Коэффициент мощности косинус фи: Коэффициент мощности — косинус фи — Help for engineer

Содержание

Описание параметра «Компенсация (cos ϕ)»

Коэффициент мощности (cos φ) — физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно — степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (ВА) вместо ватта (Вт).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений. Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, т. е. его повышения до значения, близкого к единице.

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
cos φ 0,95…1 0,8…0,95 0,65…0,8
0,5…0,65
0…0,5

Коэффициент мощности или косинус фи индукционного электрокотла

Эффективность индукционных электрических котлов в системах теплоснабжения непосредственно связана с понятием «косинуса фи». Для специалистов-энергетиков вопрос «что такое «косинус фи», конечно, вопросом не является, однако для всех остальных этот термин может показаться непонятным. В этой статье мы разберемся с этим понятием и поймем, почему «косинус фи» индуктивно-кондуктивных нагревателей «Терманик», равный 0,985, – это так важно с точки зрения оценки эффективности индукционных нагревателей. Причем, как обычно, не будем сыпать сложными определениями и формулами, ведь мы хотим разобраться и понять, а не написать курсовую работу!

cosφ — именно так обозначается это понятие – это отношение активной мощности к полной. cosφ не измеряется ни в Ваттах, ни в Герцах – ни в чем, потому как это коэффициент и является относительной величиной. Он может варьироваться от 0 до 1. И чем ближе к 1, тем лучше. Также этот коэффициент называется «коэффициентом мощности».

Откуда же он берется? Введем некоторые понятия. Любой прибор, имеющий в своем составе электрические элементы, создает электромагнитное поле, а для трансформатора или индукционного нагревателя, электромагнитное поле – это то, ради чего и создается прибор, так как если он не будет генерировать магнитное поле, он не будет работать, то есть станет бесполезной железякой. Возьмем, к примеру, индукционный электронагреватель «Терманик 100» с заявленной заводом-изготовителем мощностью 100 кВт. С точки зрения владельца «Терманика» — это нагреватель, который потребляет электроэнергию и производит тепло. А с точки зрения поставщика электроэнергии, «Терманик» — это нагрузка, то есть потребитель мощностью… 102 кВА. Что за разница в показаниях? И почему одна мощность измеряется в кВт, а другая – в кВА?

Дело в том, что в сети переменного тока различают активную, реактивную и полную мощность. Собственно говоря, полная мощность и состоит из двух составляющих – активной и реактивной мощности. Активная мощность – это та самая мощность, потребляя которую, электронагреватель  и вырабатывает тепловую энергию, она-то и измеряется в кВт (и для нагревателя «Терманик 100» составляет 100 кВт). Но какая-то часть мощности тратится не на нагрев, а на поддержание работы самого нагревателя. В случае с индукционным нагревателем – на создание и поддержание магнитного поля, без которого он бы не работал вообще. Эта мощность и является «реактивной мощностью». Несмотря на свое название, к работе реактивного двигателя она не имеет никакого отношения. В данном случае, «реактивный» — значит направленный в противоположном от движения электротока направлении. Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА.

Коэффициент мощности, он же cosφ — это отношение активной мощности к полной. Физически он показывает, какая часть полной мощности идет на совершение полезной работы (в нашем случае – на преобразование в тепло), а какая – на поддержание работоспособности самого устройства. Если наш нагреватель обладает коэффициентом мощности 0,985, значит 98,5% мощности идет на нагрев и только 1,5% преобразуется в реактивную мощность.

Так и получается, что 102 кВА х 0,985 = 100 кВт

Реактивная мощность сама по себе не совершает полезную работу, хотя, как ни парадоксально, является необходимой составляющей для ее осуществления. Реактивная мощность возвращается обратно в электросеть.

Реактивная мощность и энергия снижают показатели эффективности энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива, растут  потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях. Строго говоря, большая реактивная мощность – это скорее головная боль поставщика электроэнергии. Однако и для потребителя это важно, поскольку, чем меньше реактивной мощности выдает его оборудование, тем меньше нагрузка на понижающие силовые трансформаторы, меньше нагрузка на провода и возможность использования кабелей меньшего сечения, избежание штрафов за низкий cos

φ (есть и такие!), ну и, в целом, снижение потребления электроэнергии.

Значение коэффициента мощности выше 0,9 говорит о высокой эффективность индукционных нагревателей. Ни для кого не секрет, что индукционный нагреватель небольшой мощности можно собрать и «в гараже», возможно, его даже можно будет эксплуатировать, однако если говорить о промышленном предприятии, где совокупное значение вырабатываемой всеми приборами и устройствами реактивной мощности, чрезвычайно важно, там могут применяться только высокопроизводительные машины с максимальным коэффициентом мощности.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.

Подразумеваем,что переменное напряжение в сети синусоидальное — обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.

Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой.

  • угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным
  • величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной
  • если sin φ>0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки…) — ток отстает от напряжения
  • если sin φ<0, нагрузка имеет активно-ёмкостный характер — (конденсаторы…) — ток опережает напряжение
  • Все соотношения между P, S и Q определяются теоремой Пифагора и элементарными тригонометрическими тождествами для прямоугольного треугольника

Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W) и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:

  • P=U*I*cosφ
    , где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:

  • P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.

Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)

    • Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
    • Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
    • Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.

попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам

различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.

Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности («косинус фи», power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:

  • λ=P/S*100% — то есть, если в %, то это лямбда, P в (Вт), S в (ВА)
  • cosφ=P/S — более распространенная величина , P в (Вт), S в (ВА)

 

Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя.

cosφ = P / (√3*U*I)

где

cosφ = косинус фи

√3 = квадратный корень из трех

P = активная мощность (Вт)

U = Напряжение (В)

I = Ток (А)

Коэффициент мощности, что это такое?

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

Реактивная мощность может быть как положительной так и отрицательной.

Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.

Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

Что такое косинус фи в электрике

Как найти электрическую мощность

Основная единица электрической мощности — Ватт. Электрическую мощность можно найти по следующей формуле:

Формула мощности

Давайте рассмотрим формулу, которую я привёл выше.

I (ток)- количество электричества, протекающее за определённый момент времени;

U(напряжение) — проделанная работа электрического поля по переносу заряду из точки А в точку В.

А теперь простыми словами: Два человека (это будет у нас ток) несут вместе один камень из точки А в точку В весом в 50 кг и тратят на это энергию (это напряжение), и один человек несёт камень массой 10 кг и тоже тратит энергию. Весовая категория у людей одинаковая. Если эти данные мы перенесём в нашу формулу, то выясним, что у двух людей мощность больше, чем у одного.

Приведу ещё формулы, по которым можно рассчитать электрическую мощность:

Формула мощности

Где: I-
ток, U- напряжение, R-
сопротивление

Как видите ничего сложного нет, потому что мы рассматриваем постоянный ток.

Косинус угла в электротехнике

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением

Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

cos fi

где:

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Формула коэффициента мощности через активную и реактивную мощности

В иностранной литературе cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

«Звезда»

При соединении обмоток звездой к началам обмоток присоединяют питающие провода (на схемах обозначены цветами), а концы обмоток соединяют между собой в одну точку, при этом подключение нулевого проводника в точку соединения концов обмоток необязательно так как это симметричная нагрузка. В свою очередь, точка соединения концов обмоток также называется нейтралью.

Есть два варианта представления этого соединения на электрических схемах, как в наглядном виде, действительно напоминающем трёхлучевую звезду (А), так и в более классическом для схем представлении (Б). Вас не должно смущать это отличие, когда вы читаете схему.

Активная, реактивная и полная мощности

Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Реактивная мощность в математических выражениях обозначается прописной буквой Q. Фактическое количество используемой или рассеиваемой в цепи мощности называется активной мощностью и измеряется в ваттах (обозначается, как обычно, прописной буквой P). Комбинация реактивной и активной мощностей называется полной мощностью и является произведением напряжения и тока цепи без учёта угла сдвига фаз. Полная мощность измеряется в вольт-амперах (ВА) и обозначается прописной буквой S.

Как правило, величина активной мощности определяется сопротивлением рассеивающих ее элементов цепи, обычно резисторов (R). Реактивная мощность определяется величиной реактивного сопротивления (X). Полная мощность определяется полным сопротивлением цепи (Z). Поскольку при определении мощности мы имеем дело со скалярными величинами, любые исходные комплексные величины (напряжение, ток и полное сопротивление) должны быть представлены в показательной форме, а не в виде действительных или мнимых составляющих. К примеру, при определении активной мощности по величинам тока и сопротивления необходимо использовать величину тока в полярной системе координат, а не действительную или мнимую часть. При определении полной мощности по напряжению и полному сопротивлению обе эти комплексные величины должны быть представлены в полярной системе координат для применения скалярной арифметики.

Имеется несколько выражений, связывающих три типа мощности со значениями активного, реактивного и полного сопротивления (во всех случаях используются скалярные величины).

P – активная мощность P = I2R P = E2/R

Единицей измерения является ватт

Q – реактивная мощность Q = I2X Q = E2/X

Единицей измерения является вольт-ампер реактивный (вар)

S – полная мощность S = I2Z S = E2/Z S = IE

Единицей измерения является вольт-ампер (ВА)

Обратите внимание, что для определения активной и реактивной мощности имеются два выражения. Для определения полной мощности есть три выражения, P = IE используется только для этой цели

Изучите схемы, приведённые ниже, и посмотрите, как определяются эти три типа мощности при резистивной нагрузке, при реактивной нагрузке и при резистивно-реактивной нагрузке (см. рисунки ниже).

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Сдвиг фаз между напряжением и током

Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.

В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.

При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.

В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.

Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.

Угол фазового сдвига

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике. По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;bс = ос × tg φ .

Из диаграммы получаем:

ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .

Так как

abIC

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 иIл<I.

Векторная диаграмма

Связь между полной и реактивной энергии выражается:

Отсюда:

сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.

Соединение в треугольник электроприемников и конденсаторных батарей.

Соединение в треугольник обмоток электродвигателей показано на рисунках 4, а – в. При этом на рисунке 4, а обмотки и соединены и расположены треугольником; на рисунке 4, б обмотки соединены треугольником, но расположены произвольно; на рисунке 4, в обмотки расположены звездой, но соединены в треугольник. На рисунке 4, г обмотки расположены треугольником, но соединены в звезду.

Рисунок 4. Соединение в треугольник электроприемников.

Все эти рисунки подчеркивают, что дело отнюдь не в том, как расположены изображения электроприемников на чертежах (хотя их часто удобно располагать в соответствии с видом соединения), а в том, что с чем соединено: концы (начала) всех обмоток между собой или конец одной обмотки с началом другой. В первом случае получается соединение в звезду, во втором – в треугольник.

Соединение в треугольник конденсаторных батарей показано на рисунке 4, д.

На рисунке 4, е показано соединение в треугольник ламп. Хотя лампы территориально разбросаны по разным квартирам, но они объединены сначала в группы в пределах каждой квартиры, затем в группы по стоякам 2 и, наконец, эти группы соединены в треугольник на вводном щите 1. Заметьте: до вводного щита нагрузка трехфазная, после вводного щита (в стояках и квартирах) однофазная, хотя она и включена между двумя фазами.

На каком основании нагрузка, питающаяся от двух фаз названа однофазной? На том основании, что изменения тока в обоих проводах, к которым присоединена нагрузка, происходят одинаково, то есть в каждый момент ток проходит через одни и те же фазы.

Видео 1. Соединение треугольником

1 Отсутствие тока в замкнутом контуре еще не означает, что в фазных обмотках нет тока. Токи в фазных обмотках соответствуют их нагрузкам.

Выводы обмоток

Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта.

У каждого конца свое буквенное и числовое обозначение. На рисунке 4 приведена схема включения в трехфазную четырехпроводную сеть осветительной и силовой нагрузок.

К тому же агрегат сильно нагревается в процессе работы. Поэтому электродвигатели асинхронного типа со средней и большой мощностью чаще всего подключают по схеме звезда.

Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. При помощи тестера провода прозванивают, чтобы найти катушки. По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму рис.

Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением В подключение звезда , так и в однофазной сети В подключение треугольником через конденсатор. Форму треугольника предает эргономичное размещение соединения обмоток. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании — будет отключаться питание электродвигателя.

К тому же агрегат сильно нагревается в процессе работы. Фазные обмотки генератора образуют замкнутый контур с малым внутренним сопротивлением.

При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. Каминский, г. Сдвиг на такой угол предназначен для создания вращения магнитного поля. Это может произойти из-за неисправного пускателя, или при перекосе фаз когда напряжение в одной из фаз сильно меньше, чем в двух других.
Подключение трехфазного двигателя по схеме звезды и треугольника

https://youtube.com/watch?v=PjZextDphQU

Оцените статью:

КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ И ТРЕУГОЛЬНИК МОЩНОСТЕЙ, ТЕОРИЯ И ПРАКТИКА

Особенности индуктивных нагрузок

Большинство нагрузок в современных системах электроснабжения имеют индуктивный характер. К ним, например, относятся электродвигатели, трансформаторы, балласты люминесцентных ламп, индукционные печи. Для нормальной работы подобных нагрузок в них требуется создать магнитное поле.

Индуктивные нагрузки требуют наличия двух составляющих тока:

  • Активной составляющей, за счет которой происходит нагрев, получение света, механическое движение, полезная работа и т.п.;
  • Реактивной составляющей, необходимой для получения и поддержания магнитного поля.

Активная составляющая тока отвечает за потребление активной мощности, которая может быть измерена с помощью ваттметра. Она измеряется в ваттах (Вт) и киловаттах (кВт). Реактивная мощность не совершает никакой полезной работы, но циркулирует между генератором и нагрузкой. При этом она увеличивает нагрузку на источники питания и распредсистему. Реактивная мощность измеряется в вольт-амперах-реактивных (вар).

Вместе активная и реактивная мощность образуют полную или кажущуюся мощность. Она измеряется в киловольт-амперах (кВА).

Рис. 1. Активная мощность

Рис. 2.Реактивная мощность

Понятие коэффициента мощности (косинуса фи)

Под коэффициентом мощности понимают отношение активной мощности к полной. Этот коэффициент характеризует, насколько эффективно используется электроэнергия. Высокие значения коэффициента мощности соответствуют эффективному использованию электроэнергии, а низкие – напротив, неэффективному.

Для определение коэффициента мощности (PF) следует разделить активную мощность (в кВт) на полную (кВА). Для линейных систем с синусоидальными токами коэффициент мощности численно равен cos ?:

PF = кВт/кВА = cos ?

Например, для токарно-карусельного станка, работающего с полезной мощностью 100 кВт и полной мощностью 125 кВА, коэффициент мощности составит 100/125 = 0,8.

Рис. 3. Полная мощность

Рис. 4. Треугольник мощностей

Примечание: показанный на рис.4 треугольник мощностей используется для иллюстрации соотношений между активной, реактивной и полной мощностями.

Должен ли нас волновать низкий коэффициент мощности PF (косинус фи — cos ?)?

Низкий cos ? означает, что вы не полностью используете оплачиваемую вами электроэнергию.

Из показанных на рис.5 соотношений можно видеть, что полная мощность уменьшается с ростом коэффициента мощности. При коэффициенте мощности, равном 70%, для получения 100 кВт требуется 142 кВА. При коэффициенте мощности, равном 95%, для получения 100 кВт требуется только 105 кВА. Если посмотреть на все это с точки зрения величины тока, получается, что при коэффициенте мощности 70% требуется на 35% больший ток для совершения той же самой полезной работы.

Рис. 5. Типичные треугольники мощностей

Что можно сделать для повышения косинуса фи (коэффициента мощности)?

Коэффициент мощности можно повысить путем установки компенсирующих конденсаторов в распредсистеме предприятия

Если полная мощность (кВА) больше, чем полезная мощность (кВт), через энергосистему протекает сумма активного и реактивного токов. Силовые конденсаторы являются своего рода генератором реактивной мощности (см. рис. 6). Выдавая реактивный ток, они снижают общий ток, протекающий от энергосистемы к нагрузкам.

Наиболее выгодным является коэффициент мощности 95%

Теоретически конденсаторы могут выдать 100% требуемой реактивной мощности. Однако наиболее выгодным является поддержание коэффициента мощности на уровне 95%.

На рис.7 показано потребление полной мощности в системе до и после установки конденсаторов. Установка конденсаторов и увеличение коэффициента мощности до 95% обеспечивает снижение полной мощности со 142 кВА до 105 кВА, т.е. снижение составляет 35%.

Рис.6. Конденсаторы как генераторы реактивной мощности

Рис.7. Требуемая полная мощность до и после компенсации

Компенсация реактивной мощности: руководство для главного энергетика

Какова будет экономия при установке компенсирующих конденсаторов

Силовые конденсаторы дают множество преимуществ:

  • снижение расходов на электроэнергию;
  • снижение требований к мощности системы;
  • улучшение стабильности напряжения;
  • снижение потерь.

Снижение расходов на оплату электроэнергии

Ваша энергоснабжающая организация поставляет как активную (кВт), так и реактивную мощность (квар). Хотя реактивная мощность и не регистрируется счетчиками электроэнергии (считающими киловатт- часы), распределительная сеть должна быть достаточно мощной, чтобы обеспечить необходимую полную мощность. Поэтому у энергоснабжающих компаний есть масса способов заставить потребителей компенсировать их расходы на более мощные генераторы, трансформаторы, кабели, выключатели и т.п.

Как показано в случае ниже, конденсаторы могут сэкономить ваши деньги вне зависимости от того, как именно происходит начисление платы за электроэнергию.

Начисление за полную мощность (кВА)

Энергоснабжающая организация измеряет и тарифицирует каждый ампер потребляемого тока, включая реактивную составляющую.

Начисление за кВт с учетом коэффициента мощности

Энергоснабжающая организация начисляет плату в соответствии с потребляемой активной энергией и добавляет пени при низком коэффициенте мощности. Также может использоваться поправочный коэффициент, на который умножается величина активной энергии. Следующая формула иллюстрирует начисление, при котором «отправной точкой» является коэффициент мощности, равный 90%:

Потребление в кВт х 0,90

фактический коэффициент мощности

Если коэффициент мощности равен 0,84, поставщик электроэнергии увеличит плату на % в соответствии с формулой:

кВт х 0,90 / 0,84 = 107 (множитель)

Некоторые энергоснабжающие организации требуют дополнительную плату за низкий коэффициент мощности, но предоставляют вычеты или бонусы за потребление свыше определенного уровня.

Начисление за реактивную мощность

Энергоснабжающая организация напрямую взимает плату за реактивную мощность, которая обычно составляет определенную долю от активной мощности (кВт). Например, если эта плата составляет 1 рубль за каждый квар для всего, что находится сверх 50% активной мощности. Иными словами, если имеется нагрузка 400 кВт, энергоснабжающая организация предоставит 200 квар бесплатно.

Увеличение пропускной способности системы при компенсации реактивной мощности

Применение конденсаторов для компенсации реактивной мощности увеличивает пропускную способность системы по току. Повышение коэффициента мощности снижает количество квар на кВт полезной нагрузки. Таким образом, используя конденсаторы можно увеличить полезную нагрузку при сохранении величины полной мощности (кВА).

Рис.8. Увеличение пропускной способности трансформатора при компенсации

Компенсация реактивной мощности позволяет увеличить нагрузочную способность трансформатора

Предприятие имеет трансформатор мощностью 500 кВА, работающий почти на номинальной мощности. Он потребляет 480 кВА или 578 А при 400 В. Существующий коэффициент мощности – 75%, соответственно доступная активная мощность составляет 360 кВт.

Желательно увеличить производительность на 25%, т.е. необходимо получить 450 кВт. Как этого добиться? Самый простой выход – установить новый трансформатор. Для получения 450 кВт потребуется трансформатор мощностью 600 кВА при работе с коэффициентом мощности 75%. При этом, скорее всего, понадобится следующий стандартный типоразмер трансформатора (750 кВА).

Возможно, лучшим решением будет повысить коэффициент мощности, чтобы трансформатор смог работать с дополнительной нагрузкой. Для повышения коэффициента мощности с 75 до 95% при нагрузке в 450 кВт потребуется конденсатор с мощностью 450 х 0,553 = 248,8 квар.

Аналогичный принцип используется при необходимости снизить ток, протекающий через перегруженное оборудование. Повышение коэффициента мощности с 75 до 95% при той же активной мощности приводит к снижению тока на 21%. Если посмотреть по другому, при работе с коэффициентом мощности 75% ток возрастает на 26,7%, а при 65% — на 46,2%.

Отрасли промышленности с низким коэффициентом мощности, в которых выгодно использовать конденсаторы

Низкий косинус фи является следствием того, что множество двигателей работают с нагрузкой ниже номинальной. Такое часто происходит в циклических технологических процессах, например, при использовании циркулярных пил, шаровых мельниц, конвейеров, компрессоров, шлифовальных станков, прессов и т.п. Для подобных механизмов двигатели обычно выбираются, исходя из максимально возможной нагрузки. Примерами механизмов, работающих с низким коэффициентом мощности (от 30 до 50%), можно считать токарный станок, работающий в режиме неглубокого реза, ненагруженный компрессор, циркулярную пилу в отсутствии заготовки.

С низким коэффициентом мощности обычно работают предприятия в следующих отраслях:

Отрасли с низким коэффициентом мощности

Отрасль Нескомпенсированный коэффициент мощности
Лесопильни 45-65%
Производство пластмасс (особенно экструдеры) 55-70%
Металлообрабатывающие станки, прессы 60-70%
Гальванопокрытия, текстиль, химическая промышленность, пивоварни 65-75%
Больницы, склады, литейное производство 70-80%

Включайте конденсаторы КРМ в новые проекты и проекты расширения производства

Включение конденсаторов в новые проекты и проекты модернизации производства позволяет уменьшить типоразмеры трансформаторов, шин, выключателей и т.п., что ведет к прямой экономии.

На рис. 9 показано, как высвобождается полная мощность системы (кВА) при увеличении коэффициента мощности. Увеличение коэффициента мощности с 70 до 90% высвобождает 0,32 кВА на кВт. При нагрузке 400 кВт высвобождается 128 кВт.

Повышение стабильности напряжения

Пониженное из-за больших потребляемых токов напряжение приводит к затрудненному пуску двигателей и их перегреву. По мере снижения коэффициента мощности растет общий ток в линии, что приводит к увеличению падения напряжения. Установка конденсаторов и конденсаторных установок для компенсации реактивной мощности и снижение просадок позволяют добиться более эффективной работы двигателей и продлить их срок службы.

Снижение потерь

Потери из-за низкого коэффициента мощности связаны с реактивным током, протекающим в системе. Эти потери связаны с выделением тепла и могут быть устранены за счет коррекции коэффициента мощности. Мощность потерь (в ваттах) в распредсистеме рассчитывается как произведение квадрата тока на активное сопротивление контура (I2R). Рассчитать снижение потерь можно по формуле:

Снижение потерь (%) = 100 – 100 х (начальный коэф. мощности/конечный коэф. мощности)2

Рис.9. Высвобождение полной мощности при коррекции коэффициента мощности

Как правильно выбрать конденсаторы для конкретного случая?

Если сделан вывод о целесообразности компенсации реактивной мощности на том или ином объекте, понадобится выбрать оптимальный типоразмер и количество конденсаторов.

Существует два основных способа установки конденсаторов: «индивидуальный» (когда отдельные конденсаторы устанавливаются непосредственно у нагрузок, обычно линейных) и «групповой» (когда батарея с фиксированной или регулируемой емкостью устанавливается на присоединении или на подстанции).

Сравнение индивидуальной и групповой компенсации

Преимущества установки индивидуальных конденсаторов рядом с нагрузками:

  • Предсказуемость; конденсаторы не могут создать проблемы в сети при работе без нагрузки;
  • Не требуются отдельные выключатели; двигатель всегда включается вместе с относящимся к нему конденсатором;
  • Оптимизация режимов работы двигателей за счет более эффективного использования электроэнергии и снижения просадок напряжения;
  • Двигатели можно переставлять вместе с относящимися к ним конденсаторами;
  • Проще выбрать конденсатор для конкретной нагрузки;
  • Снижение потерь в линии;
  • Повышение пропускной способности системы.

Преимущества установки конденсаторных батарей на присоединении или на подстанции:

  • Ниже цена за квар;
  • Повышение коэффициента мощности всего предприятия, что снижает или исключает любые санкции за низкий коэффициент мощности;
  • Автоматическое переключение конденсаторов обеспечивает получение строго необходимой реактивной мощности, что исключает перекомпенсацию и связанные с ней перенапряжения.

Преимущества и недостатки индивидуальной и групповой (с нерегулируемыми и автоматически регулируемыми батареями) компенсации

Метод Преимущества Недостатки
Индивидуальные конденсаторы Наиболее эффективный метод, наибольшая гибкость Большая стоимость установки и обслуживания
Нерегулируемая батарея Наиболее экономичное решение, требуется меньше точек установки Менее гибкое решение, требуются выключатели и/или контакторы
Автоматически регулируемая батарея Наилучшее решение при меняющихся нагрузках, исключаются перенапряжения, низкая стоимость установки Выше стоимость оборудования
Комбинированный Наиболее подходящее решение при большом количестве двигателей Менее гибкое решение

Изучение особенностей объекта

Для выбора оптимального решения необходимо взвесить достоинства и недостатки каждого из возможных способов компенсации. При этом следует учитывать «переменные объекта», такие как тип нагрузок, их мощность, постоянство нагрузки, нагрузочная способность сети, способы пуска двигателей и способ начисления платы за электроэнергию.

Тип нагрузок

Если на предприятии установлено много крупных двигателей с мощностью 35 кВт и более, обычно целесообразно устанавливать на каждый двигатель свой конденсатор и включать его одновременно с относящимся к нему конденсатором. Если на предприятии используется много мелких двигателей, от 0,5 до 18 кВт, можно сгруппировать эти двигатели и установить один конденсатор в центральной точке системы. Часто наилучшим решением для предприятий с множеством двигателей разных мощностей оказывается комбинирование обоих типов компенсации.

Мощность нагрузки

Для предприятий с мощными нагрузками может оказаться выгодным комбинирование индивидуальной и групповой компенсации с нерегулируемыми или автоматическими конденсаторными батареями. С другой стороны, для небольшого объекта может оказаться достаточно одного единственного конденсатора в распределительном щите.

Иногда на предприятии обнаруживается изолированный «проблемный участок», в котором требуется коррекция. Такая ситуация может возникнуть, если на предприятии используются сварочные аппараты, индукционные нагреватели или приводы постоянного тока. В этом случае, если скомпенсировать реактивную мощность на конкретном фидере, питающем нагрузку с низким коэффициентом мощности, это повысит коэффициент мощности всего предприятия, и дополнительные конденсаторы будут не нужны.

Постоянство нагрузки

Если предприятие работает круглосуточно и потребляет постоянную мощность, использование нерегулируемых конденсаторов наиболее экономично. Если нагрузка «привязана» к восьмичасовому рабочему дню и потребляется пять дней в неделю, удобно использовать конденсаторные батареи, отключаемые в периоды с меньшей нагрузкой.

Нагрузочная способность

Если фидеры или трансформаторы перегружены, или требуется увеличить нагрузку и без того нагруженных линий, компенсацию реактивной мощности необходимо производить непосредственно на нагрузке. Если распредсистема имеет запас по току, конденсаторы можно устанавливать на главных фидерах. Если нагрузка сильно меняется, разумно использовать регулируемую батарею с автоматическим переключением ступеней.

Способ начисления платы за электроэнергию

Размеры тарифов и штрафы за низкий коэффициент мощности могут существенно влиять на экономический эффект от компенсации и срок окупаемости. Во многих отраслях оптимально подобранное оборудование для коррекции коэффициента мощности окупается менее чем за два года.

Сколько квар необходимо?

Единицей измерения мощности конденсаторов для компенсации реактивной мощности является квар, равный 1000 вар (вольт-ампер-реактивный). Количество квар характеризует, какую реактивную мощность выдаст конденсатор.

Выбор типоразмера конденсаторов для индивидуальной компенсации

Для выбора конденсаторов для индивидуальной компенсации моторных нагрузок следует обратиться к таблице 3. При этом необходимо использовать данные с заводской таблички двигателя — номинальную скорость и мощность. В таблице приведены мощности конденсаторов (квар), необходимые для доведения коэффициента мощности до 95%. В таблицах также приведено, насколько снизится ток после установки конденсаторов.

Выбор типоразмера конденсаторов для компенсации всего предприятия

Если известно, какую активную мощность (кВт) потребляет предприятие, его существующий коэффициент мощности и желаемый коэффициент мощности.

определение, способы увеличения «косинуса фи»

Показатель коэффициента мощности двигателя, который обозначается как «косинус фи», обычно стараются сделать как можно больше. Чем меньше будет значение, тем большую силу должен иметь ток, чтобы выделить в цепи нужную мощность. Если при расчетах в чем-то ошибиться, то неизбежно увеличится потребление электроэнергии, а коэффициент полезного действия при этом, наоборот, уменьшится.

Важный показатель

Косинус фи — показатель приборов, работающих от электротока. Это параметр, который характеризует искажения формы переменного тока. Если говорить математическим языком, этот показатель можно охарактеризовать как отношение активной мощности к полной. Чем выше это значение, тем эффективнее устройство расходует электроэнергию.

Для объяснения физического значения коэффициента в пример можно взять расчет других связанных с ним параметров для одного из устройств. Допустим:

  1. В сеть переменного тока был включен идеальный конденсатор.
  2. Поскольку переменное напряжение периодически меняет свою полярность, устройство будет то заряжаться, то вновь возвращать сохраненную энергию к источнику.
  3. В итоге будет происходить циркуляция электронов.

В электросетях с постоянным током мощность, как и другие ключевые параметры, остается неизменной в течение некоторого периода. Для таких случаев применимо понятие мощности, представляющей собой произведение двух важных параметров тока — его силы и напряжения. Однако это нельзя сказать о токе переменном, ведь его параметры постоянно меняются. Именно поэтому нельзя просто определить значение по той формуле коэффициента мощности, которая используется для ее определения в случае с электросетью с постоянным током. По этой причине было введено такое понятие, как мгновенная мощность.

Мгновенная мощность

Этот показатель имеет непосредственное отношение к выделению энергии и к механической работе: то есть к тем явлениям, которые имеют инерционный характер. Применяется он исключительно для расчетов. В оценке расчетов различных показателей электрических сетей применяются также действующие значения силы тока и напряжения.

Измерительные приборы, знакомые со школьной скамьи — вольт- и амперметр — предназначены для измерения этих значений. Такой показатель, как полная мощность, по сути представляет собой произведение действующих силы тока и напряжения: достаточно их лишь перемножить.

Этот показатель используют при определении требований электросети. Измеряется не в ваттах, для этого существует специальная единица измерения с названием, которое прямо указывает на то, что именно нужно перемножить для определения значения — вольт-ампер.

Активная и реактивная

С появлением в электросети реактивных элементов начинают происходить изменения. Эти элементы могут накапливать энергию и затем возвращать ее. В итоге образуется так называемая реактивная мощность. Впрочем, она не выполняет никакую полезную работу. Разумеется, возвращается энергия уже с некоторыми потерями, поэтому в любой электросети реактивное значение пытаются свести к минимуму.

Активная мощность — это усредненное значение мгновенной за определенный временной отрезок. Она способна выполнять полезную работу. Для определения полной нужно активную и реактивную возвести в квадрат и затем из суммы этих квадратов извлечь квадратный корень.

Активную можно узнать, перемножив силу тока, напряжение и косинус фи. Если он будет равен единице, то активная мощность будет полностью соответствовать полной. Это будет означать, что потерь энергии нет вообще, и любая работа является полезной.

Коэффициент полезного действия в этом случае будет равен 100%. Случается это лишь на активной нагрузке, в сети, где нет реактивных элементов. Следовательно, при реактивной мощности не выполняется работа, однако, происходят потери, которые имеют обратно пропорциональную зависимость от косинуса фи. Чем ближе значение к единице, тем меньше потеря.

Увеличение значения

Косинус фи можно увеличить либо с помощью специальных компенсирующих устройств, либо без них. Первый способ подразумевает упорядочение процесса, которое улучшает энергетический режим. Определить коэффициент помогают специальные электроизмерительные приборы, называемые фазометрами.

Увеличивая значение косинуса фи в электрике, пытаются достичь трех главных целей:

  1. Таким способом хотят сэкономить электроэнергию.
  2. Увеличение косинуса фи способствует также экономии материала, который используется для изготовления проводников. Это тоже является экономией.
  3. Высокое значение показателя говорит о высоком коэффициенте полезного действия.

Показатель косинус фи обязательно нужно принимать во внимание при создании электросетей. Если он будет недостаточно высоким, это неизбежно приведет к огромным потерям энергии.

отбор проб — Измерение коэффициента мощности на синусоидах

Я не уверен, что это лучший форум для этого или stackoverflow может быть не лучше, но я спрошу здесь и посмотрю, что думают люди.

У меня есть система измерения напряжения 50 Гц и токов на частоте 1 кГц. Я использую квадратурную демодуляцию для измерения фазового сдвига и вычисляю на его основе cos (φ) , а также вычисляю активную и среднеквадратичную мощность и делаю из них cos (φ) . Эти расчеты выполняются на односекундных срезах данных.

Я приложу пример кода Python ниже, но в основном метод выглядит так:

  • Умножьте временные ряды мгновенного напряжения и тока, чтобы получить мгновенную мощность, p_inst .
  • Интегрируйте p_inst (используя трапециевидное интегрирование) и разделите на длительность отрезка данных, чтобы получить активную мощность, p_act .
  • Возведите в квадрат каждую выборку в p_inst , возьмите среднее значение p_inst ** 2 по временным рядам, а затем извлеките квадратный корень из этого значения, чтобы получить среднеквадратичную мощность, p_rms .
  • Рассчитайте коэффициент мощности, pf = p_act / p_rms .
  • Используя метод обнаружения перехода через нуль, оцените частоту сигнала напряжения.
  • Сгенерировать квадратурные опорные сигналы на этой частоте (т.е. cos (2πft) , sin (2πft) ).
  • Умножьте напряжение на каждый из опорных сигналов и проинтегрируйте (опять же трапециевидное приближение) каждый из результирующих временных рядов, получив v_cos и v_sin .Фазовый угол сигнала напряжения v_phi относительно некоторого произвольного опорного сигнала равен atan2 (v_sin, v_cos) .
  • Повторите предыдущий шаг для текущего. Фазовое отставание тока относительно напряжения тогда составляет φ = v_phi - i_phi .
  • Моя вторая оценка коэффициента мощности составляет cos (φ) .

Для синусоидального сигнала с запаздыванием по фазе 30 градусов правильное значение cos (φ) равно приблизительно 0.86602540378443871. Метод квадратурной демодуляции дает очень хорошее приближение, 0,86636025346085943. Но метод отношения мощностей дает очень неверную оценку — 0,77542956418409648. Это эквивалентно погрешности угла сдвига почти в десять градусов.

Сначала я предположил, что я ошибся в квадратурной демодуляции (что является более сложным вычислением), но это дает правильный ответ. Затем я предположил, что сигнал был сильно несинусоидальным и это объясняет разницу, но приведенный ниже код выполняет те же вычисления для идеальных синусоид.

Что я здесь не так?

Полный код Python, демонстрирующий проблему:

  импортировать numpy как np, pandas как pd
из импорта matplotlib.pyplot *

t = np.arange (0, 600, 0,001)
t_rad = 2 * np.pi * 50 * t
phi = 30 * np.pi / 180

v = 230 * np.sin (t_рад)
i = 200 * np.sin (t_rad + phi)

p_inst = v * я

data = pd.DataFrame (np.array ([t, v, i, p_inst]). transpose (), columns = ['t', 'v', 'i', 'p_inst'], index = t)

def gen_act (x):
    вернуть np.trapz (x.p_inst, x = x.index) / (x.index [-1] - x.index [0])

def gen_rms (x):
    вернуть np.sqrt (np.mean (x.p_inst ** 2))

second_bins = data.groupby (лямбда x: int (x))
p_act = second_bins.apply (gen_act)
p_rms = second_bins.apply (gen_rms)

def оценка_frequency (t, v):
    t = t.значения
    v = v.значения
    пытаться:
        zero_crossings = np.where (np.diff (np.sign (v))> 0,5) [0]
        diffs = np.diff (t [zero_crossings])
        аккумулятор_интервалы = np.copy (различия)
        аккумулятор_интервал = 0
        ii = 0
        для ii в диапазоне (len (аккумулятор_интервалы)):
            аккумулятор_интервал + = различия [ii]
            аккумулятор_интервалы [ii] = интервал_акопления
            если аккумулятор_интервал> = 0.01:
                аккумулятор_интервал = 0

        zero_crossings = zero_crossings [np.hstack ([np.where (период_накопления> 0,01) [0], -1])]
        заканчивается = zero_crossings [[0, -1]]
        частота = (len (zero_crossings) - 1) / (t [заканчивается [1]] - t [заканчивается [0]])
        частота возврата
    Кроме:
        возврат с плавающей запятой ('NaN')

def generate_reference_signals (t, f):
    freq = np.mean (f)
    если np.isnan (freq):
        return None
    x = t * 2 * np.pi * частота
    вернуть np.sin (x), np.cos (x)

def Estimation_phi (t, v, i, refs):
    def angle_from_refs (t, x, refs):
        s_i = np.trapz (x * refs [0], t)
        c_i = np.trapz (x * ссылка [1], t)
        вернуть np.arctan2 (c_i, s_i)

    angle = angle_from_refs (t, i, refs) - angle_from_refs (t, v, refs)
    в то время как угол> np.pi:
        угол - = 2 * np.pi
    угол возврата

def gen_phi (x):
    f = оценка_частота (x.t, x.v)
    refs = generate_reference_signals (x.t, f)
    вернуть оценку_phi (x.t, x.v, x.i, refs)

phi = second_bins.apply (gen_phi)
cos_phi = np.cos (фи)
pf = p_act / p_rms

print ('Коэффициент мощности, рассчитанный на основе квадратурной демодуляции: {}'.формат (np.mean (cos_phi)))
print ('Коэффициент мощности, рассчитанный на основе измеренной мощности: {}'. format (np.mean (pf)))
print ('Истинный коэффициент мощности: {}'. format (np.cos (30 * np.pi / 180)))
  

TPF (истинный коэффициент мощности) | Продукты NETIO: интеллектуальные розетки, управляемые по локальной сети и Wi-Fi

  • Фазовый сдвиг
  • Искажение синусоидальной формы сигнала (импульсные источники питания)

TPF (TruePF) — это отношение активной мощности к полной мощности на розетке.TPF показывает, какая часть полной мощности преобразуется нагрузкой в ​​активную мощность. TPF можно рассматривать как сумму полезной мощности и потерь.

  • Для синусоидального сигнала TPF (TruePF) представляет собой косинус фазового сдвига между током и напряжением в электрической цепи ( Cos Phi ).
  • Когда TPF = 1 , вся мощность активна (фазовый сдвиг равен нулю).
    Это было бы в случае с чисто резистивной нагрузкой , такой как электрический нагреватель.
  • Когда TPF = 0 , вся мощность является реактивной — нагрузка либо чисто емкостная (фазовый сдвиг -90 ° = напряжение отстает от тока), либо чисто индуктивная (фазовый сдвиг + 90 ° = ток отстает. напряжение).
  • Как правило, TPF <1 (ненулевой сдвиг фаз между током и напряжением), и это вызывает нежелательные потери в линиях электропередач, в источнике питания, а также в приборе.
  • TPF в практическом плане:
    В общем, с TPF = 0.65, ИБП на 1000 ВА может обеспечить питание компьютера 650 Втч. Для импульсных блоков питания в компьютерах типичное значение TPF составляет 0,7.

Зачем измерять TPF (истинный коэффициент мощности)?

Значение TPF может выявить ошибочную нагрузку / изменение типа нагрузки.

Например, измерение TPF можно использовать для обнаружения засоренного фильтра насоса, поскольку TPF изменяется во времени по мере того, как фильтр постепенно забивается.

Разница между TPF и PF

PF (коэффициент мощности или Cos Phi ) выражает отношение активной энергии к полной энергии, а также отношение сопротивления к импедансу в данной электрической цепи.TPF, в отличие от PF, также учитывает несинусоидальные формы сигналов. Такие искажения синусоидальной формы волны вызываются, например, за счет переключения источников питания.

В контексте продуктов NETIO

Некоторые продукты NETIO могут измерять TPF (истинный коэффициент мощности / TruePF) для всего устройства (одно значение). Другие продукты измеряют TPF на выходную мощность (электрическую розетку) отдельно, а затем рассчитывают общий TPF для всего устройства. TPF различается на каждом выходе в зависимости от типа подключенного устройства.

Точность измерения может колебаться при малых токах (менее 0,1 А) или при быстром изменении характера нагрузки.

Коэффициент мощности — индуктивная нагрузка

Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где

  • Активная (действительная или истинная) Мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
  • Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение переменного тока. система умножается на весь ток, который в ней течет.Это векторная сумма активной и реактивной мощности
  • Реактивная мощность измеряется в вольт-амперах, реактивная ( VAR ). Реактивная мощность — это энергия, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.

Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает объем полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Коэффициент мощности

Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:

PF = cos φ

где

PF = коэффициент мощности

φ = фазовый угол между напряжением и током

Коэффициент мощности, определенный IEEE и IEC, представляет собой соотношение между приложенной активной (истинной) мощностью — и полная мощность , и в целом может быть выражена как:

PF = P / S (1)

, где

PF = коэффициент мощности 03

03

P = активная (истинная или действительная) мощность (Вт)

S = полная мощность (ВА, вольт-амперы)

lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.

Коэффициент мощности является важным измерением в электрических системах переменного тока, поскольку

  • общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
  • Искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем

Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.

Пример — коэффициент мощности

Промышленное предприятие потребляет 200 A при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .

Если коэффициент мощности — PF — нагрузки составляет 0,7 — только

80 кВА × 0,7

= 56 кВт

Система потребляет

реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.

  • Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем это было бы необходимо при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности

Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:

Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3
Поперечное сечение 1 1,2 1,6 2,04 2,8 11

Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит пропускную способность электрической системы, увеличивая ток и вызывая падение напряжения.

«Опережающий» или «запаздывающий» коэффициенты мощности

Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.

  • При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет равен 1 . Электрическая энергия течет по сети в одном направлении в каждом цикле.
  • Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
  • Емкостные нагрузки — батареи конденсаторов или проложенные кабели — генерируют реактивную мощность с фазой тока, опережающей напряжение.

Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. Энергия возвращается обратно к источнику питания в течение остальных циклов.

В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.

Коэффициент мощности трехфазного двигателя

Полная мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из

  • Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
  • Реактивная мощность — нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)

Коэффициент мощности трехфазного электродвигателя может быть выражен как:

PF = P / [(3) 1/2 UI] (2)

где

PF = коэффициент мощности

P = приложенная мощность (Вт, Вт)

U = напряжение (В)

I = ток (А, амперы)

— или альтернативно:

P = (3) 1/2 UI PF

= (3) 1/2 U I cos φ (2b)

U, l и cos φ обычно указаны на паспортной табличке двигателя.

Типичный коэффициент мощности двигателя

— 20
Мощность
(л.с.)
Скорость
(об / мин)
Коэффициент мощности (cos φ )
без нагрузки без нагрузки 1/2 нагрузки 3/4 нагрузки полная нагрузка
0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,82 0,84
1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86
20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 100-300 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91

Коэффициент мощности по отрасли

Типичные неулучшенные коэффициенты мощности:

Промышленность Коэффициент мощности Пивоваренный завод 75-80 Цемент 75-80 Химический 65-75 Электро-химический Литейное производство 75-80 Поковка 70-80 Hospi tal 75-80 Производство, машины 60-65 Производство, краска 65-70 Металлообработка 65-70 — 80 Офис 80-90 Масляный насос 40-60 Производство пластмасс 75-80 Штамповка 9030 65-80 Текстиль 35-60

Преимущества коррекции коэффициента мощности

  • Снижение счетов за электроэнергию — предотвращение штрафа за низкий коэффициент мощности от энергокомпании
  • Повышенная мощность системы — дополнительные нагрузки можно добавить без перегрузки системы
  • улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
  • Улучшение рабочих характеристик системы за счет увеличения напряжения — предотвращение чрезмерных падений напряжения

Коррекция коэффициента мощности с помощью конденсатора

Поправочный коэффициент конденсатора
Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ)
1.0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90
0,90

1,5
1,44 1,40 1,37 1,34 1,30 1,28 1,25
0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04
0,60

1,01 0,97 0,94 0,91 0,88 0,85
0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69
0,70 1,02 0,88 1,02 0,88 9030 0,66 0,62 0,59 0,56 0,54
0,75 0,88 0,74 0,67 0.63 0,58 0,55 0,52 0,49 0,45 0,43 0,40
0,80 0,75 0,61 0,47 0,54 0307 0,54 0,35 0,32 0,29 0,27
0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14
0,90 0,48 0,34 0,28 0,13 0,06 0,02
0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02
0,92 0,43 0,28 0,22 0,18 0,13 0,10 0,06 903 903 0,10 0,06 903 903 0,25 0,19 0,15 0,10 0,07 0,03
0,94 0.36 0,22 0,16 0,11 0,07 0,04
0,95 0,33 0,18 0,12 9095 0,96 0,29 0,15 0,09 0,04
0.97 0,25 0,11 0,05
0,98 0,20 0,06
Пример — Повышение коэффициента мощности с помощью конденсатора

Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .

При требуемом коэффициенте мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора равен 0,58 .

Требуемая мощность KVAR может быть рассчитана как

C = (150 кВт) 0,58

= 87 KVAR

Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B

Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.

103
Номинальная мощность асинхронного двигателя
(л.с.)
Номинальная скорость двигателя (об / мин)
3600 1800 1200
Мощность конденсатора Ред. Ток
(%)
Номинал конденсатора
(кВАр)
Снижение линейного тока
(%)
Номинал конденсатора
(кВАр)
Снижение линейного тока
3 1.5 14 1,5 23 2,5 28
5 2 14 2,5 22 3 26 2,5 3 20 4 21
10 4 14 4 18 5 21
15307

103
18 6 20
20 6 12 6 17 7.5 19
25 7,5 12 7,5 17 8 19
30 8 11 8 8 8
40 12 12 13 15 16 19
50 15 12 18 60 18 12 21 14 22.5 17
75 20 12 23 14 25 15
100 22,5 307 307 11
125 25 10 36 12 35 12
150 30 10 42 12 200 35 10 50 11 50 10
250 40 11 60 10 62.5 10
300 45 11 68 10 75 12
350 50 12 12 12
400 75 10 80 8 100 12
450 80 8 90 8 500 100 8 120 9 150 12

Понимание коэффициента мощности | электрическаялегкость.com

Энергия нужна и используется повсюду в мире. С точки зрения удобства, эффективности и экономии, лучше всего, чтобы мы генерировали, передавали и распространяли его в электрической форме, прежде чем он будет преобразован в требуемый с помощью подходящего оборудования. По тем же причинам экономии и эффективности мы используем переменный ток, а не постоянный ток. На практике мы производим, передаем и распределяем энергию почти исключительно в форме переменного тока. Постоянный ток используется либо в приложениях постоянного тока (машины постоянного тока и электронные схемы), либо в линиях передачи постоянного тока высокого напряжения.

Везде, где используется питание переменного тока, возникает вопрос о коэффициенте мощности.

Коэффициент мощности

  • Определяется как « косинус угла между напряжением и током ».
  • В цепи переменного тока напряжение и ток идеально совпадают по фазе.
  • Но практически между ними существует разность фаз.
  • Косинус этой разности фаз называется коэффициентом мощности.
  • Его можно определить и математически представить следующим образом:

Из рис.(a) выше, можно ясно отметить, что существует разность фаз угла ɸ между вектором напряжения и вектором тока.
Коэффициент мощности = cosɸ

Рис. (b) называется треугольником мощности
Здесь VI sinɸ = реактивная мощность (в ВАр)
VI cosɸ = активная мощность (в ваттах)
VI = полная мощность (в ВА)
PF = cosɸ = активная мощность ( Вт) / Полная мощность (ВА)

Рис. (c) называется треугольником импеданса
Здесь R = сопротивление, X = реактивное сопротивление, Z = импеданс
Z 2 = R 2 + X 2
PF = cosɸ = R / Z

Коэффициент мощности может быть запаздывающим, опережающим или единичным.

Отстающий коэффициент мощности

  • Когда ток отстает от напряжения, коэффициент мощности цепи называется «запаздывающим».
  • Когда цепь индуктивная, коэффициент мощности отстает.
  • Нагрузки, такие как асинхронные двигатели, катушки, лампы и т. Д., Являются индуктивными и имеют отстающий коэффициент мощности.

Ведущий коэффициент мощности


  • Когда ток опережает напряжение (или напряжение отстает от тока), коэффициент мощности цепи называется опережающим.
  • Когда цепь емкостная, опережающий коэффициент мощности.
  • Емкостные нагрузки, такие как синхронные конденсаторы, конденсаторные батареи и т. Д., Потребляют опережающий ток. Такие схемы имеют опережающий коэффициент мощности.

Коэффициент мощности Unity


  • Коэффициент мощности равен единице (т.е. 1) для идеальных цепей.
  • Когда ток и напряжение совпадают по фазе, PF = 1
  • Коэффициент мощности не может быть больше единицы.
  • Практически он должен быть максимально приближен к единице.
Если коэффициент мощности низкий, возникают следующие проблемы:

Влияние низкого коэффициента мощности

  1. Ток нагрузки
    Мощность в цепи переменного тока может быть задана как: P = VI cosɸ
    Следовательно, cosɸ = P / VI
    I ∝ 1 / cosɸ
    Аналогичное соотношение может быть получено и для трехфазной цепи. Мы видим, что ток обратно пропорционален pf.

    Например, предположим, что мы хотим передать мощность 10 кВА при 100 В
    Если PF = 1,
    I = P / (V cosɸ) = 10000 / (100 x 1) = 100 A
    Если PF = 0 .8,
    I = P / (V cosɸ) = 10000 / (100 x 0,8) = 125 A
    Следовательно, потребляемый ток выше при низком коэффициенте мощности.

  2. Потери: Как указано выше, для низкого pf потребляемый ток будет большим. Следовательно, потери в меди (потери I 2 R) также будут высокими. Это снижает эффективность оборудования.
  3. Перегрев оборудования: I 2 Потери R производят тепло (закон Джоуля). Следовательно, повышение температуры будет относительно большим при низком коэффициенте мощности, что приведет к дальнейшему увеличению нагрузки на изоляцию.
  4. Размер проводника: Низкий коэффициент мощности приводит к увеличению тока нагрузки. Если ток нагрузки увеличивается, размер необходимого проводника также увеличивается. Это еще больше увеличит стоимость кондуктора.
  5. кВА Номинальная мощность машины: Машины не рассчитываются в кВт при производстве, так как коэффициент мощности источника питания неизвестен. Вместо этого они оцениваются в кВА.
    Согласно определению, Cosɸ = Активная мощность (кВт) / Полная мощность (кВА).
    Следовательно, номинальная мощность кВА = 1 / cosɸ
    Следовательно, для низкого коэффициента мощности необходимо оборудование с большей номинальной мощностью кВА.Но чем выше рейтинг кВА, тем больше размер оборудования. Если размер увеличивается, увеличивается и стоимость.
  6. Регулировка напряжения: Определяется как разница между конечным напряжением отправки и приема на единицу конечного напряжения отправки. Когда мощность передается с одного конца на другой, напряжение падает по нескольким причинам. Это падение напряжения должно быть в допустимых пределах.
    P = VI cosɸ, поэтому I 1 / V
    При низком коэффициенте мощности ток будет больше и, следовательно, будет увеличиваться падение напряжения.Следовательно, регулирование напряжения при низком коэффициенте мощности плохое.
  7. Активная и реактивная мощность (передаваемая мощность): Активная и реактивная мощность передаются по линии вместе. Для питания нагрузки требуется активная мощность. Реактивная мощность необходима для поддержания напряжения в линии. Но если реактивная мощность больше, то передаваемая активная мощность уменьшается. Для низкого коэффициента мощности активная мощность мала, поскольку cos because = активная мощность (Вт) / полная мощность (ВА). Это приводит к неэкономичной работе.
Это результат низкого коэффициента мощности. Для оптимальной производительности коэффициент мощности должен быть как можно ближе к единице. Для этого используется оборудование для коррекции коэффициента мощности.

[Также прочтите: Сравнение различных электростанций]


Автор: Манодж Арора — студент-электрик и писатель из Гуджарата, Индия. Он пишет стихи и рассказы, когда не погружается в книгу.
Кредиты для Graphics: Kiran Daware.

Что такое коэффициент мощности? | Как рассчитать формулу коэффициента мощности

Как понять коэффициент мощности

Пиво — это активная мощность (кВт) — полезная мощность или жидкое пиво — это энергия, которая выполняет работу. Это то, что вам нужно.

Пена — это реактивная мощность (кВАр) — пена — это потраченная впустую или потерянная мощность. Вырабатываемая энергия не выполняет никакой работы, например, вырабатывает тепло или вибрацию.

Кружка — кажущаяся мощность (кВА) — кружка — это потребляемая мощность или мощность, поставляемая коммунальным предприятием.

Если бы схема была эффективна на 100%, потребность была бы равна доступной мощности. Когда спрос превышает имеющуюся мощность, на энергосистему оказывается нагрузка. Многие коммунальные предприятия добавляют плату за спрос к счетам крупных потребителей, чтобы компенсировать разницу между спросом и предложением (когда предложение ниже спроса). Для большинства коммунальных предприятий спрос рассчитывается на основе средней нагрузки, размещенной в течение 15–30 минут. Если требования к нагрузке нерегулярны, коммунальное предприятие должно иметь больше резервных мощностей, чем если бы требования к нагрузке оставались постоянными.

Пик спроса — это период наибольшего спроса. Перед коммунальными предприятиями стоит задача предоставить мощность, чтобы справиться с пиковыми потребностями каждого клиента. Использование электроэнергии в тот момент, когда она пользуется наибольшим спросом, может нарушить общее предложение, если не будет достаточно резервов. Таким образом, коммунальные услуги выставляют счет за пиковый спрос. Для некоторых более крупных клиентов коммунальные предприятия могут даже взять самый большой пик и применить его в течение всего расчетного периода.

Коммунальные предприятия применяют надбавки к компаниям с более низким коэффициентом мощности. Издержки более низкой эффективности могут быть огромными — сродни вождению автомобиля, потребляющего много бензина.Чем ниже коэффициент мощности, тем менее эффективна схема и тем выше общие эксплуатационные расходы. Чем выше эксплуатационные расходы, тем выше вероятность того, что коммунальные предприятия накажут клиента за чрезмерную загрузку. В большинстве цепей переменного тока коэффициент мощности никогда не бывает равным единице, потому что на линиях электропередачи всегда присутствует некоторое сопротивление (помехи).

Как рассчитать коэффициент мощности

Для расчета коэффициента мощности вам понадобится анализатор качества электроэнергии или анализатор мощности, который измеряет как рабочую мощность (кВт), так и полную мощность (кВА), а также для расчета отношения кВт / кВА.

Формулу коэффициента мощности можно выразить другими способами:

PF = (Истинная мощность) / (Полная мощность)

OR

PF = W / VA

Где ватты измеряют полезную мощность, а VA измеряют потребляемую мощность. Отношение этих двух значений по существу представляет собой полезную мощность к подаваемой мощности, или:

Как показывает эта диаграмма, коэффициент мощности сравнивает реальную потребляемую мощность с полной мощностью или потребляемой нагрузкой. Мощность, доступная для выполнения работы, называется реальной мощностью.Вы можете избежать штрафов за коэффициент мощности, корректируя коэффициент мощности.

Низкий коэффициент мощности означает, что вы используете электроэнергию неэффективно. Это имеет значение для компаний, поскольку может привести к:

  • Тепловому повреждению изоляции и других компонентов схемы
  • Уменьшению доступной полезной мощности
  • Требуемое увеличение размеров проводов и оборудования

Наконец, коэффициент мощности увеличивает общая стоимость системы распределения энергии, потому что более низкий коэффициент мощности требует более высокого тока для питания нагрузок.

Связанные ресурсы

Калькулятор коэффициента мощности

Этот калькулятор коэффициента мощности представляет собой удобный инструмент для анализа переменного тока, протекающего в электрических цепях. Вы, наверное, уже знаете, что вы можете смоделировать постоянный ток (DC) с помощью закона Ома. В случае с переменным током эта задача не так проста, поскольку такие цепи содержат как активную, так и реактивную мощность.

Этот калькулятор поможет вам не только узнать, каковы значения различных типов мощности в цепи, но также предоставит вам формулу коэффициента мощности, которая выражает соотношение между реальной и полной мощностью.

Активная, реактивная и полная мощность

Если вы хотите понять, что такое коэффициент мощности, вам сначала необходимо более глубокое понимание его компонентов: реальной, реактивной и полной мощности.

  • Реальная мощность (также называемая истинной или активной мощностью), обозначаемая как P , выполняет реальную работу в электрической цепи и рассеивается на резисторах. Это единственная форма мощности, которая появляется в цепи постоянного тока. В цепи переменного тока значения тока и напряжения не фиксированы — они изменяются синусоидально.Если между этими двумя значениями нет сдвига фазы , то вся переданная мощность активна. Эта мощность измеряется в Вт .

  • Реактивная мощность , обозначенная как Q , передается, когда ток и напряжение сдвинуты по фазе на 90 градусов. В таком случае чистая энергия, передаваемая в цепи переменного тока, равна нулю, и реальная мощность не рассеивается. Реактивная мощность никогда не появляется в цепях постоянного тока; в цепях переменного тока он связан с реактивным сопротивлением, создаваемым катушками индуктивности и конденсаторами.Он измеряется в Вольт-Ампер-реактивном режиме (ВАР).

  • Полная мощность , обозначенная как S , представляет собой комбинацию активной и реактивной мощностей. Это произведение среднеквадратичных (среднеквадратичных) значений напряжения и тока в цепи без учета влияния фазового угла. Это также векторная сумма P и Q. Полная мощность измеряется в Вольт-Ампер (ВА).

Треугольник силы

Поскольку полную мощность можно найти путем векторного сложения реальной и реактивной мощности, вы можете использовать графический метод для представления этих трех значений в форме треугольника, который называется треугольником мощности .

Каждая сторона треугольника представляет собой одну из трех форм мощности, передаваемых в цепи переменного тока. Катеты прямоугольного треугольника представляют собой активную и реактивную мощность, а гипотенуза — полную мощность.

Одним из следствий использования треугольника степеней является то, что вы можете легко установить математическую связь между тремя значениями с помощью теоремы Пифагора:

S² = P² + Q²

Кроме того, угол между реальной мощностью и полной мощностью, обозначенный как φ , представляет собой полное сопротивление цепи , фазовый угол .

Формула коэффициента мощности

Коэффициент мощности — это соотношение между реальной и полной мощностью в цепи. Если реактивной мощности нет, то коэффициент мощности равен 1. Если, наоборот, активная мощность равна нулю, то полная мощность также равна 0.

Формула коэффициента мощности:

коэффициент мощности = P / S

Например, коэффициент мощности 0,87 означает, что 87% тока, подаваемого в цепь, выполняет реальную работу.Остальная мощность, а точнее 13%, должна быть предоставлена ​​для компенсации реактивной мощности. Знание того, как рассчитать коэффициент мощности, может быть полезно, например, при вычислениях, касающихся генераторов энергии.

Как рассчитать коэффициент мощности?

Коэффициент мощности также можно рассчитать с помощью треугольника мощности. Используя принципы тригонометрии, вы можете записать это как

P / S = cos φ

Поскольку коэффициент мощности равен отношению реальной мощности к полной,

коэффициент мощности = cos φ

Это означает, что зная только одно из трех значений — активную, реактивную или полную мощность — и коэффициент мощности или фазовый угол, вы можете быстро вычислить остальные из этих значений, которые определяют цепь переменного тока.Конечно, вместо того, чтобы вычислять числа вручную, вы можете просто использовать этот калькулятор коэффициента мощности! 🙂

Сопротивление, реактивное сопротивление и импеданс

Три основных компонента цепи переменного тока — это резисторы, конденсаторы и катушки индуктивности. Вы можете использовать этот калькулятор коэффициента мощности не только для описания мощности, передаваемой через каждый из этих компонентов, но и для определения того, что происходит, когда через них проходит электрический ток, а именно, каким сопротивлением, реактивным сопротивлением и импедансом обладают такие элементы.

  • Сопротивление , обозначенное как R и выраженное в омах (Ом), является мерой того, насколько проводник (особенно резистор) снижает электрический ток I , протекающий через него. Это значение напрямую связано с реальной мощностью, протекающей в цепи переменного тока. Это соотношение можно записать как P = I²R .

  • Реактивное сопротивление , обозначенное как X и также измеренное в омах (Ом), представляет собой инерцию, которая препятствует движению электронов в компоненте схемы.Он присутствует в основном в конденсаторах и катушках индуктивности. Если вы пропустите переменный ток через компонент с высоким реактивным сопротивлением, падение напряжения будет не совпадать по фазе с током на 90 градусов. Реактивное сопротивление связано с реактивной мощностью уравнением Q = I²X .

  • Импеданс , обозначенный как Z и измеренный в омах (Ом), является эквивалентом сопротивления в цепях постоянного тока по переменному току. Он присутствует во всех компонентах всех электрических цепей. Его можно рассчитать путем векторного сложения сопротивления (см. Ниже) и реактивного сопротивления или по формуле S = I²Z .

Соотношение между сопротивлением, реактивным сопротивлением и импедансом аналогично треугольнику мощности:

Z² = R² + X²

Идеальные резисторы имеют ненулевое сопротивление, но нулевое реактивное сопротивление. Идеальные катушки индуктивности или конденсаторы имеют нулевое сопротивление, но ненулевое реактивное сопротивление. Все компоненты электрической цепи обладают некоторым сопротивлением.

компенсация реактивной энергии (размер конденсаторов)

Онлайн-калькулятор размеров конденсаторов для коррекции коэффициента мощности

Введите собственные значения в белые поля, результаты отображаются в зеленых полях.

Введите ваше фактическое значение коэффициента мощности PF или cos phi (cosφ) и окончательное значение, которого вы хотите достичь с помощью конденсаторов.
Укажите также значение полной мощности вашей системы в кВА.


Начальное значение Конечное значение

Коэффициент мощности или Cos phi



Sin phi



Тан фи



Мощность (кВА)



Мощность (кВт)

Размер конденсатора (кВАр):

Формула коррекции коэффициента мощности: как правильно подобрать конденсаторы?

Уравнение для получения реактивной мощности для улучшения низкого коэффициента мощности:
Где:
Qc = реактивная мощность конденсаторов
P = Активная активная мощность в кВт
Tanφ 1 = начальный фазовый угол без конденсаторов
Tanφ 2 = конечный фазовый угол с конденсаторами

Как получить tan φ?
загар φ = acos (cosφ)
или
tan φ = sin φ / cos φ

Как получить Cos phi (или коэффициент мощности), если вы знаете только реактивную энергию и значение активной энергии за данный период?

Уравнение, которое дает соотношение между реальной активной и реактивной энергией за заданный период, имеет следующий вид:
Уравнение, которое дает коэффициент мощности (cos phi) в соответствии с Tan phi, выглядит следующим образом:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *