Как выбрать диод для выпрямителя: Какие диоды нужны для диодного моста. Наиболее важные характеристики диода для выпрямителя тока.

Содержание

Какие диоды нужны для диодного моста. Наиболее важные характеристики диода для выпрямителя тока.

Диодный мост используется там, где есть необходимость в получении постоянного  тока из переменного. То есть, если взять самый обычный трансформаторный блок питания, то в его основных элементах будет присутствовать – понижающий трансформатор (с железным магнитопроводом), диодный выпрямительный мост, фильтрующий конденсатор (электролит относительно большой емкости). Силовой трансформатор из более высокого сетевого напряжения, величиной 220 вольт, делает более низкое (стандартными напряжениями являются 3, 5, 6, 9, 12, 24 вольта). Но, с выхода этого трансформатора выходит (так же как и входит) переменный ток. И для того, чтобы из переменного тока сделать постоянный, то есть его выпрямить, и используется диодный мост. Но, на выходе моста мы получим постоянный ток, который будет иметь форму скачков напряжения. Эти скачки сглаживаются фильтрующим конденсатором электролитом.

В этой теме давайте с Вами рассмотрим, как именно правильно подобрать диодный мост, и на какие основные и важные параметры, характеристики в первую очередь обращать внимание.

Как известно, диодный мост состоит из четырёх одинаковых диодов, спаянных определенным образом (схема диодного моста). Для примера возьмём такой популярный диод, как 1N4007.

1 » Максимальный долговременный прямой ток.

Максимальный долговременный прямой ток – это одна из наиболее важных характеристик диода. К примеру, у диода (1N4007) этот ток равен 1 ампер. Это значит, что при температуре не выше 75 °С данный диод спокойно может через себя пропускать силу тока до 1 ампера без ущерба для себя (не получая тепловой или электрический пробой). Ток выше 1 ампера уже грозит увеличением вероятности пробоя и последующего выхода из строя (либо при сгорании он станет диэлектриком, то есть его внутреннее сопротивление уже будет бесконечно большим, или же после сгорания он, наоборот, станет проводником, у которого сопротивление станет очень малым). При выборе диодов для мостов и готовых диодных сборок мостов нужно делать некий запас по току. Например, Ваш блок питания должен выдавать на выходе максимальный ток 0,5 ампера, и поставив диодный мост на 1 ампер мы получим 50% запас по току, что обеспечивает на дополнительную защиту от случайных токовых перегрузок до 1 ампера.

Это позволит обеспечить дополнительную надёжность работающего диодного моста в блоке питания.

2 » Максимальное обратное напряжение диодов в диодном мосте.

Максимальное обратное напряжение диодов – это та максимальная величина амплитудного напряжения, которое будет приложено к диоду при его обратном включении. Напомню, что обратное включение диода, это когда плюс источника питания подсоединяется к минусу (катоду) диода, а минус источника питания подсоединяется к плюсу диода (аноду). То есть, наоборот, плюс к минусу, а минус к плюсу. При этом подключении (обратном) диод находится в закрытом состоянии, его сопротивление бесконечно большое. Следовательно, максимальная амплитуда напряжения оседает на диоде. Максимальное обратное напряжение у нашего (к примеру взятого) диода 1N4007 равна 1000 вольтам (1кВ). Это значит, что диодный мост, собранный на таких диодах может выдерживать амплитудное переменное напряжение аж до 1000 вольт. Напряжение выше этого значения уже, как и в случае с током, увеличивает вероятность электрического пробоя диода, с последующим выходом его из строя.

При подборе диода по этой характеристики также делайте некий запас (от 25% до 100%, а то и более). Хотя 1000 вольт это и так достаточно много!

3 » Максимальная рабочая частота диода.

Максимальная рабочая частота диода – это наиболее высокая частота, на которой диод (диодный выпрямительный мост) может работать не теряя свои номинальные характеристики, функционировать (переходить из закрытого состояния в открытое и обратно) с максимальный быстродействием, сохраняя свою надёжность. Наш диод серии 1N4007 имеет максимальную рабочую частоту 1 мГц. Это достаточно высокая частота. Работая в схеме обычного блока питания (запитываемого от сети с частотой 50 Гц) этих диодов более чем будет достаточно, касательно этой характеристики. И даже они нормально будут работать в схемах импульсных БП, где обычно используется частота около 10-18 кГц.

4 » Интервал рабочих температур диода.

Интервал рабочих температур диода

, что будет работать в схеме диодного моста – это температурная характеристика диода. Она говорит о том, что в определённом диапазоне температур диод будет нормально работать, и его другие параметры останутся в рамках допустимого (поскольку температура полупроводника влияет на электрические характеристики, например изменением внутреннего сопротивления диода). У диода 1N4007 интервал рабочих температур лежит в пределах -65…+175°С. При очень низких температура вряд ли в быту Вы будете использовать диодный мост, а вот высокая температура легко может образоваться при прохождении большой величины тока. Причем, как известно, большинство диодов, и мостов сделаны из кремния. Кремний имеет свою критическую температуру, после которой он начинает необратимо разрушаться. Эта температура около 150-180°С. Работа диода на предельных температурах, это также не совсем хорошо. Нормальной температурой для работы полупроводников можно считать от 0 до 60 °С.

5 » Падение напряжения на диоде.

Падение напряжения на диоде – это то напряжение, которое присутствует на диоде при его прямом включении. Как я ранее говорил о обратном напряжении диода, так вот прямое включение диода, это когда плюс диода (его анод) подключен к плюсу источника питания, а минус диода (его катод) подключен к минусу источника питания. При таком подключении диод находится в открытом состоянии, через него нормально проходит ток. Но даже в открытом состоянии диод имеет своё некоторое внутреннее сопротивление, которое и вызывает определенное падение напряжения на этом диоде. К примеру на нашем диоде 1N4007 при токе в 1 ампер падение напряжения составляет около 1,1 вольта. В общем это самое падение напряжения у диодов из кремния лежит в пределах от 0,6 до 1,2 вольта. На это падение напряжения влияет и сила тока, которая проходит через этот диод. А в целом, чем меньше это самое падение напряжения на полупроводнике, тем меньшая мощность на нём оседает, тем меньше он будет грется, тем лучше (для некоторых схем очень важно, чтобы было как можно меньшее падение напряжения на диоде).

6 » Максимальный импульсный ток.

Максимальный импульсный ток диода. Этот пункт логичнее было указать вторым, но я его опустил по причине упорядочивания по важности характеристик диода. Итак, первым пунктом у нас было максимальный долговременный ток, то есть ток, величина которого постоянна во времени. Импульсный ток уже характеризует амплитудное значение силы тока. Во времени это ток может меняться, и в некоторые моменты времени быть равен нулю. Поэтому общая мощность, которая будет оседать на диоде при прохождении через него импульсного тока будет меньше, чем та, которая была бы при долговременном токе. К примеру, для диода 1N4007 при длительности импульса 3.8 мс величина тока равна 30 ампер. И тут мы видим ощутимую разницу. Если при длительном токе диод может выдерживать до 1 ампера, то при импульсном это значение увеличилось аж в 30 раз.

Видео по этой теме:

P. S. Это и были основные характеристики диодов, которые будут работать в диодном мосте, на которые нужно обращать внимание при выборе. Хотя если свести к еще большей простоте, то для обычных трансформаторных блоков питания важны две характеристики, это максимальный длительный ток и обратное напряжение (первый и второй пункт в моей статье). Все остальные параметры обычно у современных диодов достаточно велики и их более чем достаточно для всех диодных мостов, которые могут быть использованы для простых блоков питания.

Основные параметры диодов, прямой ток диода, обратное напряжение диода


Основные параметры диодов — это прямой ток диода (Iпр) и максимальное обратное напряжение диода (Uобр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток, который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода — это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.


Рис. 1

Как мы говорили ранее, напряжение на выходе выпрямителя (на конденсаторе) равно действующему напряжению вторичной обмотки трансформатора, умноженному на √2. В однополупериодном выпрямителе (рис. 1), когда напряжение на аноде диода имеет положительный потенциал относительно земли, конденсатор фильтра заряжается до напряжения, превышающего действующее напряжение на входе выпрямителя в 1.

4 раза. Во время следующего полупериода напряжение на аноде диода отрицательно относительно земли и достигает амплитудное значения, а на катоде — положительно относительно земли и имеет такое же значение. В этот полупериод к диоду приложено обратное напряжение, которое получается благодаря последовательному соединению обмотки трансформатора и заряженного конденсатора фильтра. Т.е. обратное напряжение диода должно быть не меньше двойного амплитудного напряжения вторички трансформатора или в 2.8 раза выше его действующего значения. При расчёте таких выпрямителей надо выбирать диоды с максимальным обратным напряжением в 3 раза превышающим действующее значение переменного напряжения.


Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.


Рис. 3

По другому обстоит дело в случае мостового двухполупериодного выпрямителя. Как можно видеть на рис. 3, в каждый из полупериодов удвоенное напряжение прикладывается к двум непроводящим, последовательно соединённым диодам.

Выпрямительные диоды: устройство, конструктивные особенности, характеристики

Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла. Выпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Рис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Выпрямительный диод — виды, принцип работы и применение

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Принципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Выпрямительный диод — виды, принцип работы и применение

Выпрямители. Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Устройство и структура выпрямителя

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис.

2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U
2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Двухполупериодные схемы выпрямления. Проверка исправности диодов.

Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.   

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.

Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).

    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.

    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.

    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 — коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

   — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.

    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.

    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.

    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.

Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода. 

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.

    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.

    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.

    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.

    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.

    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис. 3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.

    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.

 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д

При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:

   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.

    Электрическая мощность выделяемая на каждом резисторе равна:

   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.

 Такова расплата за использование не соответствующих току диодов.

     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.

Основным свойством диода является односторонняя проводимость тока. Ток через диод возникает только при положительном потенциале на аноде относительно катода. При обратной полярности ток через диод практически равен нулю.

    Приборы, имеющие одностороннюю проводимость, называются электрическими вентилями. Сопротивление вентиля зависит от величины и знака приложенного напряжения. У идеального вентиля при одном (прямом) знаке напряжения сопротивление равно нулю, а при другом (обратном) — бесконечности. 

Проверка исправности полупроводникового диода

     Для проверки исправности полупроводникового диода включаем цифровой мультиметр в режим измерения сопротивления на предел, отмеченный значком (). Данный режим предназначен для тестирования P-N переходов. Его особенностью является то, что индицируемое значение сопротивления на этом пределе численно равно прямому напряжению на переходе в милливольтах.

    Далее подключать щупы к выводам диода. 

 Рис.1

    При этом у исправного диода сопротивление в прямом смещении, когда плюсовой щуп омметра подключен к аноду диода (как на Рис.1), должно быть значительно меньше сопротивления в обратном смещении, когда плюсовой щуп омметра подключен к катоду диода.

    Если сопротивления диода в прямом и обратном смещениях близки к нулю, диод неис-правен , неисправность — пробой.

    Если сопротивления диода в прямом и обратном смещениях бесконечно большие, диод неисправен , неисправность — обрыв .

    Если при замере обратного сопротивления стрелка прибора не устанавливается твердо, а все время «плавает», диод неисправен, неисправность — увеличение тока утечки .

    Полярность щупов мультиметра, подключенного при измерениях в прямом направлении укажет положение анода и катода. Красный щуп («+») в этом случае будет подключен к аноду диода, чёрный («—») — к катоду. Численные значения прямого напряжения на переходе равны:

                               • 200 – 400 мВ для германиевых диодов.

                               • 500 – 800 мВ для кремниевых диодов;

    Во избежание прогрева при измерениях не следует держать диод за корпус.

 

    Если вы пытаетесь определить исправность диода не вапаивая его из схемы, следует учитывать, что результаты измерений будут искажены из-за шунтирующего действия других элементов схемы, включённых между анодом и катодом диода. Поэтому, для однозначного определения исправности диода (кстати, это справедливо и для других элементов), необходимо одну ножку диода от схемы таки отсоединить (отпаять).

      Если вы обнаружили неисправный диод в схеме, его нужо заменить. На корпусе неисправного диода необходимо считать его марку, и подобрать точно такой же. Если вы не смогли найти для замены вышедшего из строя такой же марки, можно подобрать его аналог — другой диод, по своим параметрам не хуже вышедшего из строя.

      Для принятия технически грамотного решения при подборе аналога необходимо воспользоваться справочной информацией (даташитом), который легко найти, вбив в любой поисковик марку диода. По каким же параметрам следует подбирать аналог? А вот по таким:

 Основные параметры диодов

      Для выпрямительных диодов наибольшее значение имеют следующие параметры:

Максимально допустимый прямой ток IПР.МАКС — определяет максимальный ток нагрузки, который диоды смогут выдержать. Превышение IПР.МАКС. приводит к тепловому пробою и повреждению диода;

Максимально допустимое обратное напряжение UОБР.МАКС. – это наибольшее обратное напряжение, которое в течение длительного времени может быть приложено к диоду, не вызывая изменение его параметров. Оно должно быть как минимум в два раза больше рабочего напряжения.

​     Для диодов, работающих на высоких частотах важен такой параметр как ёмкость PN перехода, так как с увеличением частоты сопротивление этой ёмкости уменьшается и диод теряет своё основное свойство — одностороннюю проводимость.  

Для стабилитронов помимо перечисленных важны: напряжение стабилизации UСТ. и максимально допустимый постоянный ток стабилизации IСТ. МАКС..

    Для варикапов важен диапазон изменения ёмкости и соответствующий ему диапазон изменения обратного напряжения. 

Задачи и примеры диоды и выпрямители кратко…

Сразу хочу сказать, что здесь никакой воды про задачи диод, и только нужная информация. Для того чтобы лучше понимать что такое задачи диод,задачи выпрямитель,задачи электротехника , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база


1. Дано: схема (рис.1), U1 = 10 B, U2 = 13 B, U3 = 15 В, U4 = 22 B, R1 = R2 =1 кОм.

Определить Uвых

Решение:
При U1 = U2 = U3 = 0 диоды закрыты и напряжение
Uвых = U4•R2 / (R1 + R2) = 11 В.
Если подключим U1, Uвых не изменится – диоды закрыты.
При подключении U2 напряжение Uвых станет равным 13 В ( диод в ветви с U2 будет открыт).
При подключении U3 откроется диод в этой ветви, напряжение Uвых станет равным 15 В. Остальные диоды закроются.

Задача 2.

Считая диоды идеальными, найти величину тока и напряжения для цепей, показанных на схеме.

Решение:
Для цепи на схеме не является очевидным, находятся ли оба диода в проводящем состоянии. В этом случае сделаем предположение о нахождении диодов в проводящем состоянии, проделаем вычисления и проверим правильность нашего предположения.
Для цепи схемы из предположения о проводимости обоих диодов следует, что
UB = 0; U = 0
Ток через диод VD2 может быть определен из выражения

Записывая уравнение для токов в узле В, имеем

Таким образом, диод VD1 находится в проводящем состоянии, как мы изначально предположили, и окончательные результаты
I = 1 мА и U = 0 В.

Задача 3.

Определить ток в цепи и напряжение на диодах вольтамперные характеристики которых представлены, если Uвх = 2,5 В, Rн = 25 Ом

Решение:
построим суммарную ВАХ диодов и «опрокинутую» ВАХ нагрузочного резистора.

Ответ: U1 = 0,6 В, U2 = 0,7 В, Uн = 1,2 В, I = 45 мА

В электрокехнике часто диоды используются в выпрмителях
Задача 4.

В однополупериодном выпрямителе (без фильтра) напряжение на нагрузке Uнср = 40 В.
С каким Uобрмакс нужно выбрать полупроводниковый диод ?

Решение:

Задача 5.

В однополупериодном выпрямителе напряжение на вторичной обмотке трансформатора U2 = 150 В . Об этом говорит сайт https://intellect.icu . Частота напряжения сети 50 Гц,
Rн = 2 кОм.
Определить Uнср, Iпрд, Iнср,Uобрмакс, коэффициент пульсаций р.

Решение:
Uнср =√2•U2/π = 67,36 В
Iнср = Uнср/ Rн = 67,36 / 2000 = 0,034 А
Iпрд = Iнср = 0,034 А
Uобр макс = √2•U2 = 212 В
р = 1,57
.
Задача 6.

В однополупериодном выпрямителе с емкостным фильтром рис 21, рассчитать Uнср и Uобрмакс, если Сф = ∞, U2 = 150 В, частота напряжения сети 50 Гц,
Rн = 2 кОм, построить временную диаграмму выпрямителя.

Решение:
Сф = ∞, следовательно р = 0
Uнср =√2•U2 / (1 + р) = 212 В
Iнср = Uнср/ Rн = 212 / 2000 = 0,106 А
Iпрд = Iнср = 0,106 А
Uобр макс = 2√2•U2 = 424 В

Временная диаграмма выпрямителя .

Задача 7.

В двухполупериодной мостовой схеме выпрямителя с фильтром, напряжение на вторичной обмотке трансформатора U2 = 150 В. Частота напряжения сети 50 Гц, Rн = 2 кОм, при условии, что емкость фильтра равна ∞. Определить среднее значение выпрямленного напряжения Uнср, значение прямого тока через диод Iпрд , Iнср, Uобрмакс, коэффициент пульсаций?

Решение:
Сф = ∞, следовательно, р = 0
Uнср =√2•U2 / (1 + р) = 212 В
Iнср = Uнср/ Rн = 212 / 2000 = 0,106 А
Uобр макс = √2•U2 = 212 В

Задача 8.

Для однополупериодной схемы выпрямления без фильтра рис, определить коэффициент трансформации трансформатора, максимальное обратное напряжение на диоде, если выпрямленное напряжение на нагрузке 30 В и напряжение на первичной обмотке трансформатора 220 В (50 Гц).

Решение:
Uнср =√2•U2/π = 30 В
U2 = 2,22 Uнср = 66 В
Uобр макс = √2•U2 = 94 В
N= U1/ U2 = 220/66 = 3,33

Задача 9.

Определите емкость конденсатора фильтра Сф в мостовом выпрямителе, если выпрямленное напряжение Uнср = 12 В, ток Iнср = 10 мА, а коэффициент пульсаций не должен превышать 0.05.

Решение:

Задача 10. В однополупериодном выпрямителе, работающем на Rн = 250 Ом, действующее значение напряжения на вторичной обмотке трансформатора
U2 = 10 В.
Нарисовать схему однополупериодного выпрямителя.
Определить, с каким допустимым прямым током надо выбрать полупроводниковый диод,
Нарисовать временные диаграммы входного и выходного напряжений выпрямителя.

Решение:
Uнср =√2•U2 / π = 4,5 В
Iнср = Uнср/ Rн = 4,5 / 250 = 0,018 А
Iпрд = Iнср = 0,018 А
Iпрдоп = 1,3• Iпрд = 0,0234 А

Временная диаграмма выпрямителя.

Задача 11. В однополупериодном выпрямителе с емкостным фильтром рис, напряжение на вторичной обмотке трансформатора U2 = 10 В. Частота напряжения сети 50 Гц, Rн = 1 кОм, Сф = 80 мкФ.
Определить среднее значение выпрямленного напряжения Uнср, Iнср, Uобр макс, коэффициент пульсаций р, построить временные диаграммы.

Решение:
Uнср =√2•U2 / (1 + р) = 14,1/(1 + 0,2) = 11,75 В
Uобр макс = 2√2•U2 = 28,2 В
τразр = С•Rн = 0,05 с

Строим временные диаграммы:

Задача 12.

В однополупериодном выпрямителе с емкостным фильтром, напряжение на нагрузке Uнср = 40, В, коэффициент пульсаций не должен превышать 0.05.
С каким Uобрмакс нужно выбрать полупроводниковый диод?

Решение:

См. также

А как ты думаешь, при улучшении задачи диод, будет лучше нам? Надеюсь, что теперь ты понял что такое задачи диод,задачи выпрямитель,задачи электротехника и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

На что следует обратить внимание при выборе правильного диода…

Полупроводниковые диоды — это широко используемые компоненты во многих конструкциях электронных схем. Различные типы диодов оптимизированы для обеспечения различных характеристик, используемых в схемных решениях. Важная функция диодов — выпрямление.

Цепи однополупериодного выпрямителя используются для выпрямления мощности, демодуляции сигнала и обнаружения пиков, в то время как двухдиодные схемы обеспечивают двухполупериодное выпрямление при использовании с трансформатором с центральным отводом.Сегодня схема двухдиодного выпрямителя встречается не так часто, как четырехдиодные мостовые выпрямители, которые могут быть построены с трансформатором или без него, что значительно снижает стоимость схемы.

Рисунок 1. Схема однополупериодного выпрямителя. Рисунок 2. Схема двухдиодного (с центральным ответвлением) двухполупериодного выпрямителя. Рисунок 3. Схема двухполупериодного мостового выпрямителя.

При этом следует учитывать три диода для схем выпрямителя:

1) Напряжение включения

Типичное прямое или прямое напряжение включения кремниевого диода равно 0.7 В, в то время как у германиевого диода около 0,2-0,3 В. Уменьшение прямого падения напряжения увеличивает чувствительность диодного выпрямителя, что актуально в определенных приложениях, таких как обнаружение сигнала.

2) Номинальный ток диода

Величина тока нагрузки, протекающего через диод, определяет желаемый номинальный длительный ток. Например, если нагрузка потребляет ток 1 А, тогда будет достаточно диода 1N1007 (номинал 1 А) (хотя и без запаса прочности!). Однако, если ток нагрузки превышает 1 А, тогда требуется диод с более высоким номинальным током.Ток нагрузки не должен превышать номинал диода постоянного тока. То же самое можно сказать и о токе питания. Если для конструкции требуется источник питания на 3 А, диод должен выдерживать ток 3 А. Ток питания никогда не должен превышать номинальный ток диода, даже если он кратковременный.

3) Пиковое обратное напряжение

Диоды должны выдерживать максимальное обратное напряжение на них. Когда конденсатор сглаживает выходной сигнал, значение напряжения представляет собой пик формы входного сигнала, который в √2 раз больше среднеквадратичного напряжения.

Полупериодный выпрямительный диод PIV

На другой половине волнового цикла пиковое значение напряжения еще в √2 раз больше среднеквадратичного напряжения. Сумма двух значений — это максимальное обратное напряжение на диоде. Таким образом, номинальное значение PIV-диода должно быть как минимум в 2 x √2 раза больше входного среднеквадратичного напряжения для цепей полуволнового выпрямителя и как минимум в четыре раза превышать пиковое напряжение трансформатора для цепей двухдиодного полнополупериодного выпрямителя с учетом возможных переходных процессов.

Двухдиодные (с центральным отводом) полнополупериодные выпрямительные диоды PIV

В мостовых выпрямителях для того же выходного напряжения требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом.

Мостовые полнополупериодные выпрямительные диоды PIV

Рассмотрение этих трех важных спецификаций гарантирует, что диод будет работать как выпрямитель, не повредив ни его, ни остальной части проекта, в котором он находится.

Анализ цепи

— Выбор правильного диода

(опять как дежавю)

Причина выбора диода с определенными параметрами следующая:

Reverse Voltage: Выберите, чтобы быть выше максимально возможного обратного напряжения, которое может быть замечено на устройстве.(Когда диод не горит.)

Forward Current: Выберите, чтобы быть выше максимально возможного тока, который может протекать через устройство. (Когда горит диод.)

Прямое напряжение: выберите, если небольшое падение напряжения в прямом направлении должно быть на уровне или ниже определенного значения. (Когда горит диод.)

Есть несколько других параметров диодов, но они обычно менее важны, особенно в простых цепях постоянного тока.

Для схемы выше:
Обратное напряжение:
Рассчитайте максимальное напряжение, которое можно было бы увидеть, если бы в линии (между c и e) был установлен диод.Рассчитайте напряжение в направлении, обратном току диода. (Другими словами, поместите диод в схему и проведите анализ.) В вашем последнем запросе вопрос включал возможность выхода из строя других источников питания, поэтому проводите анализ с учетом этого). Анализ даст представление о необходимом обратном напряжении. Обычно вы выбираете диод с обратным напряжением выше расчетного, включая некоторый запас прочности (если он указан). Диоды часто бывают с определенными значениями обратного напряжения (что-то вроде резисторов со стандартными значениями)

прямой ток: То же, что и выше, но рассчитайте максимально возможный ток, который можно увидеть, проходя через диод в прямом направлении.

прямое напряжение: Если требуется определенное известное значение или минимальное значение для прямого напряжения, выберите диод с этим параметром. (Например, прямое напряжение силиконового диода во включенном состоянии составляет около 0,7 В). Примечание. Этот параметр может зависеть от тока.

Стабилитрон будет использоваться только в том случае, если вы хотите, чтобы диод пропускал ток в обратном направлении при известном напряжении. Обычно они используются только в том случае, если вам нужно фиксированное напряжение в некоторой точке цепи.Например, их можно использовать для создания опорного напряжения.

диодов — Выбор правильного мостового выпрямителя

Для выбора мостового выпрямителя : Краткий список деталей, которые превышают требуемое максимальное напряжение и требуемый ток с достаточным запасом, как описано ниже.

Для синусоидального выходного сигнала от трансформатора необходимое напряжение будет в sqrt (2) = 1,4142-кратном номинальном выходном напряжении трансформатора, поскольку трансформаторы рассчитаны на среднеквадратичное напряжение , а не пиковое. Кроме того, трансформаторы обычно, но не всегда, имеют номинальное значение ниже, чем фактическое напряжение, которое они создают на вторичной обмотке без нагрузки: оно падает до номинального напряжения, когда трансформатор пропускает номинальный ток полной нагрузки. Следовательно, на всякий случай, мне подходит примерно 2,5-кратное номинальное напряжение трансформатора.

Для расчета тока также допустим 2,5-кратный ожидаемый ток нагрузки — так как потребуется мост, чтобы выдержать начальный скачок тока , когда любые накопительные конденсаторы, следующие за мостом, заряжаются после включения питания.

Теперь, когда у вас есть номиналы напряжения и тока, которые нужно искать, список доступных деталей может показать вам деталей с более высокими номинальными характеристиками, которые дешевле , чем те, которые просто соответствуют вашим требованиям, поэтому просто выбирайте детали с более высокими номиналами.

Например, в местных магазинах рядом с моим домом мост BR68 продается менее чем за половину от BR36, несмотря на гораздо более высокий рейтинг. Это связано с экономией на масштабе — здесь чаще используется деталь BR68.

Еще одно соображение — это физический размер / компоновка печатной платы: мосты с более высокими номиналами имеют тенденцию увеличиваться в размерах.Кроме того, иногда модули SIP с выводом выводов просто более удобны на печатной плате по сравнению с квадратными выводами, если вертикальное пространство не является проблемой.


Для дискретного выбора диода : Для применяются те же расчеты , что и для моста. Ключевым преимуществом использования дискретных частей является то, что отвод тепла немного менее утомителен, поскольку каждый диод имеет собственное окружающее пространство для отвода тепла.

Незначительным дополнительным преимуществом является возможность использовать креативные макеты печатных плат , когда это необходимо, вместо того, чтобы принуждать отказываться от конкретной смежной области на плате.

диодов — как выбрать один

Диоды — это полупроводниковые устройства, обычно используемые для многих целей. В общем, вы можете представить диод как клапан, который пропускает ток в одном направлении и останавливает его обратное течение. Первое, что приходит в голову — это может быть хорошим выбором для защиты от обратного напряжения.

На самом деле все немного иначе. Во-первых, диоды — не идеальные устройства. У них есть так называемое прямое падение напряжения , которое составляет около 0.7В для стандартных диодов. Если вставить диод в блок питания, скажем, 5 В, после защиты вы получите 4,3 В, где часть напряжения теряется в диоде. Если вы хотите пойти по этому пути, выберите вместо него диод Шоттки, который имеет меньшее прямое падение напряжения. Прямое падение напряжения происходит, когда диод смещен в прямом направлении , что означает протекание тока от анода к катоду.

Если диод подключен назад, это называется обратным смещением. В диодах с обратным смещением ток до пробоя составляет несколько незначительных мкА.В качестве примера рассмотрим диод общего назначения 1N4148 производства NXP. Его максимальное номинальное обратное напряжение составляет 100 В. Но если вы собираетесь использовать его в коммутационных устройствах, ищите максимальное повторяющееся пиковое обратное напряжение, которое также составляет 100 В для 1N4148. Если скорость переключения высока, проверьте, достаточно ли быстрый диод. 1N4148 максимальная скорость переключения составляет 4 нс. То же касается и тока. Вы должны следить за тем, чтобы не превышался максимальный непрерывный прямой ток (200 мА для 1N4148) и максимальный повторяющийся пиковый прямой ток (450 мА для 1N4148).По этим параметрам кремниевые диоды могут иметь определенное назначение. Вроде 1N4148 считается быстродействующим диодом общего назначения. Хорошо известный 1N4001 называется низковольтным выпрямителем, потому что его пиковое обратное напряжение составляет 60 В, но максимальный прямой ток может достигать 1 А. Он идеально подходит для создания выпрямителей низкого напряжения. С другой стороны, 1N5404 — это высоковольтный выпрямитель, который выдерживает пиковое обратное напряжение 400 В и может пропускать 3 А. Это может быть идеальным выбором для силовой электроники.

Если погрузиться в радиоэлектронику, германиевые диоды не обойдутся.Они изготовлены из германия и имеют немного другие характеристики, главной особенностью которых является меньшее прямое падение напряжения, составляющее около 0,2 В. Но его обратный ток растет намного быстрее, когда увеличивается обратное напряжение. Таким образом, он идеально подходит для обнаружения слабых сигналов, но не так хорош при высоком напряжении.

Германиевые диоды

— довольно редкий выбор и наиболее полезны в ВЧ, где необходимо исправлять слабые сигналы переменного тока. Германиевые диоды имеют очень низкую емкость PN-перехода, поэтому они отлично подходят для высокочастотных сигналов.Но обратная сторона этих диодов в том, что они не выдерживают больших токов. Обычно он составляет до 100 мА и меньше, потому что чем больше ток течет, тем более значительное падение напряжения и, следовательно, требуется рассеивание большей мощности. Это видно на картинке выше, где германий более плоский, чем силикон. Напряжение пробоя также намного меньше, чем у кремниевого диода. Обычно до 100В.

Закладка. Схема мостового выпрямителя

— Детали конструкции и советы »Электроника

Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.


Цепи диодного выпрямителя Включают:
Цепи диодного выпрямителя Полупериодный выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.

Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.

Типовой мостовой выпрямитель для монтажа на печатной плате

Цепи мостового выпрямителя

Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре. Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.

Двухполупериодный выпрямитель с использованием мостового выпрямителя

Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.

Электронные компоненты

с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.

Чтобы увидеть, как работает двухполупериодный выпрямитель с мостовым диодом, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны.

Двухполупериодный мостовой выпрямитель, показывающий протекание тока

В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.

Эти электронные компоненты принимают заряд во время высоковольтных частей сигнала, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.

Примечание по сглаживанию конденсатора источника питания:
Конденсаторы

используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.

Подробнее о Конденсаторное сглаживание.

Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.

Период, в течение которого конденсатор источника питания заряжается

При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.

Мостовые выпрямители

Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.

Схема мостового выпрямителя и маркировка

В качестве альтернативы мостовые выпрямители поставляются как отдельные электронные компоненты, содержащие четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и — очевидны.

Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.

Некоторые мостовые выпрямители заключены в корпуса большего размера и предназначены для установки на радиаторе. Поскольку эти выпрямители предназначены для пропускания значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.

Рекомендации по проектированию мостового выпрямителя

При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов:

  • Падение напряжения: Не следует забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 вольт от пикового напряжения на входе переменного тока.
  • Рассчитайте количество тепла, рассеиваемого в выпрямителе: Напряжение на диодах будет падать минимум на 1,2 В (при использовании стандартного кремниевого диода), которое будет расти по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.

    Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.

    Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.

  • Пиковое обратное напряжение: Очень важно убедиться, что максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышается, в противном случае диоды могут выйти из строя.

    Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с трансформатором с центральным ответвлением. Если пренебречь падением диода, мостовому выпрямителю требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования данной конфигурации.

    Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V sec , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение.

    Двухполупериодный мостовой выпрямитель с обратным пиковым напряжением

    Предположение, что диоды идеальны, и на них нет падения напряжения — хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.

Мостовые выпрямители — идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.

Мостовой выпрямитель с разделенным питанием

Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным ответвлением, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.

Двухполупериодный мостовой выпрямитель с двойным питанием

Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.

Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.

Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.

Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Диодные выпрямительные схемы

»Электроника

Цепи диодного выпрямителя

бывают разных форм, от простых диодов до полуволновых, двухполупериодных выпрямителей, использующих мостовые выпрямители, удвоители напряжения и многие другие.


Цепи диодного выпрямителя Включают:
Цепи диодного выпрямителя Полупериодный выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Диодные выпрямительные схемы — одна из ключевых схем, используемых в электронном оборудовании.Их можно использовать в импульсных источниках питания и линейных источниках питания, в демодуляции радиочастотных сигналов, измерении мощности радиочастот и во многом другом.

Существует несколько различных типов схем диодного выпрямителя, каждая из которых имеет свои преимущества и недостатки. Решение о том, какой тип диодной схемы использовать, зависит от конкретной ситуации.

Основы схемы диодного выпрямителя

Ключевым компонентом любой схемы выпрямителя, естественно, является используемый диод или диоды. Эти устройства уникальны тем, что пропускают ток только в одном направлении.Интересно, что Амброуз Флеминг, который изобрел первую форму диода, назвал свою версию клапаном из-за его одностороннего действия. Полупроводниковые диоды теперь выполняют ту же функцию, но занимают небольшую часть пространства и обычно составляют лишь небольшую часть стоимости.

Полупроводниковый диод имеет характеристики, похожие на показанные ниже. В прямом направлении требуется небольшое напряжение на диоде, прежде чем он станет проводящим — это называется напряжением включения. Фактическое напряжение зависит от типа диодного выпрямителя и используемого материала.Для стандартного выпрямителя с кремниевым диодом это напряжение включения составляет около 0,6 В. Германиевые диоды имеют напряжение включения около 0,2 — 0,3 В, а кремниевые диоды Шоттки имеют аналогичное напряжение включения в диапазоне 0,2 — 0,3 В

PN диод VI характеристика

В обратном направлении диодный выпрямитель окончательно выйдет из строя. Напряжение пробоя обычно значительно превышает напряжение включения — шкалы на диаграмме были изменены (сжаты) в обратном направлении, чтобы показать, что происходит обратный пробой.

Примечание о типах диодов:

Хотя основная функция диода остается прежней, существует много различных типов с немного разными характеристиками. Некоторые из них оптимизированы для выпрямления мощности, другие — для выпрямления сигналов, третьи используют диодный переход для излучения света или имеют переменную емкость и т. Д.

Подробнее о типах полупроводниковых диодов .

Для выпрямления мощности обычно используются силовые диоды или диоды Шоттки.Для выпрямления сигналов можно использовать мелкоконтактные диоды, сигнальные диоды или диоды Шоттки. Преимущество диода Шоттки в том, что для прямой проводимости требуется только прямое напряжение около 0,2 — 0,3 вольт. Это особенно полезно при обнаружении слабых радиосигналов, а при использовании в качестве выпрямителя мощности потери мощности снижаются. Однако характеристики обратной утечки не так хороши, как у обычных кремниевых диодов.

Диод символ и упаковка

Обозначение диодной цепи широко известно.Диоды также поставляются в различных упаковках, хотя некоторые из наиболее распространенных форматов показаны на диаграмме ниже.

Обозначение диодной цепи

Действие диодного выпрямителя

Действие диода — пропускать ток только в одном направлении. Поэтому на диод подается переменная форма волны, тогда это позволит проводить только половину формы волны. Оставшаяся половина заблокирована.

Выпрямительное действие диода

Схема диодного выпрямителя

Существует несколько различных конфигураций схемы диодного выпрямителя.Каждая из этих различных конфигураций имеет свои преимущества и недостатки и поэтому применима к различным приложениям.

  • Схема однополупериодного выпрямителя: Это самая простая форма выпрямителя. Часто использование только одного диода блокирует половину цикла и пропускает другой. Таким образом, используется только половина формы волны.

    Хотя преимуществом этой схемы является ее простота, недостатком является то, что между последовательными пиками выпрямленного сигнала больше времени.Это делает сглаживание менее эффективным и затрудняет подавление пульсаций высокого уровня.

    Эта схема не используется для каких-либо источников питания — она ​​чаще используется для обнаружения сигналов и уровней.


  • Двухполупериодная схема выпрямителя: Эта форма выпрямительной схемы использует обе половины формы волны. Это делает эту форму выпрямителя более эффективной, а поскольку в обеих половинах цикла присутствует проводимость, сглаживание становится намного проще и эффективнее.Есть два типа выпрямителей с полным выпрямителем.

    • Двухдиодный двухдиодный двухполупериодный выпрямитель с ленточным трансформатором: Двухдиодная версия схемы двухполупериодного выпрямителя требует центрального отвода в трансформаторе. Когда использовались вакуумные трубки / термоэмиссионные клапаны, этот вариант широко использовался ввиду стоимости клапанов. Однако в случае с полупроводниками четырехдиодная мостовая схема позволяет сэкономить на стоимости трансформатора с центральным ответвлением и является столь же эффективной.


    • Мостовая схема полного выпрямителя: Это особая форма двухполупериодного выпрямителя, в котором используются четыре диода в мостовой топологии. Мостовые выпрямители широко используются, особенно для выпрямления мощности, и их можно получить в виде единого компонента, содержащего четыре диода, соединенных в виде моста.

      В этом формате используются четыре диода, по два проводящих в каждой половине цикла. Это означает, что есть два падения напряжения на диодах, которые могут рассеивать некоторую мощность, но это экономит потребность в трансформаторе с центральным ответвлением, что дает значительную экономию затрат.Кроме того, диоды не обязательно должны иметь такое высокое номинальное обратное напряжение, как те, которые используются в конфигурации с двумя диодами.

      Ввиду того, что есть два падения напряжения на диодах, эта схема редко используется для приложений обнаружения сигналов. Однако он очень подходит для использования в линейных источниках питания, а также во многих случаях в импульсных источниках питания.


  • Схема синхронного выпрямителя: Синхронные или активные выпрямители используют активные элементы вместо диодов для обеспечения переключения.Это позволяет избежать потерь в диодах и значительно повысить эффективность.

    Ввиду более высокого уровня эффективности, которую могут обеспечить синхронные выпрямители, они очень широко используются в высокоэффективных импульсных источниках питания. Их сложность более чем перевешивается гораздо более высоким достижимым уровнем эффективности.


Принимая во внимание разнообразие различных типов выпрямительных схем, существует хороший выбор того, какой тип использовать.Во многих случаях это продиктовано требуемым уровнем производительности, и в большинстве случаев требуется двухполупериодный выпрямитель. Благодаря доступности и низкой стоимости мостовых выпрямителей, это, как правило, самый дешевый вариант, а не экономия на диодах и необходимость в центральном ленточном трансформаторе.

В связи с современными источниками питания, требующими все более высокого уровня эффективности, многие разработчики обращаются к использованию синхронных выпрямителей. Хотя они более сложные и, следовательно, стоят дороже, эти затраты часто окупаются отдачей, которую они дают при повышении уровня эффективности.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Как выбрать правильный диод

Диоды — это электронные односторонние клапаны, позволяющие току течь в одном направлении, но не в обратном.Если вы разрабатываете схему, в которой они используются, вам нужно знать, что у них есть ограничения. Они могут выдерживать номинальный максимальный ток, и если вы превысите этот предел, вы повредите деталь. У них также есть предел обратного напряжения, после которого они начнут проводить, что может привести к разрушительным результатам. Диоды бывают в нескольких различных типах физических корпусов, с выводами или в корпусе для поверхностного монтажа (SMD).

Оцените схему в точке, где будет расположен диод. Определите максимальный ток, который будет протекать через эту точку, и запишите цифру.Определите максимальное напряжение, которое диод должен выдерживать. Напряжения — это разность потенциалов между двумя точками, поэтому, если на одной стороне диода 25 вольт, а на другой 5 вольт, 25-5 = 20 вольт. Запишите значение напряжения.

Умножьте значение напряжения на 1,25 и запишите его. Сделайте то же самое для текущего значения. Это будут ваши минимальные рейтинги. Умножьте значение напряжения на 2,5 и запишите его, и сделайте то же самое для тока. Это будут ваши максимальные оценки. Используемый вами диод может превышать максимально допустимые значения, если вы не можете найти диод меньшего размера.Например, если ваше максимальное напряжение в цепи составляет 15, а наименьшее значение диода, которое вы можете найти в каталоге, составляет 100 вольт, вполне безопасно использовать 100. Не используйте детали, рассчитанные на меньшее, чем ваше минимальное значение.

Определите, как вы будете строить схему. Если диод рассчитан на ток, намного превышающий 5 ампер, возможно, потребуется установить его в металлический радиатор. Если вы используете компоненты для поверхностного монтажа, вы будете искать диодный корпус такого же типа.

Откройте каталог и выполните поиск в разделе диодов, начиная с наименьшего номинального напряжения, соответствующего вашему, затем найдите соответствующие номинальные значения тока.В каталоге будут указаны номинальные значения напряжения диодов как пиковое обратное напряжение (PIV) или пиковое обратное напряжение (PRV). В нем перечислены текущие рейтинги как средний прямой ток, рекуррентный прямой ток и прямой постоянный ток. Если диод выпрямляет переменный ток с периодом 60 циклов, используйте средний прямой ток. Если диод будет обрабатывать повторяющиеся импульсы тока, используйте Recurrent Forward Current. В противном случае используйте прямой ток постоянного тока, чтобы найти правильный диод. Убедитесь, что вы выбрали физический корпус, который соответствует вашей общей конструкции с точки зрения выводов или поверхностного монтажа.

Вещи, которые вам понадобятся:

  • Карандаш и бумага
  • Калькулятор
  • Принципиальная схема
  • Каталог полупроводников

Наконечник

Если вы выберете диод с номиналом, намного превышающим расчетный максимум, он будет работать в вашей цепи но он может быть дорогим и физически большим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *