараты были одними из первых устройств, в которых разработка крошечных транзисторов в середине 20-го века, и интегральные схемы все меньшего размера позволили слуховым аппаратам стать с тех пор меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны. мог бы когда-либо вообразить — изменит жизни людей во многих важных пути?

Краткая история электроники

Фото: сэр Дж.Дж. Томсон, который открыл, что электроны являются отрицательно заряженными частицами, в Кембриджском университете в 1897 году. Томсон получил Нобелевскую премию по физике в 1906 году за свою работу. Фото Bain News Service любезно предоставлено Библиотекой Конгресса США.

  • 1874: ирландский ученый Джордж Джонстон Стоуни (1826–1911) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения. Он придумал название «электрон» примерно 20 лет спустя.
  • 1875: американский ученый Джордж Р. Кэри строит фотоэлемент, который вырабатывает электричество, когда светит Это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старинную, «ламповое» телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: плодовитый американский изобретатель Томас Эдисон (1847–1931) открыл термоэлектронную эмиссию (также известную как Эдисон эффект), где электроны испускаются нагретой нитью накала.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнал больше о фотоэлектрическом эффекте, связь между светом и электричеством, которую Кэри наткнулся на предыдущее десятилетие.
  • 1897: британский физик Дж. Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Томсон называет их «корпускулами», но вскоре они переименованы в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, создает клапан Флеминга (позже переименовал диод). Он становится незаменимым компонентом радиоприемников.
  • 1906: американский изобретатель Ли Де Форест (1873–1961), идет на один лучше и разрабатывает улучшенный клапан, известный как триод (или аудион), значительно улучшающий конструкцию радиоприемников.Де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Это революция в электронике и цифровых технологиях. компьютеры во второй половине 20 века.
  • 1958: Работая независимо, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Компания Semiconductor (а позже и Intel) разрабатывает интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера в один чип, на котором производится первый в мире универсальный микропроцессор Intel 4004.
  • 1987: американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разрабатывают первый одноэлектронный транзистор.
  • 2008: Исследователь Hewlett-Packard Стэнли Уильямс создает первый рабочий мемристор, новый своего рода компонент магнитной цепи, который работает как резистор с памятью, впервые представленный американским физиком Леоном Чуа почти четырьмя десятилетиями ранее (в 1971 году).

Электроника для начинающих: простое введение

Криса Вудфорда. Последнее обновление: 27 марта 2021 г.

Они хранят ваши деньги. Они следят ваше сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения — они даже стреляют подушки безопасности, если у нас возникнут проблемы. Удивительно подумать, сколько вещи, которые на самом деле делают «они». «Они» — электроны: крошечные частицы внутри атомов, которые движутся по определенным путям, известным как цепи, несущие электрическую энергию.Одна из величайших вещей людей научились делать в 20-м веке, было использовать электроны для управления машины и информацию о процессах. Революция электроники, как это как известно, разгонял компьютер революции, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие? видеть, достигать таких грандиозных и драматичных вещей? Возьмем присмотритесь и узнайте!

Фото: Компактная электронная плата веб-камеры.Эта плата содержит несколько десятков отдельных электронных компонентов, в основном небольших резисторов и конденсаторов, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия — очень разносторонний вид энергии, который мы можем производить и использовать всевозможными способами во многих других. Электричество — это создание электромагнитной энергии обтекать цепь так, чтобы она приводила в движение что-то вроде электродвигателя или нагревательного элемента, электропитание таких устройств, как электромобили, чайники, тостеры и лампы.Как правило, электрические приборы нуждаются в большом количестве энергии, чтобы производить они работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 ватт внутри электрочайника работает на токе около 10 ампер. Напротив, электронные компоненты используют токи скорее всего, будет измеряться в долях миллиампер (что составляет тысячные доли ампера). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника — это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, по идее, отдельные электроны) тщательно направлен на гораздо более сложные схемы для обработки сигналов (например, те, которые носят радио и телепрограммы) или хранить и обрабатывать Информация. Подумайте о чем-то вроде микроволновки духовка и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает мощность, генерирующая высокоэнергетические волны для приготовления пищи; электроника контролирует электрическую цепь, которая выполняет приготовление пищи.

Изображение: микроволновые печи питаются от электрических кабелей (серых), которые подключаются к стене. По кабелям подается электричество, питающее сильноточные электрические цепи и слаботочные электронные цепи. Сильноточные электрические цепи питают магнетрон (синий), устройство, которое создает волны, которые готовят вашу еду, и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как цифровой дисплей.

Аналоговая и цифровая электроника

Есть два очень разных способа хранения информации, известные как аналоговый и цифровой.Это звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы сделали старомодный снимок кто-то с пленочной камерой. Камера фиксирует поток света в через заслонку спереди в виде светового узора и темные участки на химически обработанном пластике. Сцена, в которой ты фотографирование превращается в своего рода мгновенную химическую живопись — «аналогия» того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если сфотографировать именно та же сцена с цифровой камерой, камера хранит совсем другую запись.Вместо того, чтобы сохранять узнаваемый узор из светлого и темного, он преобразует светлое и темное области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-то известна как цифровая.

Фото: Цифровые технологии: такие большие цифровые часы, как эти, легко и быстро читают бегуны. Фото Джи Л. Скотта любезно предоставлено ВМС США.

Электронное оборудование обычно работает с информацией в любом аналоговом формате. или в цифровом формате. В старомодном транзисторном радиоприемнике широковещательные сигналы поступают в схему радиоприемника через торчащую антенну вне корпуса.Это аналоговые сигналы: это радиоволны, путешествовать по воздуху от дальнего радиопередатчика, который вибрировать вверх и вниз по шаблону, который точно соответствует словам и музыку они несут. Так громкая рок-музыка означает больше сигналов, чем тихая классическая музыка. Радиоприемник сохраняет сигналы в аналоговой форме, так как принимает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио все происходит по-другому. Во-первых, сигналы передаются в цифровом формате. формат — в виде кодированных чисел.Когда они приходят к вашему радио, числа преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые фотоаппараты, цифровые радиоприемники, слуховые аппараты и телевизоры) использовать цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы восхищались всеми крошечными зданиями под вами и улицы, соединяющие их воедино множеством замысловатых способов.Каждый здание имеет функцию и улицы, по которым люди могут путешествовать из одной части города в другую или посещать разные здания в повернись, заставь все здания работать вместе. Коллекция здания, их расположение и множество связей между это то, что делает динамичный город намного больше, чем сумма его отдельные части.

Цепи внутри электронного оборудования немного похожи на города тоже: они забиты компонентами (похожий на здания), которые выполняют разные работы, и компоненты связаны между собой вместе кабелями или печатными металлическими соединениями (похожий на улицы).В отличие от города, где практически каждое здание уникально. и даже два предположительно идентичных дома или офисных блока могут быть тонко разные, электронные схемы состоят из небольшого количества стандартные компоненты. Но, как и LEGO®, эти компоненты вместе в бесконечном количестве разных мест, поэтому они выполнять бесконечное количество разных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты в любой схеме.Их задача — ограничить поток электронов и уменьшить ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковый регулятор, поэтому они измените количество сопротивления, когда вы их поворачиваете. Регуляторы громкости в в аудиооборудовании используются такие переменные резисторы.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типовой резистор на печатной плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды, пропускающие электрический ток. через них только в одном направлении. Их также называют выпрямителями. Диоды могут использоваться для изменения переменного тока (обратного тока). и далее по кругу, постоянно меняя направление) на прямое токи (те, которые всегда текут в одном направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды похожи на резисторы, но работают по-другому. и делать совершенно другую работу.В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствует стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных перемычкой. непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве таймеров, но они могут преобразовывать электрические токи и другими способами. На радио одна из самых важных должностей, настройка на станцию, которую вы хотите слушать, осуществляется конденсатором.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Маленький конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы — самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать небольшие электрические токи в гораздо большие). Транзисторы, которые работают поскольку переключатели действуют как память в компьютерах, в то время как транзисторы работают поскольку усилители увеличивают громкость звуков в слуховых аппаратах.Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фотография: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот.Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи «волшебного глаза» в различных типах измерительного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистемы. оборудование. Жидкокристаллические дисплеи (ЖК-дисплеи), например, используемые в ЖК-телевизоры с плоским экраном и ноутбук компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, установленный в электронной схеме. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное. Какую бы работу они ни выполняли, они работают, управляя потоком электронов. через их структуру очень точным образом. Большинство этих компонентов сделаны из цельных частей частично проводящих, частично изолирующих материалы, называемые полупроводниками (описаны подробнее в нашем статья о транзисторах).Потому что электроника предполагает понимание точные механизмы того, как твердые тела пропускают электроны через себя, это иногда называют физикой твердого тела. Вот почему вы часто будете видеть части электронного оборудования, описанные как «твердотельные».

Электронные схемы и платы

Ключ к электронному устройству — это не только его компоненты. содержит, но то, как они расположены в цепях. Простейший Возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например на одно колье крепятся две бусины.Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор радио может состоять из нескольких десятков различных компонентов и печатной платы вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то как компьютер, в котором используются цифровые технологии, схемы намного больше плотные и сложные и включают сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты здесь видишь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные детали, которые описаны ниже).

Если вы экспериментировали с простой электроникой, вы знаете, что Самый простой способ построить схему — просто соединить компоненты вместе с короткими отрезками медного кабеля. Но чем больше компонентов вам нужно подключать, тем сложнее становится.Вот почему дизайнеры электроники обычно выбирают более систематический способ размещения компонентов на том, что называется монтажная плата. Базовая схема доска просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и участками просверленных отверстий. Вы можете легко соединить компоненты вместе просунув их в отверстия и используя медь, чтобы связать их вместе, удаляя при необходимости кусочки меди и добавляя дополнительные провода сделать дополнительные подключения. Этот тип печатной платы часто называется «макетной платой».

Электронное оборудование, которое вы покупаете в магазинах, развивает эту идею в дальнейшем с использованием печатных плат, которые производятся автоматически на заводах. Точная компоновка схемы нанесена химическим способом на пластиковый плате, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверлил отверстия и закрепил на месте своего рода электрически проводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Пайка компонентов в электронный схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, на который я припаиваю здесь, представляет собой типичную печатную плату, и вы видите, как из нее торчат различные компоненты, в том числе связка резисторов спереди и большая интегральная схема наверху.

Хотя печатные платы — большой шаг вперед по сравнению с печатными платами с ручной разводкой, их все еще довольно сложно использовать, когда вам нужно подключить сотни, тысячи или даже миллионы компонентов вместе.Причина рано компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вручную в этом по старинке. Однако в конце 1950-х инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных Компоненты в миниатюрной форме на поверхности кусочков кремния. С использованием эти интегральные схемы, это быстро стало можно выжать сотни, тысячи, миллионы, а затем и сотни миллионов миниатюрные компоненты на микросхемах кремния размером с ноготь пальца.Так компьютеры стали меньше, дешевле и намного более надежный с 1960-х годов.

Фото: Миниатюризация. Больше вычислительной мощности в микросхеме обработки, которая лежит на моем пальце здесь, чем вы могли бы найти в комнате размером с комнату компьютер 1940-х годов!

Для чего используется электроника?

Электроника сейчас настолько распространена, что о ней почти легче думать. вещи, которые не используют, чем вещи, которые используют.

Развлечения были одной из первых областей, которые извлекли выгоду из радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты.Хотя телефон был изобретен до того, как электроника была должным образом развита, современные телефонные системы, сети сотовой связи, и компьютерные сети в сердце Интернета извлекает выгоду из сложная цифровая электроника.

Попробуйте придумать что-нибудь, что вы делаете, не связанное с электроникой и вы можете бороться. Ваш автомобильный двигатель вероятно, есть электронные схемы в нем — а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в твоей рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нашу жизнь и другими способами. Больницы упакованы всевозможными электронными гаджетами, от пульса от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских машины. Слуховые аппараты были одними из первых устройств, в которых разработка крошечных транзисторов в середине 20-го века, и интегральные схемы все меньшего размера позволили слуховым аппаратам стать с тех пор меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны. мог бы когда-либо вообразить — изменит жизни людей во многих важных пути?

Краткая история электроники

Фото: сэр Дж.Дж. Томсон, который открыл, что электроны являются отрицательно заряженными частицами, в Кембриджском университете в 1897 году. Томсон получил Нобелевскую премию по физике в 1906 году за свою работу. Фото Bain News Service любезно предоставлено Библиотекой Конгресса США.

  • 1874: ирландский ученый Джордж Джонстон Стоуни (1826–1911) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения. Он придумал название «электрон» примерно 20 лет спустя.
  • 1875: американский ученый Джордж Р. Кэри строит фотоэлемент, который вырабатывает электричество, когда светит Это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старинную, «ламповое» телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: плодовитый американский изобретатель Томас Эдисон (1847–1931) открыл термоэлектронную эмиссию (также известную как Эдисон эффект), где электроны испускаются нагретой нитью накала.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнал больше о фотоэлектрическом эффекте, связь между светом и электричеством, которую Кэри наткнулся на предыдущее десятилетие.
  • 1897: британский физик Дж. Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Томсон называет их «корпускулами», но вскоре они переименованы в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, создает клапан Флеминга (позже переименовал диод). Он становится незаменимым компонентом радиоприемников.
  • 1906: американский изобретатель Ли Де Форест (1873–1961), идет на один лучше и разрабатывает улучшенный клапан, известный как триод (или аудион), значительно улучшающий конструкцию радиоприемников.Де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Это революция в электронике и цифровых технологиях. компьютеры во второй половине 20 века.
  • 1958: Работая независимо, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Компания Semiconductor (а позже и Intel) разрабатывает интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера в один чип, на котором производится первый в мире универсальный микропроцессор Intel 4004.
  • 1987: американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разрабатывают первый одноэлектронный транзистор.
  • 2008: Исследователь Hewlett-Packard Стэнли Уильямс создает первый рабочий мемристор, новый своего рода компонент магнитной цепи, который работает как резистор с памятью, впервые представленный американским физиком Леоном Чуа почти четырьмя десятилетиями ранее (в 1971 году).

С чего начать? — learn.sparkfun.com

Добро пожаловать в Электронику!

Мы живем в удивительно высокотехнологичном мире, окруженном электронными штуковинами и гаджетами. Поскольку наша жизнь так наполнена электроникой, все — инженеры, преподаватели, предприниматели, студенты и художники — могут извлечь большую пользу, узнав о них больше. Понимание того, как читать схемы, паять, программировать и строить схемы, дает уникальное понимание мира, в котором мы живем; не говоря уже о том, что взлом и создание электроники — это просто развлечение!

С помощью наших руководств и комплектов мы хотим помочь сделать мир электроники максимально доступным.Каждый может (и должен!) Изучать электронику. Просто нужно найти с чего начать.

Учебные пособия для начинающих

Наши руководства объясняют, обучают и вдохновляют энтузиастов электроники и новичков. У нас есть широкий спектр руководств, охватывающих как основы теории электроники, так и примеры сборки проектов. Учебники написаны экспертами, и они наполнены высококачественными изображениями, которые помогут вам в этом. Если вы не знаете, с какого урока начать, ознакомьтесь с разделом «Уроки для начинающих» этого руководства.

Стартовые комплекты

В нашем розничном интернет-магазине мы продаем все, от наборов для пайки для начинающих до платформ для продвинутых разработчиков. Что может быть лучше для начала обучения, чем , делая ? Наши наборы помогают объяснить основные концепции электроники, а также позволяют создать что-то интересное и функциональное. Найдите наши рекомендуемые наборы для начинающих в разделе «Стартовые наборы» этого руководства и приступайте к сборке!

Учебные пособия для начинающих

Наши учебные пособия разделены на несколько категорий: концепции, технологии, навыки, руководства по подключению и проекты.Каждая учебная категория основана на последней.

Концепт

Наши концептуальные руководства охватывают действительно мелкие и мелкие области электроники. Это то, чему вы можете научиться на уроках электроники.

Технологии

В обучающих материалах

Technology конкретно рассказывается о компонентах, стандартах и ​​технологиях, которые делают все это возможным. Вы можете узнать, как работает GPS, и как вы можете добавить его в свой проект. Или вы можете прочитать все о резисторах, диодах и других основных электронных компонентах.

Навыки

Electronics — это не только вычисление токов, напряжений и сопротивлений. Вы должны научиться некоторым (сладким) навыкам, чтобы создавать вещи! Вот несколько отличных мест для начала в разделе навыков:

крючки

Вы ищете краткое руководство по использованию нового щита или коммутационной платы Arduino? Это то, на что ориентированы наши руководства по подключению. Эти учебные пособия обычно включают объяснение конкретного продукта, а также примеры схем и кода для его быстрого запуска и работы.Ознакомьтесь с некоторыми из этих руководств по подключению:

Проектов

Если вы ищете вдохновения для собственных проектов, посмотрите, что мы сделали. Эти руководства достаточно подробны, чтобы вы могли следовать им и строить точную копию. Или вы можете проработать наш проект, улучшить его и сделать своим. Они должны послужить несколькими отличными руководствами по стартовым проектам:

Статьи

Если мы напишем учебное пособие, которое не соответствует ни одной из вышеперечисленных категорий, мы разместим его в разделе статей.Здесь вы найдете информацию о том, как ориентироваться в требованиях FCC или как мы собираем наши продукты. Это хорошие чтения и содержат важную информацию для кого-то …

Стартовые комплекты

Мы хотим получить всех, так же увлеченных электроникой, как и мы. Наши стартовые наборы хорошо документированы, просты для понимания и забавны!

Можно взять набор для пайки и сделать классическую игру на память Саймона или часы Big-Time.

Если вы пока не хотите использовать паяльник, обратите внимание на SparkFun Inventor’s Kit. Это комплект электроники для начинающих , в котором есть микроконтроллер Arduino. Вы будете быстро мигать светодиодами, вращать моторы и прокручивать сообщения на ЖК-дисплеях. Он включает хорошо иллюстрированное справочное руководство, которое проведет вас через все эксперименты.

Электроника не всегда означает пайку, электромонтаж и макетирование. Мы также очень увлечены носимой электроникой (электронный текстиль), удивительным сочетанием шитья и электроники.Используя токопроводящую нить, мы можем вшивать аккумуляторные батареи, светодиоды и микроконтроллеры в ткань, чтобы освещать рюкзаки, платья, куртки и т. Д. Наш LilyPad ProtoSnap идеально подходит для быстрого создания прототипа и тестирования цепи электронного текстиля, прежде чем разобрать ее и вшить на место.


Чтобы узнать больше о стартовых наборах, ознакомьтесь с категорией наборов в нашем магазине!

Стартовые классы

Наша страсть к обучению электронике не ограничивается экраном компьютера.У нас есть класс в нашей штаб-квартире (в Боулдере, штат Колорадо, США) для проведения нескольких семинаров, и мы также, как известно, проводим шоу в дороге.

Летом 2013 года мы отправляемся в тур по стране, распространяя нашу проповедь электроники по всей стране. Для каждой остановки в туре мы будем проводить один из трех семинаров:

Введение в Arduino

Перейдите от мигания светодиода к виртуальному прототипированию за семь часов и еще успейте пообедать! Этот класс предназначен для всех, кто никогда раньше не играл с Arduino, и для тех, кто немного поигрался, но не совсем уверен в том, как работают основы.Это проще, чем вы думаете! Мы соберем основные однокомпонентные электрические схемы, узнаем об аналоговом и цифровом, вводе и выводе, основных концепциях программирования, попрактикуемся в базовой последовательной связи и кратко рассмотрим базовое виртуальное прототипирование. Если вы не заметили, ключевое слово здесь простое.

Программирование PicoBoard и Scratch

Сочетая Scratch — бесплатную среду блочного программирования с перетаскиванием и перетаскиванием — и PicoBoard, студенты в возрасте пяти лет могут научиться интегрировать датчики в проекты.Они узнают, как использовать датчик освещенности для управления фоном своей анимации, использовать ползунок для управления скоростью своего персонажа и как создавать свои собственные датчики. Попутно они также изучат фундаментальные концепции, такие как функционирование электричества в этих датчиках.

Электронный текстиль и Arduino

Носимая электроника (иногда называемая электронным текстилем) — одна из последних тенденций в мире встраиваемой электроники. С Советом по разработке ProtoSnap LilyPad вы познакомитесь со сшиваемой электроникой с помощью системы LilyPad, технологии, разработанной в результате партнерства между SparkFun и профессором Массачусетского технологического института Лией Бючли.Этот семинар включает в себя все необходимое, чтобы научить студентов программировать и шить свои собственные творения LilyPad.


Посетите нашу страницу классов, чтобы получить информацию о предстоящих мероприятиях. Мы обучаем чему угодно, от мягких схем (обучение электронике с токопроводящим пластилином) до того, как спроектировать печатную плату.

Узнайте об электронике — Домашняя страница

Сайт для изучения электронной техники. Используйте меню выше или выберите тему в полях предварительного просмотра ниже — вы находитесь не более чем в трех щелчках мыши от наиболее важной информации о том, что вам нужно знать.

Посетите наш новый раздел «Неисправности транзисторов» и узнайте, почему транзисторы выходят из строя и как их можно проверить с помощью мультиметра. Простые тесты для биполярных переходных транзисторов (BJT) и полевых транзисторов (JFET и MOSFET).

Learnabout Electronics, уже один из самых популярных образовательных онлайн-сайтов по электронике, насчитывающий около 300 страниц и более 1700 иллюстраций и видео по широкому кругу тем, связанных с электроникой, превратился в крупный международный образовательный сайт, которым пользуются миллионы независимых учащихся. образовательные издательства, учебные заведения вооруженных сил, а также колледжи и университеты по всему миру.Используется для занятий электроникой. Чтобы узнать больше о сайте Learnabout Electronics, просто нажмите здесь.

Изучите основы электроники — закон Ома, простые схемы и схемы резисторов — как последовательные, так и параллельные, с пошаговым объяснением. Все самое необходимое; объяснение напряжения тока, проводимости и сопротивления. Как температура влияет на сопротивление? Все это здесь, вместе с распознаванием компонентов для 4-, 5- и 6-полосных резисторов, а также кодами SMT и простым поиском неисправностей.Некоторые из наиболее полных данных по резисторам в сети!

Наши страницы о компонентах и ​​схемах переменного тока предназначены для обучения основам теории переменного тока с помощью 11 простых для изучения модулей. Используйте их как полный курс или изучите любую отдельную тему, включая конденсаторы, катушки индуктивности, реактивное сопротивление, импеданс, формы сигналов и векторы.

Каждый модуль имеет резервную копию бумажной версии, которую можно загрузить, распечатать и сохранить. На онлайн-страницах также используются интерактивные видеоролики, что делает наши популярные пояснительные страницы одними из самых популярных в Интернете.

Узнаешь об электронике? Затем вам нужно знать о компонентах, включая диоды, JFET, MOSFT, биполярные транзисторы, тиристоры, симисторы и диаки, оптопары и основы теории полупроводников. Найдите полные и простые объяснения многих распространенных типов. Посмотрите наши анимированные видеоролики, чтобы прояснить работу транзистора. В чем разница между соединениями с общим эмиттером, общей базой и общим коллектором? Узнайте, как правильно тестировать транзисторы в нашем разделе «Идентификация неисправностей», и получите помощь с математическими задачами, которые могут понадобиться вам, когда вы только начинаете заниматься электроникой.

Узнайте, как спроектировать и построить рабочий транзисторный усилитель, используя минимум математики. Классы усилителей, объясненные от A до D, вместе с многокаскадными усилителями, практичными усилителями мощности и схемами операционных усилителей. Разберитесь с отрицательной обратной связью, входным сопротивлением и контролем полосы пропускания. Все, от базовых фактов об усилителях до сложных профессиональных конструкций, можно найти на сайте Learnabout Electronics.

Каждая цепь (почти) нуждается в блоке питания, поэтому вам нужно знать, как работают блоки питания.Узнайте об этих жизненно важных схемах — от базовых схем выпрямителя до источников питания с переключаемым режимом, от базовых компонентов до интегральных схем — и все это в наших простых в освоении модулях.

Модули питания также имеют обширные ссылки на ключевые страницы с подробной информацией и основными терминами, с которыми вам необходимо ознакомиться. Используйте возможности learnabout-electronics — сотни страниц информации об электронике, которые помогут вам разобраться в том, что вам необходимо знать , а важные спецификации компонентов источников питания также находятся на расстоянии одного клика, чтобы связать вас с данными производителей.

Начните изучать реальные схемы прямо сейчас с Learnabout Electronics.

Узнайте о цифровой электронике с ПЯТЬЮ МОДУЛЯМИ, наполненными информацией и схемами по цифровой технологии! Начните с двоичной арифметики — булевой алгебры, карт Карно, всего необходимого. Пошаговые инструкции по упрощению логических выражений, чтобы упростить логические выражения!

Логические вентили, логические семейства и цифровые схемы объяснены, от базовых вентилей до сложных схем, которые заставляют компьютеры работать.Мультиплексоры, сумматоры, счетчики, регистры сдвига и многое другое. Загрузите бесплатное программное обеспечение Logisim и более 60 интерактивных симуляторов обычных цифровых схем.

Как понять основную теорию схем? Проектирование основных электронных схем стало проще

Что такое основная теория электронных схем?

Проще говоря, электронику можно понимать как отрасль науки, которая использует и контролирует поток электронов через специально разработанные сети активных и пассивных устройств для получения желаемого результата.Эти сети в основном представляют собой соединение выбранных электронных компонентов и составляют электронную схему. Используемые электронные компоненты в основном классифицируются как активные и пассивные компоненты. Активные компоненты играют важную роль в определении размеров или оптимизации потока электронов через них в соответствии с их проектными спецификациями. Это все, в частности, полупроводниковые детали, которые включают такие устройства, как светодиоды, диоды, транзисторы, микросхемы, тиристоры, симисторы и многие другие, список может быть слишком длинным.Пассивные компоненты обычно состоят из углерода или химических электролитов и, хотя и не могут вносить активного вклада, но играют важную роль в сочетании с активными устройствами и дополняют их во всех отношениях. Без этих компонентов, вероятно, будет невозможно разработать электронную схему. Такие компоненты, как резисторы, конденсаторы, катушки индуктивности и т. Д., Подпадают под пассивные электронные компоненты.

В этой статье мы постараемся познакомиться с основами схемотехники электроники.Мы попытаемся понять функционирование нескольких электронных компонентов, а также то, как они могут быть сконфигурированы в небольшие базовые схемы.

Как понять основные электронные компоненты и их применение?

Диод : Как показано на рисунке, диод представляет собой компонент с двумя выводами и распознается полосой или кольцом на одном из его концов.

В символе полоса обозначается прямой линией в точке стрелки. Вывод, который заканчивается с этой стороны, является катодом, а другой — анодом.

Диод всегда пропускает положительное напряжение через анод к катоду и блокирует обратный путь. Из-за этой особенности диоды также используются в качестве выпрямителей для преобразования переменного тока в постоянный.

Светодиод : Светодиоды очень похожи на обычные диоды, как объяснено выше, но поскольку светодиоды могут излучать свет в процессе, они специально используются в качестве индикаторов и в других формах освещения. Светодиоды не способны выдерживать высокие токи и поэтому всегда включают в себя последовательный резистор для измерения требуемого минимального тока через них.

Транзистор : Все мы хорошо знакомы с этим универсальным членом электронного семейства. Транзисторы в основном используются для усиления небольших электрических сигналов, а также для коммутации.

Резистор : Поскольку большинство полупроводниковых устройств чувствительно к высоким токам, резисторы используются для ограничения правильного прохождения тока через них. Значения этих резисторов рассчитываются путем их расчета по различным формулам.

Следующие примеры ясно объясняют, как устроены основные электронные схемы:

Как показано на рисунке, триггерное напряжение, которое обычно принимается с выхода IC или другого подобного источника, подается на R1.Полученный ток правильно оптимизируется через R1 и используется для смещения транзистора T1, чтобы он мог проводить и зажигать светодиод, подключенный к его коллекторному плечу.

Как объяснялось выше, резистор R2 был встроен для защиты светодиода от чрезмерных токов. Значение R2 рассчитывается по следующей формуле:

R2 = (US — ULED) ÷ ILED

Здесь US = напряжение питания,

ULED = минимальное прямое падение напряжения используемого светодиода,

и ILED = используемый ток с помощью светодиода для обеспечения оптимальной яркости (обычно достаточно 10 мА).

Значение R1 может быть получено по следующей формуле:

R1 = (Ub — 0,6) × Hfe / ILOAD

Здесь Ub = напряжение источника на R1,

Hfe = коэффициент усиления по прямому току используемого T1 (можно возьмите минимальное значение: 150)

ILOAD = Ток, необходимый для работы нагрузки коллектора (здесь светодиод).

Светодиод в схеме легко заменить на реле, если возникнет необходимость коммутировать большие нагрузки на выходе. В таком случае номинал базового резистора также может быть рассчитан соответствующим образом, используя приведенную выше формулу.

Иногда мы можем обнаружить, что напряжение источника на R1 слишком мало, и Т1 его трудно определить. В таких условиях может быть внесена интересная модификация путем сопряжения другого транзистора с T1, как показано на следующем рисунке. Эта конфигурация называется парой Дарлингтона.

Здесь принятые слабые сигналы усиливаются до подходящего уровня первым транзистором и подаются на базу следующего транзистора, который усиливает его в достаточной степени, чтобы запитать нагрузку коллектора.

Конденсатор : это еще один незаменимый пассивный электронный компонент, который неизбежно находит место почти во всех электронных схемах. Они в основном используются для блокировки постоянного тока и пропускания переменного тока, но могут также найти важные приложения для создания временных задержек, подавления или фильтрации шума.

Если конденсатор подключен к указанной выше схеме, можно получить интересные результаты. Две смежные фигуры могут быть объяснены соответственно следующим образом:

На первом рис.T1 продолжает проводить в течение довольно долгого времени даже после отключения триггерного напряжения из-за заряда, накопленного внутри C1, что указывает на то, как конденсатор используется для создания временных задержек.

Вторая схема показывает, как конденсатор может быть использован для создания кратковременного импульса, так что при получении напряжения базы транзистор и его коллекторная нагрузка включаются только на мгновение, а затем выключаются. Здесь пусковой сигнал может проходить мгновенно только во время процесса зарядки C1 и запрещает его прохождение, когда C1 полностью заряжен.

Что ж, я могу продолжать и продолжать, не заканчивая, поскольку тема теории основных электронных схем может быть бесконечно длинной. Но пока на этом мне придется подвести итоги. Поднятые брови? Пожалуйста, дайте мне знать через свои комментарии (комментарии требуют модерации, может потребоваться время, чтобы появиться).

10 простых шагов к изучению электроники

Вы когда-нибудь интересовались конструированием электроники или возились с ней?

Увлекает ли вас идея схемотехники?

Если да, то вам может быть интересно, как вы можете начать изучать электронику, чтобы начать работать на машинах, в качестве хобби или в качестве более профессионального интереса.

К счастью, никогда не было так просто заняться этой областью, благодаря множеству различных инструментов и руководств, имеющихся в вашем распоряжении. Если раньше вам приходилось разбирать электронику, чтобы понять, как она работает, то теперь вы можете заказывать детали и создавать их с нуля.

Сегодня мы рассмотрим шаги, которые нужно предпринять, чтобы перейти от новичка к профессионалу. Не волнуйтесь, если вы ничего не знаете о электронике — мы готовы помочь.

Начало работы

Хотя мы дадим вам пошаговое руководство, не стесняйтесь пропускать любые части, о которых вы уже знаете.

Наша цель — снизить планку входа, чтобы любой, кто интересуется электроникой, мог перейти от новичка к созданию своей первой системы, поэтому мы не будем говорить жаргона и будем увлекаться.

# 1 Изучите основы электричества

Прежде чем вы сможете приступить к работе с любыми электронными компонентами, вы должны понять, как работает электричество.

Большинство людей принимают это как должное, а это значит, что они не знают разницы между вольтами, амперами и омами.Фактически, в зависимости от того, насколько вы знакомы с предметом, мы, возможно, уже взорвали вас.

Когда дело доходит до изучения электричества, вам нужно изучать все части вместе, а не по отдельности. Поскольку ток состоит из различных элементов, лучше знать, что они взаимодействуют друг с другом, если вы хотите строить на этом основании.

Первое, что нужно выучить, — это вольт, ампер, ватт и ом. Наш курс «Электроника 101» — отличное место для начала изучения этих концепций.

На самом деле, мы рекомендуем вам искать дополнительные ресурсы, чтобы ответить на любые вопросы, возникающие во время этого процесса, чтобы вы могли плавно перейти к следующему шагу.

Напряжение — количество энергии, протекающей через электрическую систему
А — скорость, с которой течет энергия, также известная как ток
Вт — сколько мощности доставляется к конечной точке
Ом — коэффициент сопротивления, приложенный к энергии

Для большинства людей лучший способ понять, как они работают вместе, — это думать о них с точки зрения сантехники.Напряжение похоже на воду в системе, амперы — это давление в трубах, ватты — это количество воды, получаемой из крана, а омы — это размер самой трубки.

Как видите, эти элементы постоянно взаимодействуют, и знание того, как они влияют друг на друга, помогает вам лучше разбираться в схемах и электронике.

Существует уравнение, называемое законом Ома, которое помогает определить, какой ток протекает через систему.

Это I = V / R.I означает ток (амперы), V — напряжение, а R — сопротивление (Ом).

Итак, компонент с напряжением 120 вольт и сопротивлением 80 Ом будет генерировать 1,5 ампер.

Чтобы перейти от ампер к ваттам, вам нужно умножить амперы на вольты. В этом случае это будет 180 Вт.

Уравнение выглядит следующим образом: W = AxV.

# 2 Основные сведения о схемах

Когда вы узнаете, как работает электричество, вы сможете применить эти знания к самим схемам.Одна из фундаментальных систем для изучения — это замкнутый цикл.

Без замкнутого контура ваша схема не будет работать, поэтому вы должны понять ее, прежде чем переходить к следующему шагу.

Что хорошего в знании элементов замкнутого контура, так это то, что вы можете применить его ко всем схемам. Несмотря на то, что там могут быть некоторые сложные надстройки, цикл все тот же.

Проще говоря, замкнутый контур работает так —

Электроны (элементарный компонент электричества) текут от положительного заряда к отрицательному.Их движение — это то, что генерирует энергию и позволяет нам использовать электронику. Замкнутый контур — это просто соединение между этими терминалами.

Простым примером из реальной жизни может быть подключение электрической лампочки к положительному и отрицательному концам батареи с помощью провода. Когда электроны перемещаются из одной точки в другую, они позволяют свету сиять.

Другие необходимые схемы включают резисторы и транзисторы. Мы не будем вдаваться в подробности, но резисторы задают величину сопротивления (Ом) в цепи, а транзистор позволяет управлять током (в амперах).

Они не производят энергию, но они помогают вам контролировать, как она течет от положительного полюса к отрицательному.

Хорошим примером этого может быть добавление переключателя к вашей лампочке, чтобы вы могли включать и выключать ее, или регулировать количество энергии, поступающей на саму лампочку (переключатель диммера).

В схемотехнике задействованы и другие компоненты, например конденсаторы и диоды. Вы должны просмотреть полный список и понять, как работает каждый элемент и как он может повлиять на другие части схемы.

# 3 Научитесь читать диаграммы

Принципиальные схемы похожи на чертеж здания. Они показывают, как работает схема и какие компоненты включены. Сначала они могут показаться сложными, но они просто построены из множества фундаментальных элементов, которые мы уже рассмотрели.

Лучше всего выучить отдельные отметки (например, резистор, аккумулятор, конденсатор и т. Д.).), а затем начните с упрощенных схем.

Как только вы начнете читать диаграмму, не обращаясь к списку терминов, вы поймете, что готовы начать применять свои знания к реальной вещи.

Также вам следует научиться рисовать принципиальные схемы с нуля. Возможность сделать это поможет вам, когда дело доходит до построения схемы, поэтому наличие такого опыта сделает процесс еще более плавным.

# 4 Игра с элементами схемотехники

Читать о диодах и транзисторах — это одно, но совсем другое — увидеть их вблизи и использовать в схемах.Когда вы освоите абстрактные концепции и сможете создавать диаграммы, самое время поработать над реальными элементами.

Вы можете купить детали схем в Интернете и начать с ними играть. Мы предлагаем вам сначала использовать свои схемы, чтобы построить схему без макета.

Это поможет закрепить ваши знания и упростит создание вашей первой схемы. Это также поможет вам понять, как получить эти детали для будущих проектов.

# 5 Построение рабочей цепи

Когда у вас есть готовые детали, теперь вы хотите начать с простого замкнутого цикла. Используя макетную плату, создайте схему, которая может питать светодиодную лампу. Поскольку это сделать проще всего, он послужит основой для остальной части вашего учебного плана. Помните, что все схемы имеют одни и те же элементы, поэтому для достижения определенных целей нужно всего лишь добавить разные части.

После того, как вы освоили замкнутый контур и можете включать свет, вы готовы к следующему шагу.

# 6 Создание коммутатора

Может показаться, что добавить выключатель к свету достаточно просто, но это немного сложнее, чем вы думаете. Поскольку переключатель состоит из разных элементов и выполняет несколько функций (по крайней мере, две, включение и выключение), вы должны строить схему с учетом этого.

Переключатель включения / выключения — отличная отправная точка в изучении электроники, но вы также можете возиться с другими переключателями, такими как диммер или таймер.Добавление этих элементов поможет вам понять, что нужно для создания более сложных схем.

Одна вещь, которую мы должны упомянуть, это то, что рекомендуется нарисовать диаграммы всех этих цепей перед их построением. Хотя вы можете пропустить этот шаг, это поможет закрепить концепции, чтобы вы могли овладеть ими еще быстрее.

# 7 Обучение пайке

Макетные платы

отлично подходят для изучения электроники, потому что они позволяют создавать простые схемы без особых технических знаний.

Однако, если вы хотите работать с электроникой, вам нужно создавать более постоянные решения, для чего требуется паяльник.

Пайка элементов схемы позволит вам изготавливать платы, которые можно вставлять в устройство без выпадения компонентов (как в макете).

Таким образом, обучение пайке будет необходимо, если вы хотите перейти к более сложным проектам.

Когда вы овладеваете этим навыком, вы должны как можно больше практиковаться, прежде чем применять его в реальной жизни.Неправильная пайка схемы сделает все это бесполезным, поэтому лучше все исправить заранее.

Здесь также помогает рисование диаграмм, потому что вы можете визуализировать, как компоненты будут соответствовать друг другу, прежде чем переходить к этому.

# 8 Обновление до интегральной схемы

Интегральные схемы — это микросхемы, которые устанавливаются на микросхему. По сути, вы создаете замкнутые контуры, которые являются частью более крупной системы.

Например, у вас может быть одна микросхема, которая действует как коммутатор, а другая позволяет добавлять в систему больше энергии.Думайте об этом как о регуляторе громкости на радио.

Как только вы научитесь создавать интегральные схемы, вы почти готовы приступить к созданию сложной электроники.

Опять же, не переусердствуйте. Создайте каждый чип тем же методом, который вы использовали, и используйте диаграммы, чтобы убедиться, что вы знаете, куда все должно идти.

# 9 Разработка и изготовление печатной платы

Если у вас дома нет фабрики, будет очень сложно построить печатную плату с нуля.

Чтобы построить печатную плату, вы должны вложиться в программу, которая позволяет рисовать схемы на компьютере и преобразовывать их в макет платы.

Вы можете распечатать план, чтобы убедиться, что он впишется в вашу жилищную единицу, но вам нужно будет отправить этот файл производителю, чтобы получить конечный продукт.

Существует несколько производителей печатных плат, и каждая из них может стоить всего 1 доллар, что делает их выгодным вложением средств.

Но если вы готовы принять вызов… почему бы не попробовать создать свой собственный с нуля ?!

# 10 Лучший способ учиться? Найдите увлекательный проект и создайте его

После того, как вы начали создавать свои печатные платы, теперь вы можете приступить к созданию собственной электроники! Лучшее, что можно сделать для изучения электроники, — это найти конкретный предмет, который вы хотите построить, и разбить его на различные компоненты, которые вам понадобятся.

Затем переходите шаг за шагом от планирования к выполнению и посмотрите, насколько хорошо вы справляетесь. Как только вы все это соберете и все заработает, вы будете готовы ко всему!

У вас есть увлеченный проект, о котором вы хотите, чтобы мы написали? Расскажите нам в комментариях!

Другие проекты, которые могут вам понравиться

Машиностроительные проекты от новичка до продвинутого

10 крутых и сложных инженерных проектов для детей

Окончательный список инженерных проектов

Другие уроки, которые могут вам понравиться

Лучшие ресурсы для изучения электроники

10 простых шагов к изучению электроники

Как использовать макетную плату с другими компонентами

15 лучших книг по электронике для начинающих в 2021 году

Вы любите читать технические статьи? Если да, то вы попали в нужное место.

Эта электронная книга направит вас на правильный путь, чтобы получить практический опыт, когда вы начнете создавать свои собственные электронные поделки. Он служит отличным справочником для раскрытия тайн электронных схем.

Вы действительно можете создавать более интересные проекты, ведь в мире электроники много возможностей, начиная от основ и заканчивая сложными проектами по разумным ценам.

Продажа

Иногда у вас могут возникнуть трудности с выбором подходящей книги для вашего проекта.Для вашего удобства наша команда экспертов провела часы исследования и предоставила вам эти 15 электронных книг, чтобы выбрать из лучших, которые соответствуют вашим требованиям.

Лучшие электронные книги в 2021 году

Обзоры лучших электронных книг

1. Искусство электроники 3 rd Edition

Широко распространено издание 3 rd Art of Electronic Book инженерами специально для проектирования схем.Эта продвинутая книга охватывает многие темы, такие как работа со схемой, диаграммы осциллографа, графики с точными данными, когда вы имеете дело с интересным проектом.

Письменный язык очень прост и позволяет каждому понять сложные концепции. Книга на 1470 страницах содержит 90 диаграмм осциллографов, 80 таблиц и список из 1650 компонентов, таких как радиоприемник, операционный усилитель и микроконтроллер.

  • Это хороший справочник для всех, кто работает со схемами.
  • Микроконтроллеры с Verilog и языками описания оборудования.
  • Включает список компонентов, необходимых для лабораторных занятий.
  • Дает вам представление о том, как и где их купить.
  • Интеграция электронных компонентов с микроконтроллерами.

Купить сейчас на Amazon

2. Энциклопедия электронных компонентов Том 1

Книга «Энциклопедия электронных компонентов» идеально подходит для учителей, студентов, инженеров и любителей всех возрастов для изучения концепции электроники.Новички легко поймут концепции, а профессионалы найдут конкретные детали, связанные с их проектами.

Его книга — первая и уникальная энциклопедия по электронным компонентам, которая доступна в трех отдельных томах, и каждый из них имеет свое уникальное содержание. Том 1 охватывает такие темы, как мощность, электромагнетизм и дискретные полупроводниковые устройства с подробным объяснением и принципиальными схемами.

Вот некоторые спецификации, которые кандидат должен изучить перед покупкой энциклопедии электронных компонентов, том 1:

  • Каждый компонент предоставляет вам более подробную информацию о заменах.
  • Части каждого компонента четко организованы.
  • Более надежный, содержит источник информации, чем другие учебные пособия или онлайн-источники.
  • Обратитесь за советом к специалисту, чтобы убедиться, что информация, представленная в книге, является современной и точной.

Купить сейчас на Amazon

3. Энциклопедия электронных компонентов, том 2

Это прекрасный источник для хакеров, инженеров и экспертов, позволяющий ориентироваться в продвинутой электронике.Студенты могут легко понять операции схемы с помощью формул, диаграмм и графиков.

Volume-2 — одна из ведущих практических книг, которая охватывает такие темы, как интегрированный источник, свет, светодиоды, ЖК-дисплеи, Thrystors, усилители и источники звука для разработки электронных проектов.

Некоторая энциклопедия содержания книги электронных компонентов приводится ниже:

  • Взаимодействие одного компонента с другим.
  • Знать основные правила электроники.
  • В этой книге собрана информация, полученная из сотен источников.
  • Это очень легко просматривать, поскольку части организованы в зависимости от типа компонента.
  • Детали узлов, электрические схемы с аккуратными эскизами.
  • Небольшая описательная связь между уроками с потрясающими представлениями.
  • Использование определенных компонентов в проекте (описание списка) для создания собственных.

Купить сейчас на Amazon

4.Энциклопедия электронных компонентов, том 3

Хотя у вас нет опыта работы в электронике, вы наверняка найдете некоторые интересные факты, с которыми вы никогда раньше не сталкивались. Вы сможете узнать о работе электронных компонентов и их коммерческих приложений.

Этот том 3 rd содержит информацию об электронных компонентах для ваших проектов с фотографиями, схемами и схемами. Он также охватывает ряд сенсорных устройств для измерения света, тепла, звука и движения объекта.

Книга «Энциклопедия электронных компонентов», том 3, содержит следующее:

  • Эти книги проверены экспертами, чтобы гарантировать точность и подлинность информации.
  • Эта книга предоставляет более последовательные источники информации, чем учебные пособия, спецификации продуктов и другие онлайн-источники.
  • Предоставляет подробное объяснение каждого компонента, информация взята из сотен других источников.

Купить сейчас на Amazon

5.Практическая электроника для изобретателей, 4 -е издание

Идеально подходит для студентов-электротехников, у которых есть сильное желание повысить свои знания в области электроники и получить навыки, необходимые для разработки собственных забавных гаджетов.

Книга по практической электронике написана опытными инженерами и профессионалами, чтобы предоставить необходимую информацию с инструкциями по битам, схемами и иллюстрациями. Он дает вам представление о том, как выбирать компоненты, проектировать и создавать электронные устройства с использованием микроконтроллеров и интегральных схем.Он также содержит инструкции по программированию логики, операционных усилителей, регуляторов напряжения и многое другое.

В этой книге содержится подробная информация, которая превращает теоретические идеи в приложения реального времени с электронными компонентами, включая:

  • Резистор, катушку индуктивности и конденсатор.
  • Диоды, транзисторы и интегральные схемы.
  • Фототранзисторы, датчики и модули GPS.
  • Логические вентили, ЖК-дисплей и цифровая электроника.
  • Микроконтроллеры, двигатели постоянного тока и шаговые двигатели.
  • Микрофоны, усилители звука и динамики.
  • Операционные усилители, регуляторы, источники питания и дополнительные электронные устройства.

Купить сейчас на Amazon

6. Как диагностировать и исправить все электронное, 2 nd Edition

Если ваш гаджет поврежден из-за внутренних схем, мы обычно выбираем новый гаджет. Вместо того, чтобы покупать слишком дорогое новое устройство, вы можете отремонтировать и продлить срок службы цифровых электронных устройств, таких как цифровые фотоаппараты, телевизоры, ноутбуки, гарнитуры и мобильные телефоны, просто прочитав эту удивительную книгу.

В этой книге собрана коллекция электронных проектов, которые объясняются в пошаговой процедуре с помощью аккуратных эскизов и принципиальных схем.

В электронной книге объясняется следующее:

  • Как выбирать инструменты и настраивать их.
  • Советы и рекомендации для определенных устройств, таких как проигрыватели оптических дисков, видеомагнитофоны и компьютеры.
  • Чтобы понять, как работают электрические компоненты и причину отказа.
  • Для выполнения эффективных методов диагностики по конкретным симптомам.
  • Понимание блоков, схем и графических диаграмм.
  • Помогает проанализировать электрические цепи, выявить неисправности и заменить их новыми.
  • Восстановите соединения и соберите аппаратные устройства.
  • Используйте тестовые устройства, такие как цифровые мультиметры, частотомеры, осциллографы и измерители ESR.

Купить сейчас на Amazon

7. Начало работы в электронике

Книга «Приступая к работе в электронике» содержит 128 страниц, которые научат вас основам работы с аналоговыми и цифровыми устройствами, объясняют их работу, советы по сборке и сопряжение многих компоненты и множество проектов для сборки и тестирования.

Это обязательная книга в библиотеке каждого, кто увлечен изучением основ электронной теории и принципов.

Книга — хорошее начало для новичков, которые любят разрабатывать творческие электронные проекты и содержание, которое есть в книге для начинающих по электронике:

  • Позволит вам узнать о статическом электричестве с помощью магнитов и соленоидов.
  • Электрические цепи, в которых используются батареи и лампы.
  • Работа с электронными компонентами.
  • Как переключатели, резисторы, конденсаторы, реле, измерители и транзисторы встраиваются в цепь.
  • Объясняет интегральные схемы, то есть как 100-1000 электронных компонентов формируются в одном кремниевом кристалле.
  • Как соединить и припаять электронные компоненты для создания временных или постоянных цепей.

Купить сейчас на Amazon

8. Сделать: Электроника: Обучение через открытия 2 nd Edition

Выпуск 2 nd электронных книг получил высокую оценку за использование макета с одной шиной, схемы, схемы с популярными микроконтроллерами.Он лучше всего подходит для новичков и инженеров, увлеченных проектированием электронных устройств.

Эта книга начинается с основ и последовательно продвигается к более сложным проектам — от коммутационных схем до микроконтроллеров и интегральных схем. Даже есть много цветных снимков и замечательных примеров, которые помогут вам разобраться в электронных теориях и практиках.

Вот несколько тем из 2 nd выпуска электронной книги make, которая охватывает:

  • Электронные компоненты и их функции.
  • Цепи таймера и генератора.
  • Демонстрации по электромагнетизму.
  • Упростите создание усилителей звука.
  • Объясняет необходимость катушек и конденсаторов с использованием синтезатора звука.
  • Предоставляет вам 3 проекта Arduino, основанные на приложениях реального времени.
  • Новая охранная сигнализация с дополнительными функциями и схемой таймера реакции может быть легко откалибрована.

Купите сейчас на Amazon

9. Электроника «все в одном» для чайников

Книга «Электроника для чайников» — это окончательное руководство, которое поможет вам перейти на следующий этап.Книга для чайников — это собрание из 8 других книг, которые больше нигде не найти. Он помогает вам создавать и разрабатывать множество забавных проектов с использованием комплектов Arduino и Raspberry Pi.

Эта 900-страничная книга облегчает новичкам понимание определенных тем, таких как схемы, схемы и другие источники, с подробной информацией о том, как разработать свою собственную схему, макетную плату, работу аппаратных компонентов с аккуратными эскизами и схемами.

Итак, приступайте к следующему проекту электроники уже сегодня, используя этот моноблок по электронике для чайников.Вот некоторые материалы, с которыми вы свяжетесь, когда прочитаете эту замечательную книгу.

  • Основы электроники с множеством многочисленных концепций.
  • Помогает создавать собственные схемы и макеты.
  • Станьте экспертом в схемотехнике.
  • Как безопасно паять электронные компоненты.
  • Отремонтировать существующие электронные устройства.
  • Создавайте веселые и интересные электронные проекты.
  • Может работать с аналоговыми, цифровыми и автомобильными электронными модулями.

Купить сейчас на Amazon

10. Понимание базовой электроники — 2 nd Edition

Книга 2 nd , посвященная пониманию базовой электроники, написана в дружественной манере, легкой для понимания для начинающих и начинающих. нетехнические читатели. Хотя вы знакомы с основами электроники, вам определенно понравятся небольшие модули по каждой теме.

Эта книга содержит примеры, схемы, принципиальные схемы с аккуратными набросками и фотографиями в реальном времени, чтобы сделать изучение электроники более интересным и увлекательным, и ее лучше прочитать, прежде чем вы начнете решать сложные задачи.

Купите сейчас на Amazon

11. Научитесь электричеству и электронике, 6 -е издание

Постепенный подход в этой книге позволяет быстро понять концепцию. В этой книге вы найдете подробную информацию в виде иллюстраций, практических примеров и ключевых концепций самооценки. Помимо этого, вы можете затронуть новые темы, такие как импульсные источники питания, усилители класса D, литиевые батареи и микроконтроллер, сделав Arduino основной платформой.

Вот несколько электронных компонентов, которые представлены в 6 книгах издания th , а именно:

  • Резисторы, катушки индуктивности и конденсаторы.
  • Элементы и батареи.
  • Импеданс и проводимость.
  • Усилители и генераторы.
  • Датчики, преобразователи и навигаторы.
  • Лазеры, акустика и аудио.
  • Беспроводные передатчики и приемники.
  • Антенны для радиосвязи.
  • Диоды, транзисторы и полупроводники.
  • Цифровые схемы, Современные системы связи.

Купить сейчас на Amazon

12. Электроника для детей

Книга «Электроника для детей» — это замечательная коллекция потрясающих ручных проектов. Это помогает детям узнать, как работают цепи тока, напряжения, логические вентили и схемы памяти. Вы будете использовать все, что узнали до сих пор, для разработки забавных проектов.

Вот некоторые темы или содержание, которое содержит следующая книга «Электроника для детей»:

  • Поверните цепь для касания датчика, используя пальцы в качестве резистора.
  • Для построения будильника, срабатывающего по схеме с восходом солнца.
  • Для пайки резистора цепи мигающего светодиода и конденсаторов.
  • Создание музыкального инструмента, издающего звуки (научная фантастика в цифровой электронике).

Купить сейчас на Amazon

13. Руководство для начинающих по чтению схем, 3-е издание

В этой книге рассматриваются простые и сложные электронные системы с прекрасными иллюстрациями и графическим изображением высокоточных электронных схем.Это также помогает вам идентифицировать детали, соединения, символы, цветовую кодировку резистора и применять данные на основе диаграмм в вашем собственном проекте.

Третье издание руководства для начинающих по чтению книги схем охватывает следующие темы:

  • Блок-схемы, схемы и схемы.
  • Резисторы и конденсаторы.
  • Диоды, транзисторы и логические вентили.
  • Батареи, делители и редукторы напряжения.
  • Обмотка проводов и макетов.
  • Ремонт электронных компонентов.
  • Катушки индуктивности и трансформаторы.

Купить сейчас на Amazon

14. Базовое руководство по пайке

Базовое руководство по пайке идеально подходит для новичков, любителей и инструкторов, чтобы овладеть навыками пайки электроники. Книга для пайки идеально подходит для тех, кто любит делать самодельные проекты DIY, такие как автомобиль с дистанционным управлением, роботизированная рука, квадрокоптер и гитара.

Базовые книги по пайке охватывают следующие темы:

  • Тестирование электронного устройства.
  • Меры предосторожности перед началом пайки.
  • Как выбрать подходящее паяльное оборудование, такое как утюг и припой.
  • Пайка электронных компонентов.
  • Советы по пайке и демонтажу печатной платы или электронных компонентов.

Купите сейчас на Amazon

15. Grob’s Basic Electronics

Книга «Базовая электроника» предназначена в основном для новичков и инженеров, чтобы удовлетворить их текущие технологические потребности.Он охватывает основы электричества, электроники, важность тестирования и навыков поиска и устранения неисправностей. Также внимательно обучает практическому подходу с соответствующими иллюстрациями, примерами и диаграммами.

Основное содержание книги по электронике Grob выглядит следующим образом:

  • Как встроить программу в аппаратные устройства.
  • Ремонт ваших собственных устройств, например, часов, смартфонов и iPod.
  • Помогает рисовать принципиальные электрические схемы.
  • Устройства для цепей задержки и измерения.
  • Установите программное обеспечение и включите электронные схемы.
  • Заставляет вас изучать электрические теоремы, концепции программирования.
  • Взаимодействие датчиков с другими периферийными устройствами.

Купить сейчас на Amazon

Заключение:

Книга «Искусство электроники, 3-е издание» — наш главный приоритет, поскольку она в основном фокусируется на электронных концепциях с точки зрения новичка. Эта книга на 1470 страницах, выпуск 3 rd , в основном охватывает такие темы, как работа схемы, 90 диаграмм осциллографов, графиков, 80 таблиц и список из 1650 компонентов, таких как радиоприемник, операционный усилитель и микроконтроллер с точными данными, что помогает создавать удивительные проекты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *