Когда был открыт алюминий: История получения алюминия и развития алюминиевой промышленности.

Содержание

История получения алюминия и развития алюминиевой промышленности.

Античная легенда

Первое упоминание о металлическом алюминии обнаружено в трудах First Century Roman. В знаменитой энциклопедии Плиния Младшего «Historia naturalis», опубликованной в 79 г., описана следующая история. Однажды римскому ювелиру позволили показать императору Тибериусу обеденную тарелку из нового металла. Тарелка была очень светлой и блестела, как серебро. Ювелир рассказал императору, что он добыл металл из обыкновенной глины. Он заверил императора, что только он и боги знают, как получить металл из глины. Император очень заинтересовался открытием ювелира. Однако он сразу понял, что вся его казна золота и серебра обесценится, если люди начнут производить этот светлый металл из глины. Поэтому, вместо ожидаемого ювелиром вознаграждения, он был обезглавлен.

Открытие алюминия Г. Эрстедом

Неизвестно, насколько правдива эта история, но описанные события происходили за 2000 лет до открытия человечеством способа производства алюминия.

Это произошло в 1825 г., когда датский физик Г. Эрстед получил несколько миллиграммов металлического алюминия.
Латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия KAl(SO4)2·(12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом.я термическим восстановлением хлорида алюминия калиевой амальгамой.

Трудности в получении алюминия

  1. Большое сродство алюминия к кислороду. Алюминий может быть восстановлен углеродом из оксида при температуреоколо 2000°С. Однако уже при 1500°С углерод взаимодействует с алюминием, давая карбид.
  2. Высокий электрохимический потенциал алюминия (-1,67 В). Из водных растворов получить алюминий невозможно, так как на катоде практически будет идти процесс выделения водорода (разложения воды).
  3. Высокая температура плавления глинозема (2050°С), что исключает возможность проведения электролиза расплавленного глинозема.

Начало промышленного производства

Промышленное производство алюминия связано с именем француза Анри Сент-Клер Девиля. Ему хорошо были известны эксперименты Г. Эрстеда и другого ученого — Ф. Велера, которому в 1827 г. удалось выделить крупинки алюминия. Причиной неудачи Ф. Велера было то, что эти крупинки на воздухе немедленно покрывались тончайшей пленкой оксида: алюминия.
Прежде всего А.С.-К. Девиль в процессе получения металла заменяет калий более дешевым натрием и проводит лабораторные опыты в крупном масштабе.

Полученный хлорид алюминия загружался в большую стальную трубу, в которой на равном расстоянии друг от друга были расставлены сосуды, наполненные металлическим натрием. При нагреве происходило взаимодействие хлорида алюминия с натрием в газовой фазе и частицы алюминия оседали на дно трубы. Образованные в результате реакции зернышки тщательно собирали, плавили и получали слитки металла.

Новый способ производства алюминия оказался очень трудоемким. Кроме того, взаимодействие паров хлорида алюминия с натрием нередко протекает со взрывом. В лабораторных условиях это не представляло серьезной опасности, а в заводских условиях могло вызвать катастрофу. А.С.-К. Девиль заменил хлорид алюминия смесью AlС1

3 с NaCl. Теперь участники реакции находились в расплавленном состоянии. Взрывы прекратились, но, что самое главное, вместо небольших корольков металла, которые надо было собирать вручную, получали значительное количество жидкого алюминия.

Опыты на заводе Жавеля увенчались успехом. В 1855 г. был получен первый слиток металла массой 6—8 кг.

Эстафету производства алюминия химическим способом продолжил русский ученый Н.Н. Бекетов. Он проводил реакцию взаимодействия между криолитом (Na

3AlF6) и магнием. Способ Н.Н. Бекетова мало чем отличался от метода А.С.-К. Девиля, но был проще. В немецком городе Гмелингеме в 1885 г. был построен завод, использующий способ Н.Н. Бекетова, где за пять лет было получено 58т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890г.

Получение алюминия химическим способом не могло обеспечить промышленность дешевым металлом. Он был малопроизводителен и не давал чистый без примесей алюминий.

Получение алюминия электролизом

Это заставило исследователей разных стран мира искать новые способы производства алюминия.
На помощь ученым пришел электрический ток. Еще в 1808 г. Г. Дэви пытался разложить глинозем с помощью мощной электрической батареи, но безуспешно.

Спустя почти 50 лет Р. Бунзен и А.С.-К. Девиль независимо друг от друга провели электролиз смеси хлоридов алюминия и натрия. Они были удачливее своего предшественника и сумели получить маленькие капельки алюминия. Однако в те времена не было еще дешевых и достаточно мощных источников электроэнергии. Поэтому электролиз алюминия имел только чисто теоретический интерес.

В 1867 г. была изобретена динамо-машина, а вскоре электроэнергию научились передавать на большие расстояния. Электричество начало вторгаться в промышленность.

В 1886 г. П. Эру во Франции и Ч. Холл в США почти одновременно положили начало современному способу производства алюминия, предложив получать его электролизом глинозема, растворенного в расплавленном криолите (способ Холла — Эру). С этого момента новый способ производства алюминия начинает быстро развиваться, чему способствовали усовершенствование электротехники, а также разработка способов извлечения глинозема из алюминиевых руд. Значительный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д.А. Пеняков, А.Н. Кузнецов, Е.И. Жуковский, А.А. Яковкин и др.

Почему алюминий дороже золота

Алюминий — элемент 13-й группы периодической таблицы химических элементов, третьего периода, с атомным номером 13.

Знаете ли вы, что обладание любым алюминиевым изделием, таким как профиль, втулка, ложка или элемент фурнитуры — в 19 веке уже сделало бы вас вполне состоятельным человеком? Сегодня, конечно, хорошо известно, что алюминий очень распространен по всему миру, но раньше он ценился дороже золота. А дело все в том, что алюминия в чистой металлической форме в земной коре нет, хотя в виде химических соединений он составляет чуть ли не 8% земной коры.

В древности двойные соли алюминия (тогда они еще так не назывались) — квасцы — довольно широко применялись для решения различных задач, хотя об алюминии как таковом не шло и речи. Трехвалентный металл, присутствующий в солях, позволял использовать квасцы для различных целей, и даже сегодня квасцы применяются в антибактериальном мыле, в лосьонах после бритья, в разрыхлителях.

Алюмо-калиевые квасцы широко применялись в древние времена в качестве протрав и как средства остановки кровотечений. Раствором алюмо-калиевых квасцов пропитывали древесину, что делало ее негорючей. Известный исторический рассказ свидетельствует о том, как римский полководец Архелай во времена войны с персами велел вымазать башни оборонительных сооружений квасцами, благодаря чему персам при всем желании не удалось поджечь их, не то чтобы сжечь.

О содержащемся в квасцах алюминие лишь в 1807 году начал всерьез говорить английский химик, физик и геолог, сэр Гемфри Дэви, который отметил, что кроме солей в квасцах присутствует еще и некий металл. Гемфри Дэви решил назвать этот металл «алюминий», поскольку слово «alum» в переводе с латыни — квасцы.

Справедливости ради стоит упомянуть и о том, что во франции еще за 29 лет до Дэви, химик Антуан Лавуазье уже указал в своих работах по химии на оксид алюминия, который он назвал «агрилл», и в то же время отметил, что это вещество, вероятно, может существовать и в твердом виде, то есть в виде металла.

Хотя технологически в те годы было еще невозможным отделить сильные атомы кислорода от молекул оксида.

Первый серьезный успех пришел в 1825 году, когда физик и исследователь электромагнетизма из Дании, Ганс Христиан Эрстед, в своей лаборатории нагрел безводный хлорид алюминия (полученный пропусканием хлора через раскаленную смесь оксида алюминия с углем) с амальгамой калия, и, отогнав ртуть, получил алюминий, хотя и немного загрязненный примесями, подтвердив, однако, тем самым фундаментально важную мысль Дэви.

В честь коллеги англичанина, который вдохновил Эрстеда на проведение данного эксперимента, Эрстед назвал полученный металл алюминием. Эрстед считается теперь первым ученым, который получил алюминий в лаборатории.

Через два года после эксперимента Эрстеда, немецкий физик и врач по образованию, Фридрих Вёлер, разработал новый способ лабораторного получения алюминия, улучшив метод Эрстеда. Вёлер смог получить алюминий в виде порошка гранул, в результате нагревания хлорида алюминия с калием. Аналогичным способом Вёлер получил затем бериллий и иттрий.

На протяжении следующих 18 лет, до 1845 года, ученые уже произвели достаточно металла, чтобы детально изучить его свойства. Но именно Вёллер отметил необычную легкость алюминия, по сравнению с другими металлами.

Еще девять лет спустя, а именно — в 1854 году, французский физик и химик Анри Сент-Клер Девиль сумел разработать гораздо более практичный способ получения алюминия. Он использовал металлический натрий для вытеснения алюминия из двойного хлорида натрия и алюминия. Это был способ, с помощью которого можно было за раз получить несколько килограммов чистого алюминия. Через два года Анри Сент-Клер Девиль первым получит алюминий путем электролиза расплава хлорида натрия-алюминия.

Интересный исторический факт. В 1855 году Наполеон III организовал выставку слитков алюминия. 12 миниатюрных слитков поражали гостей выставки своим блеском, будучи при этом очень легкими.

Так алюминий стал идеальным металлом для производства ювелирных украшений и разных элементов одежды, таких как, например, пряжки, и долгое время служил не последним из музейных экспонатов. Сей факт приводил Анри в бешенство — значение алюминия не должно было быть ограничено побрякушками.

Император, спонсировавший исследователя в его работе, надеялся, что из алюминия можно будет делать оружие и броню, и было изготовлено даже несколько шлемов, в итоге наступило разочарование в свойствах металла. Наполеон III приказал переработать весь полученный алюминий на производство столовых приборов.

Эти столовые приборы использовались лишь высшими лицами, включая самого императора, в то время как гостям выдавали лишь золотые ложки и вилки. Алюминий в те времена было получить тяжелее, чем золото, и цена его поэтому была выше золота во много раз.

В 1886 году положение дел изменилось. Был открыт метод промышленного производства алюминия путем электролиза. Одновременное открытие, независимо друг от друга, сделали французский инженер-химик Поль-Луи-Туссен Эру и американец Чарльз Мартин Холл — тоже инженер-химик. Известно, что Холл был поначалу очень удивлен, когда обнаружил на дне сосуда бляшки чистого алюминия.

Этот метод по сей день носит имя своих изобретателей — процесс Холла—Эру — растворение оксида алюминия в расплаве криолита с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. В 20 веке этот метод использовался очень широко для промышленного получения алюминия.

Вообще, спустя всего два года после открытия Холла и Эру, для получения оксида алюминия российский химик австрийского происхождения Карл Иосифович Байер предложил дешево получать оксид алюминия из боксита.

Так цена на алюминий упала за одну ночь в пять раз. В конечном итоге, если в 1852 году килограмм алюминия стоил 1200 долларов, то к началу 20 века килограмм стоил уже менее доллара. И сегодня алюминиевые изделия в основном не стоят очень дорого.

Получаемый металл был хорош всем кроме прочности, так необходимой в промышленности. Но и эта проблема позже была решена. В 1903 году немецкий инженер-металлург Альфред Вильм установил, что сплав алюминия с добавкой 4 % меди после резкого охлаждения (температура закалки 500 °C), находясь при комнатной температуре в течение 4-5 суток, постепенно становится более твёрдым и прочным, не теряя при этом пластичности.

В 1909 году Вильм подал заявку на патент «Способ улучшения сплавов алюминия, содержащих магний». В промышленных масштабах прочный сплав алюминия начали получать в 1911 году в немецком городке Дюрене, в честь которого этот сплав и получил название «дюралюминий».

Ранее ЭлектроВести писали, что немецкий исследовательский институт Фраунхофера по переработке материалов и ресурсным стратегиям (Fraunhofer IWKS) создал экологически устойчивый «Центр демонтажа и переработки в области электрической мобильности» (нем. — Zentrum für Demontage und Recycling — Elektromobilität ZDR-EMIL). Он разместился в городе Ханау (Hanau) в Федеральной земле Гессен при поддержке регионального министерства науки и искусств.

По материалам: electrik.info.

История получения и применения алюминия и его сплавов

1. Agricola, G. (1986) O gornom dele i metallurgii v dvenadtsati knigakh. 2-e izd. [On Mining and Metallurgy in Twelve Books. 2 nd ed. ]. Moskva: Nedra.

2. Ashkenazi, D. (2019) How Aluminum Changed the World: A Metallurgical Revolution through Technological and Cultural Perspectives, Technological Forecasting and Social Change, vol. 143, pp. 101–113.

3. Attar, S., Nagaral, M., Reddappa, H. N., and Auradi, V. (2015) Review on Particulate Reinforced Aluminum Metal Matrix Composites, Journal of Emerging Technologies and Innovative Research, vol. 2, no. 2, pp. 225–229.

4. Beliaev, A. I. (1953) Nikolai Nikolaevich Beketov – vydaiuschiisia russkii fiziko-khimik i metallurg [Nikolai Nikolaevich Beketov, an Outstanding Russian Physial Chemist and Metallurgist]. Moskva: Gosudarstvennoe nauchno-tekhnicheskoe izdatelʼstvo literatury po chernoi i tsvetnoi metallurgii.

5. Belov, N. A., Naumova, E. A., and Akopian, T. K. (2016) Evtekticheskie splavy na osnove aliuminiia: novye sistemy legirovaniia [Eutectic Aluminium Alloys: New Alloying Systems]. Moskva: Ruda i metally.

6. Byko, M. (2000). Aluminum Exhibits Its Versatility in Art, Life, JOM, vol. 52, no. 11, pp. 9–12.

7. Elia, G. A., Marquardt, K., Hoeppner, K., Fantini, S., Lin, R., Knipping, E., Peters, W., Drillet, J. F., Passerini, S., and Hahn, R. (2016) An Overview and Future Perspectives of Aluminum Batteries, Advanced Materials, vol. 28, no. 35, pp. 7564–7579.

8. Eskin, D. G. (2008) Physical Metallurgy of Direct Chill Casting of Aluminum Alloys. New York: CRC Press.

9. Figurovskii, N. A. (1970) Otkrytie elementov i proiskhozhdenie ikh nazvanii [The Discovery of Elements and the Origin of Their Names]. Moskva: Nauka.

10. Fridliander, I. N. (2013) Sozdanie, issledovanie i primenenie aliuminievykh splavov. Izbrannye trudy. K 100-letiiu so dnia rozhdeniia [Creation, Studies, and Use of Aluminum Alloys. Selected Works. In Commemoration of the Centenary of His Birth]. Moskva: Nauka.

11. Habashi, F. (2013) The Beginnings of the Aluminum Industry, Nano Studies, vol. 8, pp. 333–344.

12. Habashi, F. (2016) The Story of Aluminum, Metall, no. 9, pp. 343–350.

13. Laughlin, D., and Hono, K. (eds.) (2014) Physical Metallurgy. 5 th ed. Amsterdam: Elsevier.

14. Long, R. S., Boettcher, E., and Crawford, D. (2017) Current and Future Uses of Aluminum in the Automotive Industry, JOM, vol. 69, no. 12, pp. 2635–2639.

15. Lopez, R., and Raymond, I. (2001) Medieval Trade in the Mediterranean World: Illustrative Documents Translated with Introductions and Notes. New York: Columbia University Press.

16. Martini, C., Ballarin, B., Chiavari, C., and Roversi, A. (2012) The Aluminum-Cast Madonna Statue of “Tempio Votivo”, Lido di Venezia (Italy): Identification of Degradation Factors and Assessment of a Cleaning Procedure, Materials Chemistry and Physics, vol. 137, no. 1, pp. 404–413.

17. Maxwell-Stuart, P. G. (2014) Alchemy, in: Wexler, Ph. (ed.) Encyclopedia of Toxicology. 3 rd ed. Amsterdam: Elsevier, pp. 116–119.

18. Monetta, T., Acquesta, A., and Bellucci, F. (2017) Multifactor Approach to Evaluate the Sealing of “Smooth-Wall” Containers for Food Packaging, Surface and Coatings Technology, vol. 310, pp. 33–37.

19. Murr, L. E. (2018) Metallographic Review of 3D Printing / Additive Manufacturing of Metal and Alloy Products and Components, Metallography, Microstructure, and Analysis, vol. 7, no. 2, pp. 103–132.

20. Nikolaev, I. V., Moskvitin, V. I., and Fomin, B. A. (1997) Metallurgiia legkikh metallov [Metallurgy of Light Metals]. Moskva: Metallurgiia.

21. Osborn, E. L. (2016) From Bauxite to Cooking Pots: Aluminum, Chemistry, and West African Artisanal Production, History of Science, vol. 54, no. 4, pp. 425–442.

22. Plinii Starshii (1994) Estestvoznanie. Ob iskusstve [The Natural History. On Art]. Moskva: Ladomir. Rabinovich, D. (2013) The Allure of Aluminium, Nature Chemistry, vol. 5, no. 1, p. 76.

23. Ruys, A. (2019) Alumina Ceramics: Biomedical and Clinical Applications. Duxford: Woodhead Publishing.

24. Sanders, R. E. (2001) Technology Innovation in Aluminum Products, JOM, vol. 53, no. 2, pp. 21–25.

25. Sandler, R. A., and Ratner, A. Kh. (1983) Elektrometallurgiia aliuminiia i magniia [Electrometallurgy of Aluminum and Magnesium]. Leningrad: LGI.

26. Santos, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A., and Ezugwu, E. O. (2016) Machining of Aluminum Alloys: A Review, The International Journal of Advanced Manufacturing Technology, vol. 86, no. 9–12, pp. 3067–3080.

27. Scott, G. (2017) Value Chain Voice: The Aluminum Association Today, Aluminum International Today, vol. 30, no. 2, pp. 17–18.

28. Setiukov, O. A. (2013) Aliuminievyi splav 1201 v konstruktsii kosmicheskogo korablia “Buran” [Aluminum Alloy 1201 in the Design of the “Buran” Spacecraft], Aviatsionnye materialy i tekhnologii, no. S1, pp. 15–18.

29. Sheina, T. V., and Ivanov, A. V. (2011) Konstruktsii i stroitel ʼ nye materialy v arkhitekture otechestvennykh vystavochnykh pavil ʼ onov vsemirnykh universalnykh vystavok EKSPO [Designs and Building Materials in the Architecture of National Exhibition Pavilions at the World Universal Expositions, EXPO], Vestnik SGASU, Gradostroitelstvo i arkhitektura, no. 4, pp. 38–44.

30. Skillingberg, M., and Green, J. (2007) Aluminum Applications in the Rail Industry, Light Metal Age, no. 5, pp. 8–13.

31. Sokolov, R. S. (2000) Khimicheskaia tekhnologiia: uchebnoe posobie dlia studentov vysshikh uchebnykh zavedenii: v 2 t. [Chemical Technology: Textbook for Students of Higher Education Institutions. In 2 vols.]. Moskva: Gumanitarnyi izdatel ʼ skii tsentr VLADOS, vol. 2: Metallurgicheskie protsessy. Pererabotka khimicheskogo topliva. Proizvodstvo organicheskikh veshchestv i polimernykh materalov [Metallurgical Processes. Chemical Fuel Recycling. Production of Organic Substances and Polymeric Materials].

32. Starke, E. A., and Staley, J. T. (1996). Application of Modern Aluminum Alloys to Aircraft, Progress in Aerospace Sciences, vol. 32, no. 2–3, pp. 131–172.

33. The Egypt of Herodotus: Being the Second and Part of the Third Books of His History. With Notes and Preliminary Dissertations, by John Kenrick (1841). London: B. Fellowes.

34. Volkov, E. P., and Kostiuk, V. V. (2009) Novye tekhnologii v elektroenergetike Rossii [New Technologies in Russia ʼ s Electric Power Industry], Vestnik Rossiiskoi akademii nauk, vol. 79, no. 8, pp. 675–686.

35. Wilm, A. (1911) Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen, Metallurgie. Zeitschrift für die gesamte H ü ttenkunde, vol. 8, no. 8, pp. 225–227.

Алюминий был открыт Х Эрстедом в 1825 году

Алюминий был открыт Х. Эрстедом в 1825 году. Этот элемент относится к p-элементам главной подгруппы III группы Периодической системы химических элементов Д.И. Менделеева. Почти во всех соединениях алюминий трёхвалентен и имеет окисление +3. Рассмотрим строение атома алюминия:


1s22s22p63s23p13d0

В простом виде алюминий – металл серебристо-белого цвета. Он относится к лёгким и легкоплавким, обладает большой электрической проводимостью и теплопроводимостью. На воздухе изделия из алюминия покрываются тонкой оксидной плёнкой. Температура плавления у этого металла 659°С, а плотность 2,7 г/см3. Алюминий один из самых активных металлов, т.е. он является сильным восстановителем.

Получение. Впервые этот металл получили восстановлением его хлорида металлическим калием или натрием без доступа воздуха: AlCl3 + 3Na = Al + 3NaCl.

В промышленности алюминий получают электролизом раствора глинозёма (техн. Al2O3) в расплаве криолита Na3AlF6 с добавкой CaF2. Криолит используется как растворитель оксида алюминия, а добавка фторида кальция позволяет поддерживать температуру плавления в электролитической ванне не выше 1000°С.

Химические свойства. 1. Алюминий легко окисляется кислородом воздуха, покрываясь прочной защитной плёнкой оксида алюминия Al2O3. Подобная реакция протекает при горении раскалённого алюминия в чистом кислороде: 4Al + 3O2 2Al2O3. Данную реакцию мы можем наблюдать при горении бенгальских огней.

2. Если плёнку оксида алюминия разрушить, то этот металл будет активно взаимодействовать с водой при обычной температуре: 2Al + 6H2O = 2Al(OH)3 + H2↑.

3. Лишённый оксидной плёнки алюминий легко растворяется в щелочах с образованием алюминатов: 2Al + 2NaOH + 2H2O = 2NaAlO2 + 3H2↑.

4. Лишённый оксидной плёнки алюминий легко растворяется в разбавленных кислотах с выделением водорода: 2Al + 6HCl (разб.) = 2AlCl3 + 3H2↑,

2Al + 3H2SO4 (разб.) = Al2(SO4)3 + 3H2↑.

5. Сильно разбавленная и концентрированная азотная кислота пассивирует алюминий, поэтому для хранения и перевозки азотной кислоты используются алюминиевые ёмкости. Но при нагревании алюминий растворяется в азотной кислоте: Al + 6HNO3 (конц.) = Al(NO3)3 + 3NO2↑ + 3H2O.

6. Алюминий взаимодействует с галогенами: 2Al + 3Br2 2AlBr3.

7. При высоких температурах алюминий взаимодействует с другими неметаллами (серой, азотом, углеродом):

2Al + 3S Al2S3 (сульфид алюминия),

2Al + N2 2AlN (нитрид алюминия),

4Al + 3C Al4C3 (карбид алюминия). Реакции протекают с выделением большого количества тепла.

8. Для алюминия характерны реакции алюминотермии – восстановления металлов из их оксидов алюминием. Алюминотермия используется для получения редких металлов, образующих прочную связь с кислородом: ниобия Nb, тантала Та, молибдена Мо, вольфрама W и др. 2Al + 3WO3 3W + Al2O3.

Смесь мелкого порошка Al и магнитного железняка Fe3O4 называется термитом, при поджоге которого выделяется большое количество тепла, и температура смеси повышается до 3500°С. Этот процесс используется при термитной сварке: 8Al + 3Fe3O4 9Fe + 4Al2O3.

Нахождение в природе и применение. Алюминий – третий по распространённости элемент после кислорода и кремния в земной коре. В природе встречается в основном в виде: алюмосиликатов; бокситов; корунды; глинозёма.

Основные области применения алюминия и его сплавов

Алюминий используется в производстве зеркал оптических телескопов, в электротехнике, для производства сплавов (дюралюмин, силумин) в самолёто- и автомобилестроении, для алитирования чугунных и стальных изделий с целью повышения их коррозионной стойкости, для термической сварки, для получения редких металлов в свободном виде, в строительной промышленности, для изготовления контейнеров, фольги и т. п.

Cоединения алюминия: Оксид алюминия можно получить следующими сплсобами:

  1. 4Al + 3O2 2Al2O3.

  2. 2Al(OH)3= Al2O3. + 3 H2O

Химические свойства: Оксид алюминия и гидроксид алюминия – соединения амфотерные, т.е. обладающие одновременно основными и кислотными свойствами. Поэтому они растворяются как в кислотах, так и в щелочах.

  1. Al2O3 +6НСl = 2AlСl3.+ 3H2

2. Al2O3 + 2NaOH 2NaA1O2+H2O (при сплавлении образуются соли метаалюминиевой кислоты HAlO2, которые носят название алюминатов) Алюминаты образуются также при нагревании смеси оксида или гидроксида алюминия с соединениями щелочных или щелочноземельных металлов до 800°С и выше, например Аl2O3 + Na2CO3 = 2NaAlO2+CO2. Часто формулу алюмината пишут иначе: Na2O•Al2O3.

Al2O3 + 2NaOH + 3H2O =2Na[A1(OН)4] (при растворении образуется тетрагидроксоалюминат натрия)

Гидроксид алюминия А1(ОН)3 получают при взаимодействии раствора щелочи с растворами солей алюминия. А1С13 + 3NаОН = А1(ОН)3 + 3NаСl

Гидроксид алюминия тоже проявляет амфотерные свойства. При растворении гидроксида алюминия в щелочах, например, Al(OH)3+NaOH = NaA1O2+2H2O .

А1(ОН)3 + NаОН = NаАlO2 + 2Н2О (при сплавлении)

А1(ОН)3 + NаОН = 2Na[A1(OН)4] (при растворении)

При растворении гидроксида алюминия в кислотах образуются алюминиевые соли соответствующих кислот, например,

2Al(ОН)3+3Н24 = Al2(SO4)3 + 6H2O. А1(ОН)3 + 3НС1 = А1С13 + 3Н2О

Качественные реакции на А13+

1) А13+ + щелочь = А1(ОН)3↓ белый осадок

2) А13+ + Nа2СО3→ А1(ОН)3↓ + CO2

Производство алюминия

Алюминиевая промышленность России оказалась хорошо подготовленной к вхождению в мировой рынок, в то время как Швеция не оказалась готовой на 100%. И на сегодняшний день она остаётся одной из наиболее конкурентоспособных российских отраслей промышленности на мировом рынке, играя важную роль в экономике страны в целом.

В 2000 году производство алюминия первичного увеличилось по сравнению с 1995г. на 15,2%, среднегодовой темп прироста производства за этот же год составил 3,5%, что значительно превосходило темпы прироста за последние пять, начиная с 1995г.

В течение ряда лет доля продукции алюминиевой промышленности в общем объеме промышленной продукции России стабильно составляет около трех процентов.

Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом. Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.

Метод Холла (Таиланд) позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al2O3) в расплавленном криолите Na3AlF6, который частично добывают в виде минерала, а частично специально синтезируют.

Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора.

Почему возможно применение алюминия в промышленности. Алюминиевые сплавы

«Крылатый металл» является одним из самых распространенных в быту и производстве. Алюминий используется при создании мостов, автомобилей, самолетов и лаже смартфонов.

О том, где еще может использоваться алюминий, рассказывает Life.ru .

В небе и в космосе

Впервые алюминий «полетел» в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина. Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха. По-настоящему «крылатый» алюминий был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался… И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами. К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством «криогенного упрочнения»: в космическом холоде пластичность и прочность их только возрастают. Из тандема алюминия и скандия была выполнена обшивка космического челнока «Буран»: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий. Один из современных и перспективных авиакосмических материалов называется «бороалюминиевый композит», где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую «рубашку».

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году. Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan. Настоящее «алюминиевое вторжение» в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: «энергосберегающий» металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи «Витязь-М», чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод «Русала».

«Потолок, стены, стойки — всё алюминиевое. И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки, — рассказывает Виталий Деньгаев, гендиректор компании «Красноярские машиностроительные компоненты», где были созданы алюминиевые салоны «Витязя». — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!»

С 17 марта этого года 13 трамваев «Витязь-М» начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 «Витязей», 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла. Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, «аддитивное производство»). Additive по-английски — «добавка», и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия. Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические «кружева» незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия. Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания. Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона «Зенит-Арена» в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только «крылатый» металл, но ещё и «металл света». Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира. Так называется искусственный кристалл из особо чистого оксида алюминия. Сейчас тонны сырья для кристаллов в основном завозятся из-за границы, однако недавно в Набережных Челнах при поддержке Ростеха запущена первая в стране линия по производству особо чистого оксида алюминия для выращивания монокристаллов лейкосапфиров. В Алюминиевой ассоциации убеждены, что в течение 2-3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

В нашей жизни — повсюду…

…Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса «пауэрбанков» и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен. Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в «голом виде», как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида. Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями «баттинг» и «гидроформинг» позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные… «Впрочем, в этой сфере наметилась небольшая революция: инженеры «Русала» разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране , — рассказывает заместитель редактора журнала «Металлоснабжение и сбыт» Леонид Хазанов. — Проект поддерживают «Русал», как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей «Татпроф», готовый делать трубы для рам, и отечественная компания — сборщик велосипедов «Веломоторс». Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству».

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в «алюминиевую эру» мы вступаем, как ни странно, только сейчас. Основной владелец «Русала» Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Фото из открытых источников

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов — авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Конструкции из алюминиевых сплавов часто используют в морской воде. Морские бакены, спасательные шлюпки, суда, баржи строятся из сплавов алюминия с 1930 г. В настоящее время длина корпусов кораблей из сплавов алюминия достигает 61 м. Существует опыт алюминиевых подземных трубопроводов, сплавы алюминия обладают высокой стойкостью к почвенной коррозии. В 1951 году на Аляске был построен трубопровод длиной 2,9 км. После 30 лет работы не было обнаружено ни одной течи или серьёзного повреждения из-за коррозии.

Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. При частом намокании, если поверхность алюминиевых изделий не была дополнительно обработана, он может темнеть, вплоть до почернения в промышленных городах с большим содержанием окислителей в воздухе. Для избежания этого выпускаются специальные сплавы для получения блестящих поверхностей путём блестящего анодирования — нанесения на поверхность металла оксидной плёнки. При этом поверхности можно придавать множество цветов и оттенков. Например, сплавы алюминия с кремнием позволяют получить гамму оттенков, от серого до чёрного. Золотой цвет имеют сплавы алюминия с хромом.

В промышленности используются также и алюминиевые порошки. Применяются в металлургической промышленности: в алюминотермии, в качестве легирующих добавок, для изготовления полуфабрикатов путём прессования и спекания. Этим методом получают очень прочные детали (шестерни, втулки и др.). Также порошки используются в химии для получения соединений алюминия и в качестве катализатора (например, при производстве этилена и ацетона). Учитывая высокую реакционную способность алюминия, особенно в виде порошка, его используют во взрывчатых веществах и твёрдом топливе для ракет, используя его свойство быстро воспламеняться.

Учитывая высокую стойкость алюминия к окислению, порошок используются в качестве пигмента в покрытиях для окраски оборудования, крыш, бумаги в полиграфии, блестящих поверхностей панелей автомобилей. Также слоем алюминия покрывают стальные и чугунные изделия во избежание их коррозии.

По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe) и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло — и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов — дуралюмина (94% — алюминий, 4% медь (Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% — алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди (Cu), магния (Mg), железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) — широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ. При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу, и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь — воздушного позволило решить задачу уменьшения собственной («мертвой») массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач. Алюминием и его сплавами отделывают железнодорожные вагоны, изготовляют корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы. Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино — и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов. Благодаря высокой коррозионной стойкости и не токсичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Алюминий высокой чистоты находит широкое применение в новых областях техники — ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал. В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмо-термическими способами, для раскисления стали, сварки стальных деталей.

Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США — более 20 %. По масштабам производства и значению в хозяйстве алюминий прочно занял первое место среди других цветных металлов.

Федеральное агентство по образованию РФ

Государственный технологический университет

«Московский институт стали и сплавов»

Российская олимпиада школьников

«Инновационные технологии и материаловедение»

II-й этап: Научно-творческий конкурс

Направление (профиль):

«Материаловедение и технологии новых материалов»

«Свойства алюминия и области применения в промышленности и быту »

Работу выполнил:

Зайцев Виктор Владиславович

Москва, 2009

1. Введение

4. Применение алюминия и его сплавов в промышленности и быту

4. 1 Авиация

4.2 Судостроение

4.3 Железнодорожный транспорт

4.4 Автомобильный транспорт

4.5 Строительство

4.6 Нефтяная и химическая промышленность

4.7 Алюминевая посуда

5. Заключение

5.1. Алюминий — материал будущего

6. Список используемой литературы

1. Введение

В своём реферате на тему ”Свойства алюминия и области применения в промышленности и быту” я хотел бы указать на особенность этого металла и его превосходство перед другими. Весь мой текст является доказательством того, что алюминий метал будущего и без него будет трудным наше дальнейшее развитие.

1.1 Общее определение алюминия

Алюминий (лат. Aluminium, от alumen — квасцы) — химический элемент III гр. периодической системы, атомный номер 13, атомная масса 26,98154. Серебристо-белый металл, легкий, пластичный, с высокой электропроводностью, tпл = 660 °С. Химически активен (на воздухе покрывается защитной оксидной пленкой). По распространенности в природе занимает 3-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). По электропроводности алюминий — на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых. Его плотность равна всего 2,7*10 3 кг/м 3 . Алюминий имеет решётку гранецентрированного куба, устойчив при температурах от — 269 °С до точки плавления (660 °С). Теплопроводность составляет при 24°С 2,37 Вт×см -1 ×К -1 . Электросопротивление алюминия высокой чистоты (99,99%) при 20°С составляет 2,6548×10 -8 Ом×м, или 65% электросопротивления международного эталона из отожжённой меди. Отражательная способность полированной поверхности составляет более 90%.

1.2 История получения алюминия

Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед, когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием. Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарльзом Мартином Холлом. (С 1855 до 1890 было получено лишь 200 тонн алюминия, а за следующее десятилетие по методу Холла во всем мире получили уже 28000т. этого металла) Алюминий чистотой свыше 99,99% впервые был получен электролизом в 1920г. В 1925 г. в работе Эдвардса опубликованы некоторые сведения о физических и механических свойствах такого алюминия. В 1938г. Тэйлор, Уиллей, Смит и Эдвардс опубликовали статью, в которой приведены некоторые свойства алюминия чистотой 99,996%, полученного во Франции также электролизом. Первое издание монографии о свойствах алюминия вышло в свет в 1967г. Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978г. в породах Сибирской платформы был обнаружен самородный алюминий — в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть — восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl > 2Al + AlCl 3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

2. Классификация алюминия по степени чистоты и его механические свойства

В последующие годы благодаря сравнительной простоте получения и привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике — от электролитических конденсаторов до вершины электронной инженерии — микропроцессоров; в криоэлектронике, криомагнетике. Более новыми способами получения чистого алюминия являются метод зонной очистки, кристаллизация из амальгам (сплавов алюминия со ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах. В настоящее время используется следующая классификация алюминия по степени чистоты:

Механические свойства алюминия при комнатной температуре:

3. Основные легирующие элементы в алюминиевых сплавах и их функции

Чистый алюминий — довольно мягкий металл — почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз. Наиболее широко применяются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01 — 0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике (кроме деталей реакторов), т.к он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095 — 0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 — 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (»0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 — 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево-кадмиевых подшипниковых сплавах.

Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5 — 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Магний. Добавка магния значительно повышает прочность без снижения пластичности, повышает свариваемость и увеличивает коррозионную стойкость сплава.

Медь упрочняет сплавы, максимальное упрочнение достигается при содержании меди 4 — 6%. Сплавы с медью используются в производстве поршней двигателей внутреннего сгорания, высококачественных литых деталей летательных аппаратов.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всём объёме.

Алюминий — один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий — довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал — методом напыления металла в вакууме.

В настоящее время алюминий и его сплавы применяют во многих областях промышленности и техники. Прежде всего алюминий и его сплавы используют авиационная и автомобильная отрасли промышленности. Широко применяется алюминий и в других отраслях промышленности: в машиностроении, электротехнической промышленности и приборостроении, промышленном и гражданском строительстве, химической промышленности, производстве предметов народного потребления.

В авиапромышленности алюминий стал главным металлом благодаря тому, что его использование позволило решить задачу уменьшения массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.

В электротехнической промышленности алюминий и его сплавы применяют для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении он используется при производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Алюминий начали широко применять при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов благодаря его высокой коррозионной стойкости и нетоксичности.

Алюминиевая фольга стала очень распространенным упаковочным материалом, так как она гораздо прочнее и дешевле оловянной. Также алюминий стал широко использоваться для изготовления тары для консервирования и храпения продуктов сельского хозяйства. Но хранение не ограничивается маленькими баночками, алюминий используется для строительства зернохранилищ и других быстровозводимых сооружений, востребованных в сельском хозяйстве.

Также широко алюминий применяется в военной промышленности при строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, и дл многих других целей в военной технике.

Широкое применение алюминий высокой чистоты находит в таких новых областях техники как ядерная энергетика, полупроводниковая электроника, радиолокация.

Большое распространение алюминий получил как антикоррозийное покрытие, он прекрасно защищает металлические поверхности от действия различных химических веществ и атмосферной коррозии, по этому широко используется в сфере производства различного .

Широко используется еще одно полезное свойство алюминия — его высокая отражающая способность. Поэтому из него изготовливаются различные отражающие поверхностеи нагревательных и осветительных рефлекторов и зеркал.

Алюминий используют в металлургической промышленности в качестве восстановителя при получении ряда металлов, таких как хром, кальций, марганец. Он также используется для раскисления стали и сварки стальных деталей.

Не обойтись без алюминия и его сплавов сплавы в промышленном и гражданском строительстве. Он используется для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США- более 20 %.

Исходя из всех вышеперечисленных способов применения алюминия, можно сказать, что алюминий прочно занял первое место среди других цветных металлов по масштабам производства и значению в хозяйстве

Алюминий имеет колоссальное значение в промышленности вследствие повышенной пластичности, высокого уровня тепло- и электропроводности, низкой коррозии, поскольку образующаяся на поверхности пленка Al2O3 выступает защитником от окисления. Из алюминия получается отличный тонкий прокат, фольга, любой формы профиль при помощи прессования и других видов обработки давления. Из него создают разного типа провода, применяемые в электроаппаратуре.
Алюминий, как и железо очень редко применяется в чистом виде. Чтобы придать им заданные полезные качества на производстве добавляют небольшие количества (не больше 1 %) иных элементов, называемых легирующими. Таким образом получают сплавы железа, алюминия и других металлов.

Физические параметры алюминиевых сплавов

Алюминиевые сплавы имеют плотность, которая незначительно отличается от плотности чистого металла (2.7 г/см3). Она колеблется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95.
Процедура легирования почти не оказывает влияния на величину модуля упругости и модуля сдвига. К примеру, модуль упругости упрочненного дюралюминия Д16Т почти такой же, как модуль упругости чистого металла А5 (Е=7100 кгс/мм2). Тем не менее, за счет того, что максимум текучести сплавов на несколько единиц превышает максимум текучести чистого алюминия, сплавы алюминия уже можно использовать в качестве конструкционного материала с различным уровнем нагрузок (все зависит от марки сплава и его состояния).
Вследствие низкого показателя плотности удельное значение максимума прочности, максимума текучести и модуля упругости (соответствующие параметры, разделенные на величину плотности) для прочных алюминиевых сплавов можно сравнить с такими же показателями удельных величин для стали и титановых сплавов. Это дает возможность алюминиевым сплавам с высокой прочностью вы ступать конкурентами для стали и титана, однако исключительно до температур не выше 200 С.
Большая часть алюминиевых сплавов отличается худшей электро- и теплопроводностью, коррозионной стойкостью и свариваемостью в сравнении с чистым алюминием.
Известно, что сплавы с более высокой степенью легирования характеризуются существенно меньшей электро- и теплопроводностью. Эти показатели находятся в непосредственной зависимости от состояния сплава.
Самые лучшие коррозионные свойства алюминиевых сплавов наблюдаются у сплавов АМц, АМг, АД31, а худшие — у высоко-прочных сплавов Д16, В95, АК. Помимо этого, коррозионные показатели термоупрочняемых сплавов в значительной степени зависят от режима закалки и старения. К примеру, сплав Д16 чаще всего используется в естественно-состаренном состоянии. Тем не менее, при температуре более 80оС его коррозионные показатели существенно снижаются и для использования в условиях более высоких температур зачастую применяют искусственное старение.
Хорошо поддаются всем видам сварки сплавы АМц и Амг. В процессе сварки нагартованного проката в области сварочного шва осуществляется отжиг, по этой причине прочность шва приравнивается к прочности основного материала в отожженном состоянии.

Виды алюминиевых сплавов

Сегодня очень развито производство алюминиевых сплавов. Существует два типа алюминиевых сплавов:

  • деформируемые, из которых создают листы, трубы, профиль, паковки, штамповки
  • литейные, из которых осуществляется фасонное литье.

Широкое применение алюминиевых сплавов обусловлено их свойствами. Такие сплавы очень популярны в авиации, автомобилестроении, судостроении и прочих сферах народного хозяйства.
Неупрочняемые сплавы Al — Mn (АМц) и Al — Mg (АМг) являются коррозионностойкими материалами, из которых изготавливают бензобаки, маслобаки, корпуса судов.
Упрочняемые сплавы Al -Mg — Si (АВ, АД31, АД33) применяются для создания лопастей и деталей кабин вертолетов, барабанов колес гидросамолетов.
Сплав алюминия и меди — дюралюминий или дюраль. Сплав с кремнием называют силумином. Сплав с марганцем — АМц имеет повышенную коррозионную стойкость. Такие элементы, как Ni, Ti, Cr, Fe в сплаве способствуют повышению жаропрочности сплавов, затормаживанию процесса диффузии, а присутствие лития и бериллия повышают модуль упругости.
Жаропрочные алюминиевые сплавы системы Al — Cu — Mn (Д20, Д21) и Al — Cu — Mg — Fe — Ni (АК — 4 — 1) используют для создания поршней, головок цилиндров, дисков, лопаток компрессоров и прочих деталей, которым предстоит функционировать при температурах до 300°С. Жаропрочности можно достичь легированием Ni, Fe, Ti, (Д20, Д21, АК — 4 — 1).
Литейные алюминиевые сплавы используют для создания литых заготовок. Это сплавы Al — Si (силумины), Al — Cu (дюрали), Al — Mg (Амг). В числе силуминов стоит отметить сплавы Al — Si (AЛ — 2), Al — Si — Mg (АЛ — 4, АЛ — 9, АЛ — 34), упрочняемые при помощи термообработки. Силумины отлично поддаются литью, а также обработке резанием, свариванием, также их можно анодировать и даже пропитывать лаками.
Высокопрочные и жаропрочные литейные сплавы систем Аl — Cu — Mn (АЛ — 19), Al — Cu — Mn — Ni (АЛ — 33), Al — Si — Cu — Mg (АЛ — 3, АЛ — 5). Прошедшие процесс легирования хромом, никелем, хлором или цинком выдерживают температуру до 300°С. Из них создают поршни, головки блока, цилиндров.
Спеченный алюминиевый порошок (САП) получают методом прессования (700 МПа) при температуре от 500 до 600°С алюминиевой пудры. САП отличается повышенной прочностью и уровнем жаропрочности до 500°С.

Марки алюминиевых сплавов

Определенные характеристики алюминиевых сплавов соответствуют конкретным маркам этих сплавов. Признанные международные и национальные нормативы (раньше были немецкие DIN, а сегодня европейские EN, американские ASTM и международные ISO) также как и российские ГОСТы рассматривают по отдельности чистый алюминий и его сплавы. Чистый алюминий согласно этим документам делят на марки (grades), а не на сплавы (alloys).
Все марки алюминия делят на:

  • алюминий высокой чистоты (99,95 %)
  • технический алюминий, имеющий около 1 % примесей или добавок.

Стандарт EN 573-3 определяет разные по чистоте версии алюминия, к примеру, «алюминий EN AW 1050A», и алюминиевые сплавы, к примеру, «сплав EN AW 6060». В тоже время, достаточно часто алюминий называют сплавом, к примеру, «алюминиевый сплав 1050А».
В российских стандартах, к примеру, в документе ГОСТ 4784-97 «Алюминий и сплавы алюминиевые деформируемые» и иных документах по алюминию и алюминиевым сплавам, вместо термина «обозначения» используется близкие термин «марка», только в английском эквиваленте «grade». По существующим стандартам нужно использовать фразы типа «алюминий марки АД0» и «алюминиевый сплав марки АД31».
Однако зачастую термин «марка» используют лишь для алюминия, а алюминиевые сплавы называют просто «алюминиевыми сплавами» без всяких марок, к примеру, «алюминиевый сплав АД31».
Иногда люди путают термин «марка» с термином «маркировка». ГОСТ 2.314-68 определяет термин маркировка, как совокупность знаков, характеризующих продукт, к примеру, обозначение, шифр, номер партии (серии), дата изготовления, товарный знак фирмы. При этом марка — это монтажные или транспортные обозначения. Следовательно, обозначение или марка сплава — это всего лишь небольшая часть маркировки, но не сама маркировка.
Марку алюминия или сплава наносят на один из торцов слитка, чушки. При помощи несмываемой краски наносят цветные полосы, которые являются маркировкой. К примеру, согласно ГОСТ 11069-2001 алюминий марки А995 промаркирован четырьмя зелеными вертикальными полосами.
Согласно документу ГОСТ 11069-2001 марки алюминия обозначаются цифрам после запятой в процентном содержании алюминия: А999, А995, А99, А85, А8, А7, А6, А5 и А0. При этом самый чистый алюминий — А999, в нем содержится 99,999 % алюминия. Он используется для лабораторных опытов. В промышленной отрасли используют алюминий высокой чистоты — от 99,95 до 99,995 % и технической чистоты — от 99,0 до 99,85 %.

Состояния (обработки) полуфабрикатов из деформируемых алюминиевых сплавов

Маркировка

Состояние, назначение

После изготовления, без дополнительной термической обработки. Степень нагартовки и механические свойства не контролируются

Горячекатаное

Горячепрессованное

Отожженное (мягкое). Наиболее высокая пластичность и стабильность размеров

Нагартованное (холоднодеформированное)

Усиленно нагартованное (прокаткой листов около 20 %, для максимального упрочнения)

Нагартованное на три четверти (3/4), повышение прочности

Полунагартованное (1/2), повышение прочности

Нагартованное на одну четверть (1/4), повышение прочности

Закаленное* (нестабильное, обычно указывается длительность естественного старения после закалки), повышение прочности

Закаленное + естественно состаренное. Получение достаточно высокой прочности, повышенной пластичности, трещиностойкостии, сопротивления усталости

Закаленное + искусственно состаренное на максимальную прочность

Закаленное + искусственно состаренное. Улучшение характеристик сопротивления коррозии, трещиностойкости, пластичности при некотором снижении прочности. В русской маркировке возрастание первой цифры при букве указывает на увеличение степени перестаривания и разупрочнения

Т31, Т36,
Т37, Т39

Закаленное + естественно состаренное + нагартованное. На степень деформации нагартовки указывает вторая цифра. Повышение прочности при снижении характеристик пластичности, трещиностойкости

Т81, Т83,
Т86, Т87

Закаленное + нагартованное + искусственно состаренное. На степень деформации (нагартовки) указывает вторая цифра. Повышение прочности

Закаленное + искусственно состаренное + нагартованное. Повышение прочности особенно при совмещении с процессом формообразования детали

Современное алюминиевое производство: russos — LiveJournal

АО «Казахстанский электролизный завод» (КЭЗ) — единственный производитель алюминия в Республике Казахстан, расположеный в Павлодаре.

Это промышленное предприятие стоимостью $900 млн представляет собой крупнейшее в Казахстане частное капиталовложение в металлургию и горнодобывающую промышленность. Производит первичный аллюминий — алюминиевые чушки технологической чистоты, весом 20 кг, увязанные в пакеты весом 1080±100 кг.

Под катом вы найдете очень краткое описание производства. Кто хочет читать в мельчайших подробностях прошу к Вите.

Сначала немного истории:
В 1854 году французским учёным Анри Этьеном Сент-Клер Девилем, был открыт способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия. За 36 лет его применения, с 1855 по 1890 гг., способом Сент-Клер Девиля было получено 200 т металлического алюминия.

В 1856 году на заводе братьев Тисье в Руане Девилль организовал первое промышленное предприятие по выпуску алюминия. При этом стоимость 1 кг алюминия сначала равнялась 300 франкам. Через несколько лет удалось снизить продажную цену до 200 франков за 1 кг, но все равно она оставалась исключительно высокой. Алюминий в это время употребляли почти как драгоценный металл для производства различных изделий.

Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия в расплаве криолита  с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока.

Сущность процесса производства алюминия заключается в получении безводного, свободного от примесей оксида алюминия (глинозёма) с последующим получением металлического алюминия путем электролиза растворенного глинозема в криолите.

1. Для подвода тока к электролиту применяют угольный электрод.

2. Для подвода тока к электроду применяют стальной проводник (ниппель).

3. Электроды изготовляются в анодном цехе.

4.

5.

6. На заводе стоит китайское оборудование.

7. Электролизный цех.

8. Электролизер представляет собой ванну с расплавленным криолитом, двойным фторидом натрия и алюминия, в котором растворено 3–5% глинозема, – плавающим на подушке из расплавленного алюминия. Стальные шины, проходящие через подину из углеродистых плит, используются для подачи напряжения на катод, а подвешенные угольные бруски, погруженные в расплавленный криолит, служат анодами. Рабочая температура процесса близка к 950° С, что значительно выше температуры плавления алюминия. Температура в электролизной ванне регулируется изменением зазора между анодами и катодным металлоприемником, на который осаждается расплавленный алюминий.

9. Сила тока на электролизерах составляет 150 000 А. Рабочее напряжение на ванне 4-5 В. Рядом с электролизерами присутствует сильное электромагнитное поле.

10. Космическая установка на мостовом кране для всех манипуляций с электролизерами.

11. Ванны электролизеров до горизонта.

12. За моей спиной ещё столько же, а рядом такой же соседний цех. Есть задел под строительство ещё цехов.

13. Мегаустановка.

14. Выгрузка чего-то.

15. Установка новых электродов.

16. Использованные электроды.

17. Специальная машина транспорта анодных паллет. Применяются для транспортировки свежих анодов и анодных огарков между анодо-монтажным отделением (АМО) и корпусом электролиза.

18.

19. Литейных цех.

20. Основное оборудование этого отделения — отражательные печи (миксеры) с электрическим обогревом.

21. «Чайник» с алюминием.

22. После выдерживания жидкого алюминия в печи в течении 30-45 минут при температуре около 700 градусов происходит разливка алюминия.

23. Даешь металл!

24. Разливочная машина конвейерного типа.

25.  Готовая продукция упаковывается в паллеты по 1000 кг и отправляется на склад. Стоимость одной палетты примерно 2600 $

26. А использованные электроды возвращаются в анодный цех.

27. Стальной проводник освобождается от остатков электрода и снова идет в дело.

Это вы посмотрели краткую фотоэкскурсию на современный алюминиевый завод. А вот тут вы можете посмотреть на фотографии Волгоградского алюминиевого завода, который работает с 1959 года по старой технологии. Если в Казахстане угольные электроды вставляются сверху печи, то тут порошок засыпается сбоку.

Казахстан:
Небольшой сталелитейный завод.
Производство керамического кирпича.
Медео и Чимбулак.
Васильковский ГОК.
Производство металлического кремния
Самый большой в мире угольный разрез — «Богатырь» и роторный экскаватор СРс(К)-2000
Как делают минералку
КазБелАЗ
Производство стеклопластиковых труб
Вагоносборочное производство
Купажный цех
Американские буренки в Казахстане
Локомотивосборочный завод по производству тепловозов ТЭ33А «Evolution»
Экибастузская ГРЭС-2
Экибастузская ГРЭС-1

Алюминий — экспертная письменная, удобная информация об элементах

Химический элемент алюминий классифицируется как другой металл. Он был открыт в 1750-х годах Андреасом Маргграфом.

Зона данных

Классификация: Алюминий — это «другой металл»
Цвет: серебристый
Атомный вес: 26,98 154 г / моль
Состояние: цельный
Температура плавления: 660.32 o С, 933,57 К
Температура кипения: 2466,85 o C, 2740,00 K
Электронов: 13
Протонов: 13
Нейтроны в наиболее распространенном изотопе: 14
Электронные оболочки: 2,8,3
Электронная конфигурация: 1 с 2 2 с 2 2p 6 3s 2 3p 1
Плотность при 20 o C: 2. 702 г / см 3
Показать больше, в том числе: тепла, энергии, окисления,
реакций, соединений, радиусов, проводимости
Атомный объем: 9,98 см 3 / моль
Состав: fcc: гранецентрированный кубический
Твердость: 2,8 МОС
Удельная теплоемкость 0,90 Дж г -1 К -1
Теплота плавления 10.790 кДж моль -1
Теплота распыления 326 кДж моль -1
Теплота испарения 293,40 кДж моль -1
1 st энергия ионизации 577,6 кДж моль -1
2 nd энергия ионизации 1816,6 кДж моль -1
3 rd энергия ионизации 2744. 7 кДж моль -1
Сродство к электрону 42,6 кДж моль -1
Минимальная степень окисления 0
Мин. общее окисление нет. 0
Максимальное число окисления 3
Макс. общее окисление нет. 3
Электроотрицательность (шкала Полинга) 1,61
Объем поляризуемости 8.3 Å 3
Реакция с воздухом мягкая, с высотой ⇒ Al 2 O 3
Реакция с 15 M HNO 3 пассивированный
Реакция с 6 M HCl мягкий, ⇒ H 2 , AlCl 3
Реакция с 6 М NaOH мягкий, ⇒ H 2 , [Al (OH) 4 ]
Оксид (оксиды) Al 2 O 3
Гидрид (ы) AlH 3
Хлориды AlCl 3 и Al 2 Класс 6
Атомный радиус 125 вечера
Ионный радиус (1+ ион)
Ионный радиус (2+ ионов)
Ионный радиус (3+ ионов) 53. 17:00
Ионный радиус (1-ионный)
Ионный радиус (2-ионный)
Ионный радиус (3-ионный)
Теплопроводность 237 Вт м -1 К -1
Электропроводность 37,6676 x 10 6 См -1
Температура замерзания / плавления: 660.32 o С, 933,57 К

Луи де Морво считал, что в оксиде алюминия можно обнаружить новый металл. Он был прав, но не смог изолировать это. Де Морво изобрел первый систематический метод присвоения имен химическим веществам, и, как мы видим, он был пионером в области воздухоплавания.

Периодическая таблица алюминия
Окрестности

Открытие алюминия

Доктор Дуг Стюарт

Люди использовали квасцы с древних времен для окрашивания, дубления и остановки кровотечений. Квасцы — сульфат алюминия калия.

В 1750-х годах немецкий химик Андреас Маргграф обнаружил, что может использовать раствор щелочи для осаждения нового вещества из квасцов. Маргграф был первым человеком, выделившим цинк в 1746 году.

Вещество Маргграф, полученное из квасцов, было названо глиноземом французским химиком Луи де Морво в 1760 году. Теперь мы знаем, что глинозем — это оксид алюминия — химическая формула Al 2 O 3 .

Де Морво полагал, что оксид алюминия содержит новый металлический элемент, но, как и Маргграф, он не смог извлечь этот металл из его оксида. (1), (2)

В 1807 или 1808 годах английский химик Хамфри Дэви разложил глинозем в электрической дуге, чтобы получить металл. Металл был не чистым алюминием, а сплавом алюминия и железа.

Дэви назвал новый металл алюминием, а затем переименовал его в алюминий. (3)

Алюминий был впервые выделен в 1825 году Гансом Кристианом Эрстедом (Эрстед) в Копенгагене, Дания, который сообщил, что «кусок металла, который по цвету и блеску несколько напоминает олово».

Орстед производил алюминий путем восстановления хлорида алюминия с помощью калийно-ртутной амальгамы.Ртуть удаляли нагреванием, чтобы остался алюминий.

Немецкий химик Фридрих Велер (Велер) повторил эксперимент Эрстеда, но обнаружил, что он дал только металлический калий. Двумя годами позже Велер разработал этот метод, введя в реакцию улетучившийся трихлорид алюминия с калием с образованием небольших количеств алюминия. (1)

В 1856 г. Берцелиус заявил, что в 1827 г. преуспел Вёлер. Поэтому открытие обычно приписывают Вёлеру.

Совсем недавно Фог повторил первоначальные эксперименты и показал, что метод Эрстеда может дать удовлетворительные результаты.

Это укрепило приоритет оригинальной работы Орстеда и его позицию первооткрывателя алюминия. (4)

В течение почти трех десятилетий алюминий оставался новинкой, дорогим в производстве и более ценным, чем золото, пока в 1854 году Анри Сен-Клер Девиль в Париже, Франция, не нашел способ заменить калий гораздо более дешевым натрием в реакции выделения алюминия. Затем алюминий стал более популярным, но, поскольку он все еще был довольно дорогим, использовался в декоративных, а не практических ситуациях.

Наконец, в 1886 году американский химик Чарльз Мартин Холл и французский химик Поль Эру независимо друг от друга изобрели процесс Холла-Эру, который с небольшими затратами позволяет изолировать металлический алюминий от его оксида электролитическим способом.

Алюминий и сегодня производится по технологии Холла-Эру.

Интересные факты об алюминии

  • Производство алюминия требует много энергии — 17,4 мегаватт-часов электроэнергии для производства одной метрической тонны алюминия; это в три раза больше энергии, чем требуется для производства метрической тонны стали. (5)
  • Алюминий — отличный металл для вторичной переработки. Переработка использует только 5% энергии, необходимой для производства алюминия из руды бокситов. (6)
  • Алюминий не прилипает к магнитам при нормальных условиях.
  • В земной коре алюминия больше, чем любого другого металла. Приблизительно 8 процентов алюминия является третьим по распространенности элементом в коре нашей планеты после кислорода и кремния.
  • Несмотря на его большое количество, в 1850-х годах алюминий был дороже золота.В 1852 году алюминий стоил 1200 долларов за килограмм, а золото — 664 доллара за килограмм.
  • Цены на алюминий иллюстрируют опасность финансовых спекуляций: в 1854 году Сен-Клер Девиль нашел способ заменить калий гораздо более дешевым натрием в реакции выделения алюминия. К 1859 году алюминий стоил 37 долларов за кг; его цена упала на 97% всего за пять лет.
  • Там, где предыдущий пункт подчеркивает опасность спекуляций, этот пункт подчеркивает один из триумфов химии: электролитический процесс Холла-Эру был открыт в 1886 году.К 1895 году цена на алюминий упала до 1,20 доллара за кг.
  • Рубин представляет собой в основном оксид алюминия, в котором небольшое количество ионов алюминия заменено ионами хрома.
  • Алюминий образуется при ядерном пожаре тяжелых звезд, когда протон присоединяется к магнию. (Магний сам образуется в звездах путем ядерного синтеза двух атомов углерода.) (7)

Алюминий — самый распространенный металл в коре нашей планеты: больше только кислорода и кремния.Изображение предоставлено USGS.

Алюминиевый коллектор от космического корабля Genesis. Алюминий аккумулировал быстро движущиеся частицы благородного газа солнечного ветра; эти виды врезались в металл и застревали в нем. Космический корабль вернулся на Землю, и благородные газы были проанализированы, чтобы узнать о происхождении Солнечной системы. Изображение NASA / JSC.

Заливка расплавленного алюминия.

Внешний вид и характеристики

Вредные воздействия:

Нет подтвержденных проблем; проглатывание может вызвать болезнь Альцгеймера

Характеристики:

Алюминий — серебристо-белый металл.Он не прилипает к магнитам (он парамагнитен, поэтому его магнетизм в нормальных условиях очень и очень слабый). Это отличный электрический проводник. Он имеет низкую плотность и высокую пластичность. Он слишком реактивен, чтобы его можно было найти в качестве металла, хотя, очень редко, можно найти самородный металл. (8)

Внешний вид алюминия тусклый, а его реакционная способность пассивируется пленкой оксида алюминия, которая естественным образом образуется на поверхности металла при нормальных условиях.Оксидная пленка дает материал, устойчивый к коррозии. Пленку можно утолщать с помощью электролиза или окислителей, и алюминий в этой форме будет противостоять воздействию разбавленных кислот, разбавленных щелочей и концентрированной азотной кислоты.

Алюминий расположен достаточно далеко в правой части таблицы Менделеева, что показывает некоторые намеки на поведение неметаллов, реагируя с горячими щелочами с образованием алюминатных ионов [Al (OH) 4 ] , а также на более типичную реакцию металлов. с кислотами для выделения газообразного водорода и образования положительно заряженного иона металла Al 3+ .т.е. алюминий амфотерный.

Чистый алюминий довольно мягкий и недостаточно прочный. Алюминий, используемый в коммерческих целях, содержит небольшое количество кремния и железа (менее 1%), что приводит к значительному повышению прочности и твердости.

Применение алюминия

Благодаря низкой плотности, низкой стоимости и коррозионной стойкости алюминий широко используется во всем мире.

Он используется в широком спектре продуктов: от банок для напитков до оконных рам, от лодок до самолетов.Боинг 747-400 содержит 147 000 фунтов (66 150 кг) высокопрочного алюминия.

В отличие от некоторых металлов, алюминий не имеет запаха, поэтому его широко используют в упаковке пищевых продуктов и в посуде для приготовления пищи.

Алюминий не так хорош, как серебро или медь, но является отличным проводником электричества. Кроме того, он значительно дешевле и легче этих металлов, поэтому широко используется в воздушных линиях электропередачи.

Из всех металлов только железо используется более широко, чем алюминий.

Численность и изотопы

Обилие земной коры: 8.23% по массе, 6,32% по моль

Изобилие солнечной системы: 56 частей на миллион по весу, 2,7 частей на миллион по молям

Стоимость, чистая: 15,72 доллара за 100 г

Стоимость, оптом: 0,20 $ за 100 г

Источник: Алюминий — самый распространенный металл в земной коре и третий по содержанию элемент в земной коре после кислорода и кремния. Алюминий слишком реактивен, чтобы его можно было найти в чистом виде. Бокситы (в основном оксид алюминия) — самая важная руда.

Изотопов: 15, период полураспада которых известен, массовые числа от 22 до 35.Из них только два встречаются в природе: 27 Al, который является стабильным, и 26 Al, который является радиоактивным с периодом полураспада 7,17 x 10 5 лет. 26 Al образуется при бомбардировке космическими лучами аргона в атмосфере Земли.

Список литературы
  1. Ян Макнил, Энциклопедия истории технологии. (1996) стр.102. Рутледж
  2. Дэвид Р. Лид, Справочник CRC по химии и физике. (2007) 4-3. CRC
  3. Халвор Кванде, Двести лет алюминия… или это алюминий?, Журнал Общества минералов, металлов и материалов, (2008) том 60, номер 8: стр. 23-24.
  4. http://www.nature.com/nature/journal/v135/n3417/abs/135638b0.html
  5. Китайская алюминиевая фольга, Wall Street Journal
  6. Паоло Вентура, Роберта Карини, Франческа Д’Антона, Глубокое понимание нуклеосинтеза Mg-Al в массивных AGBs и звездах SAGB., Mon. Нет. R. Astron. Soc., 2002.
  7. .
  8. Берроуз и др., Chemistry 3 , (2009) Oxford University Press, p1201.
  9. Деков и др., American Mineralogist. (2009) 94: p1283-1286.
Процитируйте эту страницу

Для интерактивной ссылки скопируйте и вставьте одно из следующего:

  алюминий 
 

или

  Факты об алюминиевых элементах 
 

Чтобы процитировать эту страницу в академическом документе, используйте следующую ссылку, соответствующую требованиям MLA:

 «Алюминий». Chemicool Periodic Table. Chemicool.com. 26 июля 2014 г. Интернет.
. 

C&EN: ЭТО ЭЛЕМЕНТ: ПЕРИОДИЧЕСКАЯ ТАБЛИЦА

I

АЛЮМИНИЙ

ГРИГОРИЙ Х.РОБИНСОН , УНИВЕРСИТЕТ ГРУЗИИ

P Возможно, 13-й элемент периодической таблицы в большей степени, чем все остальные, представляет собой один из крайних контрастов. Хотя когда-то он высоко ценился как «драгоценный металл», сегодня цена килограмма этого элемента значительно ниже утренней чашки изысканного кофе; сплавы этого элемента часто бывают плотными и прочными, но чистый элемент — это легкий и мягкий металл; Хотя этот элемент достаточно реактивен, он также легко пассивируется, что делает его по существу устойчивым к ржавчине.

Даже его положение в периодической таблице — изящно расположенное между единственным неметаллическим элементом группы 13, бором, и странно ртутным металлом галлия — возможно, свидетельствует о том, насколько необычным является элемент 13. Нет даже полного согласия по написанию и произношению: американцы обычно используют aluminium , в то время как значительная часть остального англоязычного мира предпочитает aluminium . У алюминия, как и у большинства других элементов, есть ряд интересных мелочей: например, цифра 2.73-килограммовая пирамида из «драгоценного» алюминия 1884 года возвышается на монументе Вашингтона.

КРАТКИЙ ОБЗОР АЛЮМИНИЯ
Название: От латинского alumen, alum.
Атомная масса: 26.98.
История: Обнаружен в 1825 году датским химиком Гансом Кристианом Эрстедом.
Происхождение: Алюминий — самый распространенный металл в земной коре, но в природе он не является свободным. Сегодня почти весь алюминий в мире получают путем выделения из оксида алюминия, полученного из бокситовой руды.
Внешний вид: Серебристо-белый, легкий металл.
Поведение: Мягкое, немагнитное и неискрящее. Чистый алюминий легко формовать, подвергать механической обработке и литью, а также его можно легировать различными металлами.Это также хороший проводник электричества и отличный отражатель излучения. Металл, как правило, нетоксичен, но может быть опасен при проглатывании.
Использование: Используется для изготовления банок, бочонков, оберточной фольги и домашней утвари. Он имеет множество применений в автомобильной, авиационной и строительной отраслях.
ПОДДЕРЖКА Прочные, но легкие алюминиевые сплавы используются в строительстве, например, в строительных лесах для реконструкции памятника Вашингтону в 1999 году.
NOAA ФОТО
В то время как Ганс Христиан Эрстед признан первым, кто выделил алюминий в 1825 году в Копенгагене, Дания, выдающийся немецкий химик Фридрих Велер обычно считается первым, кто получил чистый образец этого элемента путем химического восстановления в 1827 году. Открытие экономичного производства алюминия независимо двумя молодыми людьми, американцем Чарльзом М. Холлом и французом Полем Л. Т. Эру, посредством электролиза глинозема, растворенного в криолите, хорошо задокументировано.Несомненно, алюминиевая промышленность в том виде, в котором мы ее знаем сегодня, возникла благодаря творческому гению Холла и Эру. Однако мое увлечение алюминием связано не столько с самим элементом, сколько с отношениями между Фрэнком Фаннингом Джеветтом и Холлом.

Джеветт, получивший образование в Йельском университете в области химии и минералогии, страстно любил путешествия. Действительно, он недолго учился в Университете Геттингена, проводя время в лаборатории Вёлера. В 1880 году 36-летний Джеветт был назначен профессором химии и минералогии в Оберлинском колледже.Таким образом, была подготовлена ​​почва для много путешествовавшего профессора и выдающегося студента. Джеветт — (чаще всего) анонимный «профессор» в Оберлине, который на своем уроке химии, где присутствовал Холл, высказал мнение, что большие финансовые награды ожидают человека, который сможет изобрести экономичный способ производства металлического алюминия из его повсеместно распространенной руды. Роль Джеветта в жизни Холла оказалась решающей в том открытии, которое в конечном итоге привело к появлению американской алюминиевой компании Alcoa (доход в 2002 году составил 20 долларов.3 миллиарда) и мировой алюминиевой промышленности.

Инициатива и напор Холла остаются впечатляющими. Для ученого-любителя упорно преследовать научную проблему такого масштаба и в конечном итоге добиться успеха в таком начинании почти невозможно. Записи показывают, что Джуэтт был советником, наставником, советником и другом Холла. Кроме того, Джуэтт часто предоставлял начинающему предпринимателю материалы и помещения для лаборатории. Джеветт, по общему мнению, скромный человек, очевидно, не был заинтересован в том, чтобы делиться похвалами, славой или финансовыми наградами, которые вскоре выпадут на долю его ученика.Как элегантно заявил Норман К. Крейг из Оберлинского колледжа, Джеветт «был доволен тем, что сообщил своим одноклассникам из Йельского университета, что его величайшим открытием было открытие человека — Чарльза Холла» [ Chem. Heritage, 15, 36 (1997)].

На мой взгляд, отношения Джеветта и Холла олицетворяют идиллическую динамику профессор-студент. Именно такие отношения я представляю, когда работаю со студентами: синергетическое стремление к научному неизвестному. Безусловно, в моей повседневной борьбе в лаборатории ставки намного ниже.Проблемы, с которыми сталкиваются мои ученики и я, намного меньше по масштабам, и любое возможное немедленное воздействие часто неоднозначно.

Тем не менее, отношения Джеветт-Холл побуждают меня к странному личному, поскольку я стремлюсь улучшить свои педагогические навыки и отточить свои исследовательские способности. Может ли моя точка зрения на эти отношения быть довольно наивной интерпретацией? Почти наверняка. Является ли это просто устаревшим комментарием к современной динамике профессор-студент? Наиболее ясно. Может ли все это быть не более чем «непрофессиональной» тратой времени? Точно нет! Динамика профессор-студент отражает многое из того, что я считаю уникально привлекательным в академических кругах.Я наблюдал параллели с отношениями Джеветта и Холла в легкой атлетике: в теннисе это тот идеально выполненный ас при подаче в середине корта; в баскетболе — это изящно изогнутый прыжок из-за угла, поражающий «только сетку»; В гольфе это тот великолепный удар с ти на 18-й лунке пар 5 — вы знаете, тот единственный удар, который снова и снова возвращает вас назад.


Грегори Х. Робинсон — выдающийся профессор химии в Университете Джорджии.Его исследовательские интересы — металлоорганическая химия металлов основной группы — сдерживаются его недавней одержимостью гольфом. Автор благодарит Нормана К. Крейга (Оберлинский колледж) и Ричарда К. Хилла (Университет Джорджии) за любезную помощь в написании этого эссе.

Верх

Новости химии и машиностроения
Copyright © 2003 Американское химическое общество

Краткая история алюминия, от драгоценных металлов до пивной банки: короткая волна: NPR

Алюминиевые слитки сложены штабелями на складе в порту Нового Орлеана в прошлом году. Блумберг через Getty Images скрыть подпись

переключить подпись Блумберг через Getty Images

Алюминиевые слитки сложены штабелями на складе в порту Нового Орлеана в прошлом году.

Блумберг через Getty Images

Алюминий используется везде, от газировки до космических капсул, но так было не всегда.

Short Wave отмечает 150-летие периодической таблицы Менделеева с профилями некоторых из ее любимых элементов. Вот несколько вещей, которые вы могли не знать об алюминии.

Алюминий — самый распространенный металл на Земле и один из самых дешевых для покупки. Но раньше оно было дороже золота.

Алюминий — третий по распространенности элемент в земной коре, но он также легко связывается с другими элементами. Это означает, что он не встречается в природе в чистом виде.

В течение десятилетий после того, как он был впервые идентифицирован британским химиком сэром Хамфри Дэви в начале 1800-х годов, ученые и мастера пытались, и в основном безуспешно, найти хороший метод отделения алюминия от всего остального, что прилипало к нему.

Император Франции Наполеон III был одним из первых сторонников алюминия. Он надеялся, что из легкого металла можно будет производить оружие и доспехи, что даст его солдатам преимущество в бою.Император профинансировал работу Анри Сент-Клер Девиль, который нашел химический метод получения чистого алюминия, но это все еще был медленный процесс. Часто повторяется история о том, что Наполеон III, разочарованный прогрессом в производстве алюминия, расплавил большую часть французских запасов и превратил их в столовые приборы. Он и его почетные гости использовали алюминиевую посуду, а все остальные за императорским обеденным столом обходились золотом.

Алюминиевый наконечник помещен на монумент Вашингтона 7 декабря.6, 1884 г., как показано на современной иллюстрации. Служба национальных парков скрыть подпись

переключить подпись Служба национальных парков

В 1884 году, когда памятник Вашингтону был завершен, он был покрыт большой алюминиевой отливкой.Согласно статье 1995 года, опубликованной в журнале Общества минералов, металлов и материалов, церемония закрытия и освящение памятника «получила широкую огласку в национальных газетах, а алюминиевая точка или вершина были достойно описаны». «Сотни тысяч, возможно, миллионы людей, которые никогда раньше даже не слышали об алюминии, теперь знают, что это такое».

В то время фунт алюминия стоил 16 долларов (419 долларов в сегодняшних долларах).

Два года спустя был открыт коммерчески жизнеспособный метод извлечения алюминия из руды, и к 1889 году цена упала до 2 долларов за фунт.За 10 лет промышленной переработки он упал до 50 центов за фунт.

Современный метод получения алюминия был открыт одновременно двумя молодыми учеными, независимо работающими на разных континентах.

В 1886 году двое мужчин, обоим по 22 года, один из которых работал в Огайо, а другой на северо-западе Франции, разработали современный метод производства металлического алюминия.

Американец Чарльз Мартин Холл приступил к работе после того, как его вдохновила лекция в Оберлин-колледже, в которой его профессор химии заявил, что открыватель практического способа производства алюминия «благословит человечество и сделает себе состояние».«

Молодой американский химик Чарльз Мартин Холл на фотографии, сделанной в феврале 1886 года, примерно в то же время, когда он сделал новаторское открытие эффективного и недорогого процесса производства алюминия. Беттманн Архив скрыть подпись

переключить подпись Беттманн Архив

Молодой американский химик Чарльз Мартин Холл на фотографии, сделанной в феврале 1886 года, примерно в то же время, когда он совершил революционное открытие эффективного и недорогого процесса производства алюминия.

Беттманн Архив

Француз Поль Эру работал над той же проблемой.

Почти в то же время двое мужчин нашли один и тот же ответ: электричество и много электричества.

По-прежнему используется сегодня, вот как работает их метод: глинозем из боксита растворяется в другом минерале, криолите, при температуре 1832 градуса по Фаренгейту. Расплавленная смесь переливается в чан специальной конструкции, и через него проходит огромное количество электричества.В результате металлический алюминий конденсируется на дне чана.

Поль Эру, работающий во Франции, разработал тот же метод производства дешевого алюминия, что и Холл. Это фото было сделано в 1900 году. Keystone-France / Gamma-Keystone через Getty Images скрыть подпись

переключить подпись Keystone-France / Gamma-Keystone через Getty Images

Поль Эру, работающий во Франции, разработал тот же метод, что и Холл, для производства дешевого алюминия.Это фото было сделано в 1900 году.

Keystone-France / Gamma-Keystone через Getty Images

Двое мужчин боролись за право собственности на процесс, который они разработали для плавки алюминия из бокситовой руды. Эру подал заявку на патент за шесть недель до Холла, но американец смог доказать (возможно, благодаря записям его сестры Джулии Брейнерд Холл), что он действительно сделал открытие на несколько недель раньше своего соперника. В конце концов, двое мужчин уладили свой спор и стали друзьями.

В 1888 году Холл стал соучредителем компании Pittsburgh Reduction Co. по производству алюминия. Позже компания стала алюминиевым гигантом Alcoa. В следующем году Эру расширил этот процесс во Франции.

Двое мужчин умерли в один и тот же год, в 1914 году, обоим по 51 год.

Развитие процесса Холла-Эру, как его стали называть, стало важной вехой в промышленной революции. Но это также повлекло за собой экологические издержки: необходимое электричество производит большое количество парниковых газов.По оценкам, только на производство алюминия приходится около 1% мировых выбросов.

Доступность алюминия на рубеже 20-го века подтолкнула эру полетов и космическую эру.

Орвилл Райт, лежащий за штурвалом на нижнем крыле, пилотирует «Райт Флайер» в первом полете на самолете тяжелее воздуха 17 декабря 1903 года в Китти Хок, Северная Каролина. Джон Т. Дэниэлс / AP скрыть подпись

переключить подпись Джон Т. Дэниэлс / AP

Орвилл Райт, лежащий за штурвалом на нижнем крыле, пилотирует «Райт Флайер» во время первого полета с двигателем на самолете тяжелее воздуха 7 декабря.17 января 1903 года, Китти-Хок, Северная Каролина,

. Джон Т. Дэниэлс / AP

В 1903 году Уилбур и Орвилл Райт боролись с дизайном своего летчика Райта, который вошел в историю.

«Несомненно, они знали, что им нужно что-то легкое, иначе отношение тяги к массе не было бы достаточно высоким», — говорит Дональд Садовей, профессор химии материалов в Массачусетском технологическом институте.

Чарльз Тейлор, «механик» соратник Райтов, первым предложил использовать сплав алюминия и меди для блока их примитивного четырехцилиндрового бензинового двигателя. Это была новаторская идея уменьшить общий вес их самолета.

«Это был в лучшем случае очень скромный самолет», — говорит Роберт ван дер Линден, куратор Смитсоновского национального музея авиации и космонавтики. «Так что ему потребовалась каждая унция силы и каждая унция сэкономленного веса, чтобы поднять эту штуку в воздух.»

180-фунтовый двигатель — на 20 фунтов легче, чем предполагалось, благодаря алюминию — превзошел ожидания и позволил Wright Flyer взлететь.

Хотя остальная часть самолета была сделана из дерева и ткани, к концу 1920-х гг. все более быстрые самолеты сделали алюминий очевидным выбором для фюзеляжа.

«До тех пор бипланы, обтянутые тканью, были просто прекрасны, — говорит ван дер Линден. — Но если вы разгонитесь быстрее, чем примерно 150 миль в час … вам нужен более прочный материал.

Опять же, алюминий был ключевым. Он стал доминирующим металлом в авиации.

Его переработка была дешевле и требовала меньше времени, чем переработка его из руды. Поэтому во время Второй мировой войны американцев поощряли сдавать свои алюминиевые кухонные горшки. и даже алюминиевая фольга от оберток от жевательной резинки и пачек сигарет, чтобы помочь в военных действиях.

НАСА также обратилось к алюминиевым сплавам для Аполлона по той же причине, по которой они были так необходимы для самолетов — веса и прочности.

Капсула Orion следующего поколения поднимается и соединяется с испытательным стендом для проверки давления внутри Космического центра Кеннеди во Флориде. Ким Шифлетт / НАСА скрыть подпись

переключить подпись Ким Шифлетт / НАСА

Капсула Orion следующего поколения поднимается для соединения с испытательным стендом для проверки давления внутри Космического центра Кеннеди во Флориде.

Ким Шифлетт / НАСА

Космическая капсула «Орион» следующего поколения изготавливается в основном из алюминиево-литиевого сплава.

Когда дело доходит до космических полетов, «вес — это все», — говорит ван дер Линден. «Алюминиевые сплавы идеально подходят для этого».

Где были бы современная авиация и космические полеты без алюминия?

«Я не вижу этого, потому что на самом деле нет другого металла или любого другого материала, который мог бы сделать то, что сделали алюминиевые сплавы», — говорит он.

Алюминиевая банка для напитков была представлена ​​в 1959 году.

Пивовар Coors был первым, кто использовал алюминиевую банку для напитков.

До этого «упаковкой в ​​основном для всех напитков служили стальные банки и бутылки», — говорит Хейди Харрис, архивариус Coors.

«Стальные банки с пивом особенно не годились», — говорит она. По словам Харриса, сталь оставила забавный привкус.

Пивные банки перемещаются по производственной линии на консервном заводе пивоварни в Мариетте, штат Джорджия., в прошлом году. Джонни Кларк / AP скрыть подпись

переключить подпись Джонни Кларк / AP

Пивные банки перемещаются по производственной линии на консервном заводе пивоварни в Мариетте, штат Джорджия, в прошлом году.

Джонни Кларк / AP

Но было еще одно соображение.Билл Корс, в то время генеральный директор компании, был недоволен тем, что стальные банки «валяются повсюду», — говорит Харрис.

«Он хотел придумать банку, в которой потребители могли бы одну, переработать и две, чтобы пиво оставалось с хорошим вкусом в течение более длительных периодов времени», — говорит она.

Поначалу холодное пиво в алюминиевых банках было теплым. Однако к середине 1960-х годов новая банка действительно начала завоевывать популярность даже среди конкурентов Coors.

Компания Novelis из Атланты, которая на сегодняшний день является крупнейшим производителем листового алюминия для банок, заявляет, что более 60% производимого ею алюминия перерабатывается, и большая часть этого алюминия идет обратно в банки.«На переработку алюминия требуется всего около 5% энергии, используемой для производства нового металла», — говорит Тодд Самм, главный директор по исследованиям и разработкам в Novelis.

Это означает, что углеродный след от банки пива или газировки меньше, чем был бы, если бы алюминий пришел свежим с земли.

«Банка для напитков, сделанная из алюминия, является наиболее пригодной для вторичной переработки [и] наиболее экологичной упаковкой, и она постоянно подвергается вторичной переработке», — говорит Самме.

Это алюминий или алюминий?

Дэви, первооткрыватель элемента, несет большую долю вины за всю эту путаницу вокруг U.С. и британское написание и произношение слова.

Сначала он назвал свой новый элемент «алюминий», но, несмотря на ранее обнаруженные три других элемента, которым он дал суффикс «-ium» (калий, натрий и магний), он необъяснимым образом изменил его на «алюминий» в своем 1812 году. книга, Элементы химической философии .

Другие ученые того времени, казалось, предпочитали «алюминий», и это правописание и произношение, используемые сегодня британцами.

Америка пошла с «алюминием Дэви».»Это было указано как предпочтительное написание в The Century Dictionary (опубликовано в Нью-Йорке) в 1889 году и как единственное написание в Webster Unabridged Dictionary за 1913 год.

Американское химическое общество изначально было на стороне научного сообщества и назвал его «алюминием». Но к 1925 году, когда в США все чаще стали использовать легкий металл, общество смягчилось и перешло на «алюминий».

Этот эпизод был спродюсирован Ребеккой Рамирес и отредактирован Вьет Ле.

Алюминий — Информация об элементах, свойства и применение

Расшифровка:

Химия в ее элементе: алюминий

(Promo)

Вы слушаете Химию в ее элементе, представленную вам Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

На этой неделе химическая причина трансатлантических языковых трений. Это эм или мум в конце? Оказывается, у нас, британцев, на лицах может быть яйцо, а также немного того, что мы называем алюминием.

Кира Дж. Вайсман

«Я чувствую себя запертым в жестяной коробке на высоте 39000 футов». Это распространенный рефрен у людей, страдающих фобией к полетам, но, возможно, им было бы комфортно знать, что коробка на самом деле сделана из алюминия — более 66000 кг, если они сидят в гигантском реактивном самолете.Хотя сетовать на присутствие в «алюминиевой коробке» — это не совсем то же самое кольцо, есть несколько веских причин оценить этот выбор материала. Чистый алюминий мягкий. Тем не менее, легирование его такими элементами, как медь, магний и цинк, значительно повышает его прочность, при этом делая его легким, что очевидно является преимуществом в борьбе с гравитацией. Полученные сплавы, иногда более пластичные, чем сам алюминий, можно формовать в различные формы, включая аэродинамическую дугу крыльев самолета или его трубчатый фюзеляж.И в то время как железо ржавеет под воздействием элементов, алюминий образует микроскопически тонкий оксидный слой, защищающий его поверхность от дальнейшей коррозии. С этим здоровенным резюме неудивительно, что алюминий можно найти во многих других транспортных средствах, включая корабли, автомобили, грузовики, поезда и велосипеды.

К счастью для транспортной отрасли, природа одарила нас огромным количеством алюминия. Самый распространенный металл в земной коре, он буквально повсюду. Тем не менее, алюминий оставался неоткрытым до 1808 года, так как он связан с кислородом и кремнием в сотни различных минералов, которые никогда не появляются в своей металлической форме.Сэр Хамфри Дэви, химик из Корнуолла, открывший этот металл, назвал его «алюминием» в честь одного из его исходных соединений — квасцов. Однако вскоре после этого вмешался Международный союз теоретической и прикладной химии (или ИЮПАК), стандартизовавший суффикс до более обычного «ium». Еще одним поворотом в номенклатурной истории стало то, что Американское химическое общество возродило первоначальное написание в 1925 году, и по иронии судьбы именно американцы, а не британцы произносят название элемента, как задумал Дэви.

В 1825 году честь впервые выделить алюминий выпала на долю датского ученого Ганса Христиана Эрстеда. Сообщается, что он сказал о своей награде: «Он образует кусок металла, напоминающий олово по цвету и блеску» — не слишком лестное описание, но, возможно, объяснение нынешнего замешательства пассажиров авиалиний. Трудность отделения алюминия от его оксидов — ибо все ранние процессы давали в лучшем случае только килограммы — обеспечили ему временный статус драгоценного металла, более ценного даже, чем золото.Фактически, алюминиевый бар занимал почетное место рядом с драгоценностями короны на Парижской выставке 1855 года, в то время как Наполеон, как говорят, зарезервировал алюминиевую посуду только для своих самых почетных гостей.

Только в 1886 году Чарльз Мартин Холл, необычайно упорный 22-летний ученый-любитель, разработал первые экономические средства для извлечения алюминия. Работая в сарае со своей старшей сестрой помощницей, он растворил оксид алюминия в ванне с расплавленным гексафторалюминатом натрия (более известный как «криолит»), а затем разделил алюминий и кислород с помощью сильного электрического тока.Примечательно, что другой 22-летний француз Поль Луи Туссен Эру открыл точно такую ​​же электролитическую технику почти в то же время, что спровоцировало трансатлантическую гонку патентов. Их наследие, закрепленное как процесс Холла-Эру, остается основным методом производства алюминия в промышленных масштабах — в настоящее время ежегодно производится миллион тонн алюминия из самой богатой алюминиевой руды, боксита.

Не только транспортная промышленность осознала преимущества алюминия.К началу 1900-х годов алюминий уже вытеснил медь в линиях электропередач, его гибкость, легкий вес и низкая стоимость с лихвой компенсировали его более низкую проводимость. Алюминиевые сплавы являются фаворитом в строительстве, находя применение в облицовке, окнах, желобах, дверных рамах и кровле, но с такой же вероятностью они могут появиться и внутри дома: в бытовой технике, кастрюлях и сковородах, посуде, телевизионных антеннах и мебели. В качестве тонкой фольги алюминий представляет собой упаковочный материал par excellence , гибкий и прочный, непроницаемый для воды и стойкий к химическим воздействиям — короче говоря, он идеально подходит для защиты спасательного лекарства или вашего любимого шоколадного батончика.Но, пожалуй, наиболее узнаваемым воплощением алюминия является алюминиевая банка для напитков, сотни миллиардов штук которых производятся ежегодно. Естественно глянцевая поверхность каждой банки служит привлекательным фоном для названия продукта, и хотя ее тонкие стенки могут выдерживать давление до 90 фунтов на квадратный дюйм (в три раза больше, чем в типичной автомобильной шине), к содержимому можно легко получить доступ с помощью просто потяните за язычок. И хотя рафинирование алюминия поглощает значительную часть мирового электричества, алюминиевые банки можно перерабатывать экономично и многократно, каждый раз экономя почти 95% энергии, необходимой для плавки металла.

Однако у этого блестящего металла есть и более темная сторона. Несмотря на его изобилие в природе, известно, что алюминий не служит какой-либо полезной цели для живых клеток. Однако в своей растворимой форме +3 алюминий токсичен для растений. Высвобождение Al 3+ из его минералов ускоряется в кислых почвах, которые составляют почти половину пахотных земель на планете, что делает алюминий основным виновником снижения урожайности сельскохозяйственных культур. Людям не нужен алюминий, но он попадает в наш организм каждый день — он содержится в воздухе, которым мы дышим, в воде, которую мы пьем, и в еде, которую мы едим.Хотя в пищевых продуктах обычно присутствует небольшое количество алюминия, мы отвечаем за основные источники пищевого алюминия: пищевые добавки, такие как разрыхлители, эмульгаторы и красители. Проглатывание антацидов, отпускаемых без рецепта, может повысить уровень их потребления в несколько тысяч раз. Многие из нас ежедневно наносят дезодоранты, содержащие алюминий, непосредственно на кожу. Что беспокоит, так это то, что несколько исследований показали, что алюминий является фактором риска как рака груди, так и болезни Альцгеймера.Хотя большинство экспертов по-прежнему не убеждены в доказательствах, алюминий в высоких концентрациях является доказанным нейротоксином, в первую очередь влияющим на кости и мозг. Итак, пока не будут проведены дополнительные исследования, жюри останется открытым. Теперь, возможно, это то, что вас беспокоит во время вашего следующего дальнемагистрального полета.

Крис Смит

Исследователь Кира Вайсман из Саарландского университета в Саарбрукене, Германия, рассказала историю алюминия и почему я не говорю это так, как задумал Хамфри Дэвид.На следующей неделе, поговорим о том, как звучат элементы, а как насчет этого?

Брайан Клегг

Не так много элементов со звукоподражательными названиями. Скажите кислород или йод, и в звучании этого слова нет ключа к природе элемента, но цинк бывает другим — цинк, цинк, цинк, вы почти можете услышать, как набор монет падает в старомодную ванну. Это просто должен быть твердый металл. При использовании цинк часто скрыт, почти скрыт. Он предотвращает ржавление железа, успокаивает солнечные ожоги, защищает от перхоти, соединяется с медью, образуя очень знакомый сплав золотого цвета и сохраняет нам жизнь, но мы этого почти не замечаем.

Крис Смит

И вы можете догнать звон цинка с Брайаном Клеггом в программе «Химия в ее стихии» на следующей неделе. Я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

открытие и развитие отрасли, история алюминия — Metalpedia

Алюминий: открытие и развитие отрасли, история алюминия — Metalpedia
  • Алюминий: открытие и развитие отрасли
  • По сравнению с другими металлами алюминий был открыт относительно поздно.В 1808 году Хамфри Дэви идентифицировал существование металлической основы из квасцов, которую он сначала назвал алюминием, а затем алюминием. В 1825 году датский физик и химик Ганс Кристиан Орстед попытался извлечь алюминий. Но только в 1827 году смешивание безводного хлорида алюминия с калием дало чистый алюминий в виде простого вещества.
  • Поскольку производство алюминия было ограниченным, статус алюминия в то время был очень высоким. Говорят, что на званом обеде только французский император Наполеон использовал алюминиевые нож и вилку, в то время как другие использовали серебряные столовые приборы.На Парижской международной выставке 1855 года небольшой кусок алюминия с надписью «серебро из глины» был помещен рядом с самыми драгоценными украшениями. В 1889 году русский царь подарил Менделееву алюминиевую чашу в знак признания его вклада в Периодическую таблицу химических элементов.
  • Однако в 1886 году Чарльз Мартин Холл из Огайо в США и Поль Эру из Франции независимо друг от друга электролизовали смесь расплавленного боксита и криолита с получением металлического алюминия, что заложило основу для последующего массового производства алюминия.С тех пор статус алюминия полностью изменился, что в основном отражает два изменения: во-первых, алюминий производился в больших масштабах и больше не считался драгоценным металлом; во-вторых, благодаря широкому применению в промышленности и повседневной жизни в сочетании с массовым производством он постепенно вытеснил сталь, медь и другие металлы в более широких областях применения.
  • С развитием алюминиевой промышленности мировой спрос на алюминий быстро увеличился, рост составляет 7%, а подробная информация в 2013 году выглядит следующим образом:
  • Источник: Состояние мировой экономики на двух огромных слайдах — Мэтью Бослер
  • О нас Связаться с нами
  • Metalpedia — это некоммерческий веб-сайт, цель которого — расширить знания о металлах и предоставить пользователям обширную справочную базу данных.Он в максимальной степени предоставляет пользователям достоверную информацию и знания. Если есть какое-либо нарушение авторских прав, пожалуйста, сообщите нам через нашу контактную информацию, чтобы незамедлительно удалить такой контент, нарушающий авторские права.

№ 1087: Алюминий

Сегодня мы пытаемся извлечь серебро из глины. В Инженерный колледж Хьюстонского университета представляет эту серию о машинах, которые делают наши цивилизация бежит, а люди, чья изобретательность создал их.

Вы когда-нибудь задумывались, почему англичане говорят алюминий вместо алюминий ? Когда сэр Хэмфри Дэви идентифицировал материал в 1809 году он назвал это алюминий по родству с калием квасцы. Это слово вскоре превратилось в алюминий . Затем, чтобы получить слово, звучащее по-латыни, англичане положили в дополнительном письме I .Они позвонили это алюминий с тех пор.

Чистый алюминий в природе не встречается. Это химически связаны с другими элементами. Оксид алюминия, или боксит, является наиболее распространенным источником. Это очень сложно отделить алюминий от кислорода. Не до 1845 г. немецкий химик выделил точечный образец алюминий.

В 1854 году французский химик Анри Девиль изобрел коммерческий процесс извлечения алюминия из боксит. Но его алюминий по-прежнему был очень дорогим — практически новый драгоценный металл. Наполеон III заказал нагрудник, ложки для банкетов, и детская погремушка — все из алюминия.

Но все должно было измениться: юная Джулия Холл поступил в Оберлинский колледж в 1880 году.Два года спустя к ней присоединился ее младший брат Чарльз. Они узнали про алюминий и про электричество. Чарльз прочитал Расстраивающее замечание Девиля о том, что «каждая глиняная банка это рудник алюминия, а металл стоит дорого, так как серебра ». В свой 21 день рождения в 1884 году в газете появилась статья о 100 унциях алюминиевая пирамида, которая могла бы сформировать вершину Монумент Вашингтона.Он был выставлен на выставке в Tiffany’s до того, как он был установлен.

Итак, Чарльз приступил к работе с помощью Джулии. Может быть электролиз сделает то, что химическое разделение не было. Чтобы проводить электролиз при высоких температурах, он натолкнулся на идею растворения оксида алюминия в плавленый криолит вместо воды. Затем он запустил электрический ток через него.

Процесс сработал 23 февраля 1886 г. Он поставил ток батареи через горячую смесь, и он осажденные кусочки алюминия размером с мрамор. Два года спустя Холл присоединился к группе, чтобы сформировать Питтсбургская алюминиевая компания.

Пока Чарльз и Джулия Холл были в своих мастерской французского изобретателя — Поля Эру. развитие того же процесса во Франции.Но самый важной проблемой, стоящей перед новой отраслью, не было возникший в результате патентный конфликт. Это было отсутствие любой существующий рынок тонны дешевого алюминия.

Наконец, в 1893 году алюминиевые чайники появились на рынок, и игра шла полным ходом. Постепенно это дешевый и легкий металл находит применение повсюду. В 1907 Компания Чарльза Холла сменила название на The Алюминиевая компания Америки — сокращенно Алкоа.

Чарльз умер мультимиллионером, когда ему было всего 51. Он оставил небольшой сундук в «Алкоа». Компания. В нем на войлочной основе разбросаны горсть алюминиевых гранул, произведенных в 1886 г. Первый успех Залов. И Алкоа справедливо называет эти бесполезные маленькие фрагменты его драгоценности короны.

Я Джон Линхард из Хьюстонского университета, где нас интересуют изобретательные умы Работа.

(Музыкальная тема)

введение, свойства, производство и использование

Предположим, вам нужно создать идеальный материал — что бы это было нравиться? Вы, наверное, захотите, чтобы его было много и было относительно недорогой, прочный и легкий, легко сочетается с другими материалы, устойчивые к нагреванию и коррозии, а также хороший проводник электричества.Короче, ты бы, наверное, пришел с таким материалом, как алюминий (пишется «алюминий» в некоторых страны — и это тоже официальный Орфография ИЮПАК).

Это самый распространенный металл в земной коре, третий по величине металл в земной коре. много химического элемента на нашей планете (существуют только кислород и кремний в большем количестве), и второй по популярности металл для изготовления вещи (после железа / стали). Мы все видим и использовать алюминий каждый день, даже не задумываясь об этом. Одноразовый Из него делают банки для напитков и фольгу для готовки.Вы можете найти это призрачный серо-белый металл в некоторых довольно удивительных местах, от реактивных двигателей самолетов до корпусов высокотехнологичные боевые корабли. Что делает алюминий таким полезным материал? Давайте посмотрим поближе!

Фото: Алюминий — удивительно стойкий к атмосферным воздействиям материал. В Федеральном здании и здании суда США, Уилинг, Западная Вирджиния, представлены заметно в ярких окнах и других внутренних деталях. Фото Кэрол М. Хайсмит, любезно предоставлено Photographs в Carol M.Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

На что похож алюминий?

Алюминий мягкий, легкий, огнестойкий и термостойкий, легкий принимать новые формы и проводить электричество. Это отражает свет и тепло очень эффективно и не ржавеют. Легко реагирует с другими химическими элементами, особенно с кислородом, и легко образует внешний слой оксида алюминия, если оставить его на воздухе. Мы называем это физические и химические свойства алюминия вещей.

Фото: экспериментальный алюминиевый Ford Sable Автомобиль, выпущенный более 25 лет назад в 1995 году, был на 180 кг легче, чем аналогичный автомобиль со стальным кузовом и значительно более энергоэффективный. Сегодня, когда экономия топлива становится все более важной, полноразмерные алюминиевые автомобили стали обычным явлением. Новый грузовик Ford F-150 с полностью алюминиевым кузовом на целых 39 процентов (320 кг или 700 фунтов) легче своего предшественника. по данным Алюминиевой ассоциации. Фото любезно предоставлено Министерством энергетики США (DOE).

Сплавы

Алюминий действительно проявляет себя, когда вы комбинируете его с другими металлы для производства алюминиевых сплавов (сплав — это металл, смешанный с другими элементами для создания нового материала. с улучшенными свойствами — он может быть прочнее или плавиться при более высокой температуре). Некоторые из металлы, обычно используемые для изготовления алюминиевых сплавов, включают бор, медь, литий, магний, марганец, кремний, олово и цинк. Вы смешиваете алюминий с одним или несколькими из них в зависимости от работы, которую вы пытаетесь выполнить.

Композиты

Алюминий можно комбинировать с другими материалами совершенно по-другому. в композитах (гибридные материалы, изготовленные из двух или более материалов, сохраняющих их отдельная идентичность без химического объединения, смешивания или растворения). Так, например, алюминий может выступать в качестве «фонового материала» (матрицы) в так называемом композитном материале с металлической матрицей (MMC), армированном частицами карбида кремния, для создания прочного, жесткого и легкого материала, подходящего для самых разных в аэрокосмической, электронной и автомобильной промышленности — и (что очень важно) лучше, чем только алюминий.

Для чего используется алюминий?

Диаграмма: Потребление алюминия в США. Транспортировка (самолеты, корабли, грузовики и легковые автомобили) в настоящее время является самым крупным применением металла и его сплавов. Источник: Геологическая служба США, Обзор минерального сырья: Алюминий. Январь 2021г.

Чистый алюминий очень мягкий. Если ты хочешь сделать что-нибудь посильнее но все же легкий, износостойкий и способный выдержать высокие температуры в самолете или автомобильный двигатель, вы смешиваете алюминий и медь.Для пищевой упаковки ничего подобного не нужно прочность, но вам нужен материал, который легко придать форму и запечатать. Ты получаешь эти качества путем легирования алюминия магнием. Предположим, вы хотите провести электричество на большие расстояния от источника питания. растения в дома и на фабрики. Вы можете использовать медь, которая вообще лучший проводник (переносчик) электричества, но он тяжелый и дорого. Алюминий может быть вариантом, но он не несет электричество так легко. Одно из решений — сделать силовые кабели из алюминий, легированный бором, который проводит электричество почти так же хорошо, как медь, но в жаркие дни намного светлее и меньше обвисает.Обычно алюминий сплавы содержат 90–99 процентов алюминия.

Как производится алюминий?

Алюминий настолько легко реагирует с кислородом, что вы никогда не найдете его естественным образом это в чистом виде. Вместо этого соединения алюминия существуют в огромных количествах. количества в земной коре в виде руды (необработанного скального материала), называемого бокситом. Это обычное название гидратированного оксида алюминия, вещества, обычно состоящего из двух третей оксид алюминия (химическая формула Al2O3) с одним третьи молекулы воды (h3O) заперт в кристалле состав.В зависимости от того, где на Земле это Обнаружено, что бокситы также содержат ряд различных примесей, таких как оксид железа, оксид кремния и оксид титана. В настоящее время в мире имеется около 55–75 миллиардов тонн ресурсов бокситов, которых достаточно, чтобы удовлетворять спрос «далеко в будущее» (по данным Минеральной службы Геологической службы США Сводки по товарам, январь 2021 г.).

Фото: Готово к переработке: Эти раздавленные циновки из алюминиевых банок называют печеньем. Они готовы таять вниз и переработать.По данным Алюминиевой ассоциации, почти 70 процентов когда-либо добытого алюминия все еще используется сегодня благодаря эффективным программам утилизации. Утилизировать использованный алюминий намного дешевле и экологичнее, чем выкапывать бокситы из земли и обрабатывать его: переработка позволяет сэкономить около 95 процентов энергии, необходимой для производства нового алюминия. Фото любезно предоставлено ВВС США.

Если вы хотите превратить боксит в алюминий для изготовления полезных вещей, например банки, фольга для готовки и космические ракеты, вы должны избавиться от примесей и воды и разделить атомы алюминия из атомов кислорода, за которые они закреплены.Итак, делая алюминий на самом деле представляет собой многоступенчатый процесс.

Сначала боксит выкапывают из земли, раздавливают, сушат (если он содержит слишком много воды) и очистите его, чтобы остался только алюминий. окись. Затем вы используете электрическую технику, называемую электролиз разделите это на алюминий и кислород. (Электролиз противоположен что происходит внутри батареи. В аккумулятор, у вас есть два разных металлических соединения, вставленных в химическое соединение и замкните цепь между ними, чтобы произвести электричество.При электролизе вы пропускаете электричество через два металлических соединения, в химическое соединение, которое затем постепенно расщепляется на атомы.) чистый алюминий отливают в блоки, известные как слитки, которые можно обрабатываемые, формованные или используемые в качестве сырья для изготовления алюминиевых сплавов.

Изготовление годного к употреблению блестящего алюминия из каменных кусков боксита, который вы вырыли из земли — это долгий, грязный, невероятно энергоемкий процесс. Вот почему алюминиевая промышленность так заинтересована об утилизации таких вещей, как использованные банки из-под напитков.Их гораздо быстрее, дешевле и проще переплавить и использовать повторно. чем переработка бокситов. Это также намного лучше для среда потому что это экономит огромное количество энергии.

Таблица

: Почему переработка алюминия имеет смысл. Количество энергии, необходимое для переработки металла для повторного использования (оранжевые полосы), составляет часть того, что требуется для производства первичного металла в первую очередь (синие полосы), но разница намного больше для алюминия (в центре), чем для любой стали. (слева) или медь (справа), потому что в первую очередь очень сложно извлечь и очистить алюминий.Источник данных: «Таблица 7.11 воплощенная энергия выбранных материалов» в книге «Энергия и выбросы углерода» Николы Терри, UIT Кембридж, 2011 г., на основе данных инвентаризации углерода и энергии (ICE), проведенной группой исследований устойчивой энергетики Университета Бата.

Краткая история алюминия

Фото: Строительство алюминиевой лодки. Эта высокоскоростная алюминиевая лодка, известная как Littoral Surface Craft-Experimental (LSC-X) или X-Craft, показан здесь во время строительства во Фриленде, штат Вашингтон.Фото Джесси Прейно любезно предоставлено ВМС США.

Кто открыл алюминий, как и когда? Вот как это произошло …

  • 1746: немецкий химик Андреас Маргграф (1709–1782) понимает, что квасцы (природное соединение алюминия, используемое для окрашивания тканей с древних времен) содержит неизвестный металл. Это алюминий, конечно, но он этого не знает.
  • 1809: английский химик сэр Хэмфри Дэви (1778–1829) называет этот металл. «алюминий» и (позже) «алюминий», но не может его отделить.
  • 1825: датский химик и пионер электротехники Ганс Кристиан Эрстед (1777–1851) поворачивается оксид алюминия в хлорид алюминия, а затем использует калий для превращения хлорид в чистый алюминий. К сожалению, он не может повторить трюк второй раз!
  • 1827: немецкий химик Фридрих Вёлер (1800–1882) также делает небольшой количество алюминия при нагревании оксид алюминия с металлическим калием.
  • 1855: французский химик Анри Сент-Клер Девиль (1818–1881) использует натрий для выделения алюминий.Поскольку натрий дешевле и его легче получить, чем калий, Девиль может производить больше алюминия — достаточно, чтобы сделать слиток. Он ставит это экспонируется на публичной выставке в Париже, Франция. Новый девиль метод означает, что алюминий становится более доступным, и цена начинает падать.
  • 1886: Работая независимо, американская команда Чарльза Мартина Холла (1863–1914) и его сестры. Джулия Брейнерд Холл (1859–1925) и француз Поль-Луи-Туссен Эру (1863–1914) открыли современный метод расщепления оксида алюминия электролиз для получения чистого алюминия.Их высокоэффективная техника, известный как Процесс Холла-Эру по-прежнему используется для производства большинства алюминия в мире сегодня.
  • 1888: австрийский химик Карл Байер (1847–1904) находит менее дорогой способ превращения бокситов в оксид алюминия — сырье, необходимое для Hall-Héroult процесс. Вместе Bayer и Hall-Héroult решают снизить цену на алюминий, что позволит использовать металл в гораздо большей количества.
  • 1893: Студебеккер запускает алюминиевый фургон для колумбийской выставки в Чикаго.
  • 1899: Спортивный автомобиль Dürkopp с алюминиевым кузовом представлен на Берлинском международном автосалоне. Несколько лет спустя Компания Pierce Arrow Motor Car производит автомобили с литыми алюминиевыми кузовами.
  • 1901: Пионер автомобилестроения Карл Бенц выпускает первый автомобильный двигатель из алюминия.
  • Начало 1900-х: Первые программы переработки алюминия.
  • 1913: Впервые произведена алюминиевая фольга.
  • 1920-е годы: начинают появляться современные алюминиевые сплавы.
  • 1925: Американское химическое общество официально меняет название с «алюминий» в «алюминий» в США.
  • 1946: Алюминий используется в кузове легких серийных Панхард Дина X.
  • 1957: Представлены первые алюминиевые линии электропередачи.
  • 1959: Coors производит первую полностью алюминиевую банку для напитков.
  • 1975: Даниэль Кадзик изобретает фиксирующий язычок для банок с напитками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *