Когда открыли электричество – Электричество — Википедия

Содержание

Электричество — Википедия

Электри́чество (от лат. electricus, далее из др.-греч. ἤλεκτρον) — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества[1].

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы[2]. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания

[3]. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой

[1]. В 1802 году Василий Петров обнаружил вольтову дугу.

С этого открытия русского ученого началась история электрической лампочки или лампы накаливания. В дальнейшем основной вклад в создание электрической лампочки внесли русские инженеры Павел Николаевич Яблочков и Александр Николаевич Лодыгин.

Лодыгин после долгих экспериментов создал «Товарищество электрического освещения Лодыгин и компания» и в 1873 году продемонстрировал лампы накаливания своей системы. Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям». Тогда же собственную конструкцию лампы параллельно разрабатывал Павел Яблочков. В 1876 году он получил патент за лампочку своей системы, которая получила название «свеча Яблочкова». После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 года, которую посетило много русских, ею заинтересовались в России. Лодыгину, наоборот, не удалось наладить в России широкое производство своих ламп. Он уехал в Америку, и там узнал, что изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения

[7].

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка британским (шотландским) физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[8]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и, таким образом, имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон и антипротон имеют отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряжённостью 100 В/м.

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передаётся без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия

[9].

Многие рыбы используют электричество для защиты и поиска добычи под водой. Южноамериканский электрический угорь способен генерировать электрические разряды напряжением до 500 вольт. Мощность разрядов электрического ската может достигать 500 Вт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создаёт напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде

[10].

Производство и практическое использование[править | править код]

Генерирование и передача[править | править код]

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать лёгкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в 1800 году, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея даёт возможность получить электричество в случае необходимости, является многофункциональным и широко распространённым источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако её запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем её объёме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретённая Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретён трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям[13][14].

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идёт модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счёт энергии ветра и воды[19].

Применение[править | править код]

Получение электричества путём преобразования кинетической энергии ветра набирает популярность во многих странах мира Лампа накаливания

Использование электричества обеспечивает довольно удобный[источник не указан 1489 дней] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин[21]. Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.[22]. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве[23].

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[24], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[25] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащённые электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определённую степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нём электричества уже потребовало производства тепла на электростанции[26]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[27]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[28][29].

По данным Всемирного банка, на сегодняшний день (2015) более миллиарда человек в мире живут без использования электричества в быту. Около 3 млрд человек используют для приготовления пищи и отопления керосин, дрова, древесный уголь и навоз.[30].

Хронология основных открытий и изобретений[править | править код]

ru.wikipedia.org

история возникновения, век и год изобретения

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

История

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

Где:

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

rusenergetics.ru

Электричество — Википедия

Электри́чество — физическое явление, обусловленное существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества[1].

История

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы[2]. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания[3]. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой[1]. В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Теория

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и, таким образом, имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Электричество в природе

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряжённостью 100 В/м. Отрицательный заряд земной поверхности поддерживается молниями Весьма сомнительное утверждение[источник не указан 214 дней][8].

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передаётся без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия[9].

Многие рыбы используют электричество для защиты и поиска добычи под водой. Южноамериканский электрический угорь способен генерировать электрические разряды напряжением до 500 вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создаёт напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде[10].

Производство и практическое использование

Генерирование и передача

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать лёгкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в 1800 году, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея даёт возможность получить электричество в случае необходимости, является многофункциональным и широко распространённым источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако её запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем её объёме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретённая Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретён трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям[13][14].

Получение электричества из кинетической энергии ветра набирает популярность во многих странах мира

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идёт модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счёт энергии ветра и воды[19].

Применение

Лампа накаливания

Использование электричества обеспечивает довольно удобный[источник не указан 1101 день] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин[21]. Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.[22]. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве[23].

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[24], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[25] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащённые электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определённую степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нём электричества уже потребовало производства тепла на электростанции[26]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[27]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[28][29].

По данным Всемирного банка, на сегодняшний день (2015) более миллиарда человек в мире живут без использования электричества в быту. Около 3 млрд человек используют для приготовления пищи и отопления керосин, дрова, древесный уголь и навоз.[30].

Хронология основных открытий и изобретений

Примечания

  1. 1 2 Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72
  2. ↑ Электричество до Франклина
  3. ↑ Электростатическая машина Герике
  4. ↑ Первые опыты по передаче электричества на расстояние
  5. ↑ История электричества
  6. ↑ Открытие электричества
  7. ↑ Это не единственное свойство заряженных тел; например, заряженные тела при движении способны создавать ещё и магнитное поле, а также подвергаются воздействию последнего (также в случае своего движения).
  8. ↑ Электричество и магнетизм, 2004, с. 178.
  9. ↑ Электричество в живых организмах, 1988, с. 66.
  10. ↑ Богданов К. Ю. Физик в гостях у биолога. — М.: «Наука», Гл. ред. физ.-мат. лит., 1986, 144 с. (Б-чка «Квант», Вып. 49) тир. 135000 экз., ББК 22.3 + 28 Гл. 1. Живое электричество.
  11. ↑ Dell, Ronald & Rand, David (2001), «Understanding Batteries», Unknown (Royal Society of Chemistry) . — Т. 86: 2–4, ISBN 0-85404-605-4 
  12. ↑ McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, сс. 182–183, ISBN 0-85312-269-5 
  13. ↑ Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, сс. 44–48, ISBN 1-85383-341-X 
  14. ↑ Edison Electric Institute, History of the Electric Power Industry, <http://www.eei.org/industry_issues/industry_overview_and_statistics/history>. Проверено 8 декабря 2007. 
  15. ↑ Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991, <http://www.eia.doe.gov/cneaf/electricity/chg_stru_update/appa.html>. Проверено 8 декабря 2007. 
  16. ↑ Carbon Sequestration Leadership Forum, An Energy Summary of India, <http://www.cslforum.org/india.htm>. Проверено 8 декабря 2007. 
  17. ↑ IndexMundi, China Electricity — consumption, <http://www.indexmundi.com/china/electricity_consumption.html>. Проверено 8 декабря 2007. 
  18. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 16, ISBN 0-309-03677-1 
  19. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 89, ISBN 0-309-03677-1 
  20. ↑ Wald, Matthew (21 March 1990), «Growing Use of Electricity Raises Questions on Supply», New York Times, <http://query.nytimes.com/gst/fullpage.html?res=9C0CE6DD1F3AF932A15750C0A966958260>. Проверено 9 декабря 2007. 
  21. ↑ Один из первых коммерчески успешных вариантов электрической лампы накаливания был разработан Т. Эдисоном.
  22. ↑ Большая советская энциклопедия
  23. ↑ d’Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, с. 211 
  24. ↑ Жителям Подмосковья электричество не светит
  25. ↑ Из-за отключения электричества в Санкт-Петербурге встал электротранспорт
  26. ↑ ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, с. 298, ISBN 0-86720-321-8 
  27. ↑ Danish Ministry of Environment and Energy, F.2 The Heat Supply Act, <http://glwww.mst.dk/udgiv/Publications/1997/87-7810-983-3/html/annexf.htm>. Проверено 9 декабря 2007. 
  28. ↑ Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5 
  29. ↑ Hojjati, B. & Battles, S., The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions, <http://www.eia.doe.gov/emeu/efficiency/2005_USAEE.pdf>. Проверено 9 декабря 2007. 
  30. ↑ Более миллиарда людей в мире живут без электричества — ИА «Финмаркет»

Литература

  • Калашников С. Г. Электричество. — М., Наука, 1985. — 576 с.
  • Эйхенвальд А. А. Электричество. — М., Государственное технико-теоретическое издательство, 1933
  • Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. — М.: Наука, 1988. — 288 с.
  • Фейнман Р. Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. — М.: Едиториал УРСС, 2004. — 304 с.

Ссылки

wikipedia.green

Год открытия и изобретатель электричества, электричество в России

Задавать вопрос «кто придумал электричество?» не совсем корректно. Более правильно спрашивать, кто открыл электричество? Ответить однозначно невозможно. История электричества уходит своими корнями в глубину веков существования человеческой цивилизации.

Фалес Милетский

Хронология основных открытий и изобретений

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.

Электростатическая машина Отто фон Генрике

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.

Лейденская банка

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.

Вольтов столб

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

Этапы создания теории

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

Лейденская банка

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

От теории к точной науке

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Закон Кулона

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта  в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Видео

amperof.ru

в каком году появилось и кто изобрел, история открытия постоянного и переменного тока

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество». С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта, который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

Первое применение электроэнергии

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый — американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году. Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие — было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток, так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Электроток в жизни и природе

Сейчас электричество в наши дома поступает благодаря электрическим станциям. На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе, первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

220v.guru

История развития электричества

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. Diletant.media и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.



Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.


Устройство для получения статического электричества Отто фон Герике

Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.

Именно эффект трения (как в случае с шерстью и янтарем) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей смог открыть передачу электричества на расстоянии



Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.


Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус».

Некто Бозе высказал желание быть убитым электричеством


Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.


Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.


Лаборатория, в которой Гальвани проводил свои опыты

Обозначение «вольт» произошло от фамилии ученого — Александро Вольта

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.


Фарадей за опытами в своей лаборатории

Фарадей сыграл едва ли не главную роль в становлении теории электричества


Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.

diletant.media

история создания, как оно получается, объяснение свойств с позиции физики и применение в жизни

Трудно представить, что еще два столетия назад люди не использовали электричество столь же широко, как сейчас. Открытие и изучение свойств этой энергии сделали возможным появление бытовой техники, интернета, телевидения и высокоскоростного транспорта, без которых трудно представить комфортное существование. Однако не всем известно, что этим достижениям предшествовала многовековая исследовательская работа.

Состав невидимого потока

С точки зрения физики, сама возможность возникновения электричества исходит из способностей физической материи накапливать и сохранять электрический заряд. Вокруг этих накопителей образуется энергетическое поле.

В основе действия тока лежит сила невидимого потока заряженных частиц, движущихся в едином направлении, что образует магнитное поле, родственное по принципу действия с электрическим. Они могут влиять на другие тела, обладающие зарядом того или иного вида:

  • отрицательным;
  • положительным.

Согласно научным исследованиям, электроны вращаются вокруг центрального ядра любого атома, входящего в состав молекул, образующих все физические тела. Под воздействием магнитных полей они могут отрываться от родного ядра и присоединяться к другому, вследствие чего у одной молекулы получается недостаток электронов, а у другой возникает их переизбыток.

Но сама суть этих элементов состоит в стремлении восполнить нехватку в матрице — они всегда стремятся туда, где их наименьшее количество. Такая постоянная миграция наглядно показывает, как получается электричество, ведь на близком расстоянии электроны стремительно переходят от одного центра атома к другому. Это приводит к образованию тока, о нюансах действия которого интересно знать следующие факты:

  • вектор — его направление всегда исходит из отрицательного заряженного полюса и стремится к положительному;
  • атомы с избытком электронов имеют заряд «минус» и именуются «ионами», недостаток же этих элементов создает «плюс»;
  • в контактах проводов «минусовой» заряд называют «фаза», а «плюс» обозначается нулем;
  • наименьшее расстояние между атомами — в составе металлов, поэтому они являются наилучшими проводниками тока;
  • наибольшая межатомная дистанция зафиксирована в резине и твердых телах — мрамор, янтарь, фарфор, — которые являются диэлектриками, неспособными проводить ток, поэтому их еще называют «изоляторами»;
  • энергия, образующаяся при движении электронов и разогревающая проводники, именуется «мощностью», которую принято измерять в ваттах.

Интересно, что все свойства явления до сих пор не изучены до конца, хотя квантовая физика и термодинамика проводят постоянные исследования. Проще всего обозначить определение электричества через тезис ученого Вильяма Гилберта, сказавшего, что это энергия движущихся заряженных частиц и освещение, получаемое с использованием данной силы.

От янтаря к молнии — долгая история

Нет однозначного ответа на вопрос, кто создал электричество, выделив его как отдельную управляемую энергию. С древнейших времен до наших дней величайшие деятели науки работали над этой темой и добавляли к предыдущей теории собственные знания и опыты по применению на практике.

Первые шаги ученых прошлого

Лексический корень, который лег в основу понятия, произошел от древнегреческого слова «электрон», что означает «янтарь». Ученый и философ Фалес, живший в 7 веке до н. э., случайно заметил в ходе других физических опытов, что если тщательно потереть необработанный янтарь о шерсть, он начнет притягивать пыль и нити, а большой камень — ткань и тонкие кусочки папируса.

Заинтересовавшись, Фалес провел ряд опытов и вышел на теорию заряженных частиц, однако в то время не было подходящего оборудования для доказательств его выводов. Исследования не получили продолжения, однако имя ученого навсегда вошло в историю как первооткрывателя. Позже Аристотель изучал морских угрей и скатов, поражающих жертву электроразрядом, а Плиний интересовался смолой как проводником заряда.

После долгих лет средневекового невежества интерес к исканиям античных ученых возник только в 17 веке, причем одновременно в нескольких европейских странах. Бургомистр Магдебурга Отто фон Герике, интересовавшийся наукой больше, чем скучной работой чиновника, именно на основе древних рукописей создал механизм научно-исследовательского характера, использующий статическое электричество.

Он представлял собой прибор, состоящий из железного штифта и шарика серы вместо янтаря сверху. Механизм был сделан не для практической пользы, а для дальнейших исследований, в ходе которых Герике удалось создать подобие современной лампочки с серным зерном в центре.

Немногим позже британский врач и физик Вильям Гилберт изобрел усовершенствованный прибор для более глубокого изучения свойств

новой энергии, назвав его электроскопом. Это было простое устройство из стрелы, крутившейся на толстой металлической игле по принципу компаса, однако благодаря ему Гилберт выявил взаимосвязи огня и электричества, смог понять и доказать, что вместо янтаря можно использовать драгоценные камни и самоцветы, а также стекло и хрусталь. Он определил целый ряд так называемых «электрических» предметов.

Открытия эпохи просвещения

Ученые 18 века пришли к выводу, что сила трения вызывает разные виды электричества в зависимости от того, какой материал взят за основу. Английские исследователи Гренвиль Уиллер и Стивен Грей обнаружили, что некоторые вещества не обладают пропускной способностью, тогда как через определенные материалы ток проходит мгновенно.

Они и обозначили ряд «проводников» электроэнергии — металлы, солевые растворы, мокрая земля и даже человеческое тело. В 1729 году Уиллер и Грей провели невероятный по своему влиянию на промышленный прогресс опыт — передали электрический ток на небольшое расстояние.

В том же знаменательном году голландский физик и математик Мушенбрук вместе с немцем Эдвальдом фон Клейстом придумали устройство, вошедшее в историю электричества как «лейденская банка» — по названию университета, где впервые были продемонстрированы их опыты. Вода в стеклянном сосуде получала заряд через металлическую палку, которую вставляли через отверстие в крышке из станиоля. Дно банки также находилось на тарелке из аналогичного материала. Наружный металл выступал в качестве электродов для накапливания энергии внутри сосуда. Почти полтора века «лейденская банка» служила источником тока для первых электроприборов.

Такие успехи вдохновили ученых всего мира на дальнейшие опыты и открытия:

  1. Французский химик Шарль Дюфе сконструировал электроскоп с золотыми пластинками, а также выявил в ходе исследований, что бумага, натертая смолой, отталкивается от нее, но притягивается к стеклу, как к магниту, и наоборот. Он выделил два вида электричества — смоляное и стеклянное, на основе чего поделил все физические тела на две группы, согласно их реакции на смолу и стекло;
  2. Русский ученый Михаил Ломоносов изучал природу атмосферного электричества, возникающего при грозах, пробуя измерить его совместно с немецким исследователем Рихманом. Для этого ими была придумана громомерная машина, с ее помощью Ломоносов узнал о разности потенциалов молний и измерял уровень электричества в атмосфере не только при грозе, но и в обычное время;
  3. Французский ученый Шарль Кулон выявил закон электростатики с основным тезисом взаимодействия зарядов согласно квадрату расстояния между ними, а также определил силу отталкивания и притяжения одинаковых и противоположных «полюсов»;
  4. Итальянец Гальвани придумал первую батарейку, смастерив ее из круглых серебряных цилиндров, между которыми была размоченная в солевом растворе бумага;
  5. Англичанин Майкл Фарадей и француз Ампер разработали законы электродинамики, изучив химические свойства силы тока и их изменения при воздействии магнитного поля Земли, и доказали, что именно оно формирует электрическую энергию. С тех пор единица силы тока названа именем Ампера;
  6. Русский ученый Лодыгин придумал подобие современных ламп накаливания с основой из углевой пластины, а француз Жорж Клод изобретал устройство, близкое по конструкции к неоновым лампочкам;
  7. Итальянский химик Алессандро Вольта изобрел источник постоянного тока. Он пришел к выводу о необходимости подключения замкнутой цепи, в составе которой должны быть как металлические, так и жидкостные проводники. Он стал основоположником теории «контактного электричества», а его соотечественник Гальвани доказал присутствие этой энергии в теле человека.

Невозможно выделить одного ученого, которому можно приписать честь открытия и создания самой мощной энергии нашего времени. Каждый внес неоценимый вклад в общее дело.

Тесла и Франклин

Однако двое ученых все же выделяются из плеяды исследователей. Бенджамин Франклин проанализировал и синтезировал работы и опыты коллег, опубликовав самые аргументированные в одной книге под личной редакцией.

Он особо выделял теорию о положительных и отрицательных зарядах, а также доказал природное электрическое происхождение молний. После этого была выдвинута версия о том, что жизнь на планете зародилась вследствие синтеза первичных аминокислот, толчком к которому послужили молнии.

Франклин также впервые озвучил теорию об электрической природе нервных импульсов в человеческом теле, предшествующих двигательному процессу, циклу вдоха-выдоха, сенсорным ощущениям, что произвело революцию в научном мире.

Имя сербского ученого Никола Теслы является самым известным в народе и ассоциируется с открытиями в области электроэнергии. Он и правда посвятил этому всю жизнь, еще в детстве увидев, как светится шерсть любимой черной кошки от частых поглаживаний.

Тесла умел не только создавать теории, но и доказывать их экспериментами, которые бывали очень опасными. Он сконструировал и успешно применял высокочастотный механизм, получивший название «катушка Теслы», напряжение которого могло обеспечить работу компьютеров и телевизоров, тем более что их появление в будущем также было предсказано Теслой. К числу его гениальных изобретений можно отнести следующее:

  • способ сохранения света и передачи освещения, неоновые лампы;
  • переменный ток как безопасная альтернатива постоянному;
  • электродвигатель на вращающихся магнитных полях;
  • рентгеновские лучи и фотография;
  • радиосигналы и дистанционное управление на их частотах;
  • роботы и лазерные лучи.

Многие исследования ученого были связаны с разработкой машины времени и возможностью телепортации, но удалось ли ему осуществить эти теории, никто не знает. Он сжег многие свои работы, осознав, что человечество может использовать ценные знания во вред, а не во благо.

Освещение России

Русские ученые внесли огромный практический вклад в историю развития электричества, начиная с М. В. Ломоносова. Многие их идеи были заимствованы европейскими коллегами, однако в плане внедрения изобретений в практическую работу на пользу людям Россия всегда опережала другие страны.

Например, уже в 1879 году лампы фонарей на Литейном мосту были заменены на электрические, что было прогрессивным и смелым решением для того времени. В 1880 году был открыт отдел по делам электрификации городских районов при Русском техническом обществе. Первым населенным пунктом в мире, в котором было введено повсеместное освещение в вечернее и ночное время, стало Царское Село в 1881 году.

Весной 1883 года на Софийской набережной построили электростанцию и успешно провели праздничное освещение центра города, приуроченное к церемонии коронации нового императора — Александра ІІІ.

Праздничная иллюминация без сбоев и возгораний наглядно показала людям, пришедшим на праздник в большом количестве, как работает электричество в деле, и сторонников прогресса стало больше.

В этом же году был полностью электрифицирован центр Петербурга и его сердце — Зимний дворец. Небольшой отдел при техническом обществе вырос за пару лет в Ассоциацию электроосвещения Российской империи, стараниями которой было проведено множество работ по установке фонарей на улицах Москвы и Петербурга, включая отдаленные районы. Всего через два года по всей стране начнут строить электростанции, и население России окончательно встанет на путь прогресса.

Обыкновенное чудо природных явлений

Интересно, что тела человека и многих живых существ не просто являются проводниками электрических импульсов, но и способны вырабатывать эту энергию самостоятельно. Показательными примерами являются электрические скаты, миноги и угри, у которых есть специальные отростки в строении туловища, служащие своеобразной накопительной иглой, с помощью которой они поражают жертву разрядом частотой в несколько сотен герц.

Большинство ученых считают, что тело человека подобно электростанции с автономной системой саморегуляции. Бывали случаи, когда люди не только выживали после удара молнией, но и обретали исцеление от болезней и новые способности. Каждый из этих счастливцев обладал сильным природным иммунитетом, вследствие чего удар природного электричества только укрепил их врожденную силу.

В природе есть множество явлений, доказывающих, что электроэнергия — ее неотъемлемая часть и существует повсеместно:

  1. Огненные знаки святого Эльма — знакомы мореплавателям с античных времен. Внешне они похожи на кистеобразные огни свечей нежно-голубого и лилового оттенка, а длина их может достигать одного метра. Появляются в бурю и грозы на шпилях мачт кораблей. Матросы пытались отломить концы мачт и спуститься с факелом вниз, но это никогда не удавалось, поскольку огонь переходил на другие высоко расположенные объекты. Удивительно, что огонь не обжигает руки и холодноват при прикосновении. Мореплаватели считали, что это благодатный знак от святого Эльма о том, что корабль находится под его защитой и благополучно придет в порт. Современные исследования показали, что необычный огонь имеет электрическую природу;
  2. Полярное сияние — в верхних слоях атмосферы накапливается множество мелких элементов, прилетевших из глубин космоса. Они сталкиваются с частицами нижних слоев воздушной оболочки и пылинками с разными полюсами зарядов, результатом чего являются хаотично движущиеся световые вспышки разных цветов. Такое свечение характерно для периода полярной ночи и может длиться несколько суток;
  3. Молнии — изменения в атмосферных потоках вызывают одновременное возникновение льдинок и капель. Сила трения от их столкновения наполняет кучевые облака мощными электрозарядами. От соприкосновения облаков с разноименными зарядами возникает мощный световой выброс в громовых раскатах. Когда нижние слои атмосферы переполнены электрическими зарядами, они могут объединиться в одно целое, и получается шаровая молния, которая движется по довольно низкой траектории и очень опасна, поскольку может взорваться, столкнувшись с живым существом или статичным предметом.

Помимо переменного и постоянного тока, существует еще и статическое электричество, возникающее при нарушении баланса внутри атомов. Синтетическая ткань обладает способностью накапливать его, что выражается небольшими искрами при движении одежды во время переодевания и ощущением укола при касании человека или металла.

Это весьма неприятные ощущения, к тому же в больших дозах это вредно для здоровья. Статическое излучение исходит и от телевизоров, компьютеров и бытовой техники, электризующих пыль. Поэтому, чтобы сберечь здоровье, необходимо носить одежду из натуральных тканей, не находиться долгое время около электроприборов и почаще делать уборку.

Во избежание опасности

Несмотря на несомненную пользу, которое принесло открытие электричества людям, улучшив качество жизни, существует и обратная сторона медали. Электроразряд может убить или нанести существенный вред здоровью. Негативное воздействие электрического тока на человека может выражаться в следующем:

  • резкое и мощное сокращение мышечных волокон, что ведет к разрыву тканей;
  • незначительный внешне ожог с глубоким внутренним поражением органа;
  • нарушение баланса электролиза в теле;
  • поражение глаз ультрафиолетовой вспышкой;
  • перенапряжение и сбой в работе нервной системы;
  • паралич дыхания и остановка сердца.

Вред от воздействия напрямую зависит от силы тока. Если она равна 0,05 А, то это считается относительно безопасным для жизни. Частота в 0,1 А и выше может лишить сознания и нейтрализовать способность мышц к сокращению, что порой является фатальным при падении или наличии хронических заболеваний. Ни в коем случае нельзя прикасаться к оголенному проводу, не будучи уверенным, что напряжение отсутствует. Одновременное касание двумя руками приведет к поражению током сердца, что может оказаться смертельным.

Первую помощь при поражении электричеством нужно оказывать, не поддаваясь панике, поскольку схватив пострадавшего, чье тело по своей природе является накопителем, удерживающим полученный разряд, есть риск самому подвергнуться удару током. Нельзя стремительно бежать к упавшему, вместо этого надо идти мелкими шажками, что обеспечит безопасность и позволит вызвать врачей, вместо того чтобы самому пострадать. А уже в ожидании скорой постараться помочь следующим образом:

  • нейтрализовать главный источник энергии — через отключение рубильника или пробок;
  • убрать от жертвы опасный электроприбор с помощью предмета с изолирующими свойствами, лучше всего деревянной палкой или скрученным в рулон журналом;
  • при необходимости оттащить человека в безопасное место, нужно надеть резиновые перчатки или обмотать руки натуральной тканью, избегая прямого соприкосновения с кожей жертвы;
  • пальцами в перчатках попытаться прощупать пульс и если он слабый, то сделать закрытый массаж сердца и перевернуть пострадавшего на правый бок.

Во избежание опасности поражения электричеством необходимо регулярно проверять исправность бытовой техники и состояние розеток, надевая на них резиновые заглушки, если в доме есть малыши. Также не стоит гулять в грозу во время частых молний, а находясь дома в это время, окна лучше закрыть.

rusenergetics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *